]> Git Repo - linux.git/blob - kernel/sched/rt.c
signal, x86: Delay calling signals in atomic on RT enabled kernels
[linux.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         if (!rt_b->rt_period_active) {
59                 rt_b->rt_period_active = 1;
60                 /*
61                  * SCHED_DEADLINE updates the bandwidth, as a run away
62                  * RT task with a DL task could hog a CPU. But DL does
63                  * not reset the period. If a deadline task was running
64                  * without an RT task running, it can cause RT tasks to
65                  * throttle when they start up. Kick the timer right away
66                  * to update the period.
67                  */
68                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69                 hrtimer_start_expires(&rt_b->rt_period_timer,
70                                       HRTIMER_MODE_ABS_PINNED_HARD);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78                 return;
79
80         do_start_rt_bandwidth(rt_b);
81 }
82
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85         struct rt_prio_array *array;
86         int i;
87
88         array = &rt_rq->active;
89         for (i = 0; i < MAX_RT_PRIO; i++) {
90                 INIT_LIST_HEAD(array->queue + i);
91                 __clear_bit(i, array->bitmap);
92         }
93         /* delimiter for bitsearch: */
94         __set_bit(MAX_RT_PRIO, array->bitmap);
95
96 #if defined CONFIG_SMP
97         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99         rt_rq->rt_nr_migratory = 0;
100         rt_rq->overloaded = 0;
101         plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103         /* We start is dequeued state, because no RT tasks are queued */
104         rt_rq->rt_queued = 0;
105
106         rt_rq->rt_time = 0;
107         rt_rq->rt_throttled = 0;
108         rt_rq->rt_runtime = 0;
109         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115         hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125         return container_of(rt_se, struct task_struct, rt);
126 }
127
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130         return rt_rq->rq;
131 }
132
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135         return rt_se->rt_rq;
136 }
137
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140         struct rt_rq *rt_rq = rt_se->rt_rq;
141
142         return rt_rq->rq;
143 }
144
145 void unregister_rt_sched_group(struct task_group *tg)
146 {
147         if (tg->rt_se)
148                 destroy_rt_bandwidth(&tg->rt_bandwidth);
149
150 }
151
152 void free_rt_sched_group(struct task_group *tg)
153 {
154         int i;
155
156         for_each_possible_cpu(i) {
157                 if (tg->rt_rq)
158                         kfree(tg->rt_rq[i]);
159                 if (tg->rt_se)
160                         kfree(tg->rt_se[i]);
161         }
162
163         kfree(tg->rt_rq);
164         kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168                 struct sched_rt_entity *rt_se, int cpu,
169                 struct sched_rt_entity *parent)
170 {
171         struct rq *rq = cpu_rq(cpu);
172
173         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174         rt_rq->rt_nr_boosted = 0;
175         rt_rq->rq = rq;
176         rt_rq->tg = tg;
177
178         tg->rt_rq[cpu] = rt_rq;
179         tg->rt_se[cpu] = rt_se;
180
181         if (!rt_se)
182                 return;
183
184         if (!parent)
185                 rt_se->rt_rq = &rq->rt;
186         else
187                 rt_se->rt_rq = parent->my_q;
188
189         rt_se->my_q = rt_rq;
190         rt_se->parent = parent;
191         INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196         struct rt_rq *rt_rq;
197         struct sched_rt_entity *rt_se;
198         int i;
199
200         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201         if (!tg->rt_rq)
202                 goto err;
203         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204         if (!tg->rt_se)
205                 goto err;
206
207         init_rt_bandwidth(&tg->rt_bandwidth,
208                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210         for_each_possible_cpu(i) {
211                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212                                      GFP_KERNEL, cpu_to_node(i));
213                 if (!rt_rq)
214                         goto err;
215
216                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217                                      GFP_KERNEL, cpu_to_node(i));
218                 if (!rt_se)
219                         goto err_free_rq;
220
221                 init_rt_rq(rt_rq);
222                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224         }
225
226         return 1;
227
228 err_free_rq:
229         kfree(rt_rq);
230 err:
231         return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240         return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245         return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250         struct task_struct *p = rt_task_of(rt_se);
251
252         return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257         struct rq *rq = rq_of_rt_se(rt_se);
258
259         return &rq->rt;
260 }
261
262 void unregister_rt_sched_group(struct task_group *tg) { }
263
264 void free_rt_sched_group(struct task_group *tg) { }
265
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 {
268         return 1;
269 }
270 #endif /* CONFIG_RT_GROUP_SCHED */
271
272 #ifdef CONFIG_SMP
273
274 static void pull_rt_task(struct rq *this_rq);
275
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
277 {
278         /* Try to pull RT tasks here if we lower this rq's prio */
279         return rq->online && rq->rt.highest_prio.curr > prev->prio;
280 }
281
282 static inline int rt_overloaded(struct rq *rq)
283 {
284         return atomic_read(&rq->rd->rto_count);
285 }
286
287 static inline void rt_set_overload(struct rq *rq)
288 {
289         if (!rq->online)
290                 return;
291
292         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
293         /*
294          * Make sure the mask is visible before we set
295          * the overload count. That is checked to determine
296          * if we should look at the mask. It would be a shame
297          * if we looked at the mask, but the mask was not
298          * updated yet.
299          *
300          * Matched by the barrier in pull_rt_task().
301          */
302         smp_wmb();
303         atomic_inc(&rq->rd->rto_count);
304 }
305
306 static inline void rt_clear_overload(struct rq *rq)
307 {
308         if (!rq->online)
309                 return;
310
311         /* the order here really doesn't matter */
312         atomic_dec(&rq->rd->rto_count);
313         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
314 }
315
316 static void update_rt_migration(struct rt_rq *rt_rq)
317 {
318         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319                 if (!rt_rq->overloaded) {
320                         rt_set_overload(rq_of_rt_rq(rt_rq));
321                         rt_rq->overloaded = 1;
322                 }
323         } else if (rt_rq->overloaded) {
324                 rt_clear_overload(rq_of_rt_rq(rt_rq));
325                 rt_rq->overloaded = 0;
326         }
327 }
328
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
330 {
331         struct task_struct *p;
332
333         if (!rt_entity_is_task(rt_se))
334                 return;
335
336         p = rt_task_of(rt_se);
337         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
338
339         rt_rq->rt_nr_total++;
340         if (p->nr_cpus_allowed > 1)
341                 rt_rq->rt_nr_migratory++;
342
343         update_rt_migration(rt_rq);
344 }
345
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
347 {
348         struct task_struct *p;
349
350         if (!rt_entity_is_task(rt_se))
351                 return;
352
353         p = rt_task_of(rt_se);
354         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
355
356         rt_rq->rt_nr_total--;
357         if (p->nr_cpus_allowed > 1)
358                 rt_rq->rt_nr_migratory--;
359
360         update_rt_migration(rt_rq);
361 }
362
363 static inline int has_pushable_tasks(struct rq *rq)
364 {
365         return !plist_head_empty(&rq->rt.pushable_tasks);
366 }
367
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
370
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
373
374 static inline void rt_queue_push_tasks(struct rq *rq)
375 {
376         if (!has_pushable_tasks(rq))
377                 return;
378
379         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380 }
381
382 static inline void rt_queue_pull_task(struct rq *rq)
383 {
384         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385 }
386
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390         plist_node_init(&p->pushable_tasks, p->prio);
391         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the highest prio pushable task */
394         if (p->prio < rq->rt.highest_prio.next)
395                 rq->rt.highest_prio.next = p->prio;
396 }
397
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
399 {
400         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
401
402         /* Update the new highest prio pushable task */
403         if (has_pushable_tasks(rq)) {
404                 p = plist_first_entry(&rq->rt.pushable_tasks,
405                                       struct task_struct, pushable_tasks);
406                 rq->rt.highest_prio.next = p->prio;
407         } else {
408                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409         }
410 }
411
412 #else
413
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
419 {
420 }
421
422 static inline
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
429 {
430 }
431
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
433 {
434         return false;
435 }
436
437 static inline void pull_rt_task(struct rq *this_rq)
438 {
439 }
440
441 static inline void rt_queue_push_tasks(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SMP */
445
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
448
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
450 {
451         return rt_se->on_rq;
452 }
453
454 #ifdef CONFIG_UCLAMP_TASK
455 /*
456  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
457  * settings.
458  *
459  * This check is only important for heterogeneous systems where uclamp_min value
460  * is higher than the capacity of a @cpu. For non-heterogeneous system this
461  * function will always return true.
462  *
463  * The function will return true if the capacity of the @cpu is >= the
464  * uclamp_min and false otherwise.
465  *
466  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
467  * > uclamp_max.
