2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66 static struct workqueue_struct *nvme_workq;
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
87 unsigned online_queues;
91 struct msix_entry *entry;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
99 dma_addr_t cmb_dma_addr;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 return container_of(ctrl, struct nvme_dev, ctrl);
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24]; /* nvme4294967295-65535\0 */
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
143 struct nvme_queue *nvmeq;
145 int npages; /* In the PRP list. 0 means small pool in use */
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
155 * Check we didin't inadvertently grow the command struct
157 static inline void _nvme_check_size(void)
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 * Max size of iod being embedded in the request payload
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
214 hctx->driver_data = nvmeq;
215 nvmeq->tags = &dev->admin_tagset.tags[0];
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
221 struct nvme_queue *nvmeq = hctx->driver_data;
226 static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
230 struct nvme_dev *dev = data;
231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 struct nvme_queue *nvmeq = dev->queues[0];
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
242 struct nvme_dev *dev = data;
243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 hctx->driver_data = nvmeq;
253 static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
257 struct nvme_dev *dev = data;
258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
271 * Safe to use from interrupt context
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
276 u16 tail = nvmeq->sq_tail;
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
283 if (++tail == nvmeq->q_depth)
285 writel(tail, nvmeq->q_db);
286 nvmeq->sq_tail = tail;
289 static __le64 **iod_list(struct request *req)
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
295 static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
304 return BLK_MQ_RQ_QUEUE_BUSY;
306 iod->sg = iod->inline_sg;
316 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319 const int last_prp = dev->ctrl.page_size / 8 - 1;
321 __le64 **list = iod_list(req);
322 dma_addr_t prp_dma = iod->first_dma;
324 nvme_cleanup_cmd(req);
326 if (iod->npages == 0)
327 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328 for (i = 0; i < iod->npages; i++) {
329 __le64 *prp_list = list[i];
330 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332 prp_dma = next_prp_dma;
335 if (iod->sg != iod->inline_sg)
339 #ifdef CONFIG_BLK_DEV_INTEGRITY
340 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
342 if (be32_to_cpu(pi->ref_tag) == v)
343 pi->ref_tag = cpu_to_be32(p);
346 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
348 if (be32_to_cpu(pi->ref_tag) == p)
349 pi->ref_tag = cpu_to_be32(v);
353 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
355 * The virtual start sector is the one that was originally submitted by the
356 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
357 * start sector may be different. Remap protection information to match the
358 * physical LBA on writes, and back to the original seed on reads.
360 * Type 0 and 3 do not have a ref tag, so no remapping required.
362 static void nvme_dif_remap(struct request *req,
363 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
365 struct nvme_ns *ns = req->rq_disk->private_data;
366 struct bio_integrity_payload *bip;
367 struct t10_pi_tuple *pi;
369 u32 i, nlb, ts, phys, virt;
371 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
374 bip = bio_integrity(req->bio);
378 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
381 virt = bip_get_seed(bip);
382 phys = nvme_block_nr(ns, blk_rq_pos(req));
383 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
384 ts = ns->disk->queue->integrity.tuple_size;
386 for (i = 0; i < nlb; i++, virt++, phys++) {
387 pi = (struct t10_pi_tuple *)p;
388 dif_swap(phys, virt, pi);
393 #else /* CONFIG_BLK_DEV_INTEGRITY */
394 static void nvme_dif_remap(struct request *req,
395 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
398 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
401 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
406 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410 struct dma_pool *pool;
411 int length = total_len;
412 struct scatterlist *sg = iod->sg;
413 int dma_len = sg_dma_len(sg);
414 u64 dma_addr = sg_dma_address(sg);
415 u32 page_size = dev->ctrl.page_size;
416 int offset = dma_addr & (page_size - 1);
418 __le64 **list = iod_list(req);
422 length -= (page_size - offset);
426 dma_len -= (page_size - offset);
428 dma_addr += (page_size - offset);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
435 if (length <= page_size) {
436 iod->first_dma = dma_addr;
440 nprps = DIV_ROUND_UP(length, page_size);
441 if (nprps <= (256 / 8)) {
442 pool = dev->prp_small_pool;
445 pool = dev->prp_page_pool;
449 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
451 iod->first_dma = dma_addr;
456 iod->first_dma = prp_dma;
459 if (i == page_size >> 3) {
460 __le64 *old_prp_list = prp_list;
461 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
464 list[iod->npages++] = prp_list;
465 prp_list[0] = old_prp_list[i - 1];
466 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
469 prp_list[i++] = cpu_to_le64(dma_addr);
470 dma_len -= page_size;
471 dma_addr += page_size;
479 dma_addr = sg_dma_address(sg);
480 dma_len = sg_dma_len(sg);
486 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
487 unsigned size, struct nvme_command *cmnd)
489 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
490 struct request_queue *q = req->q;
491 enum dma_data_direction dma_dir = rq_data_dir(req) ?
