1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
264 page_dup_rmap(new, true);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 page_add_anon_rmap(new, vma, pvmw.address, false);
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
300 rmap_walk_locked(new, &rwc);
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
319 if (!is_swap_pte(pte))
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
326 page = migration_entry_to_page(entry);
329 * Once page cache replacement of page migration started, page_count
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
333 if (!get_page_unless_zero(page))
335 pte_unmap_unlock(ptep, ptl);
336 put_and_wait_on_page_locked(page);
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
370 put_and_wait_on_page_locked(page);
377 static int expected_page_refs(struct page *page)
379 int expected_count = 1;
382 * Device public or private pages have an extra refcount as they are
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
390 return expected_count;
394 * Replace the page in the mapping.
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401 int migrate_page_move_mapping(struct address_space *mapping,
402 struct page *newpage, struct page *page, enum migrate_mode mode,
405 XA_STATE(xas, &mapping->i_pages, page_index(page));
406 struct zone *oldzone, *newzone;
408 int expected_count = expected_page_refs(page) + extra_count;
411 /* Anonymous page without mapping */
412 if (page_count(page) != expected_count)
415 /* No turning back from here */
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
419 __SetPageSwapBacked(newpage);
421 return MIGRATEPAGE_SUCCESS;
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
433 if (!page_ref_freeze(page, expected_count)) {
434 xas_unlock_irq(&xas);
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
462 xas_store(&xas, newpage);
463 if (PageTransHuge(page)) {
466 for (i = 1; i < HPAGE_PMD_NR; i++) {
468 xas_store(&xas, newpage + i);
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
475 * We know this isn't the last reference.
477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
480 /* Leave irq disabled to prevent preemption while updating stats */
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
488 * Note that anonymous pages are accounted for
489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 * are mapped to swap space.
492 if (newzone != oldzone) {
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499 if (dirty && mapping_cap_account_dirty(mapping)) {
500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
508 return MIGRATEPAGE_SUCCESS;
510 EXPORT_SYMBOL(migrate_page_move_mapping);
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
519 XA_STATE(xas, &mapping->i_pages, page_index(page));
523 expected_count = 2 + page_has_private(page);
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
529 if (!page_ref_freeze(page, expected_count)) {
530 xas_unlock_irq(&xas);
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
539 xas_store(&xas, newpage);
541 page_ref_unfreeze(page, expected_count - 1);
543 xas_unlock_irq(&xas);
545 return MIGRATEPAGE_SUCCESS;
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 struct page *dst_base = dst;
558 struct page *src_base = src;
560 for (i = 0; i < nr_pages; ) {
562 copy_highpage(dst, src);
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
570 static void copy_huge_page(struct page *dst, struct page *src)
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
590 for (i = 0; i < nr_pages; i++) {
592 copy_highpage(dst + i, src + i);
597 * Copy the page to its new location
599 void migrate_page_states(struct page *newpage, struct page *page)
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
609 if (TestClearPageActive(page)) {
610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 SetPageActive(newpage);
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
623 SetPageDirty(newpage);
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
637 ksm_migrate_page(newpage, page);
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
648 * If any waiters have accumulated on the new page then
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
654 copy_page_owner(page, newpage);
656 mem_cgroup_migrate(page, newpage);
658 EXPORT_SYMBOL(migrate_page_states);
660 void migrate_page_copy(struct page *newpage, struct page *page)
662 if (PageHuge(page) || PageTransHuge(page))
663 copy_huge_page(newpage, page);
665 copy_highpage(newpage, page);
667 migrate_page_states(newpage, page);
669 EXPORT_SYMBOL(migrate_page_copy);
671 /************************************************************
672 * Migration functions
673 ***********************************************************/
676 * Common logic to directly migrate a single LRU page suitable for
677 * pages that do not use PagePrivate/PagePrivate2.
679 * Pages are locked upon entry and exit.
681 int migrate_page(struct address_space *mapping,
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
691 if (rc != MIGRATEPAGE_SUCCESS)
694 if (mode != MIGRATE_SYNC_NO_COPY)
695 migrate_page_copy(newpage, page);
697 migrate_page_states(newpage, page);
698 return MIGRATEPAGE_SUCCESS;
700 EXPORT_SYMBOL(migrate_page);
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 enum migrate_mode mode)
707 struct buffer_head *bh = head;
709 /* Simple case, sync compaction */
710 if (mode != MIGRATE_ASYNC) {
714 bh = bh->b_this_page;
716 } while (bh != head);
721 /* async case, we cannot block on lock_buffer so use trylock_buffer */
724 if (!trylock_buffer(bh)) {
726 * We failed to lock the buffer and cannot stall in
727 * async migration. Release the taken locks
729 struct buffer_head *failed_bh = bh;
732 while (bh != failed_bh) {
735 bh = bh->b_this_page;
740 bh = bh->b_this_page;
741 } while (bh != head);
745 static int __buffer_migrate_page(struct address_space *mapping,
746 struct page *newpage, struct page *page, enum migrate_mode mode,
749 struct buffer_head *bh, *head;
753 if (!page_has_buffers(page))
754 return migrate_page(mapping, newpage, page, mode);
756 /* Check whether page does not have extra refs before we do more work */
757 expected_count = expected_page_refs(page);
758 if (page_count(page) != expected_count)
761 head = page_buffers(page);
762 if (!buffer_migrate_lock_buffers(head, mode))
767 bool invalidated = false;
771 spin_lock(&mapping->private_lock);
774 if (atomic_read(&bh->b_count)) {
778 bh = bh->b_this_page;
779 } while (bh != head);
780 spin_unlock(&mapping->private_lock);
786 invalidate_bh_lrus();
788 goto recheck_buffers;
792 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
793 if (rc != MIGRATEPAGE_SUCCESS)
796 ClearPagePrivate(page);
797 set_page_private(newpage, page_private(page));
798 set_page_private(page, 0);
804 set_bh_page(bh, newpage, bh_offset(bh));
805 bh = bh->b_this_page;
807 } while (bh != head);
809 SetPagePrivate(newpage);
811 if (mode != MIGRATE_SYNC_NO_COPY)
812 migrate_page_copy(newpage, page);
814 migrate_page_states(newpage, page);
816 rc = MIGRATEPAGE_SUCCESS;
822 bh = bh->b_this_page;
824 } while (bh != head);
830 * Migration function for pages with buffers. This function can only be used
831 * if the underlying filesystem guarantees that no other references to "page"
832 * exist. For example attached buffer heads are accessed only under page lock.