468  */
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
470 {
471         unsigned int min_cap;
472         unsigned int max_cap;
473         unsigned int cpu_cap;
474
475         /* Only heterogeneous systems can benefit from this check */
476         if (!static_branch_unlikely(&sched_asym_cpucapacity))
477                 return true;
478
479         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
481
482         cpu_cap = capacity_orig_of(cpu);
483
484         return cpu_cap >= min(min_cap, max_cap);
485 }
486 #else
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
488 {
489         return true;
490 }
491 #endif
492
493 #ifdef CONFIG_RT_GROUP_SCHED
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497         if (!rt_rq->tg)
498                 return RUNTIME_INF;
499
500         return rt_rq->rt_runtime;
501 }
502
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
504 {
505         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
506 }
507
508 typedef struct task_group *rt_rq_iter_t;
509
510 static inline struct task_group *next_task_group(struct task_group *tg)
511 {
512         do {
513                 tg = list_entry_rcu(tg->list.next,
514                         typeof(struct task_group), list);
515         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
516
517         if (&tg->list == &task_groups)
518                 tg = NULL;
519
520         return tg;
521 }
522
523 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
524         for (iter = container_of(&task_groups, typeof(*iter), list);    \
525                 (iter = next_task_group(iter)) &&                       \
526                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
527
528 #define for_each_sched_rt_entity(rt_se) \
529         for (; rt_se; rt_se = rt_se->parent)
530
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
532 {
533         return rt_se->my_q;
534 }
535
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
540 {
541         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542         struct rq *rq = rq_of_rt_rq(rt_rq);
543         struct sched_rt_entity *rt_se;
544
545         int cpu = cpu_of(rq);
546
547         rt_se = rt_rq->tg->rt_se[cpu];
548
549         if (rt_rq->rt_nr_running) {
550                 if (!rt_se)
551                         enqueue_top_rt_rq(rt_rq);
552                 else if (!on_rt_rq(rt_se))
553                         enqueue_rt_entity(rt_se, 0);
554
555                 if (rt_rq->highest_prio.curr < curr->prio)
556                         resched_curr(rq);
557         }
558 }
559
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
561 {
562         struct sched_rt_entity *rt_se;
563         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
564
565         rt_se = rt_rq->tg->rt_se[cpu];
566
567         if (!rt_se) {
568                 dequeue_top_rt_rq(rt_rq);
569                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
571         }
572         else if (on_rt_rq(rt_se))
573                 dequeue_rt_entity(rt_se, 0);
574 }
575
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
577 {
578         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
579 }
580
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
582 {
583         struct rt_rq *rt_rq = group_rt_rq(rt_se);
584         struct task_struct *p;
585
586         if (rt_rq)
587                 return !!rt_rq->rt_nr_boosted;
588
589         p = rt_task_of(rt_se);
590         return p->prio != p->normal_prio;
591 }
592
593 #ifdef CONFIG_SMP
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596         return this_rq()->rd->span;
597 }
598 #else
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601         return cpu_online_mask;
602 }
603 #endif
604
605 static inline
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
607 {
608         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
609 }
610
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
612 {
613         return &rt_rq->tg->rt_bandwidth;
614 }
615
616 #else /* !CONFIG_RT_GROUP_SCHED */
617
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
619 {
620         return rt_rq->rt_runtime;
621 }
622
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
624 {
625         return ktime_to_ns(def_rt_bandwidth.rt_period);
626 }
627
628 typedef struct rt_rq *rt_rq_iter_t;
629
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
632
633 #define for_each_sched_rt_entity(rt_se) \
634         for (; rt_se; rt_se = NULL)
635
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
637 {
638         return NULL;
639 }
640
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
642 {
643         struct rq *rq = rq_of_rt_rq(rt_rq);
644
645         if (!rt_rq->rt_nr_running)
646                 return;
647
648         enqueue_top_rt_rq(rt_rq);
649         resched_curr(rq);
650 }
651
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
653 {
654         dequeue_top_rt_rq(rt_rq);
655 }
656
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
658 {
659         return rt_rq->rt_throttled;
660 }
661
662 static inline const struct cpumask *sched_rt_period_mask(void)
663 {
664         return cpu_online_mask;
665 }
666
667 static inline
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
669 {
670         return &cpu_rq(cpu)->rt;
671 }
672
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
674 {
675         return &def_rt_bandwidth;
676 }
677
678 #endif /* CONFIG_RT_GROUP_SCHED */
679
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
681 {
682         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683
684         return (hrtimer_active(&rt_b->rt_period_timer) ||
685                 rt_rq->rt_time < rt_b->rt_runtime);
686 }
687
688 #ifdef CONFIG_SMP
689 /*
690  * We ran out of runtime, see if we can borrow some from our neighbours.
691  */
692 static void do_balance_runtime(struct rt_rq *rt_rq)
693 {
694         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
696         int i, weight;
697         u64 rt_period;
698
699         weight = cpumask_weight(rd->span);
700
701         raw_spin_lock(&rt_b->rt_runtime_lock);
702         rt_period = ktime_to_ns(rt_b->rt_period);
703         for_each_cpu(i, rd->span) {
704                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705                 s64 diff;
706
707                 if (iter == rt_rq)
708                         continue;
709
710                 raw_spin_lock(&iter->rt_runtime_lock);
711                 /*
712                  * Either all rqs have inf runtime and there's nothing to steal
713                  * or __disable_runtime() below sets a specific rq to inf to
714                  * indicate its been disabled and disallow stealing.
715                  */
716                 if (iter->rt_runtime == RUNTIME_INF)
717                         goto next;
718
719                 /*
720                  * From runqueues with spare time, take 1/n part of their
721                  * spare time, but no more than our period.
722                  */
723                 diff = iter->rt_runtime - iter->rt_time;
724                 if (diff > 0) {
725                         diff = div_u64((u64)diff, weight);
726                         if (rt_rq->rt_runtime + diff > rt_period)
727                                 diff = rt_period - rt_rq->rt_runtime;
728                         iter->rt_runtime -= diff;
729                         rt_rq->rt_runtime += diff;
730                         if (rt_rq->rt_runtime == rt_period) {
731                                 raw_spin_unlock(&iter->rt_runtime_lock);
732                                 break;
733                         }
734                 }
735 next:
736                 raw_spin_unlock(&iter->rt_runtime_lock);
737         }
738         raw_spin_unlock(&rt_b->rt_runtime_lock);
739 }
740
741 /*
742  * Ensure this RQ takes back all the runtime it lend to its neighbours.
743  */
744 static void __disable_runtime(struct rq *rq)
745 {
746         struct root_domain *rd = rq->rd;
747         rt_rq_iter_t iter;
748         struct rt_rq *rt_rq;
749
750         if (unlikely(!scheduler_running))
751                 return;
752
753         for_each_rt_rq(rt_rq, iter, rq) {
754                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755                 s64 want;
756                 int i;
757
758                 raw_spin_lock(&rt_b->rt_runtime_lock);
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * Either we're all inf and nobody needs to borrow, or we're
762                  * already disabled and thus have nothing to do, or we have
763                  * exactly the right amount of runtime to take out.
764                  */
765                 if (rt_rq->rt_runtime == RUNTIME_INF ||
766                                 rt_rq->rt_runtime == rt_b->rt_runtime)
767                         goto balanced;
768                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
769
770                 /*
771                  * Calculate the difference between what we started out with
772                  * and what we current have, that's the amount of runtime
773                  * we lend and now have to reclaim.
774                  */
775                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
776
777                 /*
778                  * Greedy reclaim, take back as much as we can.
779                  */
780                 for_each_cpu(i, rd->span) {
781                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
782                         s64 diff;
783
784                         /*
785                          * Can't reclaim from ourselves or disabled runqueues.
786                          */
787                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
788                                 continue;
789
790                         raw_spin_lock(&iter->rt_runtime_lock);
791                         if (want > 0) {
792                                 diff = min_t(s64, iter->rt_runtime, want);
793                                 iter->rt_runtime -= diff;
794                                 want -= diff;
795                         } else {
796                                 iter->rt_runtime -= want;
797                                 want -= want;
798                         }
799                         raw_spin_unlock(&iter->rt_runtime_lock);
800
801                         if (!want)
802                                 break;
803                 }
804
805                 raw_spin_lock(&rt_rq->rt_runtime_lock);
806                 /*
807                  * We cannot be left wanting - that would mean some runtime
808                  * leaked out of the system.
809                  */
810                 BUG_ON(want);
811 balanced:
812                 /*
813                  * Disable all the borrow logic by pretending we have inf
814                  * runtime - in which case borrowing doesn't make sense.
815                  */
816                 rt_rq->rt_runtime = RUNTIME_INF;
817                 rt_rq->rt_throttled = 0;
818                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
819                 raw_spin_unlock(&rt_b->rt_runtime_lock);
820
821                 /* Make rt_rq available for pick_next_task() */
822                 sched_rt_rq_enqueue(rt_rq);
823         }
824 }
825
826 static void __enable_runtime(struct rq *rq)
827 {
828         rt_rq_iter_t iter;
829         struct rt_rq *rt_rq;
830
831         if (unlikely(!scheduler_running))
832                 return;
833
834         /*
835          * Reset each runqueue's bandwidth settings
836          */
837         for_each_rt_rq(rt_rq, iter, rq) {
838                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
839
840                 raw_spin_lock(&rt_b->rt_runtime_lock);
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 rt_rq->rt_runtime = rt_b->rt_runtime;
843                 rt_rq->rt_time = 0;
844                 rt_rq->rt_throttled = 0;
845                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846                 raw_spin_unlock(&rt_b->rt_runtime_lock);
847         }
848 }
849
850 static void balance_runtime(struct rt_rq *rt_rq)
851 {
852         if (!sched_feat(RT_RUNTIME_SHARE))
853                 return;
854
855         if (rt_rq->rt_time > rt_rq->rt_runtime) {
856                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857                 do_balance_runtime(rt_rq);
858                 raw_spin_lock(&rt_rq->rt_runtime_lock);
859         }
860 }
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
864
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
866 {
867         int i, idle = 1, throttled = 0;
868         const struct cpumask *span;
869
870         span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
872         /*
873          * FIXME: isolated CPUs should really leave the root task group,
874          * whether they are isolcpus or were isolated via cpusets, lest
875          * the timer run on a CPU which does not service all runqueues,
876          * potentially leaving other CPUs indefinitely throttled.  If
877          * isolation is really required, the user will turn the throttle
878          * off to kill the perturbations it causes anyway.  Meanwhile,
879          * this maintains functionality for boot and/or troubleshooting.
880          */
881         if (rt_b == &root_task_group.rt_bandwidth)
882                 span = cpu_online_mask;
883 #endif
884         for_each_cpu(i, span) {
885                 int enqueue = 0;
886                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887                 struct rq *rq = rq_of_rt_rq(rt_rq);
888                 int skip;
889
890                 /*
891                  * When span == cpu_online_mask, taking each rq->lock
892                  * can be time-consuming. Try to avoid it when possible.
