1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 struct rt_bandwidth def_rt_bandwidth;
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
26 raw_spin_lock(&rt_b->rt_runtime_lock);
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
50 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 HRTIMER_MODE_REL_HARD);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 if (!rt_b->rt_period_active) {
59 rt_b->rt_period_active = 1;
61 * SCHED_DEADLINE updates the bandwidth, as a run away
62 * RT task with a DL task could hog a CPU. But DL does
63 * not reset the period. If a deadline task was running
64 * without an RT task running, it can cause RT tasks to
65 * throttle when they start up. Kick the timer right away
66 * to update the period.
68 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69 hrtimer_start_expires(&rt_b->rt_period_timer,
70 HRTIMER_MODE_ABS_PINNED_HARD);
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
77 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
80 do_start_rt_bandwidth(rt_b);
83 void init_rt_rq(struct rt_rq *rt_rq)
85 struct rt_prio_array *array;
88 array = &rt_rq->active;
89 for (i = 0; i < MAX_RT_PRIO; i++) {
90 INIT_LIST_HEAD(array->queue + i);
91 __clear_bit(i, array->bitmap);
93 /* delimiter for bitsearch: */
94 __set_bit(MAX_RT_PRIO, array->bitmap);
96 #if defined CONFIG_SMP
97 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99 rt_rq->rt_nr_migratory = 0;
100 rt_rq->overloaded = 0;
101 plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103 /* We start is dequeued state, because no RT tasks are queued */
104 rt_rq->rt_queued = 0;
107 rt_rq->rt_throttled = 0;
108 rt_rq->rt_runtime = 0;
109 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
115 hrtimer_cancel(&rt_b->rt_period_timer);
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
122 #ifdef CONFIG_SCHED_DEBUG
123 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
125 return container_of(rt_se, struct task_struct, rt);
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
140 struct rt_rq *rt_rq = rt_se->rt_rq;
145 void unregister_rt_sched_group(struct task_group *tg)
148 destroy_rt_bandwidth(&tg->rt_bandwidth);
152 void free_rt_sched_group(struct task_group *tg)
156 for_each_possible_cpu(i) {
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 struct sched_rt_entity *rt_se, int cpu,
169 struct sched_rt_entity *parent)
171 struct rq *rq = cpu_rq(cpu);
173 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174 rt_rq->rt_nr_boosted = 0;
178 tg->rt_rq[cpu] = rt_rq;
179 tg->rt_se[cpu] = rt_se;
185 rt_se->rt_rq = &rq->rt;
187 rt_se->rt_rq = parent->my_q;
190 rt_se->parent = parent;
191 INIT_LIST_HEAD(&rt_se->run_list);
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
197 struct sched_rt_entity *rt_se;
200 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
203 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
207 init_rt_bandwidth(&tg->rt_bandwidth,
208 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
210 for_each_possible_cpu(i) {
211 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 GFP_KERNEL, cpu_to_node(i));
216 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 GFP_KERNEL, cpu_to_node(i));
222 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
234 #else /* CONFIG_RT_GROUP_SCHED */
236 #define rt_entity_is_task(rt_se) (1)
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
240 return container_of(rt_se, struct task_struct, rt);
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
245 return container_of(rt_rq, struct rq, rt);
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
250 struct task_struct *p = rt_task_of(rt_se);
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
257 struct rq *rq = rq_of_rt_se(rt_se);
262 void unregister_rt_sched_group(struct task_group *tg) { }
264 void free_rt_sched_group(struct task_group *tg) { }
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
270 #endif /* CONFIG_RT_GROUP_SCHED */
274 static void pull_rt_task(struct rq *this_rq);
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
278 /* Try to pull RT tasks here if we lower this rq's prio */
279 return rq->online && rq->rt.highest_prio.curr > prev->prio;
282 static inline int rt_overloaded(struct rq *rq)
284 return atomic_read(&rq->rd->rto_count);
287 static inline void rt_set_overload(struct rq *rq)
292 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
294 * Make sure the mask is visible before we set
295 * the overload count. That is checked to determine
296 * if we should look at the mask. It would be a shame
297 * if we looked at the mask, but the mask was not
300 * Matched by the barrier in pull_rt_task().
303 atomic_inc(&rq->rd->rto_count);
306 static inline void rt_clear_overload(struct rq *rq)
311 /* the order here really doesn't matter */
312 atomic_dec(&rq->rd->rto_count);
313 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
316 static void update_rt_migration(struct rt_rq *rt_rq)
318 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319 if (!rt_rq->overloaded) {
320 rt_set_overload(rq_of_rt_rq(rt_rq));
321 rt_rq->overloaded = 1;
323 } else if (rt_rq->overloaded) {
324 rt_clear_overload(rq_of_rt_rq(rt_rq));
325 rt_rq->overloaded = 0;
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
331 struct task_struct *p;
333 if (!rt_entity_is_task(rt_se))
336 p = rt_task_of(rt_se);
337 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
339 rt_rq->rt_nr_total++;
340 if (p->nr_cpus_allowed > 1)
341 rt_rq->rt_nr_migratory++;
343 update_rt_migration(rt_rq);
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
348 struct task_struct *p;
350 if (!rt_entity_is_task(rt_se))
353 p = rt_task_of(rt_se);
354 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
356 rt_rq->rt_nr_total--;
357 if (p->nr_cpus_allowed > 1)
358 rt_rq->rt_nr_migratory--;
360 update_rt_migration(rt_rq);
363 static inline int has_pushable_tasks(struct rq *rq)
365 return !plist_head_empty(&rq->rt.pushable_tasks);
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
374 static inline void rt_queue_push_tasks(struct rq *rq)
376 if (!has_pushable_tasks(rq))
379 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
382 static inline void rt_queue_pull_task(struct rq *rq)
384 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 plist_node_init(&p->pushable_tasks, p->prio);
391 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393 /* Update the highest prio pushable task */
394 if (p->prio < rq->rt.highest_prio.next)
395 rq->rt.highest_prio.next = p->prio;
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
400 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
402 /* Update the new highest prio pushable task */
403 if (has_pushable_tasks(rq)) {
404 p = plist_first_entry(&rq->rt.pushable_tasks,
405 struct task_struct, pushable_tasks);
406 rq->rt.highest_prio.next = p->prio;
408 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
437 static inline void pull_rt_task(struct rq *this_rq)
441 static inline void rt_queue_push_tasks(struct rq *rq)
444 #endif /* CONFIG_SMP */
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
454 #ifdef CONFIG_UCLAMP_TASK
456 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
459 * This check is only important for heterogeneous systems where uclamp_min value
460 * is higher than the capacity of a @cpu. For non-heterogeneous system this
461 * function will always return true.
463 * The function will return true if the capacity of the @cpu is >= the
464 * uclamp_min and false otherwise.