834 int buffer_migrate_page(struct address_space *mapping,
835 struct page *newpage, struct page *page, enum migrate_mode mode)
837 return __buffer_migrate_page(mapping, newpage, page, mode, false);
839 EXPORT_SYMBOL(buffer_migrate_page);
842 * Same as above except that this variant is more careful and checks that there
843 * are also no buffer head references. This function is the right one for
844 * mappings where buffer heads are directly looked up and referenced (such as
845 * block device mappings).
847 int buffer_migrate_page_norefs(struct address_space *mapping,
848 struct page *newpage, struct page *page, enum migrate_mode mode)
850 return __buffer_migrate_page(mapping, newpage, page, mode, true);
855 * Writeback a page to clean the dirty state
857 static int writeout(struct address_space *mapping, struct page *page)
859 struct writeback_control wbc = {
860 .sync_mode = WB_SYNC_NONE,
863 .range_end = LLONG_MAX,
868 if (!mapping->a_ops->writepage)
869 /* No write method for the address space */
872 if (!clear_page_dirty_for_io(page))
873 /* Someone else already triggered a write */
877 * A dirty page may imply that the underlying filesystem has
878 * the page on some queue. So the page must be clean for
879 * migration. Writeout may mean we loose the lock and the
880 * page state is no longer what we checked for earlier.
881 * At this point we know that the migration attempt cannot
884 remove_migration_ptes(page, page, false);
886 rc = mapping->a_ops->writepage(page, &wbc);
888 if (rc != AOP_WRITEPAGE_ACTIVATE)
889 /* unlocked. Relock */
892 return (rc < 0) ? -EIO : -EAGAIN;
896 * Default handling if a filesystem does not provide a migration function.
898 static int fallback_migrate_page(struct address_space *mapping,
899 struct page *newpage, struct page *page, enum migrate_mode mode)
901 if (PageDirty(page)) {
902 /* Only writeback pages in full synchronous migration */
905 case MIGRATE_SYNC_NO_COPY:
910 return writeout(mapping, page);
914 * Buffers may be managed in a filesystem specific way.
915 * We must have no buffers or drop them.
917 if (page_has_private(page) &&
918 !try_to_release_page(page, GFP_KERNEL))
921 return migrate_page(mapping, newpage, page, mode);
925 * Move a page to a newly allocated page
926 * The page is locked and all ptes have been successfully removed.
928 * The new page will have replaced the old page if this function
933 * MIGRATEPAGE_SUCCESS - success
935 static int move_to_new_page(struct page *newpage, struct page *page,
936 enum migrate_mode mode)
938 struct address_space *mapping;
940 bool is_lru = !__PageMovable(page);
942 VM_BUG_ON_PAGE(!PageLocked(page), page);
943 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
945 mapping = page_mapping(page);
947 if (likely(is_lru)) {
949 rc = migrate_page(mapping, newpage, page, mode);
950 else if (mapping->a_ops->migratepage)
952 * Most pages have a mapping and most filesystems
953 * provide a migratepage callback. Anonymous pages
954 * are part of swap space which also has its own
955 * migratepage callback. This is the most common path
956 * for page migration.
958 rc = mapping->a_ops->migratepage(mapping, newpage,
961 rc = fallback_migrate_page(mapping, newpage,
965 * In case of non-lru page, it could be released after
966 * isolation step. In that case, we shouldn't try migration.
968 VM_BUG_ON_PAGE(!PageIsolated(page), page);
969 if (!PageMovable(page)) {
970 rc = MIGRATEPAGE_SUCCESS;
971 __ClearPageIsolated(page);
975 rc = mapping->a_ops->migratepage(mapping, newpage,
977 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 !PageIsolated(page));
982 * When successful, old pagecache page->mapping must be cleared before
983 * page is freed; but stats require that PageAnon be left as PageAnon.
985 if (rc == MIGRATEPAGE_SUCCESS) {
986 if (__PageMovable(page)) {
987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
990 * We clear PG_movable under page_lock so any compactor
991 * cannot try to migrate this page.
993 __ClearPageIsolated(page);
997 * Anonymous and movable page->mapping will be cleard by
998 * free_pages_prepare so don't reset it here for keeping
999 * the type to work PageAnon, for example.
1001 if (!PageMappingFlags(page))
1002 page->mapping = NULL;
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009 int force, enum migrate_mode mode)
1012 int page_was_mapped = 0;
1013 struct anon_vma *anon_vma = NULL;
1014 bool is_lru = !__PageMovable(page);
1016 if (!trylock_page(page)) {
1017 if (!force || mode == MIGRATE_ASYNC)
1021 * It's not safe for direct compaction to call lock_page.
1022 * For example, during page readahead pages are added locked
1023 * to the LRU. Later, when the IO completes the pages are
1024 * marked uptodate and unlocked. However, the queueing
1025 * could be merging multiple pages for one bio (e.g.
1026 * mpage_readpages). If an allocation happens for the
1027 * second or third page, the process can end up locking
1028 * the same page twice and deadlocking. Rather than
1029 * trying to be clever about what pages can be locked,
1030 * avoid the use of lock_page for direct compaction
1033 if (current->flags & PF_MEMALLOC)
1039 if (PageWriteback(page)) {
1041 * Only in the case of a full synchronous migration is it
1042 * necessary to wait for PageWriteback. In the async case,
1043 * the retry loop is too short and in the sync-light case,
1044 * the overhead of stalling is too much
1048 case MIGRATE_SYNC_NO_COPY:
1056 wait_on_page_writeback(page);
1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 * we cannot notice that anon_vma is freed while we migrates a page.
1062 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 * of migration. File cache pages are no problem because of page_lock()
1064 * File Caches may use write_page() or lock_page() in migration, then,
1065 * just care Anon page here.
1067 * Only page_get_anon_vma() understands the subtleties of
1068 * getting a hold on an anon_vma from outside one of its mms.
1069 * But if we cannot get anon_vma, then we won't need it anyway,
1070 * because that implies that the anon page is no longer mapped
1071 * (and cannot be remapped so long as we hold the page lock).
1073 if (PageAnon(page) && !PageKsm(page))
1074 anon_vma = page_get_anon_vma(page);
1077 * Block others from accessing the new page when we get around to
1078 * establishing additional references. We are usually the only one
1079 * holding a reference to newpage at this point. We used to have a BUG
1080 * here if trylock_page(newpage) fails, but would like to allow for
1081 * cases where there might be a race with the previous use of newpage.
1082 * This is much like races on refcount of oldpage: just don't BUG().
1084 if (unlikely(!trylock_page(newpage)))
1087 if (unlikely(!is_lru)) {
1088 rc = move_to_new_page(newpage, page, mode);
1089 goto out_unlock_both;
1093 * Corner case handling:
1094 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 * and treated as swapcache but it has no rmap yet.