893                  */
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
896                         rt_rq->rt_runtime = rt_b->rt_runtime;
897                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
898                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
899                 if (skip)
900                         continue;
901
902                 raw_spin_rq_lock(rq);
903                 update_rq_clock(rq);
904
905                 if (rt_rq->rt_time) {
906                         u64 runtime;
907
908                         raw_spin_lock(&rt_rq->rt_runtime_lock);
909                         if (rt_rq->rt_throttled)
910                                 balance_runtime(rt_rq);
911                         runtime = rt_rq->rt_runtime;
912                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
913                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
914                                 rt_rq->rt_throttled = 0;
915                                 enqueue = 1;
916
917                                 /*
918                                  * When we're idle and a woken (rt) task is
919                                  * throttled check_preempt_curr() will set
920                                  * skip_update and the time between the wakeup
921                                  * and this unthrottle will get accounted as
922                                  * 'runtime'.
923                                  */
924                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
925                                         rq_clock_cancel_skipupdate(rq);
926                         }
927                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
928                                 idle = 0;
929                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
930                 } else if (rt_rq->rt_nr_running) {
931                         idle = 0;
932                         if (!rt_rq_throttled(rt_rq))
933                                 enqueue = 1;
934                 }
935                 if (rt_rq->rt_throttled)
936                         throttled = 1;
937
938                 if (enqueue)
939                         sched_rt_rq_enqueue(rt_rq);
940                 raw_spin_rq_unlock(rq);
941         }
942
943         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
944                 return 1;
945
946         return idle;
947 }
948
949 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
950 {
951 #ifdef CONFIG_RT_GROUP_SCHED
952         struct rt_rq *rt_rq = group_rt_rq(rt_se);
953
954         if (rt_rq)
955                 return rt_rq->highest_prio.curr;
956 #endif
957
958         return rt_task_of(rt_se)->prio;
959 }
960
961 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
962 {
963         u64 runtime = sched_rt_runtime(rt_rq);
964
965         if (rt_rq->rt_throttled)
966                 return rt_rq_throttled(rt_rq);
967
968         if (runtime >= sched_rt_period(rt_rq))
969                 return 0;
970
971         balance_runtime(rt_rq);
972         runtime = sched_rt_runtime(rt_rq);
973         if (runtime == RUNTIME_INF)
974                 return 0;
975
976         if (rt_rq->rt_time > runtime) {
977                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
978
979                 /*
980                  * Don't actually throttle groups that have no runtime assigned
981                  * but accrue some time due to boosting.
982                  */
983                 if (likely(rt_b->rt_runtime)) {
984                         rt_rq->rt_throttled = 1;
985                         printk_deferred_once("sched: RT throttling activated\n");
986                 } else {
987                         /*
988                          * In case we did anyway, make it go away,
989                          * replenishment is a joke, since it will replenish us
990                          * with exactly 0 ns.
991                          */
992                         rt_rq->rt_time = 0;
993                 }
994
995                 if (rt_rq_throttled(rt_rq)) {
996                         sched_rt_rq_dequeue(rt_rq);
997                         return 1;
998                 }
999         }
1000
1001         return 0;
1002 }
1003
1004 /*
1005  * Update the current task's runtime statistics. Skip current tasks that
1006  * are not in our scheduling class.
1007  */
1008 static void update_curr_rt(struct rq *rq)
1009 {
1010         struct task_struct *curr = rq->curr;
1011         struct sched_rt_entity *rt_se = &curr->rt;
1012         u64 delta_exec;
1013         u64 now;
1014
1015         if (curr->sched_class != &rt_sched_class)
1016                 return;
1017
1018         now = rq_clock_task(rq);
1019         delta_exec = now - curr->se.exec_start;
1020         if (unlikely((s64)delta_exec <= 0))
1021                 return;
1022
1023         schedstat_set(curr->stats.exec_max,
1024                       max(curr->stats.exec_max, delta_exec));
1025
1026         trace_sched_stat_runtime(curr, delta_exec, 0);
1027
1028         curr->se.sum_exec_runtime += delta_exec;
1029         account_group_exec_runtime(curr, delta_exec);
1030
1031         curr->se.exec_start = now;
1032         cgroup_account_cputime(curr, delta_exec);
1033
1034         if (!rt_bandwidth_enabled())
1035                 return;
1036
1037         for_each_sched_rt_entity(rt_se) {
1038                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1039                 int exceeded;
1040
1041                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1042                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1043                         rt_rq->rt_time += delta_exec;
1044                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1045                         if (exceeded)
1046                                 resched_curr(rq);
1047                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1048                         if (exceeded)
1049                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1050                 }
1051         }
1052 }
1053
1054 static void
1055 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1056 {
1057         struct rq *rq = rq_of_rt_rq(rt_rq);
1058
1059         BUG_ON(&rq->rt != rt_rq);
1060
1061         if (!rt_rq->rt_queued)
1062                 return;
1063
1064         BUG_ON(!rq->nr_running);
1065
1066         sub_nr_running(rq, rt_rq->rt_nr_running);
1067         rt_rq->rt_queued = 0;
1068
1069 }
1070
1071 static void
1072 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1073 {
1074         struct rq *rq = rq_of_rt_rq(rt_rq);
1075
1076         BUG_ON(&rq->rt != rt_rq);
1077
1078         if (rt_rq->rt_queued)
1079                 return;
1080
1081         if (rt_rq_throttled(rt_rq))
1082                 return;
1083
1084         if (rt_rq->rt_nr_running) {
1085                 add_nr_running(rq, rt_rq->rt_nr_running);
1086                 rt_rq->rt_queued = 1;
1087         }
1088
1089         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1090         cpufreq_update_util(rq, 0);
1091 }
1092
1093 #if defined CONFIG_SMP
1094
1095 static void
1096 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1097 {
1098         struct rq *rq = rq_of_rt_rq(rt_rq);
1099
1100 #ifdef CONFIG_RT_GROUP_SCHED
1101         /*
1102          * Change rq's cpupri only if rt_rq is the top queue.
1103          */
1104         if (&rq->rt != rt_rq)
1105                 return;
1106 #endif
1107         if (rq->online && prio < prev_prio)
1108                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1109 }
1110
1111 static void
1112 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1113 {
1114         struct rq *rq = rq_of_rt_rq(rt_rq);
1115
1116 #ifdef CONFIG_RT_GROUP_SCHED
1117         /*
1118          * Change rq's cpupri only if rt_rq is the top queue.
1119          */
1120         if (&rq->rt != rt_rq)
1121                 return;
1122 #endif
1123         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1124                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1125 }
1126
1127 #else /* CONFIG_SMP */
1128
1129 static inline
1130 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1131 static inline
1132 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1133
1134 #endif /* CONFIG_SMP */
1135
1136 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1137 static void
1138 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1139 {
1140         int prev_prio = rt_rq->highest_prio.curr;
1141
1142         if (prio < prev_prio)
1143                 rt_rq->highest_prio.curr = prio;
1144
1145         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1146 }
1147
1148 static void
1149 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1150 {
1151         int prev_prio = rt_rq->highest_prio.curr;
1152
1153         if (rt_rq->rt_nr_running) {
1154
1155                 WARN_ON(prio < prev_prio);
1156
1157                 /*
1158                  * This may have been our highest task, and therefore
1159                  * we may have some recomputation to do
1160                  */
1161                 if (prio == prev_prio) {
1162                         struct rt_prio_array *array = &rt_rq->active;
1163
1164                         rt_rq->highest_prio.curr =
1165                                 sched_find_first_bit(array->bitmap);
1166                 }
1167
1168         } else {
1169                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1170         }
1171
1172         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1173 }
1174
1175 #else
1176
1177 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1178 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1179
1180 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1181
1182 #ifdef CONFIG_RT_GROUP_SCHED
1183
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187         if (rt_se_boosted(rt_se))
1188                 rt_rq->rt_nr_boosted++;
1189
1190         if (rt_rq->tg)
1191                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1192 }
1193
1194 static void
1195 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197         if (rt_se_boosted(rt_se))
1198                 rt_rq->rt_nr_boosted--;
1199
1200         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1201 }
1202
1203 #else /* CONFIG_RT_GROUP_SCHED */
1204
1205 static void
1206 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1207 {
1208         start_rt_bandwidth(&def_rt_bandwidth);
1209 }
1210
1211 static inline
1212 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1213
1214 #endif /* CONFIG_RT_GROUP_SCHED */
1215
1216 static inline
1217 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1218 {
1219         struct rt_rq *group_rq = group_rt_rq(rt_se);
1220
1221         if (group_rq)
1222                 return group_rq->rt_nr_running;
1223         else
1224                 return 1;
1225 }
1226
1227 static inline
1228 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1229 {
1230         struct rt_rq *group_rq = group_rt_rq(rt_se);
1231         struct task_struct *tsk;
1232
1233         if (group_rq)
1234                 return group_rq->rr_nr_running;
1235
1236         tsk = rt_task_of(rt_se);
1237
1238         return (tsk->policy == SCHED_RR) ? 1 : 0;
1239 }
1240
1241 static inline
1242 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1243 {
1244         int prio = rt_se_prio(rt_se);
1245
1246         WARN_ON(!rt_prio(prio));
1247         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1248         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1249
1250         inc_rt_prio(rt_rq, prio);
1251         inc_rt_migration(rt_se, rt_rq);
1252         inc_rt_group(rt_se, rt_rq);
1253 }
1254
1255 static inline
1256 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1257 {
1258         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1259         WARN_ON(!rt_rq->rt_nr_running);
1260         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1261         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1262
1263         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1264         dec_rt_migration(rt_se, rt_rq);
1265         dec_rt_group(rt_se, rt_rq);
1266 }
1267
1268 /*
1269  * Change rt_se->run_list location unless SAVE && !MOVE
1270  *
1271  * assumes ENQUEUE/DEQUEUE flags match
1272  */
1273 static inline bool move_entity(unsigned int flags)
1274 {
1275         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1276                 return false;
1277
1278         return true;
1279 }
1280
1281 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1282 {
1283         list_del_init(&rt_se->run_list);
1284
1285         if (list_empty(array->queue + rt_se_prio(rt_se)))
1286                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1287
1288         rt_se->on_list = 0;
1289 }
1290
1291 static inline struct sched_statistics *
1292 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1293 {
1294 #ifdef CONFIG_RT_GROUP_SCHED
1295         /* schedstats is not supported for rt group. */
1296         if (!rt_entity_is_task(rt_se))
1297                 return NULL;
1298 #endif
1299
1300         return &rt_task_of(rt_se)->stats;
1301 }
1302
1303 static inline void
1304 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1305 {
1306         struct sched_statistics *stats;
1307         struct task_struct *p = NULL;
1308
1309         if (!schedstat_enabled())
1310                 return;
1311
1312         if (rt_entity_is_task(rt_se))
1313                 p = rt_task_of(rt_se);
1314
1315         stats = __schedstats_from_rt_se(rt_se);
1316         if (!stats)
1317                 return;
1318
1319         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1320 }
1321
1322 static inline void
1323 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1324 {
1325         struct sched_statistics *stats;
1326         struct task_struct *p = NULL;
1327
1328         if (!schedstat_enabled())
1329                 return;
1330
1331         if (rt_entity_is_task(rt_se))
1332                 p = rt_task_of(rt_se);
1333
1334         stats = __schedstats_from_rt_se(rt_se);
1335         if (!stats)
1336                 return;
1337
1338         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1339 }
1340
1341 static inline void
1342 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1343                         int flags)
1344 {
1345         if (!schedstat_enabled())
1346                 return;
1347
1348         if (flags & ENQUEUE_WAKEUP)
1349                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1350 }
1351
1352 static inline void
1353 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1354 {
1355         struct sched_statistics *stats;
1356         struct task_struct *p = NULL;
1357
1358         if (!schedstat_enabled())
1359                 return;
1360
1361         if (rt_entity_is_task(rt_se))
1362                 p = rt_task_of(rt_se);
1363
1364         stats = __schedstats_from_rt_se(rt_se);
1365         if (!stats)
1366                 return;
1367
1368         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1369 }
1370
1371 static inline void
1372 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1373                         int flags)
1374 {
1375         struct task_struct *p = NULL;
1376
1377         if (!schedstat_enabled())
1378                 return;
1379
1380         if (rt_entity_is_task(rt_se))
1381                 p = rt_task_of(rt_se);
1382
1383         if ((flags & DEQUEUE_SLEEP) && p) {
1384                 unsigned int state;
1385
1386                 state = READ_ONCE(p->__state);
1387                 if (state & TASK_INTERRUPTIBLE)
1388                         __schedstat_set(p->stats.sleep_start,
1389                                         rq_clock(rq_of_rt_rq(rt_rq)));
1390
1391                 if (state & TASK_UNINTERRUPTIBLE)
1392                         __schedstat_set(p->stats.block_start,
1393                                         rq_clock(rq_of_rt_rq(rt_rq)));
1394         }
1395 }
1396
1397 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1398 {
1399         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1400         struct rt_prio_array *array = &rt_rq->active;
1401         struct rt_rq *group_rq = group_rt_rq(rt_se);
1402         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403
1404         /*
1405          * Don't enqueue the group if its throttled, or when empty.