466 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
471 unsigned int min_cap;
472 unsigned int max_cap;
473 unsigned int cpu_cap;
475 /* Only heterogeneous systems can benefit from this check */
476 if (!static_branch_unlikely(&sched_asym_cpucapacity))
479 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
482 cpu_cap = capacity_orig_of(cpu);
484 return cpu_cap >= min(min_cap, max_cap);
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
493 #ifdef CONFIG_RT_GROUP_SCHED
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
500 return rt_rq->rt_runtime;
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
505 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
508 typedef struct task_group *rt_rq_iter_t;
510 static inline struct task_group *next_task_group(struct task_group *tg)
513 tg = list_entry_rcu(tg->list.next,
514 typeof(struct task_group), list);
515 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
517 if (&tg->list == &task_groups)
523 #define for_each_rt_rq(rt_rq, iter, rq) \
524 for (iter = container_of(&task_groups, typeof(*iter), list); \
525 (iter = next_task_group(iter)) && \
526 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
528 #define for_each_sched_rt_entity(rt_se) \
529 for (; rt_se; rt_se = rt_se->parent)
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
541 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542 struct rq *rq = rq_of_rt_rq(rt_rq);
543 struct sched_rt_entity *rt_se;
545 int cpu = cpu_of(rq);
547 rt_se = rt_rq->tg->rt_se[cpu];
549 if (rt_rq->rt_nr_running) {
551 enqueue_top_rt_rq(rt_rq);
552 else if (!on_rt_rq(rt_se))
553 enqueue_rt_entity(rt_se, 0);
555 if (rt_rq->highest_prio.curr < curr->prio)
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
562 struct sched_rt_entity *rt_se;
563 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
565 rt_se = rt_rq->tg->rt_se[cpu];
568 dequeue_top_rt_rq(rt_rq);
569 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
572 else if (on_rt_rq(rt_se))
573 dequeue_rt_entity(rt_se, 0);
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
583 struct rt_rq *rt_rq = group_rt_rq(rt_se);
584 struct task_struct *p;
587 return !!rt_rq->rt_nr_boosted;
589 p = rt_task_of(rt_se);
590 return p->prio != p->normal_prio;
594 static inline const struct cpumask *sched_rt_period_mask(void)
596 return this_rq()->rd->span;
599 static inline const struct cpumask *sched_rt_period_mask(void)
601 return cpu_online_mask;
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
608 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
613 return &rt_rq->tg->rt_bandwidth;
616 #else /* !CONFIG_RT_GROUP_SCHED */
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
620 return rt_rq->rt_runtime;
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
625 return ktime_to_ns(def_rt_bandwidth.rt_period);
628 typedef struct rt_rq *rt_rq_iter_t;
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
633 #define for_each_sched_rt_entity(rt_se) \
634 for (; rt_se; rt_se = NULL)
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
643 struct rq *rq = rq_of_rt_rq(rt_rq);
645 if (!rt_rq->rt_nr_running)
648 enqueue_top_rt_rq(rt_rq);
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
654 dequeue_top_rt_rq(rt_rq);
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
659 return rt_rq->rt_throttled;
662 static inline const struct cpumask *sched_rt_period_mask(void)
664 return cpu_online_mask;
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
670 return &cpu_rq(cpu)->rt;
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
675 return &def_rt_bandwidth;
678 #endif /* CONFIG_RT_GROUP_SCHED */
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
682 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
684 return (hrtimer_active(&rt_b->rt_period_timer) ||
685 rt_rq->rt_time < rt_b->rt_runtime);
690 * We ran out of runtime, see if we can borrow some from our neighbours.
692 static void do_balance_runtime(struct rt_rq *rt_rq)
694 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
699 weight = cpumask_weight(rd->span);
701 raw_spin_lock(&rt_b->rt_runtime_lock);
702 rt_period = ktime_to_ns(rt_b->rt_period);
703 for_each_cpu(i, rd->span) {
704 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
710 raw_spin_lock(&iter->rt_runtime_lock);
712 * Either all rqs have inf runtime and there's nothing to steal
713 * or __disable_runtime() below sets a specific rq to inf to
714 * indicate its been disabled and disallow stealing.
716 if (iter->rt_runtime == RUNTIME_INF)
720 * From runqueues with spare time, take 1/n part of their
721 * spare time, but no more than our period.
723 diff = iter->rt_runtime - iter->rt_time;
725 diff = div_u64((u64)diff, weight);
726 if (rt_rq->rt_runtime + diff > rt_period)
727 diff = rt_period - rt_rq->rt_runtime;
728 iter->rt_runtime -= diff;
729 rt_rq->rt_runtime += diff;
730 if (rt_rq->rt_runtime == rt_period) {
731 raw_spin_unlock(&iter->rt_runtime_lock);
736 raw_spin_unlock(&iter->rt_runtime_lock);
738 raw_spin_unlock(&rt_b->rt_runtime_lock);
742 * Ensure this RQ takes back all the runtime it lend to its neighbours.
744 static void __disable_runtime(struct rq *rq)
746 struct root_domain *rd = rq->rd;
750 if (unlikely(!scheduler_running))
753 for_each_rt_rq(rt_rq, iter, rq) {
754 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
758 raw_spin_lock(&rt_b->rt_runtime_lock);
759 raw_spin_lock(&rt_rq->rt_runtime_lock);
761 * Either we're all inf and nobody needs to borrow, or we're
762 * already disabled and thus have nothing to do, or we have
763 * exactly the right amount of runtime to take out.
765 if (rt_rq->rt_runtime == RUNTIME_INF ||
766 rt_rq->rt_runtime == rt_b->rt_runtime)
768 raw_spin_unlock(&rt_rq->rt_runtime_lock);
771 * Calculate the difference between what we started out with
772 * and what we current have, that's the amount of runtime
773 * we lend and now have to reclaim.
775 want = rt_b->rt_runtime - rt_rq->rt_runtime;
778 * Greedy reclaim, take back as much as we can.
780 for_each_cpu(i, rd->span) {
781 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
785 * Can't reclaim from ourselves or disabled runqueues.
787 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
790 raw_spin_lock(&iter->rt_runtime_lock);
792 diff = min_t(s64, iter->rt_runtime, want);
793 iter->rt_runtime -= diff;
796 iter->rt_runtime -= want;
799 raw_spin_unlock(&iter->rt_runtime_lock);
805 raw_spin_lock(&rt_rq->rt_runtime_lock);
807 * We cannot be left wanting - that would mean some runtime
808 * leaked out of the system.
813 * Disable all the borrow logic by pretending we have inf
814 * runtime - in which case borrowing doesn't make sense.
816 rt_rq->rt_runtime = RUNTIME_INF;
817 rt_rq->rt_throttled = 0;
818 raw_spin_unlock(&rt_rq->rt_runtime_lock);
819 raw_spin_unlock(&rt_b->rt_runtime_lock);
821 /* Make rt_rq available for pick_next_task() */
822 sched_rt_rq_enqueue(rt_rq);
826 static void __enable_runtime(struct rq *rq)
831 if (unlikely(!scheduler_running))
835 * Reset each runqueue's bandwidth settings
837 for_each_rt_rq(rt_rq, iter, rq) {
838 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
840 raw_spin_lock(&rt_b->rt_runtime_lock);
841 raw_spin_lock(&rt_rq->rt_runtime_lock);
842 rt_rq->rt_runtime = rt_b->rt_runtime;
844 rt_rq->rt_throttled = 0;
845 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 raw_spin_unlock(&rt_b->rt_runtime_lock);
850 static void balance_runtime(struct rt_rq *rt_rq)
852 if (!sched_feat(RT_RUNTIME_SHARE))
855 if (rt_rq->rt_time > rt_rq->rt_runtime) {
856 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 do_balance_runtime(rt_rq);
858 raw_spin_lock(&rt_rq->rt_runtime_lock);
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
867 int i, idle = 1, throttled = 0;
868 const struct cpumask *span;
870 span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
873 * FIXME: isolated CPUs should really leave the root task group,
874 * whether they are isolcpus or were isolated via cpusets, lest
875 * the timer run on a CPU which does not service all runqueues,
876 * potentially leaving other CPUs indefinitely throttled. If
877 * isolation is really required, the user will turn the throttle
878 * off to kill the perturbations it causes anyway. Meanwhile,
879 * this maintains functionality for boot and/or troubleshooting.