1096 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 * trigger a BUG. So handle it here.
1098 * 2. An orphaned page (see truncate_complete_page) might have
1099 * fs-private metadata. The page can be picked up due to memory
1100 * offlining. Everywhere else except page reclaim, the page is
1101 * invisible to the vm, so the page can not be migrated. So try to
1102 * free the metadata, so the page can be freed.
1104 if (!page->mapping) {
1105 VM_BUG_ON_PAGE(PageAnon(page), page);
1106 if (page_has_private(page)) {
1107 try_to_free_buffers(page);
1108 goto out_unlock_both;
1110 } else if (page_mapped(page)) {
1111 /* Establish migration ptes */
1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116 page_was_mapped = 1;
1119 if (!page_mapped(page))
1120 rc = move_to_new_page(newpage, page, mode);
1122 if (page_was_mapped)
1123 remove_migration_ptes(page,
1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1127 unlock_page(newpage);
1129 /* Drop an anon_vma reference if we took one */
1131 put_anon_vma(anon_vma);
1135 * If migration is successful, decrease refcount of the newpage
1136 * which will not free the page because new page owner increased
1137 * refcounter. As well, if it is LRU page, add the page to LRU
1140 if (rc == MIGRATEPAGE_SUCCESS) {
1141 if (unlikely(__PageMovable(newpage)))
1144 putback_lru_page(newpage);
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1154 #if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1158 #define ICE_noinline
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage;
1174 if (!thp_migration_supported() && PageTransHuge(page))
1177 newpage = get_new_page(page, private);
1181 if (page_count(page) == 1) {
1182 /* page was freed from under us. So we are done. */
1183 ClearPageActive(page);
1184 ClearPageUnevictable(page);
1185 if (unlikely(__PageMovable(page))) {
1187 if (!PageMovable(page))
1188 __ClearPageIsolated(page);
1192 put_new_page(newpage, private);
1198 rc = __unmap_and_move(page, newpage, force, mode);
1199 if (rc == MIGRATEPAGE_SUCCESS)
1200 set_page_owner_migrate_reason(newpage, reason);
1203 if (rc != -EAGAIN) {
1205 * A page that has been migrated has all references
1206 * removed and will be freed. A page that has not been
1207 * migrated will have kepts its references and be
1210 list_del(&page->lru);
1213 * Compaction can migrate also non-LRU pages which are
1214 * not accounted to NR_ISOLATED_*. They can be recognized
1217 if (likely(!__PageMovable(page)))
1218 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 page_is_file_cache(page), -hpage_nr_pages(page));
1223 * If migration is successful, releases reference grabbed during
1224 * isolation. Otherwise, restore the page to right list unless
1227 if (rc == MIGRATEPAGE_SUCCESS) {
1229 if (reason == MR_MEMORY_FAILURE) {
1231 * Set PG_HWPoison on just freed page
1232 * intentionally. Although it's rather weird,
1233 * it's how HWPoison flag works at the moment.
1235 if (set_hwpoison_free_buddy_page(page))
1236 num_poisoned_pages_inc();
1239 if (rc != -EAGAIN) {
1240 if (likely(!__PageMovable(page))) {
1241 putback_lru_page(page);
1246 if (PageMovable(page))
1247 putback_movable_page(page);
1249 __ClearPageIsolated(page);
1255 put_new_page(newpage, private);
1264 * Counterpart of unmap_and_move_page() for hugepage migration.
1266 * This function doesn't wait the completion of hugepage I/O
1267 * because there is no race between I/O and migration for hugepage.
1268 * Note that currently hugepage I/O occurs only in direct I/O
1269 * where no lock is held and PG_writeback is irrelevant,
1270 * and writeback status of all subpages are counted in the reference
1271 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272 * under direct I/O, the reference of the head page is 512 and a bit more.)
1273 * This means that when we try to migrate hugepage whose subpages are
1274 * doing direct I/O, some references remain after try_to_unmap() and
1275 * hugepage migration fails without data corruption.
1277 * There is also no race when direct I/O is issued on the page under migration,
1278 * because then pte is replaced with migration swap entry and direct I/O code
1279 * will wait in the page fault for migration to complete.
1281 static int unmap_and_move_huge_page(new_page_t get_new_page,
1282 free_page_t put_new_page, unsigned long private,
1283 struct page *hpage, int force,
1284 enum migrate_mode mode, int reason)
1287 int page_was_mapped = 0;
1288 struct page *new_hpage;
1289 struct anon_vma *anon_vma = NULL;
1292 * Movability of hugepages depends on architectures and hugepage size.
1293 * This check is necessary because some callers of hugepage migration
1294 * like soft offline and memory hotremove don't walk through page
1295 * tables or check whether the hugepage is pmd-based or not before
1296 * kicking migration.
1298 if (!hugepage_migration_supported(page_hstate(hpage))) {
1299 putback_active_hugepage(hpage);
1303 new_hpage = get_new_page(hpage, private);
1307 if (!trylock_page(hpage)) {
1312 case MIGRATE_SYNC_NO_COPY:
1320 if (PageAnon(hpage))
1321 anon_vma = page_get_anon_vma(hpage);
1323 if (unlikely(!trylock_page(new_hpage)))
1326 if (page_mapped(hpage)) {
1327 struct address_space *mapping = page_mapping(hpage);
1330 * try_to_unmap could potentially call huge_pmd_unshare.
1331 * Because of this, take semaphore in write mode here and
1332 * set TTU_RMAP_LOCKED to let lower levels know we have
1335 i_mmap_lock_write(mapping);
1337 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1339 i_mmap_unlock_write(mapping);
1340 page_was_mapped = 1;
1343 if (!page_mapped(hpage))
1344 rc = move_to_new_page(new_hpage, hpage, mode);
1346 if (page_was_mapped)
1347 remove_migration_ptes(hpage,
1348 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1350 unlock_page(new_hpage);
1354 put_anon_vma(anon_vma);
1356 if (rc == MIGRATEPAGE_SUCCESS) {
1357 move_hugetlb_state(hpage, new_hpage, reason);
1358 put_new_page = NULL;
1364 putback_active_hugepage(hpage);
1367 * If migration was not successful and there's a freeing callback, use
1368 * it. Otherwise, put_page() will drop the reference grabbed during
1372 put_new_page(new_hpage, private);
1374 putback_active_hugepage(new_hpage);
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
1395 * The caller should call putback_movable_pages() to return pages to the LRU
1396 * or free list only if ret != 0.
1398 * Returns the number of pages that were not migrated, or an error code.