1406          * The latter is a consequence of the former when a child group
1407          * get throttled and the current group doesn't have any other
1408          * active members.
1409          */
1410         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1411                 if (rt_se->on_list)
1412                         __delist_rt_entity(rt_se, array);
1413                 return;
1414         }
1415
1416         if (move_entity(flags)) {
1417                 WARN_ON_ONCE(rt_se->on_list);
1418                 if (flags & ENQUEUE_HEAD)
1419                         list_add(&rt_se->run_list, queue);
1420                 else
1421                         list_add_tail(&rt_se->run_list, queue);
1422
1423                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1424                 rt_se->on_list = 1;
1425         }
1426         rt_se->on_rq = 1;
1427
1428         inc_rt_tasks(rt_se, rt_rq);
1429 }
1430
1431 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1432 {
1433         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1434         struct rt_prio_array *array = &rt_rq->active;
1435
1436         if (move_entity(flags)) {
1437                 WARN_ON_ONCE(!rt_se->on_list);
1438                 __delist_rt_entity(rt_se, array);
1439         }
1440         rt_se->on_rq = 0;
1441
1442         dec_rt_tasks(rt_se, rt_rq);
1443 }
1444
1445 /*
1446  * Because the prio of an upper entry depends on the lower
1447  * entries, we must remove entries top - down.
1448  */
1449 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451         struct sched_rt_entity *back = NULL;
1452
1453         for_each_sched_rt_entity(rt_se) {
1454                 rt_se->back = back;
1455                 back = rt_se;
1456         }
1457
1458         dequeue_top_rt_rq(rt_rq_of_se(back));
1459
1460         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1461                 if (on_rt_rq(rt_se))
1462                         __dequeue_rt_entity(rt_se, flags);
1463         }
1464 }
1465
1466 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1467 {
1468         struct rq *rq = rq_of_rt_se(rt_se);
1469
1470         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1471
1472         dequeue_rt_stack(rt_se, flags);
1473         for_each_sched_rt_entity(rt_se)
1474                 __enqueue_rt_entity(rt_se, flags);
1475         enqueue_top_rt_rq(&rq->rt);
1476 }
1477
1478 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1479 {
1480         struct rq *rq = rq_of_rt_se(rt_se);
1481
1482         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1483
1484         dequeue_rt_stack(rt_se, flags);
1485
1486         for_each_sched_rt_entity(rt_se) {
1487                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1488
1489                 if (rt_rq && rt_rq->rt_nr_running)
1490                         __enqueue_rt_entity(rt_se, flags);
1491         }
1492         enqueue_top_rt_rq(&rq->rt);
1493 }
1494
1495 /*
1496  * Adding/removing a task to/from a priority array:
1497  */
1498 static void
1499 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1500 {
1501         struct sched_rt_entity *rt_se = &p->rt;
1502
1503         if (flags & ENQUEUE_WAKEUP)
1504                 rt_se->timeout = 0;
1505
1506         check_schedstat_required();
1507         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1508
1509         enqueue_rt_entity(rt_se, flags);
1510
1511         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1512                 enqueue_pushable_task(rq, p);
1513 }
1514
1515 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1516 {
1517         struct sched_rt_entity *rt_se = &p->rt;
1518
1519         update_curr_rt(rq);
1520         dequeue_rt_entity(rt_se, flags);
1521
1522         dequeue_pushable_task(rq, p);
1523 }
1524
1525 /*
1526  * Put task to the head or the end of the run list without the overhead of
1527  * dequeue followed by enqueue.
1528  */
1529 static void
1530 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1531 {
1532         if (on_rt_rq(rt_se)) {
1533                 struct rt_prio_array *array = &rt_rq->active;
1534                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1535
1536                 if (head)
1537                         list_move(&rt_se->run_list, queue);
1538                 else
1539                         list_move_tail(&rt_se->run_list, queue);
1540         }
1541 }
1542
1543 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1544 {
1545         struct sched_rt_entity *rt_se = &p->rt;
1546         struct rt_rq *rt_rq;
1547
1548         for_each_sched_rt_entity(rt_se) {
1549                 rt_rq = rt_rq_of_se(rt_se);
1550                 requeue_rt_entity(rt_rq, rt_se, head);
1551         }
1552 }
1553
1554 static void yield_task_rt(struct rq *rq)
1555 {
1556         requeue_task_rt(rq, rq->curr, 0);
1557 }
1558
1559 #ifdef CONFIG_SMP
1560 static int find_lowest_rq(struct task_struct *task);
1561
1562 static int
1563 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1564 {
1565         struct task_struct *curr;
1566         struct rq *rq;
1567         bool test;
1568
1569         /* For anything but wake ups, just return the task_cpu */
1570         if (!(flags & (WF_TTWU | WF_FORK)))
1571                 goto out;
1572
1573         rq = cpu_rq(cpu);
1574
1575         rcu_read_lock();
1576         curr = READ_ONCE(rq->curr); /* unlocked access */
1577
1578         /*
1579          * If the current task on @p's runqueue is an RT task, then
1580          * try to see if we can wake this RT task up on another
1581          * runqueue. Otherwise simply start this RT task
1582          * on its current runqueue.
1583          *
1584          * We want to avoid overloading runqueues. If the woken
1585          * task is a higher priority, then it will stay on this CPU
1586          * and the lower prio task should be moved to another CPU.
1587          * Even though this will probably make the lower prio task
1588          * lose its cache, we do not want to bounce a higher task
1589          * around just because it gave up its CPU, perhaps for a
1590          * lock?
1591          *
1592          * For equal prio tasks, we just let the scheduler sort it out.
1593          *
1594          * Otherwise, just let it ride on the affined RQ and the
1595          * post-schedule router will push the preempted task away
1596          *
1597          * This test is optimistic, if we get it wrong the load-balancer
1598          * will have to sort it out.
1599          *
1600          * We take into account the capacity of the CPU to ensure it fits the
1601          * requirement of the task - which is only important on heterogeneous
1602          * systems like big.LITTLE.
1603          */
1604         test = curr &&
1605                unlikely(rt_task(curr)) &&
1606                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1607
1608         if (test || !rt_task_fits_capacity(p, cpu)) {
1609                 int target = find_lowest_rq(p);
1610
1611                 /*
1612                  * Bail out if we were forcing a migration to find a better
1613                  * fitting CPU but our search failed.
1614                  */
1615                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1616                         goto out_unlock;
1617
1618                 /*
1619                  * Don't bother moving it if the destination CPU is
1620                  * not running a lower priority task.
1621                  */
1622                 if (target != -1 &&
1623                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1624                         cpu = target;
1625         }
1626
1627 out_unlock:
1628         rcu_read_unlock();
1629
1630 out:
1631         return cpu;
1632 }
1633
1634 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1635 {
1636         /*
1637          * Current can't be migrated, useless to reschedule,
1638          * let's hope p can move out.
1639          */
1640         if (rq->curr->nr_cpus_allowed == 1 ||
1641             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1642                 return;
1643
1644         /*
1645          * p is migratable, so let's not schedule it and
1646          * see if it is pushed or pulled somewhere else.