881 if (rt_b == &root_task_group.rt_bandwidth)
882 span = cpu_online_mask;
884 for_each_cpu(i, span) {
886 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887 struct rq *rq = rq_of_rt_rq(rt_rq);
891 * When span == cpu_online_mask, taking each rq->lock
892 * can be time-consuming. Try to avoid it when possible.
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
896 rt_rq->rt_runtime = rt_b->rt_runtime;
897 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
898 raw_spin_unlock(&rt_rq->rt_runtime_lock);
902 raw_spin_rq_lock(rq);
905 if (rt_rq->rt_time) {
908 raw_spin_lock(&rt_rq->rt_runtime_lock);
909 if (rt_rq->rt_throttled)
910 balance_runtime(rt_rq);
911 runtime = rt_rq->rt_runtime;
912 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
913 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
914 rt_rq->rt_throttled = 0;
918 * When we're idle and a woken (rt) task is
919 * throttled check_preempt_curr() will set
920 * skip_update and the time between the wakeup
921 * and this unthrottle will get accounted as
924 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
925 rq_clock_cancel_skipupdate(rq);
927 if (rt_rq->rt_time || rt_rq->rt_nr_running)
929 raw_spin_unlock(&rt_rq->rt_runtime_lock);
930 } else if (rt_rq->rt_nr_running) {
932 if (!rt_rq_throttled(rt_rq))
935 if (rt_rq->rt_throttled)
939 sched_rt_rq_enqueue(rt_rq);
940 raw_spin_rq_unlock(rq);
943 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
949 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
951 #ifdef CONFIG_RT_GROUP_SCHED
952 struct rt_rq *rt_rq = group_rt_rq(rt_se);
955 return rt_rq->highest_prio.curr;
958 return rt_task_of(rt_se)->prio;
961 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
963 u64 runtime = sched_rt_runtime(rt_rq);
965 if (rt_rq->rt_throttled)
966 return rt_rq_throttled(rt_rq);
968 if (runtime >= sched_rt_period(rt_rq))
971 balance_runtime(rt_rq);
972 runtime = sched_rt_runtime(rt_rq);
973 if (runtime == RUNTIME_INF)
976 if (rt_rq->rt_time > runtime) {
977 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
980 * Don't actually throttle groups that have no runtime assigned
981 * but accrue some time due to boosting.
983 if (likely(rt_b->rt_runtime)) {
984 rt_rq->rt_throttled = 1;
985 printk_deferred_once("sched: RT throttling activated\n");
988 * In case we did anyway, make it go away,
989 * replenishment is a joke, since it will replenish us
995 if (rt_rq_throttled(rt_rq)) {
996 sched_rt_rq_dequeue(rt_rq);
1005 * Update the current task's runtime statistics. Skip current tasks that
1006 * are not in our scheduling class.
1008 static void update_curr_rt(struct rq *rq)
1010 struct task_struct *curr = rq->curr;
1011 struct sched_rt_entity *rt_se = &curr->rt;
1015 if (curr->sched_class != &rt_sched_class)
1018 now = rq_clock_task(rq);
1019 delta_exec = now - curr->se.exec_start;
1020 if (unlikely((s64)delta_exec <= 0))
1023 schedstat_set(curr->stats.exec_max,
1024 max(curr->stats.exec_max, delta_exec));
1026 trace_sched_stat_runtime(curr, delta_exec, 0);
1028 curr->se.sum_exec_runtime += delta_exec;
1029 account_group_exec_runtime(curr, delta_exec);
1031 curr->se.exec_start = now;
1032 cgroup_account_cputime(curr, delta_exec);
1034 if (!rt_bandwidth_enabled())
1037 for_each_sched_rt_entity(rt_se) {
1038 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1041 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1042 raw_spin_lock(&rt_rq->rt_runtime_lock);
1043 rt_rq->rt_time += delta_exec;
1044 exceeded = sched_rt_runtime_exceeded(rt_rq);
1047 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1049 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1055 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1057 struct rq *rq = rq_of_rt_rq(rt_rq);
1059 BUG_ON(&rq->rt != rt_rq);
1061 if (!rt_rq->rt_queued)
1064 BUG_ON(!rq->nr_running);
1066 sub_nr_running(rq, rt_rq->rt_nr_running);
1067 rt_rq->rt_queued = 0;
1072 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1074 struct rq *rq = rq_of_rt_rq(rt_rq);
1076 BUG_ON(&rq->rt != rt_rq);
1078 if (rt_rq->rt_queued)
1081 if (rt_rq_throttled(rt_rq))
1084 if (rt_rq->rt_nr_running) {
1085 add_nr_running(rq, rt_rq->rt_nr_running);
1086 rt_rq->rt_queued = 1;
1089 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1090 cpufreq_update_util(rq, 0);
1093 #if defined CONFIG_SMP
1096 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1098 struct rq *rq = rq_of_rt_rq(rt_rq);
1100 #ifdef CONFIG_RT_GROUP_SCHED
1102 * Change rq's cpupri only if rt_rq is the top queue.
1104 if (&rq->rt != rt_rq)
1107 if (rq->online && prio < prev_prio)
1108 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1112 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1114 struct rq *rq = rq_of_rt_rq(rt_rq);
1116 #ifdef CONFIG_RT_GROUP_SCHED
1118 * Change rq's cpupri only if rt_rq is the top queue.