1400 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1401 free_page_t put_new_page, unsigned long private,
1402 enum migrate_mode mode, int reason)
1406 int nr_succeeded = 0;
1410 int swapwrite = current->flags & PF_SWAPWRITE;
1414 current->flags |= PF_SWAPWRITE;
1416 for(pass = 0; pass < 10 && retry; pass++) {
1419 list_for_each_entry_safe(page, page2, from, lru) {
1424 rc = unmap_and_move_huge_page(get_new_page,
1425 put_new_page, private, page,
1426 pass > 2, mode, reason);
1428 rc = unmap_and_move(get_new_page, put_new_page,
1429 private, page, pass > 2, mode,
1435 * THP migration might be unsupported or the
1436 * allocation could've failed so we should
1437 * retry on the same page with the THP split
1440 * Head page is retried immediately and tail
1441 * pages are added to the tail of the list so
1442 * we encounter them after the rest of the list
1445 if (PageTransHuge(page) && !PageHuge(page)) {
1447 rc = split_huge_page_to_list(page, from);
1450 list_safe_reset_next(page, page2, lru);
1459 case MIGRATEPAGE_SUCCESS:
1464 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1465 * unlike -EAGAIN case, the failed page is
1466 * removed from migration page list and not
1467 * retried in the next outer loop.
1478 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1480 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1481 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1484 current->flags &= ~PF_SWAPWRITE;
1491 static int store_status(int __user *status, int start, int value, int nr)
1494 if (put_user(value, status + start))
1502 static int do_move_pages_to_node(struct mm_struct *mm,
1503 struct list_head *pagelist, int node)
1507 if (list_empty(pagelist))
1510 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1511 MIGRATE_SYNC, MR_SYSCALL);
1513 putback_movable_pages(pagelist);
1518 * Resolves the given address to a struct page, isolates it from the LRU and
1519 * puts it to the given pagelist.
1520 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1521 * queued or the page doesn't need to be migrated because it is already on
1524 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1525 int node, struct list_head *pagelist, bool migrate_all)
1527 struct vm_area_struct *vma;
1529 unsigned int follflags;
1532 down_read(&mm->mmap_sem);
1534 vma = find_vma(mm, addr);
1535 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1538 /* FOLL_DUMP to ignore special (like zero) pages */
1539 follflags = FOLL_GET | FOLL_DUMP;
1540 page = follow_page(vma, addr, follflags);
1542 err = PTR_ERR(page);
1551 if (page_to_nid(page) == node)
1555 if (page_mapcount(page) > 1 && !migrate_all)
1558 if (PageHuge(page)) {
1559 if (PageHead(page)) {
1560 isolate_huge_page(page, pagelist);
1566 head = compound_head(page);
1567 err = isolate_lru_page(head);
1572 list_add_tail(&head->lru, pagelist);
1573 mod_node_page_state(page_pgdat(head),
1574 NR_ISOLATED_ANON + page_is_file_cache(head),
1575 hpage_nr_pages(head));
1579 * Either remove the duplicate refcount from
1580 * isolate_lru_page() or drop the page ref if it was
1585 up_read(&mm->mmap_sem);
1590 * Migrate an array of page address onto an array of nodes and fill
1591 * the corresponding array of status.
1593 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1594 unsigned long nr_pages,
1595 const void __user * __user *pages,
1596 const int __user *nodes,
1597 int __user *status, int flags)
1599 int current_node = NUMA_NO_NODE;
1600 LIST_HEAD(pagelist);
1606 for (i = start = 0; i < nr_pages; i++) {
1607 const void __user *p;
1612 if (get_user(p, pages + i))
1614 if (get_user(node, nodes + i))
1616 addr = (unsigned long)p;
1619 if (node < 0 || node >= MAX_NUMNODES)
1621 if (!node_state(node, N_MEMORY))
1625 if (!node_isset(node, task_nodes))
1628 if (current_node == NUMA_NO_NODE) {
1629 current_node = node;
1631 } else if (node != current_node) {
1632 err = do_move_pages_to_node(mm, &pagelist, current_node);
1635 err = store_status(status, start, current_node, i - start);
1639 current_node = node;
1643 * Errors in the page lookup or isolation are not fatal and we simply
1644 * report them via status
1646 err = add_page_for_migration(mm, addr, current_node,
1647 &pagelist, flags & MPOL_MF_MOVE_ALL);
1651 err = store_status(status, i, err, 1);
1655 err = do_move_pages_to_node(mm, &pagelist, current_node);
1659 err = store_status(status, start, current_node, i - start);
1663 current_node = NUMA_NO_NODE;
1666 if (list_empty(&pagelist))
1669 /* Make sure we do not overwrite the existing error */
1670 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1672 err1 = store_status(status, start, current_node, i - start);
1680 * Determine the nodes of an array of pages and store it in an array of status.
1682 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1683 const void __user **pages, int *status)
1687 down_read(&mm->mmap_sem);
1689 for (i = 0; i < nr_pages; i++) {
1690 unsigned long addr = (unsigned long)(*pages);
1691 struct vm_area_struct *vma;
1695 vma = find_vma(mm, addr);
1696 if (!vma || addr < vma->vm_start)
1699 /* FOLL_DUMP to ignore special (like zero) pages */
1700 page = follow_page(vma, addr, FOLL_DUMP);
1702 err = PTR_ERR(page);
1706 err = page ? page_to_nid(page) : -ENOENT;
1714 up_read(&mm->mmap_sem);
1718 * Determine the nodes of a user array of pages and store it in
1719 * a user array of status.
1721 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1722 const void __user * __user *pages,
1725 #define DO_PAGES_STAT_CHUNK_NR 16
1726 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1727 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1730 unsigned long chunk_nr;
1732 chunk_nr = nr_pages;
1733 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1734 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1736 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1739 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1741 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1746 nr_pages -= chunk_nr;
1748 return nr_pages ? -EFAULT : 0;
1752 * Move a list of pages in the address space of the currently executing
1755 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1756 const void __user * __user *pages,
1757 const int __user *nodes,
1758 int __user *status, int flags)
1760 struct task_struct *task;
1761 struct mm_struct *mm;
1763 nodemask_t task_nodes;
1766 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1769 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1772 /* Find the mm_struct */
1774 task = pid ? find_task_by_vpid(pid) : current;
1779 get_task_struct(task);
1782 * Check if this process has the right to modify the specified
1783 * process. Use the regular "ptrace_may_access()" checks.