1647          */
1648         if (p->nr_cpus_allowed != 1 &&
1649             cpupri_find(&rq->rd->cpupri, p, NULL))
1650                 return;
1651
1652         /*
1653          * There appear to be other CPUs that can accept
1654          * the current task but none can run 'p', so lets reschedule
1655          * to try and push the current task away:
1656          */
1657         requeue_task_rt(rq, p, 1);
1658         resched_curr(rq);
1659 }
1660
1661 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1662 {
1663         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1664                 /*
1665                  * This is OK, because current is on_cpu, which avoids it being
1666                  * picked for load-balance and preemption/IRQs are still
1667                  * disabled avoiding further scheduler activity on it and we've
1668                  * not yet started the picking loop.
1669                  */
1670                 rq_unpin_lock(rq, rf);
1671                 pull_rt_task(rq);
1672                 rq_repin_lock(rq, rf);
1673         }
1674
1675         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1676 }
1677 #endif /* CONFIG_SMP */
1678
1679 /*
1680  * Preempt the current task with a newly woken task if needed:
1681  */
1682 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1683 {
1684         if (p->prio < rq->curr->prio) {
1685                 resched_curr(rq);
1686                 return;
1687         }
1688
1689 #ifdef CONFIG_SMP
1690         /*
1691          * If:
1692          *
1693          * - the newly woken task is of equal priority to the current task
1694          * - the newly woken task is non-migratable while current is migratable
1695          * - current will be preempted on the next reschedule
1696          *
1697          * we should check to see if current can readily move to a different
1698          * cpu.  If so, we will reschedule to allow the push logic to try
1699          * to move current somewhere else, making room for our non-migratable
1700          * task.
1701          */
1702         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1703                 check_preempt_equal_prio(rq, p);
1704 #endif
1705 }
1706
1707 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1708 {
1709         struct sched_rt_entity *rt_se = &p->rt;
1710         struct rt_rq *rt_rq = &rq->rt;
1711
1712         p->se.exec_start = rq_clock_task(rq);
1713         if (on_rt_rq(&p->rt))
1714                 update_stats_wait_end_rt(rt_rq, rt_se);
1715
1716         /* The running task is never eligible for pushing */
1717         dequeue_pushable_task(rq, p);
1718
1719         if (!first)
1720                 return;
1721
1722         /*
1723          * If prev task was rt, put_prev_task() has already updated the
1724          * utilization. We only care of the case where we start to schedule a
1725          * rt task
1726          */
1727         if (rq->curr->sched_class != &rt_sched_class)
1728                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1729
1730         rt_queue_push_tasks(rq);
1731 }
1732
1733 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1734                                                    struct rt_rq *rt_rq)
1735 {
1736         struct rt_prio_array *array = &rt_rq->active;
1737         struct sched_rt_entity *next = NULL;
1738         struct list_head *queue;
1739         int idx;
1740
1741         idx = sched_find_first_bit(array->bitmap);
1742         BUG_ON(idx >= MAX_RT_PRIO);
1743
1744         queue = array->queue + idx;
1745         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1746
1747         return next;
1748 }
1749
1750 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1751 {
1752         struct sched_rt_entity *rt_se;
1753         struct rt_rq *rt_rq  = &rq->rt;
1754
1755         do {
1756                 rt_se = pick_next_rt_entity(rq, rt_rq);
1757                 BUG_ON(!rt_se);
1758                 rt_rq = group_rt_rq(rt_se);
1759         } while (rt_rq);
1760
1761         return rt_task_of(rt_se);
1762 }
1763
1764 static struct task_struct *pick_task_rt(struct rq *rq)
1765 {
1766         struct task_struct *p;
1767
1768         if (!sched_rt_runnable(rq))
1769                 return NULL;
1770
1771         p = _pick_next_task_rt(rq);
1772
1773         return p;
1774 }
1775
1776 static struct task_struct *pick_next_task_rt(struct rq *rq)
1777 {
1778         struct task_struct *p = pick_task_rt(rq);
1779
1780         if (p)
1781                 set_next_task_rt(rq, p, true);
1782
1783         return p;
1784 }
1785
1786 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1787 {
1788         struct sched_rt_entity *rt_se = &p->rt;
1789         struct rt_rq *rt_rq = &rq->rt;
1790
1791         if (on_rt_rq(&p->rt))
1792                 update_stats_wait_start_rt(rt_rq, rt_se);
1793
1794         update_curr_rt(rq);
1795
1796         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797
1798         /*
1799          * The previous task needs to be made eligible for pushing
1800          * if it is still active
1801          */
1802         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1803                 enqueue_pushable_task(rq, p);
1804 }
1805
1806 #ifdef CONFIG_SMP
1807
1808 /* Only try algorithms three times */
1809 #define RT_MAX_TRIES 3
1810
1811 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1812 {
1813         if (!task_running(rq, p) &&
1814             cpumask_test_cpu(cpu, &p->cpus_mask))
1815                 return 1;
1816
1817         return 0;
1818 }
1819
1820 /*
1821  * Return the highest pushable rq's task, which is suitable to be executed
1822  * on the CPU, NULL otherwise
1823  */
1824 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1825 {
1826         struct plist_head *head = &rq->rt.pushable_tasks;
1827         struct task_struct *p;
1828
1829         if (!has_pushable_tasks(rq))
1830                 return NULL;
1831
1832         plist_for_each_entry(p, head, pushable_tasks) {
1833                 if (pick_rt_task(rq, p, cpu))
1834                         return p;
1835         }
1836
1837         return NULL;
1838 }
1839
1840 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1841
1842 static int find_lowest_rq(struct task_struct *task)
1843 {
1844         struct sched_domain *sd;
1845         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1846         int this_cpu = smp_processor_id();
1847         int cpu      = task_cpu(task);
1848         int ret;
1849
1850         /* Make sure the mask is initialized first */
1851         if (unlikely(!lowest_mask))
1852                 return -1;
1853
1854         if (task->nr_cpus_allowed == 1)
1855                 return -1; /* No other targets possible */
1856
1857         /*
1858          * If we're on asym system ensure we consider the different capacities
1859          * of the CPUs when searching for the lowest_mask.
1860          */
1861         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1862
1863                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1864                                           task, lowest_mask,
1865                                           rt_task_fits_capacity);
1866         } else {
1867
1868                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1869                                   task, lowest_mask);
1870         }
1871
1872         if (!ret)
1873                 return -1; /* No targets found */
1874
1875         /*
1876          * At this point we have built a mask of CPUs representing the
1877          * lowest priority tasks in the system.  Now we want to elect
1878          * the best one based on our affinity and topology.
1879          *
1880          * We prioritize the last CPU that the task executed on since
1881          * it is most likely cache-hot in that location.
1882          */
1883         if (cpumask_test_cpu(cpu, lowest_mask))
1884                 return cpu;
1885
1886         /*
1887          * Otherwise, we consult the sched_domains span maps to figure
1888          * out which CPU is logically closest to our hot cache data.
1889          */
1890         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1891                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1892
1893         rcu_read_lock();
1894         for_each_domain(cpu, sd) {
1895                 if (sd->flags & SD_WAKE_AFFINE) {
1896                         int best_cpu;
1897
1898                         /*
1899                          * "this_cpu" is cheaper to preempt than a
1900                          * remote processor.
1901                          */
1902                         if (this_cpu != -1 &&
1903                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1904                                 rcu_read_unlock();
1905                                 return this_cpu;
1906                         }
1907
1908                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1909                                                               sched_domain_span(sd));
1910                         if (best_cpu < nr_cpu_ids) {
1911                                 rcu_read_unlock();
1912                                 return best_cpu;
1913                         }
1914                 }
1915         }
1916         rcu_read_unlock();
1917
1918         /*
1919          * And finally, if there were no matches within the domains
1920          * just give the caller *something* to work with from the compatible
1921          * locations.
1922          */
1923         if (this_cpu != -1)
1924                 return this_cpu;
1925
1926         cpu = cpumask_any_distribute(lowest_mask);
1927         if (cpu < nr_cpu_ids)
1928                 return cpu;
1929
1930         return -1;
1931 }
1932
1933 /* Will lock the rq it finds */
1934 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1935 {
1936         struct rq *lowest_rq = NULL;
1937         int tries;
1938         int cpu;
1939
1940         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1941                 cpu = find_lowest_rq(task);
1942
1943                 if ((cpu == -1) || (cpu == rq->cpu))
1944                         break;
1945
1946                 lowest_rq = cpu_rq(cpu);
1947
1948                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1949                         /*
1950                          * Target rq has tasks of equal or higher priority,
1951                          * retrying does not release any lock and is unlikely
1952                          * to yield a different result.
1953                          */
1954                         lowest_rq = NULL;
1955                         break;
1956                 }
1957
1958                 /* if the prio of this runqueue changed, try again */
1959                 if (double_lock_balance(rq, lowest_rq)) {
1960                         /*
1961                          * We had to unlock the run queue. In
1962                          * the mean time, task could have
1963                          * migrated already or had its affinity changed.
1964                          * Also make sure that it wasn't scheduled on its rq.
1965                          */
1966                         if (unlikely(task_rq(task) != rq ||
1967                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1968                                      task_running(rq, task) ||
1969                                      !rt_task(task) ||
1970                                      !task_on_rq_queued(task))) {
1971
1972                                 double_unlock_balance(rq, lowest_rq);
1973                                 lowest_rq = NULL;
1974                                 break;
1975                         }
1976                 }
1977
1978                 /* If this rq is still suitable use it. */
1979                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1980                         break;
1981
1982                 /* try again */
1983                 double_unlock_balance(rq, lowest_rq);
1984                 lowest_rq = NULL;
1985         }
1986
1987         return lowest_rq;
1988 }
1989
1990 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1991 {
1992         struct task_struct *p;
1993
1994         if (!has_pushable_tasks(rq))
1995                 return NULL;
1996
1997         p = plist_first_entry(&rq->rt.pushable_tasks,
1998                               struct task_struct, pushable_tasks);
1999
2000         BUG_ON(rq->cpu != task_cpu(p));
2001         BUG_ON(task_current(rq, p));
2002         BUG_ON(p->nr_cpus_allowed <= 1);
2003
2004         BUG_ON(!task_on_rq_queued(p));
2005         BUG_ON(!rt_task(p));
2006
2007         return p;
2008 }
2009
2010 /*
2011  * If the current CPU has more than one RT task, see if the non
2012  * running task can migrate over to a CPU that is running a task
2013  * of lesser priority.