492 DMA_TO_DEVICE : DMA_FROM_DEVICE;
493 int ret = BLK_MQ_RQ_QUEUE_ERROR;
495 sg_init_table(iod->sg, req->nr_phys_segments);
496 iod->nents = blk_rq_map_sg(q, req, iod->sg);
500 ret = BLK_MQ_RQ_QUEUE_BUSY;
501 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
504 if (!nvme_setup_prps(dev, req, size))
507 ret = BLK_MQ_RQ_QUEUE_ERROR;
508 if (blk_integrity_rq(req)) {
509 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
512 sg_init_table(&iod->meta_sg, 1);
513 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
516 if (rq_data_dir(req))
517 nvme_dif_remap(req, nvme_dif_prep);
519 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
523 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
525 if (blk_integrity_rq(req))
526 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
527 return BLK_MQ_RQ_QUEUE_OK;
530 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
535 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 enum dma_data_direction dma_dir = rq_data_dir(req) ?
539 DMA_TO_DEVICE : DMA_FROM_DEVICE;
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543 if (blk_integrity_rq(req)) {
544 if (!rq_data_dir(req))
545 nvme_dif_remap(req, nvme_dif_complete);
546 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
550 nvme_free_iod(dev, req);
554 * NOTE: ns is NULL when called on the admin queue.
556 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557 const struct blk_mq_queue_data *bd)
559 struct nvme_ns *ns = hctx->queue->queuedata;
560 struct nvme_queue *nvmeq = hctx->driver_data;
561 struct nvme_dev *dev = nvmeq->dev;
562 struct request *req = bd->rq;
563 struct nvme_command cmnd;
565 int ret = BLK_MQ_RQ_QUEUE_OK;
568 * If formated with metadata, require the block layer provide a buffer
569 * unless this namespace is formated such that the metadata can be
570 * stripped/generated by the controller with PRACT=1.
572 if (ns && ns->ms && !blk_integrity_rq(req)) {
573 if (!(ns->pi_type && ns->ms == 8) &&
574 req->cmd_type != REQ_TYPE_DRV_PRIV) {
575 blk_mq_end_request(req, -EFAULT);
576 return BLK_MQ_RQ_QUEUE_OK;
580 map_len = nvme_map_len(req);
581 ret = nvme_init_iod(req, map_len, dev);
585 ret = nvme_setup_cmd(ns, req, &cmnd);
589 if (req->nr_phys_segments)
590 ret = nvme_map_data(dev, req, map_len, &cmnd);
595 cmnd.common.command_id = req->tag;
596 blk_mq_start_request(req);
598 spin_lock_irq(&nvmeq->q_lock);
599 if (unlikely(nvmeq->cq_vector < 0)) {
600 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601 ret = BLK_MQ_RQ_QUEUE_BUSY;
603 ret = BLK_MQ_RQ_QUEUE_ERROR;
604 spin_unlock_irq(&nvmeq->q_lock);
607 __nvme_submit_cmd(nvmeq, &cmnd);
608 nvme_process_cq(nvmeq);
609 spin_unlock_irq(&nvmeq->q_lock);
610 return BLK_MQ_RQ_QUEUE_OK;
612 nvme_free_iod(dev, req);
616 static void nvme_complete_rq(struct request *req)
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct nvme_dev *dev = iod->nvmeq->dev;
622 nvme_unmap_data(dev, req);
624 if (unlikely(req->errors)) {
625 if (nvme_req_needs_retry(req, req->errors)) {
626 nvme_requeue_req(req);
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
633 error = nvme_error_status(req->errors);
636 if (unlikely(iod->aborted)) {
637 dev_warn(dev->ctrl.device,
638 "completing aborted command with status: %04x\n",
642 blk_mq_end_request(req, error);
645 /* We read the CQE phase first to check if the rest of the entry is valid */
646 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
649 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
652 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
656 head = nvmeq->cq_head;
657 phase = nvmeq->cq_phase;
659 while (nvme_cqe_valid(nvmeq, head, phase)) {
660 struct nvme_completion cqe = nvmeq->cqes[head];
663 if (++head == nvmeq->q_depth) {
668 if (tag && *tag == cqe.command_id)
671 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
672 dev_warn(nvmeq->dev->ctrl.device,
673 "invalid id %d completed on queue %d\n",
674 cqe.command_id, le16_to_cpu(cqe.sq_id));
679 * AEN requests are special as they don't time out and can
680 * survive any kind of queue freeze and often don't respond to
681 * aborts. We don't even bother to allocate a struct request
682 * for them but rather special case them here.