1785 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1792 err = security_task_movememory(task);
1796 task_nodes = cpuset_mems_allowed(task);
1797 mm = get_task_mm(task);
1798 put_task_struct(task);
1804 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1805 nodes, status, flags);
1807 err = do_pages_stat(mm, nr_pages, pages, status);
1813 put_task_struct(task);
1817 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1818 const void __user * __user *, pages,
1819 const int __user *, nodes,
1820 int __user *, status, int, flags)
1822 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1825 #ifdef CONFIG_COMPAT
1826 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1827 compat_uptr_t __user *, pages32,
1828 const int __user *, nodes,
1829 int __user *, status,
1832 const void __user * __user *pages;
1835 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1836 for (i = 0; i < nr_pages; i++) {
1839 if (get_user(p, pages32 + i) ||
1840 put_user(compat_ptr(p), pages + i))
1843 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1845 #endif /* CONFIG_COMPAT */
1847 #ifdef CONFIG_NUMA_BALANCING
1849 * Returns true if this is a safe migration target node for misplaced NUMA
1850 * pages. Currently it only checks the watermarks which crude
1852 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1853 unsigned long nr_migrate_pages)
1857 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1858 struct zone *zone = pgdat->node_zones + z;
1860 if (!populated_zone(zone))
1863 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1864 if (!zone_watermark_ok(zone, 0,
1865 high_wmark_pages(zone) +
1874 static struct page *alloc_misplaced_dst_page(struct page *page,
1877 int nid = (int) data;
1878 struct page *newpage;
1880 newpage = __alloc_pages_node(nid,
1881 (GFP_HIGHUSER_MOVABLE |
1882 __GFP_THISNODE | __GFP_NOMEMALLOC |
1883 __GFP_NORETRY | __GFP_NOWARN) &
1889 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1893 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1895 /* Avoid migrating to a node that is nearly full */
1896 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1899 if (isolate_lru_page(page))
1903 * migrate_misplaced_transhuge_page() skips page migration's usual
1904 * check on page_count(), so we must do it here, now that the page
1905 * has been isolated: a GUP pin, or any other pin, prevents migration.
1906 * The expected page count is 3: 1 for page's mapcount and 1 for the
1907 * caller's pin and 1 for the reference taken by isolate_lru_page().
1909 if (PageTransHuge(page) && page_count(page) != 3) {
1910 putback_lru_page(page);
1914 page_lru = page_is_file_cache(page);
1915 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1916 hpage_nr_pages(page));
1919 * Isolating the page has taken another reference, so the
1920 * caller's reference can be safely dropped without the page
1921 * disappearing underneath us during migration.
1927 bool pmd_trans_migrating(pmd_t pmd)
1929 struct page *page = pmd_page(pmd);
1930 return PageLocked(page);
1934 * Attempt to migrate a misplaced page to the specified destination
1935 * node. Caller is expected to have an elevated reference count on
1936 * the page that will be dropped by this function before returning.
1938 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1941 pg_data_t *pgdat = NODE_DATA(node);
1944 LIST_HEAD(migratepages);
1947 * Don't migrate file pages that are mapped in multiple processes
1948 * with execute permissions as they are probably shared libraries.
1950 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1951 (vma->vm_flags & VM_EXEC))
1955 * Also do not migrate dirty pages as not all filesystems can move
1956 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1958 if (page_is_file_cache(page) && PageDirty(page))
1961 isolated = numamigrate_isolate_page(pgdat, page);
1965 list_add(&page->lru, &migratepages);
1966 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1967 NULL, node, MIGRATE_ASYNC,
1970 if (!list_empty(&migratepages)) {
1971 list_del(&page->lru);
1972 dec_node_page_state(page, NR_ISOLATED_ANON +
1973 page_is_file_cache(page));
1974 putback_lru_page(page);
1978 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1979 BUG_ON(!list_empty(&migratepages));
1986 #endif /* CONFIG_NUMA_BALANCING */
1988 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1990 * Migrates a THP to a given target node. page must be locked and is unlocked
1993 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1994 struct vm_area_struct *vma,
1995 pmd_t *pmd, pmd_t entry,
1996 unsigned long address,
1997 struct page *page, int node)
2000 pg_data_t *pgdat = NODE_DATA(node);
2002 struct page *new_page = NULL;
2003 int page_lru = page_is_file_cache(page);
2004 unsigned long start = address & HPAGE_PMD_MASK;
2006 new_page = alloc_pages_node(node,
2007 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2011 prep_transhuge_page(new_page);
2013 isolated = numamigrate_isolate_page(pgdat, page);
2019 /* Prepare a page as a migration target */
2020 __SetPageLocked(new_page);
2021 if (PageSwapBacked(page))
2022 __SetPageSwapBacked(new_page);
2024 /* anon mapping, we can simply copy page->mapping to the new page: */
2025 new_page->mapping = page->mapping;
2026 new_page->index = page->index;
2027 /* flush the cache before copying using the kernel virtual address */
2028 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2029 migrate_page_copy(new_page, page);
2030 WARN_ON(PageLRU(new_page));
2032 /* Recheck the target PMD */
2033 ptl = pmd_lock(mm, pmd);
2034 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2037 /* Reverse changes made by migrate_page_copy() */
2038 if (TestClearPageActive(new_page))
2039 SetPageActive(page);
2040 if (TestClearPageUnevictable(new_page))
2041 SetPageUnevictable(page);
2043 unlock_page(new_page);
2044 put_page(new_page); /* Free it */
2046 /* Retake the callers reference and putback on LRU */
2048 putback_lru_page(page);
2049 mod_node_page_state(page_pgdat(page),
2050 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2055 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2056 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2059 * Overwrite the old entry under pagetable lock and establish
2060 * the new PTE. Any parallel GUP will either observe the old
2061 * page blocking on the page lock, block on the page table
2062 * lock or observe the new page. The SetPageUptodate on the
2063 * new page and page_add_new_anon_rmap guarantee the copy is
2064 * visible before the pagetable update.