2014  */
2015 static int push_rt_task(struct rq *rq, bool pull)
2016 {
2017         struct task_struct *next_task;
2018         struct rq *lowest_rq;
2019         int ret = 0;
2020
2021         if (!rq->rt.overloaded)
2022                 return 0;
2023
2024         next_task = pick_next_pushable_task(rq);
2025         if (!next_task)
2026                 return 0;
2027
2028 retry:
2029         if (is_migration_disabled(next_task)) {
2030                 struct task_struct *push_task = NULL;
2031                 int cpu;
2032
2033                 if (!pull || rq->push_busy)
2034                         return 0;
2035
2036                 cpu = find_lowest_rq(rq->curr);
2037                 if (cpu == -1 || cpu == rq->cpu)
2038                         return 0;
2039
2040                 /*
2041                  * Given we found a CPU with lower priority than @next_task,
2042                  * therefore it should be running. However we cannot migrate it
2043                  * to this other CPU, instead attempt to push the current
2044                  * running task on this CPU away.
2045                  */
2046                 push_task = get_push_task(rq);
2047                 if (push_task) {
2048                         raw_spin_rq_unlock(rq);
2049                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2050                                             push_task, &rq->push_work);
2051                         raw_spin_rq_lock(rq);
2052                 }
2053
2054                 return 0;
2055         }
2056
2057         if (WARN_ON(next_task == rq->curr))
2058                 return 0;
2059
2060         /*
2061          * It's possible that the next_task slipped in of
2062          * higher priority than current. If that's the case
2063          * just reschedule current.
2064          */
2065         if (unlikely(next_task->prio < rq->curr->prio)) {
2066                 resched_curr(rq);
2067                 return 0;
2068         }
2069
2070         /* We might release rq lock */
2071         get_task_struct(next_task);
2072
2073         /* find_lock_lowest_rq locks the rq if found */
2074         lowest_rq = find_lock_lowest_rq(next_task, rq);
2075         if (!lowest_rq) {
2076                 struct task_struct *task;
2077                 /*
2078                  * find_lock_lowest_rq releases rq->lock
2079                  * so it is possible that next_task has migrated.
2080                  *
2081                  * We need to make sure that the task is still on the same
2082                  * run-queue and is also still the next task eligible for
2083                  * pushing.
2084                  */
2085                 task = pick_next_pushable_task(rq);
2086                 if (task == next_task) {
2087                         /*
2088                          * The task hasn't migrated, and is still the next
2089                          * eligible task, but we failed to find a run-queue
2090                          * to push it to.  Do not retry in this case, since
2091                          * other CPUs will pull from us when ready.
2092                          */
2093                         goto out;
2094                 }
2095
2096                 if (!task)
2097                         /* No more tasks, just exit */
2098                         goto out;
2099
2100                 /*
2101                  * Something has shifted, try again.
2102                  */
2103                 put_task_struct(next_task);
2104                 next_task = task;
2105                 goto retry;
2106         }
2107
2108         deactivate_task(rq, next_task, 0);
2109         set_task_cpu(next_task, lowest_rq->cpu);
2110         activate_task(lowest_rq, next_task, 0);
2111         resched_curr(lowest_rq);
2112         ret = 1;
2113
2114         double_unlock_balance(rq, lowest_rq);
2115 out:
2116         put_task_struct(next_task);
2117
2118         return ret;
2119 }
2120
2121 static void push_rt_tasks(struct rq *rq)
2122 {
2123         /* push_rt_task will return true if it moved an RT */
2124         while (push_rt_task(rq, false))
2125                 ;
2126 }
2127
2128 #ifdef HAVE_RT_PUSH_IPI
2129
2130 /*
2131  * When a high priority task schedules out from a CPU and a lower priority
2132  * task is scheduled in, a check is made to see if there's any RT tasks
2133  * on other CPUs that are waiting to run because a higher priority RT task
2134  * is currently running on its CPU. In this case, the CPU with multiple RT
2135  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2136  * up that may be able to run one of its non-running queued RT tasks.
2137  *
2138  * All CPUs with overloaded RT tasks need to be notified as there is currently
2139  * no way to know which of these CPUs have the highest priority task waiting
2140  * to run. Instead of trying to take a spinlock on each of these CPUs,
2141  * which has shown to cause large latency when done on machines with many
2142  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2143  * RT tasks waiting to run.
2144  *
2145  * Just sending an IPI to each of the CPUs is also an issue, as on large
2146  * count CPU machines, this can cause an IPI storm on a CPU, especially
2147  * if its the only CPU with multiple RT tasks queued, and a large number
2148  * of CPUs scheduling a lower priority task at the same time.
2149  *
2150  * Each root domain has its own irq work function that can iterate over
2151  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2152  * task must be checked if there's one or many CPUs that are lowering
2153  * their priority, there's a single irq work iterator that will try to
2154  * push off RT tasks that are waiting to run.
2155  *
2156  * When a CPU schedules a lower priority task, it will kick off the
2157  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2158  * As it only takes the first CPU that schedules a lower priority task
2159  * to start the process, the rto_start variable is incremented and if
2160  * the atomic result is one, then that CPU will try to take the rto_lock.
2161  * This prevents high contention on the lock as the process handles all
2162  * CPUs scheduling lower priority tasks.
2163  *
2164  * All CPUs that are scheduling a lower priority task will increment the
2165  * rt_loop_next variable. This will make sure that the irq work iterator
2166  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2167  * priority task, even if the iterator is in the middle of a scan. Incrementing
2168  * the rt_loop_next will cause the iterator to perform another scan.
2169  *
2170  */
2171 static int rto_next_cpu(struct root_domain *rd)
2172 {
2173         int next;
2174         int cpu;
2175
2176         /*
2177          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2178          * rt_next_cpu() will simply return the first CPU found in
2179          * the rto_mask.
2180          *
2181          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2182          * will return the next CPU found in the rto_mask.
2183          *
2184          * If there are no more CPUs left in the rto_mask, then a check is made
2185          * against rto_loop and rto_loop_next. rto_loop is only updated with
2186          * the rto_lock held, but any CPU may increment the rto_loop_next
2187          * without any locking.
2188          */
2189         for (;;) {
2190
2191                 /* When rto_cpu is -1 this acts like cpumask_first() */
2192                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2193
2194                 rd->rto_cpu = cpu;
2195
2196                 if (cpu < nr_cpu_ids)
2197                         return cpu;
2198
2199                 rd->rto_cpu = -1;
2200
2201                 /*
2202                  * ACQUIRE ensures we see the @rto_mask changes
2203                  * made prior to the @next value observed.
2204                  *
2205                  * Matches WMB in rt_set_overload().
2206                  */
2207                 next = atomic_read_acquire(&rd->rto_loop_next);
2208
2209                 if (rd->rto_loop == next)
2210                         break;
2211
2212                 rd->rto_loop = next;
2213         }
2214
2215         return -1;
2216 }
2217
2218 static inline bool rto_start_trylock(atomic_t *v)
2219 {
2220         return !atomic_cmpxchg_acquire(v, 0, 1);
2221 }
2222
2223 static inline void rto_start_unlock(atomic_t *v)
2224 {
2225         atomic_set_release(v, 0);
2226 }
2227
2228 static void tell_cpu_to_push(struct rq *rq)
2229 {
2230         int cpu = -1;
2231
2232         /* Keep the loop going if the IPI is currently active */
2233         atomic_inc(&rq->rd->rto_loop_next);
2234
2235         /* Only one CPU can initiate a loop at a time */
2236         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2237                 return;
2238
2239         raw_spin_lock(&rq->rd->rto_lock);
2240
2241         /*
2242          * The rto_cpu is updated under the lock, if it has a valid CPU
2243          * then the IPI is still running and will continue due to the
2244          * update to loop_next, and nothing needs to be done here.
2245          * Otherwise it is finishing up and an ipi needs to be sent.
2246          */
2247         if (rq->rd->rto_cpu < 0)
2248                 cpu = rto_next_cpu(rq->rd);
2249
2250         raw_spin_unlock(&rq->rd->rto_lock);
2251
2252         rto_start_unlock(&rq->rd->rto_loop_start);
2253
2254         if (cpu >= 0) {
2255                 /* Make sure the rd does not get freed while pushing */
2256                 sched_get_rd(rq->rd);
2257                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2258         }
2259 }
2260
2261 /* Called from hardirq context */
2262 void rto_push_irq_work_func(struct irq_work *work)
2263 {
2264         struct root_domain *rd =
2265                 container_of(work, struct root_domain, rto_push_work);
2266         struct rq *rq;
2267         int cpu;
2268
2269         rq = this_rq();
2270
2271         /*
2272          * We do not need to grab the lock to check for has_pushable_tasks.
2273          * When it gets updated, a check is made if a push is possible.
2274          */
2275         if (has_pushable_tasks(rq)) {
2276                 raw_spin_rq_lock(rq);
2277                 while (push_rt_task(rq, true))
2278                         ;
2279                 raw_spin_rq_unlock(rq);
2280         }
2281
2282         raw_spin_lock(&rd->rto_lock);
2283
2284         /* Pass the IPI to the next rt overloaded queue */
2285         cpu = rto_next_cpu(rd);
2286
2287         raw_spin_unlock(&rd->rto_lock);
2288
2289         if (cpu < 0) {
2290                 sched_put_rd(rd);
2291                 return;
2292         }
2293
2294         /* Try the next RT overloaded CPU */
2295         irq_work_queue_on(&rd->rto_push_work, cpu);
2296 }
2297 #endif /* HAVE_RT_PUSH_IPI */
2298
2299 static void pull_rt_task(struct rq *this_rq)
2300 {
2301         int this_cpu = this_rq->cpu, cpu;
2302         bool resched = false;
2303         struct task_struct *p, *push_task;
2304         struct rq *src_rq;
2305         int rt_overload_count = rt_overloaded(this_rq);
2306
2307         if (likely(!rt_overload_count))
2308                 return;
2309
2310         /*
2311          * Match the barrier from rt_set_overloaded; this guarantees that if we
2312          * see overloaded we must also see the rto_mask bit.