684 if (unlikely(nvmeq->qid == 0 &&
685 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
686 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
690 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
691 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692 memcpy(req->special, &cqe, sizeof(cqe));
693 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
697 /* If the controller ignores the cq head doorbell and continuously
698 * writes to the queue, it is theoretically possible to wrap around
699 * the queue twice and mistakenly return IRQ_NONE. Linux only
700 * requires that 0.1% of your interrupts are handled, so this isn't
703 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
706 if (likely(nvmeq->cq_vector >= 0))
707 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
708 nvmeq->cq_head = head;
709 nvmeq->cq_phase = phase;
714 static void nvme_process_cq(struct nvme_queue *nvmeq)
716 __nvme_process_cq(nvmeq, NULL);
719 static irqreturn_t nvme_irq(int irq, void *data)
722 struct nvme_queue *nvmeq = data;
723 spin_lock(&nvmeq->q_lock);
724 nvme_process_cq(nvmeq);
725 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
727 spin_unlock(&nvmeq->q_lock);
731 static irqreturn_t nvme_irq_check(int irq, void *data)
733 struct nvme_queue *nvmeq = data;
734 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735 return IRQ_WAKE_THREAD;
739 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
741 struct nvme_queue *nvmeq = hctx->driver_data;
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
744 spin_lock_irq(&nvmeq->q_lock);
745 __nvme_process_cq(nvmeq, &tag);
746 spin_unlock_irq(&nvmeq->q_lock);
755 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
757 struct nvme_dev *dev = to_nvme_dev(ctrl);
758 struct nvme_queue *nvmeq = dev->queues[0];
759 struct nvme_command c;
761 memset(&c, 0, sizeof(c));
762 c.common.opcode = nvme_admin_async_event;
763 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
765 spin_lock_irq(&nvmeq->q_lock);
766 __nvme_submit_cmd(nvmeq, &c);
767 spin_unlock_irq(&nvmeq->q_lock);
770 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
772 struct nvme_command c;
774 memset(&c, 0, sizeof(c));
775 c.delete_queue.opcode = opcode;
776 c.delete_queue.qid = cpu_to_le16(id);
778 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
781 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782 struct nvme_queue *nvmeq)
784 struct nvme_command c;
785 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
788 * Note: we (ab)use the fact the the prp fields survive if no data
789 * is attached to the request.
791 memset(&c, 0, sizeof(c));
792 c.create_cq.opcode = nvme_admin_create_cq;
793 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794 c.create_cq.cqid = cpu_to_le16(qid);
795 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_cq.cq_flags = cpu_to_le16(flags);
797 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
802 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803 struct nvme_queue *nvmeq)
805 struct nvme_command c;
806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
809 * Note: we (ab)use the fact the the prp fields survive if no data
810 * is attached to the request.
812 memset(&c, 0, sizeof(c));
813 c.create_sq.opcode = nvme_admin_create_sq;
814 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815 c.create_sq.sqid = cpu_to_le16(qid);
816 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 c.create_sq.sq_flags = cpu_to_le16(flags);
818 c.create_sq.cqid = cpu_to_le16(qid);
820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
823 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
825 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
828 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
830 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
833 static void abort_endio(struct request *req, int error)
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 struct nvme_queue *nvmeq = iod->nvmeq;
837 u16 status = req->errors;
839 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
840 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
841 blk_mq_free_request(req);
844 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
848 struct nvme_dev *dev = nvmeq->dev;
849 struct request *abort_req;
850 struct nvme_command cmd;
853 * Shutdown immediately if controller times out while starting. The
854 * reset work will see the pci device disabled when it gets the forced
855 * cancellation error. All outstanding requests are completed on
856 * shutdown, so we return BLK_EH_HANDLED.
858 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
859 dev_warn(dev->ctrl.device,
860 "I/O %d QID %d timeout, disable controller\n",
861 req->tag, nvmeq->qid);
862 nvme_dev_disable(dev, false);
863 req->errors = NVME_SC_CANCELLED;
864 return BLK_EH_HANDLED;
868 * Shutdown the controller immediately and schedule a reset if the
869 * command was already aborted once before and still hasn't been
870 * returned to the driver, or if this is the admin queue.
872 if (!nvmeq->qid || iod->aborted) {
873 dev_warn(dev->ctrl.device,
874 "I/O %d QID %d timeout, reset controller\n",
875 req->tag, nvmeq->qid);
876 nvme_dev_disable(dev, false);
877 queue_work(nvme_workq, &dev->reset_work);
880 * Mark the request as handled, since the inline shutdown
881 * forces all outstanding requests to complete.
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
889 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
890 atomic_inc(&dev->ctrl.abort_limit);
891 return BLK_EH_RESET_TIMER;
894 memset(&cmd, 0, sizeof(cmd));
895 cmd.abort.opcode = nvme_admin_abort_cmd;
896 cmd.abort.cid = req->tag;
897 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
899 dev_warn(nvmeq->dev->ctrl.device,
900 "I/O %d QID %d timeout, aborting\n",
901 req->tag, nvmeq->qid);
903 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
905 if (IS_ERR(abort_req)) {
906 atomic_inc(&dev->ctrl.abort_limit);
907 return BLK_EH_RESET_TIMER;
910 abort_req->timeout = ADMIN_TIMEOUT;
911 abort_req->end_io_data = NULL;
912 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
915 * The aborted req will be completed on receiving the abort req.