1120 if (&rq->rt != rt_rq)
1123 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1124 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1127 #else /* CONFIG_SMP */
1130 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1132 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1134 #endif /* CONFIG_SMP */
1136 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1138 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1140 int prev_prio = rt_rq->highest_prio.curr;
1142 if (prio < prev_prio)
1143 rt_rq->highest_prio.curr = prio;
1145 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1149 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1151 int prev_prio = rt_rq->highest_prio.curr;
1153 if (rt_rq->rt_nr_running) {
1155 WARN_ON(prio < prev_prio);
1158 * This may have been our highest task, and therefore
1159 * we may have some recomputation to do
1161 if (prio == prev_prio) {
1162 struct rt_prio_array *array = &rt_rq->active;
1164 rt_rq->highest_prio.curr =
1165 sched_find_first_bit(array->bitmap);
1169 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1172 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1177 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1178 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1180 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1182 #ifdef CONFIG_RT_GROUP_SCHED
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 if (rt_se_boosted(rt_se))
1188 rt_rq->rt_nr_boosted++;
1191 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1195 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197 if (rt_se_boosted(rt_se))
1198 rt_rq->rt_nr_boosted--;
1200 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1203 #else /* CONFIG_RT_GROUP_SCHED */
1206 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1208 start_rt_bandwidth(&def_rt_bandwidth);
1212 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1214 #endif /* CONFIG_RT_GROUP_SCHED */
1217 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1219 struct rt_rq *group_rq = group_rt_rq(rt_se);
1222 return group_rq->rt_nr_running;
1228 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1230 struct rt_rq *group_rq = group_rt_rq(rt_se);
1231 struct task_struct *tsk;
1234 return group_rq->rr_nr_running;
1236 tsk = rt_task_of(rt_se);
1238 return (tsk->policy == SCHED_RR) ? 1 : 0;
1242 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 int prio = rt_se_prio(rt_se);
1246 WARN_ON(!rt_prio(prio));
1247 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1248 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1250 inc_rt_prio(rt_rq, prio);
1251 inc_rt_migration(rt_se, rt_rq);
1252 inc_rt_group(rt_se, rt_rq);
1256 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1258 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1259 WARN_ON(!rt_rq->rt_nr_running);
1260 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1261 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1263 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1264 dec_rt_migration(rt_se, rt_rq);
1265 dec_rt_group(rt_se, rt_rq);
1269 * Change rt_se->run_list location unless SAVE && !MOVE
1271 * assumes ENQUEUE/DEQUEUE flags match
1273 static inline bool move_entity(unsigned int flags)
1275 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1281 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1283 list_del_init(&rt_se->run_list);
1285 if (list_empty(array->queue + rt_se_prio(rt_se)))
1286 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1291 static inline struct sched_statistics *
1292 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1294 #ifdef CONFIG_RT_GROUP_SCHED
1295 /* schedstats is not supported for rt group. */
1296 if (!rt_entity_is_task(rt_se))
1300 return &rt_task_of(rt_se)->stats;
1304 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1306 struct sched_statistics *stats;
1307 struct task_struct *p = NULL;
1309 if (!schedstat_enabled())
1312 if (rt_entity_is_task(rt_se))
1313 p = rt_task_of(rt_se);
1315 stats = __schedstats_from_rt_se(rt_se);
1319 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1323 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1325 struct sched_statistics *stats;
1326 struct task_struct *p = NULL;
1328 if (!schedstat_enabled())
1331 if (rt_entity_is_task(rt_se))
1332 p = rt_task_of(rt_se);
1334 stats = __schedstats_from_rt_se(rt_se);
1338 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1342 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1345 if (!schedstat_enabled())
1348 if (flags & ENQUEUE_WAKEUP)
1349 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1353 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1355 struct sched_statistics *stats;
1356 struct task_struct *p = NULL;
1358 if (!schedstat_enabled())
1361 if (rt_entity_is_task(rt_se))
1362 p = rt_task_of(rt_se);
1364 stats = __schedstats_from_rt_se(rt_se);
1368 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1372 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1375 struct task_struct *p = NULL;
1377 if (!schedstat_enabled())
1380 if (rt_entity_is_task(rt_se))
1381 p = rt_task_of(rt_se);
1383 if ((flags & DEQUEUE_SLEEP) && p) {
1386 state = READ_ONCE(p->__state);
1387 if (state & TASK_INTERRUPTIBLE)
1388 __schedstat_set(p->stats.sleep_start,
1389 rq_clock(rq_of_rt_rq(rt_rq)));
1391 if (state & TASK_UNINTERRUPTIBLE)
1392 __schedstat_set(p->stats.block_start,
1393 rq_clock(rq_of_rt_rq(rt_rq)));
1397 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1399 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1400 struct rt_prio_array *array = &rt_rq->active;
1401 struct rt_rq *group_rq = group_rt_rq(rt_se);
1402 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1405 * Don't enqueue the group if its throttled, or when empty.
1406 * The latter is a consequence of the former when a child group
1407 * get throttled and the current group doesn't have any other
1410 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1412 __delist_rt_entity(rt_se, array);
1416 if (move_entity(flags)) {
1417 WARN_ON_ONCE(rt_se->on_list);
1418 if (flags & ENQUEUE_HEAD)
1419 list_add(&rt_se->run_list, queue);
1421 list_add_tail(&rt_se->run_list, queue);
1423 __set_bit(rt_se_prio(rt_se), array->bitmap);
1428 inc_rt_tasks(rt_se, rt_rq);
1431 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1433 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1434 struct rt_prio_array *array = &rt_rq->active;
1436 if (move_entity(flags)) {
1437 WARN_ON_ONCE(!rt_se->on_list);
1438 __delist_rt_entity(rt_se, array);
1442 dec_rt_tasks(rt_se, rt_rq);
1446 * Because the prio of an upper entry depends on the lower
1447 * entries, we must remove entries top - down.
1449 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1451 struct sched_rt_entity *back = NULL;
1453 for_each_sched_rt_entity(rt_se) {
1458 dequeue_top_rt_rq(rt_rq_of_se(back));
1460 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1461 if (on_rt_rq(rt_se))
1462 __dequeue_rt_entity(rt_se, flags);
1466 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1468 struct rq *rq = rq_of_rt_se(rt_se);
1470 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1472 dequeue_rt_stack(rt_se, flags);
1473 for_each_sched_rt_entity(rt_se)
1474 __enqueue_rt_entity(rt_se, flags);
1475 enqueue_top_rt_rq(&rq->rt);
1478 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1480 struct rq *rq = rq_of_rt_se(rt_se);
1482 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1484 dequeue_rt_stack(rt_se, flags);
1486 for_each_sched_rt_entity(rt_se) {
1487 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1489 if (rt_rq && rt_rq->rt_nr_running)
1490 __enqueue_rt_entity(rt_se, flags);
1492 enqueue_top_rt_rq(&rq->rt);
1496 * Adding/removing a task to/from a priority array:
1499 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1501 struct sched_rt_entity *rt_se = &p->rt;
1503 if (flags & ENQUEUE_WAKEUP)
1506 check_schedstat_required();
1507 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1509 enqueue_rt_entity(rt_se, flags);
1511 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1512 enqueue_pushable_task(rq, p);
1515 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1517 struct sched_rt_entity *rt_se = &p->rt;
1520 dequeue_rt_entity(rt_se, flags);
1522 dequeue_pushable_task(rq, p);
1526 * Put task to the head or the end of the run list without the overhead of
1527 * dequeue followed by enqueue.
1530 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1532 if (on_rt_rq(rt_se)) {
1533 struct rt_prio_array *array = &rt_rq->active;
1534 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1537 list_move(&rt_se->run_list, queue);
1539 list_move_tail(&rt_se->run_list, queue);
1543 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1545 struct sched_rt_entity *rt_se = &p->rt;
1546 struct rt_rq *rt_rq;
1548 for_each_sched_rt_entity(rt_se) {
1549 rt_rq = rt_rq_of_se(rt_se);
1550 requeue_rt_entity(rt_rq, rt_se, head);
1554 static void yield_task_rt(struct rq *rq)
1556 requeue_task_rt(rq, rq->curr, 0);
1560 static int find_lowest_rq(struct task_struct *task);
1563 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1565 struct task_struct *curr;
1569 /* For anything but wake ups, just return the task_cpu */
1570 if (!(flags & (WF_TTWU | WF_FORK)))
1576 curr = READ_ONCE(rq->curr); /* unlocked access */
1579 * If the current task on @p's runqueue is an RT task, then
1580 * try to see if we can wake this RT task up on another
1581 * runqueue. Otherwise simply start this RT task
1582 * on its current runqueue.
1584 * We want to avoid overloading runqueues. If the woken
1585 * task is a higher priority, then it will stay on this CPU
1586 * and the lower prio task should be moved to another CPU.
1587 * Even though this will probably make the lower prio task
1588 * lose its cache, we do not want to bounce a higher task
1589 * around just because it gave up its CPU, perhaps for a
1592 * For equal prio tasks, we just let the scheduler sort it out.
1594 * Otherwise, just let it ride on the affined RQ and the
1595 * post-schedule router will push the preempted task away
1597 * This test is optimistic, if we get it wrong the load-balancer
1598 * will have to sort it out.
1600 * We take into account the capacity of the CPU to ensure it fits the
1601 * requirement of the task - which is only important on heterogeneous
1602 * systems like big.LITTLE.