2313          */
2314         smp_rmb();
2315
2316         /* If we are the only overloaded CPU do nothing */
2317         if (rt_overload_count == 1 &&
2318             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2319                 return;
2320
2321 #ifdef HAVE_RT_PUSH_IPI
2322         if (sched_feat(RT_PUSH_IPI)) {
2323                 tell_cpu_to_push(this_rq);
2324                 return;
2325         }
2326 #endif
2327
2328         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2329                 if (this_cpu == cpu)
2330                         continue;
2331
2332                 src_rq = cpu_rq(cpu);
2333
2334                 /*
2335                  * Don't bother taking the src_rq->lock if the next highest
2336                  * task is known to be lower-priority than our current task.
2337                  * This may look racy, but if this value is about to go
2338                  * logically higher, the src_rq will push this task away.
2339                  * And if its going logically lower, we do not care
2340                  */
2341                 if (src_rq->rt.highest_prio.next >=
2342                     this_rq->rt.highest_prio.curr)
2343                         continue;
2344
2345                 /*
2346                  * We can potentially drop this_rq's lock in
2347                  * double_lock_balance, and another CPU could
2348                  * alter this_rq
2349                  */
2350                 push_task = NULL;
2351                 double_lock_balance(this_rq, src_rq);
2352
2353                 /*
2354                  * We can pull only a task, which is pushable
2355                  * on its rq, and no others.
2356                  */
2357                 p = pick_highest_pushable_task(src_rq, this_cpu);
2358
2359                 /*
2360                  * Do we have an RT task that preempts
2361                  * the to-be-scheduled task?
2362                  */
2363                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2364                         WARN_ON(p == src_rq->curr);
2365                         WARN_ON(!task_on_rq_queued(p));
2366
2367                         /*
2368                          * There's a chance that p is higher in priority
2369                          * than what's currently running on its CPU.
2370                          * This is just that p is waking up and hasn't
2371                          * had a chance to schedule. We only pull
2372                          * p if it is lower in priority than the
2373                          * current task on the run queue
2374                          */
2375                         if (p->prio < src_rq->curr->prio)
2376                                 goto skip;
2377
2378                         if (is_migration_disabled(p)) {
2379                                 push_task = get_push_task(src_rq);
2380                         } else {
2381                                 deactivate_task(src_rq, p, 0);
2382                                 set_task_cpu(p, this_cpu);
2383                                 activate_task(this_rq, p, 0);
2384                                 resched = true;
2385                         }
2386                         /*
2387                          * We continue with the search, just in
2388                          * case there's an even higher prio task
2389                          * in another runqueue. (low likelihood
2390                          * but possible)
2391                          */
2392                 }
2393 skip:
2394                 double_unlock_balance(this_rq, src_rq);
2395
2396                 if (push_task) {
2397                         raw_spin_rq_unlock(this_rq);
2398                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2399                                             push_task, &src_rq->push_work);
2400                         raw_spin_rq_lock(this_rq);
2401                 }
2402         }
2403
2404         if (resched)
2405                 resched_curr(this_rq);
2406 }
2407
2408 /*
2409  * If we are not running and we are not going to reschedule soon, we should
2410  * try to push tasks away now
2411  */
2412 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2413 {
2414         bool need_to_push = !task_running(rq, p) &&
2415                             !test_tsk_need_resched(rq->curr) &&
2416                             p->nr_cpus_allowed > 1 &&
2417                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2418                             (rq->curr->nr_cpus_allowed < 2 ||
2419                              rq->curr->prio <= p->prio);
2420
2421         if (need_to_push)
2422                 push_rt_tasks(rq);
2423 }
2424
2425 /* Assumes rq->lock is held */
2426 static void rq_online_rt(struct rq *rq)
2427 {
2428         if (rq->rt.overloaded)
2429                 rt_set_overload(rq);
2430
2431         __enable_runtime(rq);
2432
2433         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2434 }
2435
2436 /* Assumes rq->lock is held */
2437 static void rq_offline_rt(struct rq *rq)
2438 {
2439         if (rq->rt.overloaded)
2440                 rt_clear_overload(rq);
2441
2442         __disable_runtime(rq);
2443
2444         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2445 }
2446
2447 /*
2448  * When switch from the rt queue, we bring ourselves to a position
2449  * that we might want to pull RT tasks from other runqueues.
2450  */
2451 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2452 {
2453         /*
2454          * If there are other RT tasks then we will reschedule
2455          * and the scheduling of the other RT tasks will handle
2456          * the balancing. But if we are the last RT task
2457          * we may need to handle the pulling of RT tasks
2458          * now.
2459          */
2460         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2461                 return;
2462
2463         rt_queue_pull_task(rq);
2464 }
2465
2466 void __init init_sched_rt_class(void)
2467 {
2468         unsigned int i;
2469
2470         for_each_possible_cpu(i) {
2471                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2472                                         GFP_KERNEL, cpu_to_node(i));
2473         }
2474 }
2475 #endif /* CONFIG_SMP */
2476
2477 /*
2478  * When switching a task to RT, we may overload the runqueue
2479  * with RT tasks. In this case we try to push them off to
2480  * other runqueues.
2481  */
2482 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2483 {
2484         /*
2485          * If we are running, update the avg_rt tracking, as the running time
2486          * will now on be accounted into the latter.
2487          */
2488         if (task_current(rq, p)) {
2489                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2490                 return;
2491         }
2492
2493         /*
2494          * If we are not running we may need to preempt the current
2495          * running task. If that current running task is also an RT task
2496          * then see if we can move to another run queue.
2497          */
2498         if (task_on_rq_queued(p)) {
2499 #ifdef CONFIG_SMP
2500                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2501                         rt_queue_push_tasks(rq);
2502 #endif /* CONFIG_SMP */
2503                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2504                         resched_curr(rq);
2505         }
2506 }
2507
2508 /*
2509  * Priority of the task has changed. This may cause
2510  * us to initiate a push or pull.
2511  */
2512 static void
2513 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2514 {
2515         if (!task_on_rq_queued(p))
2516                 return;
2517
2518         if (task_current(rq, p)) {
2519 #ifdef CONFIG_SMP
2520                 /*
2521                  * If our priority decreases while running, we
2522                  * may need to pull tasks to this runqueue.
2523                  */
2524                 if (oldprio < p->prio)
2525                         rt_queue_pull_task(rq);
2526
2527                 /*
2528                  * If there's a higher priority task waiting to run
2529                  * then reschedule.
2530                  */
2531                 if (p->prio > rq->rt.highest_prio.curr)
2532                         resched_curr(rq);
2533 #else
2534                 /* For UP simply resched on drop of prio */
2535                 if (oldprio < p->prio)
2536                         resched_curr(rq);
2537 #endif /* CONFIG_SMP */
2538         } else {
2539                 /*
2540                  * This task is not running, but if it is
2541                  * greater than the current running task
2542                  * then reschedule.
2543                  */
2544                 if (p->prio < rq->curr->prio)
2545                         resched_curr(rq);
2546         }
2547 }
2548
2549 #ifdef CONFIG_POSIX_TIMERS
2550 static void watchdog(struct rq *rq, struct task_struct *p)
2551 {
2552         unsigned long soft, hard;
2553
2554         /* max may change after cur was read, this will be fixed next tick */
2555         soft = task_rlimit(p, RLIMIT_RTTIME);
2556         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2557
2558         if (soft != RLIM_INFINITY) {
2559                 unsigned long next;
2560
2561                 if (p->rt.watchdog_stamp != jiffies) {
2562                         p->rt.timeout++;
2563                         p->rt.watchdog_stamp = jiffies;
2564                 }
2565
2566                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2567                 if (p->rt.timeout > next) {
2568                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2569                                                     p->se.sum_exec_runtime);
2570                 }
2571         }
2572 }
2573 #else
2574 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2575 #endif
2576
2577 /*
2578  * scheduler tick hitting a task of our scheduling class.
2579  *
2580  * NOTE: This function can be called remotely by the tick offload that
2581  * goes along full dynticks. Therefore no local assumption can be made
2582  * and everything must be accessed through the @rq and @curr passed in
2583  * parameters.
2584  */
2585 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2586 {
2587         struct sched_rt_entity *rt_se = &p->rt;
2588
2589         update_curr_rt(rq);
2590         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2591
2592         watchdog(rq, p);
2593
2594         /*
2595          * RR tasks need a special form of timeslice management.
2596          * FIFO tasks have no timeslices.