916 * We enable the timer again. If hit twice, it'll cause a device reset,
917 * as the device then is in a faulty state.
919 return BLK_EH_RESET_TIMER;
922 static void nvme_cancel_io(struct request *req, void *data, bool reserved)
926 if (!blk_mq_request_started(req))
929 dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
930 "Cancelling I/O %d", req->tag);
932 status = NVME_SC_ABORT_REQ;
933 if (blk_queue_dying(req->q))
934 status |= NVME_SC_DNR;
935 blk_mq_complete_request(req, status);
938 static void nvme_free_queue(struct nvme_queue *nvmeq)
940 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
941 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
943 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
944 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
948 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
952 for (i = dev->queue_count - 1; i >= lowest; i--) {
953 struct nvme_queue *nvmeq = dev->queues[i];
955 dev->queues[i] = NULL;
956 nvme_free_queue(nvmeq);
961 * nvme_suspend_queue - put queue into suspended state
962 * @nvmeq - queue to suspend
964 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
968 spin_lock_irq(&nvmeq->q_lock);
969 if (nvmeq->cq_vector == -1) {
970 spin_unlock_irq(&nvmeq->q_lock);
973 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
974 nvmeq->dev->online_queues--;
975 nvmeq->cq_vector = -1;
976 spin_unlock_irq(&nvmeq->q_lock);
978 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
979 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
981 irq_set_affinity_hint(vector, NULL);
982 free_irq(vector, nvmeq);
987 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
989 struct nvme_queue *nvmeq = dev->queues[0];
993 if (nvme_suspend_queue(nvmeq))
997 nvme_shutdown_ctrl(&dev->ctrl);
999 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1000 dev->bar + NVME_REG_CAP));
1002 spin_lock_irq(&nvmeq->q_lock);
1003 nvme_process_cq(nvmeq);
1004 spin_unlock_irq(&nvmeq->q_lock);
1007 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1010 int q_depth = dev->q_depth;
1011 unsigned q_size_aligned = roundup(q_depth * entry_size,
1012 dev->ctrl.page_size);
1014 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1015 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1016 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1017 q_depth = div_u64(mem_per_q, entry_size);
1020 * Ensure the reduced q_depth is above some threshold where it
1021 * would be better to map queues in system memory with the
1031 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1034 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1035 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1036 dev->ctrl.page_size);
1037 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1038 nvmeq->sq_cmds_io = dev->cmb + offset;
1040 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1041 &nvmeq->sq_dma_addr, GFP_KERNEL);
1042 if (!nvmeq->sq_cmds)
1049 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1056 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1057 &nvmeq->cq_dma_addr, GFP_KERNEL);
1061 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1064 nvmeq->q_dmadev = dev->dev;
1066 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1067 dev->ctrl.instance, qid);
1068 spin_lock_init(&nvmeq->q_lock);
1070 nvmeq->cq_phase = 1;
1071 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072 nvmeq->q_depth = depth;
1074 nvmeq->cq_vector = -1;
1075 dev->queues[qid] = nvmeq;
1081 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1082 nvmeq->cq_dma_addr);
1088 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1091 if (use_threaded_interrupts)
1092 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1093 nvme_irq_check, nvme_irq, IRQF_SHARED,
1095 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1096 IRQF_SHARED, name, nvmeq);
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1101 struct nvme_dev *dev = nvmeq->dev;
1103 spin_lock_irq(&nvmeq->q_lock);
1106 nvmeq->cq_phase = 1;
1107 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 dev->online_queues++;
1110 spin_unlock_irq(&nvmeq->q_lock);
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1115 struct nvme_dev *dev = nvmeq->dev;
1118 nvmeq->cq_vector = qid - 1;
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1127 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1131 nvme_init_queue(nvmeq, qid);
1135 adapter_delete_sq(dev, qid);
1137 adapter_delete_cq(dev, qid);
1141 static struct blk_mq_ops nvme_mq_admin_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .map_queue = blk_mq_map_queue,
1145 .init_hctx = nvme_admin_init_hctx,
1146 .exit_hctx = nvme_admin_exit_hctx,
1147 .init_request = nvme_admin_init_request,
1148 .timeout = nvme_timeout,
1151 static struct blk_mq_ops nvme_mq_ops = {
1152 .queue_rq = nvme_queue_rq,
1153 .complete = nvme_complete_rq,
1154 .map_queue = blk_mq_map_queue,
1155 .init_hctx = nvme_init_hctx,
1156 .init_request = nvme_init_request,
1157 .timeout = nvme_timeout,
1161 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1163 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1165 * If the controller was reset during removal, it's possible
1166 * user requests may be waiting on a stopped queue. Start the
1167 * queue to flush these to completion.