1605 unlikely(rt_task(curr)) &&
1606 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1608 if (test || !rt_task_fits_capacity(p, cpu)) {
1609 int target = find_lowest_rq(p);
1612 * Bail out if we were forcing a migration to find a better
1613 * fitting CPU but our search failed.
1615 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1619 * Don't bother moving it if the destination CPU is
1620 * not running a lower priority task.
1623 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1634 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1637 * Current can't be migrated, useless to reschedule,
1638 * let's hope p can move out.
1640 if (rq->curr->nr_cpus_allowed == 1 ||
1641 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1645 * p is migratable, so let's not schedule it and
1646 * see if it is pushed or pulled somewhere else.
1648 if (p->nr_cpus_allowed != 1 &&
1649 cpupri_find(&rq->rd->cpupri, p, NULL))
1653 * There appear to be other CPUs that can accept
1654 * the current task but none can run 'p', so lets reschedule
1655 * to try and push the current task away:
1657 requeue_task_rt(rq, p, 1);
1661 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1663 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1665 * This is OK, because current is on_cpu, which avoids it being
1666 * picked for load-balance and preemption/IRQs are still
1667 * disabled avoiding further scheduler activity on it and we've
1668 * not yet started the picking loop.
1670 rq_unpin_lock(rq, rf);
1672 rq_repin_lock(rq, rf);
1675 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1677 #endif /* CONFIG_SMP */
1680 * Preempt the current task with a newly woken task if needed:
1682 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1684 if (p->prio < rq->curr->prio) {
1693 * - the newly woken task is of equal priority to the current task
1694 * - the newly woken task is non-migratable while current is migratable
1695 * - current will be preempted on the next reschedule
1697 * we should check to see if current can readily move to a different
1698 * cpu. If so, we will reschedule to allow the push logic to try
1699 * to move current somewhere else, making room for our non-migratable
1702 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1703 check_preempt_equal_prio(rq, p);
1707 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1709 struct sched_rt_entity *rt_se = &p->rt;
1710 struct rt_rq *rt_rq = &rq->rt;
1712 p->se.exec_start = rq_clock_task(rq);
1713 if (on_rt_rq(&p->rt))
1714 update_stats_wait_end_rt(rt_rq, rt_se);
1716 /* The running task is never eligible for pushing */
1717 dequeue_pushable_task(rq, p);
1723 * If prev task was rt, put_prev_task() has already updated the
1724 * utilization. We only care of the case where we start to schedule a
1727 if (rq->curr->sched_class != &rt_sched_class)
1728 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1730 rt_queue_push_tasks(rq);
1733 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1734 struct rt_rq *rt_rq)
1736 struct rt_prio_array *array = &rt_rq->active;
1737 struct sched_rt_entity *next = NULL;
1738 struct list_head *queue;
1741 idx = sched_find_first_bit(array->bitmap);
1742 BUG_ON(idx >= MAX_RT_PRIO);
1744 queue = array->queue + idx;
1745 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1750 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1752 struct sched_rt_entity *rt_se;
1753 struct rt_rq *rt_rq = &rq->rt;
1756 rt_se = pick_next_rt_entity(rq, rt_rq);
1758 rt_rq = group_rt_rq(rt_se);
1761 return rt_task_of(rt_se);
1764 static struct task_struct *pick_task_rt(struct rq *rq)
1766 struct task_struct *p;
1768 if (!sched_rt_runnable(rq))
1771 p = _pick_next_task_rt(rq);
1776 static struct task_struct *pick_next_task_rt(struct rq *rq)
1778 struct task_struct *p = pick_task_rt(rq);
1781 set_next_task_rt(rq, p, true);
1786 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1788 struct sched_rt_entity *rt_se = &p->rt;
1789 struct rt_rq *rt_rq = &rq->rt;
1791 if (on_rt_rq(&p->rt))
1792 update_stats_wait_start_rt(rt_rq, rt_se);
1796 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1799 * The previous task needs to be made eligible for pushing
1800 * if it is still active
1802 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1803 enqueue_pushable_task(rq, p);
1808 /* Only try algorithms three times */
1809 #define RT_MAX_TRIES 3
1811 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1813 if (!task_running(rq, p) &&
1814 cpumask_test_cpu(cpu, &p->cpus_mask))
1821 * Return the highest pushable rq's task, which is suitable to be executed
1822 * on the CPU, NULL otherwise
1824 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1826 struct plist_head *head = &rq->rt.pushable_tasks;
1827 struct task_struct *p;
1829 if (!has_pushable_tasks(rq))
1832 plist_for_each_entry(p, head, pushable_tasks) {
1833 if (pick_rt_task(rq, p, cpu))
1840 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1842 static int find_lowest_rq(struct task_struct *task)
1844 struct sched_domain *sd;
1845 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1846 int this_cpu = smp_processor_id();
1847 int cpu = task_cpu(task);
1850 /* Make sure the mask is initialized first */
1851 if (unlikely(!lowest_mask))
1854 if (task->nr_cpus_allowed == 1)
1855 return -1; /* No other targets possible */
1858 * If we're on asym system ensure we consider the different capacities
1859 * of the CPUs when searching for the lowest_mask.
1861 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1863 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1865 rt_task_fits_capacity);
1868 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1873 return -1; /* No targets found */
1876 * At this point we have built a mask of CPUs representing the
1877 * lowest priority tasks in the system. Now we want to elect
1878 * the best one based on our affinity and topology.
1880 * We prioritize the last CPU that the task executed on since
1881 * it is most likely cache-hot in that location.
1883 if (cpumask_test_cpu(cpu, lowest_mask))
1887 * Otherwise, we consult the sched_domains span maps to figure
1888 * out which CPU is logically closest to our hot cache data.
1890 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1891 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1894 for_each_domain(cpu, sd) {
1895 if (sd->flags & SD_WAKE_AFFINE) {
1899 * "this_cpu" is cheaper to preempt than a
1902 if (this_cpu != -1 &&
1903 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1908 best_cpu = cpumask_any_and_distribute(lowest_mask,
1909 sched_domain_span(sd));
1910 if (best_cpu < nr_cpu_ids) {
1919 * And finally, if there were no matches within the domains
1920 * just give the caller *something* to work with from the compatible
1926 cpu = cpumask_any_distribute(lowest_mask);
1927 if (cpu < nr_cpu_ids)
1933 /* Will lock the rq it finds */
1934 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1936 struct rq *lowest_rq = NULL;
1940 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1941 cpu = find_lowest_rq(task);
1943 if ((cpu == -1) || (cpu == rq->cpu))
1946 lowest_rq = cpu_rq(cpu);
1948 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1950 * Target rq has tasks of equal or higher priority,
1951 * retrying does not release any lock and is unlikely
1952 * to yield a different result.
1958 /* if the prio of this runqueue changed, try again */
1959 if (double_lock_balance(rq, lowest_rq)) {
1961 * We had to unlock the run queue. In
1962 * the mean time, task could have
1963 * migrated already or had its affinity changed.
1964 * Also make sure that it wasn't scheduled on its rq.