2066 page_add_anon_rmap(new_page, vma, start, true);
2068 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2069 * has already been flushed globally. So no TLB can be currently
2070 * caching this non present pmd mapping. There's no need to clear the
2071 * pmd before doing set_pmd_at(), nor to flush the TLB after
2072 * set_pmd_at(). Clearing the pmd here would introduce a race
2073 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2074 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2075 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2078 set_pmd_at(mm, start, pmd, entry);
2079 update_mmu_cache_pmd(vma, address, &entry);
2081 page_ref_unfreeze(page, 2);
2082 mlock_migrate_page(new_page, page);
2083 page_remove_rmap(page, true);
2084 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2088 /* Take an "isolate" reference and put new page on the LRU. */
2090 putback_lru_page(new_page);
2092 unlock_page(new_page);
2094 put_page(page); /* Drop the rmap reference */
2095 put_page(page); /* Drop the LRU isolation reference */
2097 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2098 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2100 mod_node_page_state(page_pgdat(page),
2101 NR_ISOLATED_ANON + page_lru,
2106 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2107 ptl = pmd_lock(mm, pmd);
2108 if (pmd_same(*pmd, entry)) {
2109 entry = pmd_modify(entry, vma->vm_page_prot);
2110 set_pmd_at(mm, start, pmd, entry);
2111 update_mmu_cache_pmd(vma, address, &entry);
2120 #endif /* CONFIG_NUMA_BALANCING */
2122 #endif /* CONFIG_NUMA */
2124 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2125 struct migrate_vma {
2126 struct vm_area_struct *vma;
2129 unsigned long cpages;
2130 unsigned long npages;
2131 unsigned long start;
2135 static int migrate_vma_collect_hole(unsigned long start,
2137 struct mm_walk *walk)
2139 struct migrate_vma *migrate = walk->private;
2142 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2143 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2144 migrate->dst[migrate->npages] = 0;
2152 static int migrate_vma_collect_skip(unsigned long start,
2154 struct mm_walk *walk)
2156 struct migrate_vma *migrate = walk->private;
2159 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2160 migrate->dst[migrate->npages] = 0;
2161 migrate->src[migrate->npages++] = 0;
2167 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2168 unsigned long start,
2170 struct mm_walk *walk)
2172 struct migrate_vma *migrate = walk->private;
2173 struct vm_area_struct *vma = walk->vma;
2174 struct mm_struct *mm = vma->vm_mm;
2175 unsigned long addr = start, unmapped = 0;
2180 if (pmd_none(*pmdp))
2181 return migrate_vma_collect_hole(start, end, walk);
2183 if (pmd_trans_huge(*pmdp)) {
2186 ptl = pmd_lock(mm, pmdp);
2187 if (unlikely(!pmd_trans_huge(*pmdp))) {
2192 page = pmd_page(*pmdp);
2193 if (is_huge_zero_page(page)) {
2195 split_huge_pmd(vma, pmdp, addr);
2196 if (pmd_trans_unstable(pmdp))
2197 return migrate_vma_collect_skip(start, end,
2204 if (unlikely(!trylock_page(page)))
2205 return migrate_vma_collect_skip(start, end,
2207 ret = split_huge_page(page);
2211 return migrate_vma_collect_skip(start, end,
2213 if (pmd_none(*pmdp))
2214 return migrate_vma_collect_hole(start, end,
2219 if (unlikely(pmd_bad(*pmdp)))
2220 return migrate_vma_collect_skip(start, end, walk);
2222 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2223 arch_enter_lazy_mmu_mode();
2225 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2226 unsigned long mpfn, pfn;
2234 if (pte_none(pte)) {
2235 mpfn = MIGRATE_PFN_MIGRATE;
2241 if (!pte_present(pte)) {
2245 * Only care about unaddressable device page special
2246 * page table entry. Other special swap entries are not
2247 * migratable, and we ignore regular swapped page.
2249 entry = pte_to_swp_entry(pte);
2250 if (!is_device_private_entry(entry))
2253 page = device_private_entry_to_page(entry);
2254 mpfn = migrate_pfn(page_to_pfn(page))|
2255 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2256 if (is_write_device_private_entry(entry))
2257 mpfn |= MIGRATE_PFN_WRITE;
2259 if (is_zero_pfn(pfn)) {
2260 mpfn = MIGRATE_PFN_MIGRATE;
2265 page = _vm_normal_page(migrate->vma, addr, pte, true);
2266 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2267 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2270 /* FIXME support THP */
2271 if (!page || !page->mapping || PageTransCompound(page)) {
2275 pfn = page_to_pfn(page);
2278 * By getting a reference on the page we pin it and that blocks
2279 * any kind of migration. Side effect is that it "freezes" the
2282 * We drop this reference after isolating the page from the lru
2283 * for non device page (device page are not on the lru and thus
2284 * can't be dropped from it).
2290 * Optimize for the common case where page is only mapped once
2291 * in one process. If we can lock the page, then we can safely
2292 * set up a special migration page table entry now.
2294 if (trylock_page(page)) {
2297 mpfn |= MIGRATE_PFN_LOCKED;
2298 ptep_get_and_clear(mm, addr, ptep);
2300 /* Setup special migration page table entry */
2301 entry = make_migration_entry(page, mpfn &
2303 swp_pte = swp_entry_to_pte(entry);
2304 if (pte_soft_dirty(pte))
2305 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2306 set_pte_at(mm, addr, ptep, swp_pte);
2309 * This is like regular unmap: we remove the rmap and
2310 * drop page refcount. Page won't be freed, as we took
2311 * a reference just above.
2313 page_remove_rmap(page, false);
2316 if (pte_present(pte))
2321 migrate->dst[migrate->npages] = 0;
2322 migrate->src[migrate->npages++] = mpfn;
2324 arch_leave_lazy_mmu_mode();
2325 pte_unmap_unlock(ptep - 1, ptl);
2327 /* Only flush the TLB if we actually modified any entries */
2329 flush_tlb_range(walk->vma, start, end);
2335 * migrate_vma_collect() - collect pages over a range of virtual addresses
2336 * @migrate: migrate struct containing all migration information
2338 * This will walk the CPU page table. For each virtual address backed by a
2339 * valid page, it updates the src array and takes a reference on the page, in
2340 * order to pin the page until we lock it and unmap it.
2342 static void migrate_vma_collect(struct migrate_vma *migrate)
2344 struct mmu_notifier_range range;
2345 struct mm_walk mm_walk;
2347 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2348 mm_walk.pte_entry = NULL;
2349 mm_walk.pte_hole = migrate_vma_collect_hole;
2350 mm_walk.hugetlb_entry = NULL;
2351 mm_walk.test_walk = NULL;
2352 mm_walk.vma = migrate->vma;
2353 mm_walk.mm = migrate->vma->vm_mm;
2354 mm_walk.private = migrate;
2356 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2358 mmu_notifier_invalidate_range_start(&range);
2359 walk_page_range(migrate->start, migrate->end, &mm_walk);
2360 mmu_notifier_invalidate_range_end(&range);
2362 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2366 * migrate_vma_check_page() - check if page is pinned or not
2367 * @page: struct page to check
2369 * Pinned pages cannot be migrated. This is the same test as in
2370 * migrate_page_move_mapping(), except that here we allow migration of a
2373 static bool migrate_vma_check_page(struct page *page)
2376 * One extra ref because caller holds an extra reference, either from
2377 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2383 * FIXME support THP (transparent huge page), it is bit more complex to
2384 * check them than regular pages, because they can be mapped with a pmd
2385 * or with a pte (split pte mapping).