1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 blk_cleanup_queue(dev->ctrl.admin_q);
1171 blk_mq_free_tag_set(&dev->admin_tagset);
1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1177 if (!dev->ctrl.admin_q) {
1178 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 dev->admin_tagset.nr_hw_queues = 1;
1182 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1185 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 dev->admin_tagset.driver_data = dev;
1191 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1194 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 if (IS_ERR(dev->ctrl.admin_q)) {
1196 blk_mq_free_tag_set(&dev->admin_tagset);
1199 if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 nvme_dev_remove_admin(dev);
1201 dev->ctrl.admin_q = NULL;
1205 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1210 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1214 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 struct nvme_queue *nvmeq;
1217 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 NVME_CAP_NSSRC(cap) : 0;
1220 if (dev->subsystem &&
1221 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1224 result = nvme_disable_ctrl(&dev->ctrl, cap);
1228 nvmeq = dev->queues[0];
1230 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1235 aqa = nvmeq->q_depth - 1;
1238 writel(aqa, dev->bar + NVME_REG_AQA);
1239 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1242 result = nvme_enable_ctrl(&dev->ctrl, cap);
1246 nvmeq->cq_vector = 0;
1247 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1249 nvmeq->cq_vector = -1;
1256 nvme_free_queues(dev, 0);
1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1263 /* If true, indicates loss of adapter communication, possibly by a
1264 * NVMe Subsystem reset.
1266 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1268 /* If there is a reset ongoing, we shouldn't reset again. */
1269 if (work_busy(&dev->reset_work))
1272 /* We shouldn't reset unless the controller is on fatal error state
1273 * _or_ if we lost the communication with it.
1275 if (!(csts & NVME_CSTS_CFS) && !nssro)
1278 /* If PCI error recovery process is happening, we cannot reset or
1279 * the recovery mechanism will surely fail.
1281 if (pci_channel_offline(to_pci_dev(dev->dev)))
1287 static void nvme_watchdog_timer(unsigned long data)
1289 struct nvme_dev *dev = (struct nvme_dev *)data;
1290 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1292 /* Skip controllers under certain specific conditions. */
1293 if (nvme_should_reset(dev, csts)) {
1294 if (queue_work(nvme_workq, &dev->reset_work))
1296 "Failed status: 0x%x, reset controller.\n",
1301 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1304 static int nvme_create_io_queues(struct nvme_dev *dev)
1309 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1316 max = min(dev->max_qid, dev->queue_count - 1);
1317 for (i = dev->online_queues; i <= max; i++) {
1318 ret = nvme_create_queue(dev->queues[i], i);
1320 nvme_free_queues(dev, i);
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1331 return ret >= 0 ? 0 : ret;
1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1336 u64 szu, size, offset;
1338 resource_size_t bar_size;
1339 struct pci_dev *pdev = to_pci_dev(dev->dev);
1341 dma_addr_t dma_addr;
1346 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 if (!(NVME_CMB_SZ(dev->cmbsz)))
1350 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1352 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 offset = szu * NVME_CMB_OFST(cmbloc);
1355 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1357 if (offset > bar_size)
1361 * Controllers may support a CMB size larger than their BAR,
1362 * for example, due to being behind a bridge. Reduce the CMB to
1363 * the reported size of the BAR
1365 if (size > bar_size - offset)
1366 size = bar_size - offset;
1368 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 cmb = ioremap_wc(dma_addr, size);
1373 dev->cmb_dma_addr = dma_addr;
1374 dev->cmb_size = size;
1378 static inline void nvme_release_cmb(struct nvme_dev *dev)
1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1388 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1391 static int nvme_setup_io_queues(struct nvme_dev *dev)
1393 struct nvme_queue *adminq = dev->queues[0];
1394 struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 int result, i, vecs, nr_io_queues, size;
1397 nr_io_queues = num_online_cpus();
1398 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1403 * Degraded controllers might return an error when setting the queue
1404 * count. We still want to be able to bring them online and offer
1405 * access to the admin queue, as that might be only way to fix them up.
1408 dev_err(dev->ctrl.device,
1409 "Could not set queue count (%d)\n", result);
1413 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1414 result = nvme_cmb_qdepth(dev, nr_io_queues,
1415 sizeof(struct nvme_command));
1417 dev->q_depth = result;
1419 nvme_release_cmb(dev);
1422 size = db_bar_size(dev, nr_io_queues);
1426 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1429 if (!--nr_io_queues)
1431 size = db_bar_size(dev, nr_io_queues);
1433 dev->dbs = dev->bar + 4096;
1434 adminq->q_db = dev->dbs;
1437 /* Deregister the admin queue's interrupt */
1438 free_irq(dev->entry[0].vector, adminq);
1441 * If we enable msix early due to not intx, disable it again before
1442 * setting up the full range we need.