1966 if (unlikely(task_rq(task) != rq ||
1967 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1968 task_running(rq, task) ||
1970 !task_on_rq_queued(task))) {
1972 double_unlock_balance(rq, lowest_rq);
1978 /* If this rq is still suitable use it. */
1979 if (lowest_rq->rt.highest_prio.curr > task->prio)
1983 double_unlock_balance(rq, lowest_rq);
1990 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1992 struct task_struct *p;
1994 if (!has_pushable_tasks(rq))
1997 p = plist_first_entry(&rq->rt.pushable_tasks,
1998 struct task_struct, pushable_tasks);
2000 BUG_ON(rq->cpu != task_cpu(p));
2001 BUG_ON(task_current(rq, p));
2002 BUG_ON(p->nr_cpus_allowed <= 1);
2004 BUG_ON(!task_on_rq_queued(p));
2005 BUG_ON(!rt_task(p));
2011 * If the current CPU has more than one RT task, see if the non
2012 * running task can migrate over to a CPU that is running a task
2013 * of lesser priority.
2015 static int push_rt_task(struct rq *rq, bool pull)
2017 struct task_struct *next_task;
2018 struct rq *lowest_rq;
2021 if (!rq->rt.overloaded)
2024 next_task = pick_next_pushable_task(rq);
2029 if (is_migration_disabled(next_task)) {
2030 struct task_struct *push_task = NULL;
2033 if (!pull || rq->push_busy)
2036 cpu = find_lowest_rq(rq->curr);
2037 if (cpu == -1 || cpu == rq->cpu)
2041 * Given we found a CPU with lower priority than @next_task,
2042 * therefore it should be running. However we cannot migrate it
2043 * to this other CPU, instead attempt to push the current
2044 * running task on this CPU away.
2046 push_task = get_push_task(rq);
2048 raw_spin_rq_unlock(rq);
2049 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2050 push_task, &rq->push_work);
2051 raw_spin_rq_lock(rq);
2057 if (WARN_ON(next_task == rq->curr))
2061 * It's possible that the next_task slipped in of
2062 * higher priority than current. If that's the case
2063 * just reschedule current.
2065 if (unlikely(next_task->prio < rq->curr->prio)) {
2070 /* We might release rq lock */
2071 get_task_struct(next_task);
2073 /* find_lock_lowest_rq locks the rq if found */
2074 lowest_rq = find_lock_lowest_rq(next_task, rq);
2076 struct task_struct *task;
2078 * find_lock_lowest_rq releases rq->lock
2079 * so it is possible that next_task has migrated.
2081 * We need to make sure that the task is still on the same
2082 * run-queue and is also still the next task eligible for
2085 task = pick_next_pushable_task(rq);
2086 if (task == next_task) {
2088 * The task hasn't migrated, and is still the next
2089 * eligible task, but we failed to find a run-queue
2090 * to push it to. Do not retry in this case, since
2091 * other CPUs will pull from us when ready.
2097 /* No more tasks, just exit */
2101 * Something has shifted, try again.
2103 put_task_struct(next_task);
2108 deactivate_task(rq, next_task, 0);
2109 set_task_cpu(next_task, lowest_rq->cpu);
2110 activate_task(lowest_rq, next_task, 0);
2111 resched_curr(lowest_rq);
2114 double_unlock_balance(rq, lowest_rq);
2116 put_task_struct(next_task);
2121 static void push_rt_tasks(struct rq *rq)
2123 /* push_rt_task will return true if it moved an RT */
2124 while (push_rt_task(rq, false))
2128 #ifdef HAVE_RT_PUSH_IPI
2131 * When a high priority task schedules out from a CPU and a lower priority
2132 * task is scheduled in, a check is made to see if there's any RT tasks
2133 * on other CPUs that are waiting to run because a higher priority RT task
2134 * is currently running on its CPU. In this case, the CPU with multiple RT
2135 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2136 * up that may be able to run one of its non-running queued RT tasks.
2138 * All CPUs with overloaded RT tasks need to be notified as there is currently
2139 * no way to know which of these CPUs have the highest priority task waiting
2140 * to run. Instead of trying to take a spinlock on each of these CPUs,
2141 * which has shown to cause large latency when done on machines with many
2142 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2143 * RT tasks waiting to run.
2145 * Just sending an IPI to each of the CPUs is also an issue, as on large
2146 * count CPU machines, this can cause an IPI storm on a CPU, especially
2147 * if its the only CPU with multiple RT tasks queued, and a large number
2148 * of CPUs scheduling a lower priority task at the same time.
2150 * Each root domain has its own irq work function that can iterate over
2151 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2152 * task must be checked if there's one or many CPUs that are lowering
2153 * their priority, there's a single irq work iterator that will try to
2154 * push off RT tasks that are waiting to run.
2156 * When a CPU schedules a lower priority task, it will kick off the
2157 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2158 * As it only takes the first CPU that schedules a lower priority task
2159 * to start the process, the rto_start variable is incremented and if
2160 * the atomic result is one, then that CPU will try to take the rto_lock.
2161 * This prevents high contention on the lock as the process handles all
2162 * CPUs scheduling lower priority tasks.
2164 * All CPUs that are scheduling a lower priority task will increment the
2165 * rt_loop_next variable. This will make sure that the irq work iterator
2166 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2167 * priority task, even if the iterator is in the middle of a scan. Incrementing
2168 * the rt_loop_next will cause the iterator to perform another scan.
2171 static int rto_next_cpu(struct root_domain *rd)
2177 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2178 * rt_next_cpu() will simply return the first CPU found in
2181 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2182 * will return the next CPU found in the rto_mask.
2184 * If there are no more CPUs left in the rto_mask, then a check is made
2185 * against rto_loop and rto_loop_next. rto_loop is only updated with
2186 * the rto_lock held, but any CPU may increment the rto_loop_next
2187 * without any locking.
2191 /* When rto_cpu is -1 this acts like cpumask_first() */
2192 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2196 if (cpu < nr_cpu_ids)
2202 * ACQUIRE ensures we see the @rto_mask changes
2203 * made prior to the @next value observed.
2205 * Matches WMB in rt_set_overload().
2207 next = atomic_read_acquire(&rd->rto_loop_next);
2209 if (rd->rto_loop == next)
2212 rd->rto_loop = next;
2218 static inline bool rto_start_trylock(atomic_t *v)
2220 return !atomic_cmpxchg_acquire(v, 0, 1);
2223 static inline void rto_start_unlock(atomic_t *v)
2225 atomic_set_release(v, 0);
2228 static void tell_cpu_to_push(struct rq *rq)
2232 /* Keep the loop going if the IPI is currently active */
2233 atomic_inc(&rq->rd->rto_loop_next);
2235 /* Only one CPU can initiate a loop at a time */
2236 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2239 raw_spin_lock(&rq->rd->rto_lock);
2242 * The rto_cpu is updated under the lock, if it has a valid CPU
2243 * then the IPI is still running and will continue due to the
2244 * update to loop_next, and nothing needs to be done here.
2245 * Otherwise it is finishing up and an ipi needs to be sent.
2247 if (rq->rd->rto_cpu < 0)
2248 cpu = rto_next_cpu(rq->rd);
2250 raw_spin_unlock(&rq->rd->rto_lock);
2252 rto_start_unlock(&rq->rd->rto_loop_start);
2255 /* Make sure the rd does not get freed while pushing */
2256 sched_get_rd(rq->rd);
2257 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2261 /* Called from hardirq context */
2262 void rto_push_irq_work_func(struct irq_work *work)
2264 struct root_domain *rd =
2265 container_of(work, struct root_domain, rto_push_work);
2272 * We do not need to grab the lock to check for has_pushable_tasks.
2273 * When it gets updated, a check is made if a push is possible.