2597          */
2598         if (p->policy != SCHED_RR)
2599                 return;
2600
2601         if (--p->rt.time_slice)
2602                 return;
2603
2604         p->rt.time_slice = sched_rr_timeslice;
2605
2606         /*
2607          * Requeue to the end of queue if we (and all of our ancestors) are not
2608          * the only element on the queue
2609          */
2610         for_each_sched_rt_entity(rt_se) {
2611                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2612                         requeue_task_rt(rq, p, 0);
2613                         resched_curr(rq);
2614                         return;
2615                 }
2616         }
2617 }
2618
2619 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2620 {
2621         /*
2622          * Time slice is 0 for SCHED_FIFO tasks
2623          */
2624         if (task->policy == SCHED_RR)
2625                 return sched_rr_timeslice;
2626         else
2627                 return 0;
2628 }
2629
2630 DEFINE_SCHED_CLASS(rt) = {
2631
2632         .enqueue_task           = enqueue_task_rt,
2633         .dequeue_task           = dequeue_task_rt,
2634         .yield_task             = yield_task_rt,
2635
2636         .check_preempt_curr     = check_preempt_curr_rt,
2637
2638         .pick_next_task         = pick_next_task_rt,
2639         .put_prev_task          = put_prev_task_rt,
2640         .set_next_task          = set_next_task_rt,
2641
2642 #ifdef CONFIG_SMP
2643         .balance                = balance_rt,
2644         .pick_task              = pick_task_rt,
2645         .select_task_rq         = select_task_rq_rt,
2646         .set_cpus_allowed       = set_cpus_allowed_common,
2647         .rq_online              = rq_online_rt,
2648         .rq_offline             = rq_offline_rt,
2649         .task_woken             = task_woken_rt,
2650         .switched_from          = switched_from_rt,
2651         .find_lock_rq           = find_lock_lowest_rq,
2652 #endif
2653
2654         .task_tick              = task_tick_rt,
2655
2656         .get_rr_interval        = get_rr_interval_rt,
2657
2658         .prio_changed           = prio_changed_rt,
2659         .switched_to            = switched_to_rt,
2660
2661         .update_curr            = update_curr_rt,
2662
2663 #ifdef CONFIG_UCLAMP_TASK
2664         .uclamp_enabled         = 1,
2665 #endif
2666 };
2667
2668 #ifdef CONFIG_RT_GROUP_SCHED
2669 /*
2670  * Ensure that the real time constraints are schedulable.
2671  */
2672 static DEFINE_MUTEX(rt_constraints_mutex);
2673
2674 static inline int tg_has_rt_tasks(struct task_group *tg)
2675 {
2676         struct task_struct *task;
2677         struct css_task_iter it;
2678         int ret = 0;
2679
2680         /*
2681          * Autogroups do not have RT tasks; see autogroup_create().
2682          */
2683         if (task_group_is_autogroup(tg))
2684                 return 0;
2685
2686         css_task_iter_start(&tg->css, 0, &it);
2687         while (!ret && (task = css_task_iter_next(&it)))
2688                 ret |= rt_task(task);
2689         css_task_iter_end(&it);
2690
2691         return ret;
2692 }
2693
2694 struct rt_schedulable_data {
2695         struct task_group *tg;
2696         u64 rt_period;
2697         u64 rt_runtime;
2698 };
2699
2700 static int tg_rt_schedulable(struct task_group *tg, void *data)
2701 {
2702         struct rt_schedulable_data *d = data;
2703         struct task_group *child;
2704         unsigned long total, sum = 0;
2705         u64 period, runtime;
2706
2707         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2708         runtime = tg->rt_bandwidth.rt_runtime;
2709
2710         if (tg == d->tg) {
2711                 period = d->rt_period;
2712                 runtime = d->rt_runtime;
2713         }
2714
2715         /*
2716          * Cannot have more runtime than the period.
2717          */
2718         if (runtime > period && runtime != RUNTIME_INF)
2719                 return -EINVAL;
2720
2721         /*
2722          * Ensure we don't starve existing RT tasks if runtime turns zero.
2723          */
2724         if (rt_bandwidth_enabled() && !runtime &&
2725             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2726                 return -EBUSY;
2727
2728         total = to_ratio(period, runtime);
2729
2730         /*
2731          * Nobody can have more than the global setting allows.
2732          */
2733         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2734                 return -EINVAL;
2735
2736         /*
2737          * The sum of our children's runtime should not exceed our own.
2738          */
2739         list_for_each_entry_rcu(child, &tg->children, siblings) {
2740                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2741                 runtime = child->rt_bandwidth.rt_runtime;
2742
2743                 if (child == d->tg) {
2744                         period = d->rt_period;
2745                         runtime = d->rt_runtime;
2746                 }
2747
2748                 sum += to_ratio(period, runtime);
2749         }
2750
2751         if (sum > total)
2752                 return -EINVAL;
2753
2754         return 0;
2755 }
2756
2757 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2758 {
2759         int ret;
2760
2761         struct rt_schedulable_data data = {
2762                 .tg = tg,
2763                 .rt_period = period,
2764                 .rt_runtime = runtime,
2765         };
2766
2767         rcu_read_lock();
2768         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2769         rcu_read_unlock();
2770
2771         return ret;
2772 }
2773
2774 static int tg_set_rt_bandwidth(struct task_group *tg,
2775                 u64 rt_period, u64 rt_runtime)
2776 {
2777         int i, err = 0;
2778
2779         /*
2780          * Disallowing the root group RT runtime is BAD, it would disallow the
2781          * kernel creating (and or operating) RT threads.
2782          */
2783         if (tg == &root_task_group && rt_runtime == 0)
2784                 return -EINVAL;
2785
2786         /* No period doesn't make any sense. */
2787         if (rt_period == 0)
2788                 return -EINVAL;
2789
2790         /*
2791          * Bound quota to defend quota against overflow during bandwidth shift.
2792          */
2793         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2794                 return -EINVAL;
2795
2796         mutex_lock(&rt_constraints_mutex);
2797         err = __rt_schedulable(tg, rt_period, rt_runtime);
2798         if (err)
2799                 goto unlock;
2800
2801         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2802         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2803         tg->rt_bandwidth.rt_runtime = rt_runtime;
2804
2805         for_each_possible_cpu(i) {
2806                 struct rt_rq *rt_rq = tg->rt_rq[i];
2807
2808                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2809                 rt_rq->rt_runtime = rt_runtime;
2810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2811         }
2812         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2813 unlock:
2814         mutex_unlock(&rt_constraints_mutex);
2815
2816         return err;
2817 }
2818
2819 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2820 {
2821         u64 rt_runtime, rt_period;
2822
2823         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2824         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2825         if (rt_runtime_us < 0)
2826                 rt_runtime = RUNTIME_INF;
2827         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2828                 return -EINVAL;
2829
2830         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2831 }
2832
2833 long sched_group_rt_runtime(struct task_group *tg)
2834 {
2835         u64 rt_runtime_us;
2836
2837         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2838                 return -1;
2839
2840         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2841         do_div(rt_runtime_us, NSEC_PER_USEC);
2842         return rt_runtime_us;
2843 }
2844
2845 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2846 {
2847         u64 rt_runtime, rt_period;
2848
2849         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2850                 return -EINVAL;
2851
2852         rt_period = rt_period_us * NSEC_PER_USEC;
2853         rt_runtime = tg->rt_bandwidth.rt_runtime;
2854
2855         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2856 }
2857
2858 long sched_group_rt_period(struct task_group *tg)
2859 {
2860         u64 rt_period_us;
2861
2862         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2863         do_div(rt_period_us, NSEC_PER_USEC);
2864         return rt_period_us;
2865 }
2866
2867 static int sched_rt_global_constraints(void)
2868 {
2869         int ret = 0;
2870
2871         mutex_lock(&rt_constraints_mutex);
2872         ret = __rt_schedulable(NULL, 0, 0);
2873         mutex_unlock(&rt_constraints_mutex);
2874
2875         return ret;
2876 }
2877
2878 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2879 {
2880         /* Don't accept realtime tasks when there is no way for them to run */
2881         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2882                 return 0;
2883
2884         return 1;
2885 }
2886
2887 #else /* !CONFIG_RT_GROUP_SCHED */
2888 static int sched_rt_global_constraints(void)
2889 {
2890         unsigned long flags;
2891         int i;
2892
2893         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2894         for_each_possible_cpu(i) {
2895                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2896
2897                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2898                 rt_rq->rt_runtime = global_rt_runtime();
2899                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2900         }
2901         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2902
2903         return 0;
2904 }
2905 #endif /* CONFIG_RT_GROUP_SCHED */
2906
2907 static int sched_rt_global_validate(void)
2908 {
2909         if (sysctl_sched_rt_period <= 0)
2910                 return -EINVAL;
2911
2912         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2913                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2914                  ((u64)sysctl_sched_rt_runtime *
2915                         NSEC_PER_USEC > max_rt_runtime)))
2916                 return -EINVAL;
2917
2918         return 0;
2919 }
2920
2921 static void sched_rt_do_global(void)
2922 {
2923         unsigned long flags;
2924
2925         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2926         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2927         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2928         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2929 }
2930
2931 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2932                 size_t *lenp, loff_t *ppos)
2933 {
2934         int old_period, old_runtime;
2935         static DEFINE_MUTEX(mutex);
2936         int ret;
2937
2938         mutex_lock(&mutex);
2939         old_period = sysctl_sched_rt_period;
2940         old_runtime = sysctl_sched_rt_runtime;
2941
2942         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2943
2944         if (!ret && write) {
2945                 ret = sched_rt_global_validate();
2946                 if (ret)
2947                         goto undo;
2948
2949                 ret = sched_dl_global_validate();
2950                 if (ret)
2951                         goto undo;
2952
2953                 ret = sched_rt_global_constraints();
2954                 if (ret)
2955                         goto undo;
2956
2957                 sched_rt_do_global();
2958                 sched_dl_do_global();
2959         }
2960         if (0) {
2961 undo:
2962                 sysctl_sched_rt_period = old_period;
2963                 sysctl_sched_rt_runtime = old_runtime;
2964         }
2965         mutex_unlock(&mutex);
2966
2967         return ret;
2968 }
2969
2970 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2971                 size_t *lenp, loff_t *ppos)
2972 {
2973         int ret;
2974         static DEFINE_MUTEX(mutex);
2975
2976         mutex_lock(&mutex);
2977         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2978         /*
2979          * Make sure that internally we keep jiffies.
2980          * Also, writing zero resets the timeslice to default:
2981          */
2982         if (!ret && write) {
2983                 sched_rr_timeslice =
2984                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2985                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2986         }
2987         mutex_unlock(&mutex);
2988
2989         return ret;
2990 }
2991
2992 #ifdef CONFIG_SCHED_DEBUG
2993 void print_rt_stats(struct seq_file *m, int cpu)
2994 {
2995         rt_rq_iter_t iter;
2996         struct rt_rq *rt_rq;
2997
2998         rcu_read_lock();
2999         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3000                 print_rt_rq(m, cpu, rt_rq);
3001         rcu_read_unlock();
3002 }
3003 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.192569 seconds and 4 git commands to generate.