1444 if (pdev->msi_enabled)
1445 pci_disable_msi(pdev);
1446 else if (pdev->msix_enabled)
1447 pci_disable_msix(pdev);
1449 for (i = 0; i < nr_io_queues; i++)
1450 dev->entry[i].entry = i;
1451 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1453 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1457 for (i = 0; i < vecs; i++)
1458 dev->entry[i].vector = i + pdev->irq;
1463 * Should investigate if there's a performance win from allocating
1464 * more queues than interrupt vectors; it might allow the submission
1465 * path to scale better, even if the receive path is limited by the
1466 * number of interrupts.
1468 nr_io_queues = vecs;
1469 dev->max_qid = nr_io_queues;
1471 result = queue_request_irq(dev, adminq, adminq->irqname);
1473 adminq->cq_vector = -1;
1476 return nvme_create_io_queues(dev);
1479 nvme_free_queues(dev, 1);
1483 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1485 struct nvme_dev *dev = to_nvme_dev(ctrl);
1486 struct nvme_queue *nvmeq;
1489 for (i = 0; i < dev->online_queues; i++) {
1490 nvmeq = dev->queues[i];
1492 if (!nvmeq->tags || !(*nvmeq->tags))
1495 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1496 blk_mq_tags_cpumask(*nvmeq->tags));
1500 static void nvme_del_queue_end(struct request *req, int error)
1502 struct nvme_queue *nvmeq = req->end_io_data;
1504 blk_mq_free_request(req);
1505 complete(&nvmeq->dev->ioq_wait);
1508 static void nvme_del_cq_end(struct request *req, int error)
1510 struct nvme_queue *nvmeq = req->end_io_data;
1513 unsigned long flags;
1516 * We might be called with the AQ q_lock held
1517 * and the I/O queue q_lock should always
1518 * nest inside the AQ one.
1520 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1521 SINGLE_DEPTH_NESTING);
1522 nvme_process_cq(nvmeq);
1523 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1526 nvme_del_queue_end(req, error);
1529 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1531 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1532 struct request *req;
1533 struct nvme_command cmd;
1535 memset(&cmd, 0, sizeof(cmd));
1536 cmd.delete_queue.opcode = opcode;
1537 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1539 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1541 return PTR_ERR(req);
1543 req->timeout = ADMIN_TIMEOUT;
1544 req->end_io_data = nvmeq;
1546 blk_execute_rq_nowait(q, NULL, req, false,
1547 opcode == nvme_admin_delete_cq ?
1548 nvme_del_cq_end : nvme_del_queue_end);
1552 static void nvme_disable_io_queues(struct nvme_dev *dev)
1554 int pass, queues = dev->online_queues - 1;
1555 unsigned long timeout;
1556 u8 opcode = nvme_admin_delete_sq;
1558 for (pass = 0; pass < 2; pass++) {
1559 int sent = 0, i = queues;
1561 reinit_completion(&dev->ioq_wait);
1563 timeout = ADMIN_TIMEOUT;
1564 for (; i > 0; i--) {
1565 struct nvme_queue *nvmeq = dev->queues[i];
1568 nvme_suspend_queue(nvmeq);
1569 if (nvme_delete_queue(nvmeq, opcode))
1574 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1580 opcode = nvme_admin_delete_cq;
1585 * Return: error value if an error occurred setting up the queues or calling
1586 * Identify Device. 0 if these succeeded, even if adding some of the
1587 * namespaces failed. At the moment, these failures are silent. TBD which
1588 * failures should be reported.
1590 static int nvme_dev_add(struct nvme_dev *dev)
1592 if (!dev->ctrl.tagset) {
1593 dev->tagset.ops = &nvme_mq_ops;
1594 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1595 dev->tagset.timeout = NVME_IO_TIMEOUT;
1596 dev->tagset.numa_node = dev_to_node(dev->dev);
1597 dev->tagset.queue_depth =
1598 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1599 dev->tagset.cmd_size = nvme_cmd_size(dev);
1600 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1601 dev->tagset.driver_data = dev;
1603 if (blk_mq_alloc_tag_set(&dev->tagset))
1605 dev->ctrl.tagset = &dev->tagset;
1607 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1609 /* Free previously allocated queues that are no longer usable */
1610 nvme_free_queues(dev, dev->online_queues);
1616 static int nvme_pci_enable(struct nvme_dev *dev)
1619 int result = -ENOMEM;
1620 struct pci_dev *pdev = to_pci_dev(dev->dev);
1622 if (pci_enable_device_mem(pdev))
1625 pci_set_master(pdev);
1627 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1628 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1631 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1637 * Some devices and/or platforms don't advertise or work with INTx
1638 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1639 * adjust this later.