2275 if (has_pushable_tasks(rq)) {
2276 raw_spin_rq_lock(rq);
2277 while (push_rt_task(rq, true))
2279 raw_spin_rq_unlock(rq);
2282 raw_spin_lock(&rd->rto_lock);
2284 /* Pass the IPI to the next rt overloaded queue */
2285 cpu = rto_next_cpu(rd);
2287 raw_spin_unlock(&rd->rto_lock);
2294 /* Try the next RT overloaded CPU */
2295 irq_work_queue_on(&rd->rto_push_work, cpu);
2297 #endif /* HAVE_RT_PUSH_IPI */
2299 static void pull_rt_task(struct rq *this_rq)
2301 int this_cpu = this_rq->cpu, cpu;
2302 bool resched = false;
2303 struct task_struct *p, *push_task;
2305 int rt_overload_count = rt_overloaded(this_rq);
2307 if (likely(!rt_overload_count))
2311 * Match the barrier from rt_set_overloaded; this guarantees that if we
2312 * see overloaded we must also see the rto_mask bit.
2316 /* If we are the only overloaded CPU do nothing */
2317 if (rt_overload_count == 1 &&
2318 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2321 #ifdef HAVE_RT_PUSH_IPI
2322 if (sched_feat(RT_PUSH_IPI)) {
2323 tell_cpu_to_push(this_rq);
2328 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2329 if (this_cpu == cpu)
2332 src_rq = cpu_rq(cpu);
2335 * Don't bother taking the src_rq->lock if the next highest
2336 * task is known to be lower-priority than our current task.
2337 * This may look racy, but if this value is about to go
2338 * logically higher, the src_rq will push this task away.
2339 * And if its going logically lower, we do not care
2341 if (src_rq->rt.highest_prio.next >=
2342 this_rq->rt.highest_prio.curr)
2346 * We can potentially drop this_rq's lock in
2347 * double_lock_balance, and another CPU could
2351 double_lock_balance(this_rq, src_rq);
2354 * We can pull only a task, which is pushable
2355 * on its rq, and no others.
2357 p = pick_highest_pushable_task(src_rq, this_cpu);
2360 * Do we have an RT task that preempts
2361 * the to-be-scheduled task?
2363 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2364 WARN_ON(p == src_rq->curr);
2365 WARN_ON(!task_on_rq_queued(p));
2368 * There's a chance that p is higher in priority
2369 * than what's currently running on its CPU.
2370 * This is just that p is waking up and hasn't
2371 * had a chance to schedule. We only pull
2372 * p if it is lower in priority than the
2373 * current task on the run queue
2375 if (p->prio < src_rq->curr->prio)
2378 if (is_migration_disabled(p)) {
2379 push_task = get_push_task(src_rq);
2381 deactivate_task(src_rq, p, 0);
2382 set_task_cpu(p, this_cpu);
2383 activate_task(this_rq, p, 0);
2387 * We continue with the search, just in
2388 * case there's an even higher prio task
2389 * in another runqueue. (low likelihood
2394 double_unlock_balance(this_rq, src_rq);
2397 raw_spin_rq_unlock(this_rq);
2398 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2399 push_task, &src_rq->push_work);
2400 raw_spin_rq_lock(this_rq);
2405 resched_curr(this_rq);
2409 * If we are not running and we are not going to reschedule soon, we should
2410 * try to push tasks away now
2412 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2414 bool need_to_push = !task_running(rq, p) &&
2415 !test_tsk_need_resched(rq->curr) &&
2416 p->nr_cpus_allowed > 1 &&
2417 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2418 (rq->curr->nr_cpus_allowed < 2 ||
2419 rq->curr->prio <= p->prio);
2425 /* Assumes rq->lock is held */
2426 static void rq_online_rt(struct rq *rq)
2428 if (rq->rt.overloaded)
2429 rt_set_overload(rq);
2431 __enable_runtime(rq);
2433 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2436 /* Assumes rq->lock is held */
2437 static void rq_offline_rt(struct rq *rq)
2439 if (rq->rt.overloaded)
2440 rt_clear_overload(rq);
2442 __disable_runtime(rq);
2444 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448 * When switch from the rt queue, we bring ourselves to a position
2449 * that we might want to pull RT tasks from other runqueues.
2451 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2454 * If there are other RT tasks then we will reschedule
2455 * and the scheduling of the other RT tasks will handle
2456 * the balancing. But if we are the last RT task
2457 * we may need to handle the pulling of RT tasks
2460 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2463 rt_queue_pull_task(rq);
2466 void __init init_sched_rt_class(void)
2470 for_each_possible_cpu(i) {
2471 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2472 GFP_KERNEL, cpu_to_node(i));
2475 #endif /* CONFIG_SMP */
2478 * When switching a task to RT, we may overload the runqueue
2479 * with RT tasks. In this case we try to push them off to
2482 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2485 * If we are running, update the avg_rt tracking, as the running time
2486 * will now on be accounted into the latter.
2488 if (task_current(rq, p)) {
2489 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2494 * If we are not running we may need to preempt the current
2495 * running task. If that current running task is also an RT task
2496 * then see if we can move to another run queue.
2498 if (task_on_rq_queued(p)) {
2500 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2501 rt_queue_push_tasks(rq);
2502 #endif /* CONFIG_SMP */
2503 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2509 * Priority of the task has changed. This may cause
2510 * us to initiate a push or pull.
2513 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2515 if (!task_on_rq_queued(p))
2518 if (task_current(rq, p)) {
2521 * If our priority decreases while running, we
2522 * may need to pull tasks to this runqueue.
2524 if (oldprio < p->prio)
2525 rt_queue_pull_task(rq);
2528 * If there's a higher priority task waiting to run
2531 if (p->prio > rq->rt.highest_prio.curr)
2534 /* For UP simply resched on drop of prio */
2535 if (oldprio < p->prio)
2537 #endif /* CONFIG_SMP */
2540 * This task is not running, but if it is
2541 * greater than the current running task
2544 if (p->prio < rq->curr->prio)
2549 #ifdef CONFIG_POSIX_TIMERS
2550 static void watchdog(struct rq *rq, struct task_struct *p)
2552 unsigned long soft, hard;
2554 /* max may change after cur was read, this will be fixed next tick */
2555 soft = task_rlimit(p, RLIMIT_RTTIME);
2556 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2558 if (soft != RLIM_INFINITY) {
2561 if (p->rt.watchdog_stamp != jiffies) {
2563 p->rt.watchdog_stamp = jiffies;
2566 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2567 if (p->rt.timeout > next) {
2568 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2569 p->se.sum_exec_runtime);
2574 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578 * scheduler tick hitting a task of our scheduling class.
2580 * NOTE: This function can be called remotely by the tick offload that
2581 * goes along full dynticks. Therefore no local assumption can be made
2582 * and everything must be accessed through the @rq and @curr passed in
2585 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2587 struct sched_rt_entity *rt_se = &p->rt;
2590 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2595 * RR tasks need a special form of timeslice management.
2596 * FIFO tasks have no timeslices.