2387 if (PageCompound(page))
2390 /* Page from ZONE_DEVICE have one extra reference */
2391 if (is_zone_device_page(page)) {
2393 * Private page can never be pin as they have no valid pte and
2394 * GUP will fail for those. Yet if there is a pending migration
2395 * a thread might try to wait on the pte migration entry and
2396 * will bump the page reference count. Sadly there is no way to
2397 * differentiate a regular pin from migration wait. Hence to
2398 * avoid 2 racing thread trying to migrate back to CPU to enter
2399 * infinite loop (one stoping migration because the other is
2400 * waiting on pte migration entry). We always return true here.
2402 * FIXME proper solution is to rework migration_entry_wait() so
2403 * it does not need to take a reference on page.
2405 if (is_device_private_page(page))
2409 * Only allow device public page to be migrated and account for
2410 * the extra reference count imply by ZONE_DEVICE pages.
2412 if (!is_device_public_page(page))
2417 /* For file back page */
2418 if (page_mapping(page))
2419 extra += 1 + page_has_private(page);
2421 if ((page_count(page) - extra) > page_mapcount(page))
2428 * migrate_vma_prepare() - lock pages and isolate them from the lru
2429 * @migrate: migrate struct containing all migration information
2431 * This locks pages that have been collected by migrate_vma_collect(). Once each
2432 * page is locked it is isolated from the lru (for non-device pages). Finally,
2433 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2434 * migrated by concurrent kernel threads.
2436 static void migrate_vma_prepare(struct migrate_vma *migrate)
2438 const unsigned long npages = migrate->npages;
2439 const unsigned long start = migrate->start;
2440 unsigned long addr, i, restore = 0;
2441 bool allow_drain = true;
2445 for (i = 0; (i < npages) && migrate->cpages; i++) {
2446 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2452 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2454 * Because we are migrating several pages there can be
2455 * a deadlock between 2 concurrent migration where each
2456 * are waiting on each other page lock.
2458 * Make migrate_vma() a best effort thing and backoff
2459 * for any page we can not lock right away.
2461 if (!trylock_page(page)) {
2462 migrate->src[i] = 0;
2468 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2471 /* ZONE_DEVICE pages are not on LRU */
2472 if (!is_zone_device_page(page)) {
2473 if (!PageLRU(page) && allow_drain) {
2474 /* Drain CPU's pagevec */
2475 lru_add_drain_all();
2476 allow_drain = false;
2479 if (isolate_lru_page(page)) {
2481 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485 migrate->src[i] = 0;
2493 /* Drop the reference we took in collect */
2497 if (!migrate_vma_check_page(page)) {
2499 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2503 if (!is_zone_device_page(page)) {
2505 putback_lru_page(page);
2508 migrate->src[i] = 0;
2512 if (!is_zone_device_page(page))
2513 putback_lru_page(page);
2520 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2521 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2523 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526 remove_migration_pte(page, migrate->vma, addr, page);
2528 migrate->src[i] = 0;
2536 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2537 * @migrate: migrate struct containing all migration information
2539 * Replace page mapping (CPU page table pte) with a special migration pte entry
2540 * and check again if it has been pinned. Pinned pages are restored because we
2541 * cannot migrate them.
2543 * This is the last step before we call the device driver callback to allocate
2544 * destination memory and copy contents of original page over to new page.
2546 static void migrate_vma_unmap(struct migrate_vma *migrate)
2548 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2549 const unsigned long npages = migrate->npages;
2550 const unsigned long start = migrate->start;
2551 unsigned long addr, i, restore = 0;
2553 for (i = 0; i < npages; i++) {
2554 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2556 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2559 if (page_mapped(page)) {
2560 try_to_unmap(page, flags);
2561 if (page_mapped(page))
2565 if (migrate_vma_check_page(page))
2569 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2574 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2575 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2577 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 remove_migration_ptes(page, page, false);
2582 migrate->src[i] = 0;
2586 if (is_zone_device_page(page))
2589 putback_lru_page(page);
2593 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2599 struct vm_area_struct *vma = migrate->vma;
2600 struct mm_struct *mm = vma->vm_mm;
2601 struct mem_cgroup *memcg;
2611 /* Only allow populating anonymous memory */
2612 if (!vma_is_anonymous(vma))
2615 pgdp = pgd_offset(mm, addr);
2616 p4dp = p4d_alloc(mm, pgdp, addr);
2619 pudp = pud_alloc(mm, p4dp, addr);
2622 pmdp = pmd_alloc(mm, pudp, addr);
2626 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2630 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2631 * pte_offset_map() on pmds where a huge pmd might be created
2632 * from a different thread.
2634 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2635 * parallel threads are excluded by other means.
2637 * Here we only have down_read(mmap_sem).
2639 if (pte_alloc(mm, pmdp))
2642 /* See the comment in pte_alloc_one_map() */
2643 if (unlikely(pmd_trans_unstable(pmdp)))
2646 if (unlikely(anon_vma_prepare(vma)))
2648 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2652 * The memory barrier inside __SetPageUptodate makes sure that
2653 * preceding stores to the page contents become visible before
2654 * the set_pte_at() write.