1641 if (pci_enable_msix(pdev, dev->entry, 1)) {
1642 pci_enable_msi(pdev);
1643 dev->entry[0].vector = pdev->irq;
1646 if (!dev->entry[0].vector) {
1651 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1653 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1654 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1655 dev->dbs = dev->bar + 4096;
1658 * Temporary fix for the Apple controller found in the MacBook8,1 and
1659 * some MacBook7,1 to avoid controller resets and data loss.
1661 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1663 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1664 "queue depth=%u to work around controller resets\n",
1668 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1669 dev->cmb = nvme_map_cmb(dev);
1671 pci_enable_pcie_error_reporting(pdev);
1672 pci_save_state(pdev);
1676 pci_disable_device(pdev);
1680 static void nvme_dev_unmap(struct nvme_dev *dev)
1684 pci_release_regions(to_pci_dev(dev->dev));
1687 static void nvme_pci_disable(struct nvme_dev *dev)
1689 struct pci_dev *pdev = to_pci_dev(dev->dev);
1691 if (pdev->msi_enabled)
1692 pci_disable_msi(pdev);
1693 else if (pdev->msix_enabled)
1694 pci_disable_msix(pdev);
1696 if (pci_is_enabled(pdev)) {
1697 pci_disable_pcie_error_reporting(pdev);
1698 pci_disable_device(pdev);
1702 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1707 del_timer_sync(&dev->watchdog_timer);
1709 mutex_lock(&dev->shutdown_lock);
1710 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1711 nvme_stop_queues(&dev->ctrl);
1712 csts = readl(dev->bar + NVME_REG_CSTS);
1714 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1715 for (i = dev->queue_count - 1; i >= 0; i--) {
1716 struct nvme_queue *nvmeq = dev->queues[i];
1717 nvme_suspend_queue(nvmeq);
1720 nvme_disable_io_queues(dev);
1721 nvme_disable_admin_queue(dev, shutdown);
1723 nvme_pci_disable(dev);
1725 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1726 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1727 mutex_unlock(&dev->shutdown_lock);
1730 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1732 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1733 PAGE_SIZE, PAGE_SIZE, 0);
1734 if (!dev->prp_page_pool)
1737 /* Optimisation for I/Os between 4k and 128k */
1738 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1740 if (!dev->prp_small_pool) {
1741 dma_pool_destroy(dev->prp_page_pool);
1747 static void nvme_release_prp_pools(struct nvme_dev *dev)
1749 dma_pool_destroy(dev->prp_page_pool);
1750 dma_pool_destroy(dev->prp_small_pool);
1753 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1755 struct nvme_dev *dev = to_nvme_dev(ctrl);
1757 put_device(dev->dev);
1758 if (dev->tagset.tags)
1759 blk_mq_free_tag_set(&dev->tagset);
1760 if (dev->ctrl.admin_q)
1761 blk_put_queue(dev->ctrl.admin_q);
1767 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1769 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1771 kref_get(&dev->ctrl.kref);
1772 nvme_dev_disable(dev, false);
1773 if (!schedule_work(&dev->remove_work))
1774 nvme_put_ctrl(&dev->ctrl);
1777 static void nvme_reset_work(struct work_struct *work)
1779 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1780 int result = -ENODEV;
1782 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1786 * If we're called to reset a live controller first shut it down before
1789 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1790 nvme_dev_disable(dev, false);
1792 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1795 result = nvme_pci_enable(dev);
1799 result = nvme_configure_admin_queue(dev);
1803 nvme_init_queue(dev->queues[0], 0);
1804 result = nvme_alloc_admin_tags(dev);
1808 result = nvme_init_identify(&dev->ctrl);
1812 result = nvme_setup_io_queues(dev);
1817 * A controller that can not execute IO typically requires user
1818 * intervention to correct. For such degraded controllers, the driver
1819 * should not submit commands the user did not request, so skip
1820 * registering for asynchronous event notification on this condition.
1822 if (dev->online_queues > 1)
1823 nvme_queue_async_events(&dev->ctrl);
1825 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1828 * Keep the controller around but remove all namespaces if we don't have
1829 * any working I/O queue.