2598 if (p->policy != SCHED_RR)
2601 if (--p->rt.time_slice)
2604 p->rt.time_slice = sched_rr_timeslice;
2607 * Requeue to the end of queue if we (and all of our ancestors) are not
2608 * the only element on the queue
2610 for_each_sched_rt_entity(rt_se) {
2611 if (rt_se->run_list.prev != rt_se->run_list.next) {
2612 requeue_task_rt(rq, p, 0);
2619 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2622 * Time slice is 0 for SCHED_FIFO tasks
2624 if (task->policy == SCHED_RR)
2625 return sched_rr_timeslice;
2630 DEFINE_SCHED_CLASS(rt) = {
2632 .enqueue_task = enqueue_task_rt,
2633 .dequeue_task = dequeue_task_rt,
2634 .yield_task = yield_task_rt,
2636 .check_preempt_curr = check_preempt_curr_rt,
2638 .pick_next_task = pick_next_task_rt,
2639 .put_prev_task = put_prev_task_rt,
2640 .set_next_task = set_next_task_rt,
2643 .balance = balance_rt,
2644 .pick_task = pick_task_rt,
2645 .select_task_rq = select_task_rq_rt,
2646 .set_cpus_allowed = set_cpus_allowed_common,
2647 .rq_online = rq_online_rt,
2648 .rq_offline = rq_offline_rt,
2649 .task_woken = task_woken_rt,
2650 .switched_from = switched_from_rt,
2651 .find_lock_rq = find_lock_lowest_rq,
2654 .task_tick = task_tick_rt,
2656 .get_rr_interval = get_rr_interval_rt,
2658 .prio_changed = prio_changed_rt,
2659 .switched_to = switched_to_rt,
2661 .update_curr = update_curr_rt,
2663 #ifdef CONFIG_UCLAMP_TASK
2664 .uclamp_enabled = 1,
2668 #ifdef CONFIG_RT_GROUP_SCHED
2670 * Ensure that the real time constraints are schedulable.
2672 static DEFINE_MUTEX(rt_constraints_mutex);
2674 static inline int tg_has_rt_tasks(struct task_group *tg)
2676 struct task_struct *task;
2677 struct css_task_iter it;
2681 * Autogroups do not have RT tasks; see autogroup_create().
2683 if (task_group_is_autogroup(tg))
2686 css_task_iter_start(&tg->css, 0, &it);
2687 while (!ret && (task = css_task_iter_next(&it)))
2688 ret |= rt_task(task);
2689 css_task_iter_end(&it);
2694 struct rt_schedulable_data {
2695 struct task_group *tg;
2700 static int tg_rt_schedulable(struct task_group *tg, void *data)
2702 struct rt_schedulable_data *d = data;
2703 struct task_group *child;
2704 unsigned long total, sum = 0;
2705 u64 period, runtime;
2707 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2708 runtime = tg->rt_bandwidth.rt_runtime;
2711 period = d->rt_period;
2712 runtime = d->rt_runtime;
2716 * Cannot have more runtime than the period.
2718 if (runtime > period && runtime != RUNTIME_INF)
2722 * Ensure we don't starve existing RT tasks if runtime turns zero.
2724 if (rt_bandwidth_enabled() && !runtime &&
2725 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2728 total = to_ratio(period, runtime);
2731 * Nobody can have more than the global setting allows.
2733 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2737 * The sum of our children's runtime should not exceed our own.
2739 list_for_each_entry_rcu(child, &tg->children, siblings) {
2740 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2741 runtime = child->rt_bandwidth.rt_runtime;
2743 if (child == d->tg) {
2744 period = d->rt_period;
2745 runtime = d->rt_runtime;
2748 sum += to_ratio(period, runtime);
2757 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2761 struct rt_schedulable_data data = {
2763 .rt_period = period,
2764 .rt_runtime = runtime,
2768 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2774 static int tg_set_rt_bandwidth(struct task_group *tg,
2775 u64 rt_period, u64 rt_runtime)
2780 * Disallowing the root group RT runtime is BAD, it would disallow the
2781 * kernel creating (and or operating) RT threads.
2783 if (tg == &root_task_group && rt_runtime == 0)
2786 /* No period doesn't make any sense. */
2791 * Bound quota to defend quota against overflow during bandwidth shift.
2793 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2796 mutex_lock(&rt_constraints_mutex);
2797 err = __rt_schedulable(tg, rt_period, rt_runtime);
2801 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2802 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2803 tg->rt_bandwidth.rt_runtime = rt_runtime;
2805 for_each_possible_cpu(i) {
2806 struct rt_rq *rt_rq = tg->rt_rq[i];
2808 raw_spin_lock(&rt_rq->rt_runtime_lock);
2809 rt_rq->rt_runtime = rt_runtime;
2810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2812 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2814 mutex_unlock(&rt_constraints_mutex);
2819 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2821 u64 rt_runtime, rt_period;
2823 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2824 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2825 if (rt_runtime_us < 0)
2826 rt_runtime = RUNTIME_INF;
2827 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2830 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2833 long sched_group_rt_runtime(struct task_group *tg)
2837 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2840 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2841 do_div(rt_runtime_us, NSEC_PER_USEC);
2842 return rt_runtime_us;
2845 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2847 u64 rt_runtime, rt_period;
2849 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2852 rt_period = rt_period_us * NSEC_PER_USEC;
2853 rt_runtime = tg->rt_bandwidth.rt_runtime;
2855 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2858 long sched_group_rt_period(struct task_group *tg)
2862 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2863 do_div(rt_period_us, NSEC_PER_USEC);
2864 return rt_period_us;
2867 static int sched_rt_global_constraints(void)
2871 mutex_lock(&rt_constraints_mutex);
2872 ret = __rt_schedulable(NULL, 0, 0);
2873 mutex_unlock(&rt_constraints_mutex);
2878 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2880 /* Don't accept realtime tasks when there is no way for them to run */
2881 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2887 #else /* !CONFIG_RT_GROUP_SCHED */
2888 static int sched_rt_global_constraints(void)
2890 unsigned long flags;
2893 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2894 for_each_possible_cpu(i) {
2895 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2897 raw_spin_lock(&rt_rq->rt_runtime_lock);
2898 rt_rq->rt_runtime = global_rt_runtime();
2899 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2901 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2905 #endif /* CONFIG_RT_GROUP_SCHED */
2907 static int sched_rt_global_validate(void)
2909 if (sysctl_sched_rt_period <= 0)
2912 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2913 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2914 ((u64)sysctl_sched_rt_runtime *
2915 NSEC_PER_USEC > max_rt_runtime)))
2921 static void sched_rt_do_global(void)
2923 unsigned long flags;
2925 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2926 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2927 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2928 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2931 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2932 size_t *lenp, loff_t *ppos)
2934 int old_period, old_runtime;
2935 static DEFINE_MUTEX(mutex);
2939 old_period = sysctl_sched_rt_period;
2940 old_runtime = sysctl_sched_rt_runtime;
2942 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2944 if (!ret && write) {
2945 ret = sched_rt_global_validate();
2949 ret = sched_dl_global_validate();
2953 ret = sched_rt_global_constraints();
2957 sched_rt_do_global();
2958 sched_dl_do_global();
2962 sysctl_sched_rt_period = old_period;
2963 sysctl_sched_rt_runtime = old_runtime;
2965 mutex_unlock(&mutex);
2970 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2971 size_t *lenp, loff_t *ppos)
2974 static DEFINE_MUTEX(mutex);
2977 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2979 * Make sure that internally we keep jiffies.
2980 * Also, writing zero resets the timeslice to default:
2982 if (!ret && write) {
2983 sched_rr_timeslice =
2984 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2985 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2987 mutex_unlock(&mutex);
2992 #ifdef CONFIG_SCHED_DEBUG
2993 void print_rt_stats(struct seq_file *m, int cpu)
2996 struct rt_rq *rt_rq;
2999 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3000 print_rt_rq(m, cpu, rt_rq);
3003 #endif /* CONFIG_SCHED_DEBUG */