2656 __SetPageUptodate(page);
2658 if (is_zone_device_page(page)) {
2659 if (is_device_private_page(page)) {
2660 swp_entry_t swp_entry;
2662 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2663 entry = swp_entry_to_pte(swp_entry);
2664 } else if (is_device_public_page(page)) {
2665 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2666 if (vma->vm_flags & VM_WRITE)
2667 entry = pte_mkwrite(pte_mkdirty(entry));
2668 entry = pte_mkdevmap(entry);
2671 entry = mk_pte(page, vma->vm_page_prot);
2672 if (vma->vm_flags & VM_WRITE)
2673 entry = pte_mkwrite(pte_mkdirty(entry));
2676 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2678 if (pte_present(*ptep)) {
2679 unsigned long pfn = pte_pfn(*ptep);
2681 if (!is_zero_pfn(pfn)) {
2682 pte_unmap_unlock(ptep, ptl);
2683 mem_cgroup_cancel_charge(page, memcg, false);
2687 } else if (!pte_none(*ptep)) {
2688 pte_unmap_unlock(ptep, ptl);
2689 mem_cgroup_cancel_charge(page, memcg, false);
2694 * Check for usefaultfd but do not deliver the fault. Instead,
2697 if (userfaultfd_missing(vma)) {
2698 pte_unmap_unlock(ptep, ptl);
2699 mem_cgroup_cancel_charge(page, memcg, false);
2703 inc_mm_counter(mm, MM_ANONPAGES);
2704 page_add_new_anon_rmap(page, vma, addr, false);
2705 mem_cgroup_commit_charge(page, memcg, false, false);
2706 if (!is_zone_device_page(page))
2707 lru_cache_add_active_or_unevictable(page, vma);
2711 flush_cache_page(vma, addr, pte_pfn(*ptep));
2712 ptep_clear_flush_notify(vma, addr, ptep);
2713 set_pte_at_notify(mm, addr, ptep, entry);
2714 update_mmu_cache(vma, addr, ptep);
2716 /* No need to invalidate - it was non-present before */
2717 set_pte_at(mm, addr, ptep, entry);
2718 update_mmu_cache(vma, addr, ptep);
2721 pte_unmap_unlock(ptep, ptl);
2722 *src = MIGRATE_PFN_MIGRATE;
2726 *src &= ~MIGRATE_PFN_MIGRATE;
2730 * migrate_vma_pages() - migrate meta-data from src page to dst page
2731 * @migrate: migrate struct containing all migration information
2733 * This migrates struct page meta-data from source struct page to destination
2734 * struct page. This effectively finishes the migration from source page to the
2737 static void migrate_vma_pages(struct migrate_vma *migrate)
2739 const unsigned long npages = migrate->npages;
2740 const unsigned long start = migrate->start;
2741 struct mmu_notifier_range range;
2742 unsigned long addr, i;
2743 bool notified = false;
2745 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2746 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2747 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2748 struct address_space *mapping;
2752 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2757 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2763 mmu_notifier_range_init(&range,
2764 migrate->vma->vm_mm,
2765 addr, migrate->end);
2766 mmu_notifier_invalidate_range_start(&range);
2768 migrate_vma_insert_page(migrate, addr, newpage,
2774 mapping = page_mapping(page);
2776 if (is_zone_device_page(newpage)) {
2777 if (is_device_private_page(newpage)) {
2779 * For now only support private anonymous when
2780 * migrating to un-addressable device memory.
2783 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2786 } else if (!is_device_public_page(newpage)) {
2788 * Other types of ZONE_DEVICE page are not
2791 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2796 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2797 if (r != MIGRATEPAGE_SUCCESS)
2798 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802 * No need to double call mmu_notifier->invalidate_range() callback as
2803 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2804 * did already call it.
2807 mmu_notifier_invalidate_range_only_end(&range);
2811 * migrate_vma_finalize() - restore CPU page table entry
2812 * @migrate: migrate struct containing all migration information
2814 * This replaces the special migration pte entry with either a mapping to the
2815 * new page if migration was successful for that page, or to the original page
2818 * This also unlocks the pages and puts them back on the lru, or drops the extra
2819 * refcount, for device pages.
2821 static void migrate_vma_finalize(struct migrate_vma *migrate)
2823 const unsigned long npages = migrate->npages;
2826 for (i = 0; i < npages; i++) {
2827 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2828 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2832 unlock_page(newpage);
2838 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2840 unlock_page(newpage);
2846 remove_migration_ptes(page, newpage, false);
2850 if (is_zone_device_page(page))
2853 putback_lru_page(page);
2855 if (newpage != page) {
2856 unlock_page(newpage);
2857 if (is_zone_device_page(newpage))
2860 putback_lru_page(newpage);
2866 * migrate_vma() - migrate a range of memory inside vma
2868 * @ops: migration callback for allocating destination memory and copying
2869 * @vma: virtual memory area containing the range to be migrated
2870 * @start: start address of the range to migrate (inclusive)
2871 * @end: end address of the range to migrate (exclusive)
2872 * @src: array of hmm_pfn_t containing source pfns
2873 * @dst: array of hmm_pfn_t containing destination pfns
2874 * @private: pointer passed back to each of the callback
2875 * Returns: 0 on success, error code otherwise
2877 * This function tries to migrate a range of memory virtual address range, using
2878 * callbacks to allocate and copy memory from source to destination. First it
2879 * collects all the pages backing each virtual address in the range, saving this
2880 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2881 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2882 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2883 * in the corresponding src array entry. It then restores any pages that are
2884 * pinned, by remapping and unlocking those pages.
2886 * At this point it calls the alloc_and_copy() callback. For documentation on
2887 * what is expected from that callback, see struct migrate_vma_ops comments in
2888 * include/linux/migrate.h
2890 * After the alloc_and_copy() callback, this function goes over each entry in
2891 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2892 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2893 * then the function tries to migrate struct page information from the source
2894 * struct page to the destination struct page. If it fails to migrate the struct
2895 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2898 * At this point all successfully migrated pages have an entry in the src
2899 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2900 * array entry with MIGRATE_PFN_VALID flag set.
2902 * It then calls the finalize_and_map() callback. See comments for "struct
2903 * migrate_vma_ops", in include/linux/migrate.h for details about
2904 * finalize_and_map() behavior.
2906 * After the finalize_and_map() callback, for successfully migrated pages, this
2907 * function updates the CPU page table to point to new pages, otherwise it
2908 * restores the CPU page table to point to the original source pages.
2910 * Function returns 0 after the above steps, even if no pages were migrated
2911 * (The function only returns an error if any of the arguments are invalid.)
2913 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2914 * unsigned long entries.
2916 int migrate_vma(const struct migrate_vma_ops *ops,
2917 struct vm_area_struct *vma,
2918 unsigned long start,
2924 struct migrate_vma migrate;
2926 /* Sanity check the arguments */
2929 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2932 if (start < vma->vm_start || start >= vma->vm_end)
2934 if (end <= vma->vm_start || end > vma->vm_end)
2936 if (!ops || !src || !dst || start >= end)
2939 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2942 migrate.start = start;
2948 /* Collect, and try to unmap source pages */
2949 migrate_vma_collect(&migrate);
2950 if (!migrate.cpages)
2953 /* Lock and isolate page */
2954 migrate_vma_prepare(&migrate);
2955 if (!migrate.cpages)
2959 migrate_vma_unmap(&migrate);
2960 if (!migrate.cpages)
2964 * At this point pages are locked and unmapped, and thus they have
2965 * stable content and can safely be copied to destination memory that
2966 * is allocated by the callback.
2968 * Note that migration can fail in migrate_vma_struct_page() for each
2971 ops->alloc_and_copy(vma, src, dst, start, end, private);
2973 /* This does the real migration of struct page */
2974 migrate_vma_pages(&migrate);
2976 ops->finalize_and_map(vma, src, dst, start, end, private);
2978 /* Unlock and remap pages */
2979 migrate_vma_finalize(&migrate);
2983 EXPORT_SYMBOL(migrate_vma);
2984 #endif /* defined(MIGRATE_VMA_HELPER) */