1831 if (dev->online_queues < 2) {
1832 dev_warn(dev->ctrl.device, "IO queues not created\n");
1833 nvme_kill_queues(&dev->ctrl);
1834 nvme_remove_namespaces(&dev->ctrl);
1836 nvme_start_queues(&dev->ctrl);
1840 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1841 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1845 if (dev->online_queues > 1)
1846 nvme_queue_scan(&dev->ctrl);
1850 nvme_remove_dead_ctrl(dev, result);
1853 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1855 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1856 struct pci_dev *pdev = to_pci_dev(dev->dev);
1858 nvme_kill_queues(&dev->ctrl);
1859 if (pci_get_drvdata(pdev))
1860 device_release_driver(&pdev->dev);
1861 nvme_put_ctrl(&dev->ctrl);
1864 static int nvme_reset(struct nvme_dev *dev)
1866 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1869 if (!queue_work(nvme_workq, &dev->reset_work))
1872 flush_work(&dev->reset_work);
1876 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1878 *val = readl(to_nvme_dev(ctrl)->bar + off);
1882 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1884 writel(val, to_nvme_dev(ctrl)->bar + off);
1888 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1890 *val = readq(to_nvme_dev(ctrl)->bar + off);
1894 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1896 return nvme_reset(to_nvme_dev(ctrl));
1899 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1900 .module = THIS_MODULE,
1901 .reg_read32 = nvme_pci_reg_read32,
1902 .reg_write32 = nvme_pci_reg_write32,
1903 .reg_read64 = nvme_pci_reg_read64,
1904 .reset_ctrl = nvme_pci_reset_ctrl,
1905 .free_ctrl = nvme_pci_free_ctrl,
1906 .post_scan = nvme_pci_post_scan,
1907 .submit_async_event = nvme_pci_submit_async_event,
1910 static int nvme_dev_map(struct nvme_dev *dev)
1913 struct pci_dev *pdev = to_pci_dev(dev->dev);
1915 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1918 if (pci_request_selected_regions(pdev, bars, "nvme"))
1921 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1927 pci_release_regions(pdev);
1931 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1933 int node, result = -ENOMEM;
1934 struct nvme_dev *dev;
1936 node = dev_to_node(&pdev->dev);
1937 if (node == NUMA_NO_NODE)
1938 set_dev_node(&pdev->dev, 0);
1940 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1943 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1947 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1952 dev->dev = get_device(&pdev->dev);
1953 pci_set_drvdata(pdev, dev);
1955 result = nvme_dev_map(dev);
1959 INIT_WORK(&dev->reset_work, nvme_reset_work);
1960 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1961 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1962 (unsigned long)dev);
1963 mutex_init(&dev->shutdown_lock);
1964 init_completion(&dev->ioq_wait);
1966 result = nvme_setup_prp_pools(dev);
1970 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1975 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1977 queue_work(nvme_workq, &dev->reset_work);
1981 nvme_release_prp_pools(dev);
1983 put_device(dev->dev);
1984 nvme_dev_unmap(dev);
1992 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1994 struct nvme_dev *dev = pci_get_drvdata(pdev);
1997 nvme_dev_disable(dev, false);
1999 queue_work(nvme_workq, &dev->reset_work);
2002 static void nvme_shutdown(struct pci_dev *pdev)
2004 struct nvme_dev *dev = pci_get_drvdata(pdev);
2005 nvme_dev_disable(dev, true);
2009 * The driver's remove may be called on a device in a partially initialized
2010 * state. This function must not have any dependencies on the device state in
2013 static void nvme_remove(struct pci_dev *pdev)
2015 struct nvme_dev *dev = pci_get_drvdata(pdev);
2017 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2019 pci_set_drvdata(pdev, NULL);
2021 if (!pci_device_is_present(pdev))
2022 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2024 flush_work(&dev->reset_work);
2025 nvme_uninit_ctrl(&dev->ctrl);
2026 nvme_dev_disable(dev, true);
2027 nvme_dev_remove_admin(dev);
2028 nvme_free_queues(dev, 0);
2029 nvme_release_cmb(dev);
2030 nvme_release_prp_pools(dev);
2031 nvme_dev_unmap(dev);
2032 nvme_put_ctrl(&dev->ctrl);
2035 #ifdef CONFIG_PM_SLEEP
2036 static int nvme_suspend(struct device *dev)
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2041 nvme_dev_disable(ndev, true);
2045 static int nvme_resume(struct device *dev)
2047 struct pci_dev *pdev = to_pci_dev(dev);
2048 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2050 queue_work(nvme_workq, &ndev->reset_work);
2055 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2057 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058 pci_channel_state_t state)
2060 struct nvme_dev *dev = pci_get_drvdata(pdev);
2063 * A frozen channel requires a reset. When detected, this method will
2064 * shutdown the controller to quiesce. The controller will be restarted
2065 * after the slot reset through driver's slot_reset callback.
2068 case pci_channel_io_normal:
2069 return PCI_ERS_RESULT_CAN_RECOVER;
2070 case pci_channel_io_frozen:
2071 dev_warn(dev->ctrl.device,
2072 "frozen state error detected, reset controller\n");
2073 nvme_dev_disable(dev, false);
2074 return PCI_ERS_RESULT_NEED_RESET;
2075 case pci_channel_io_perm_failure:
2076 dev_warn(dev->ctrl.device,
2077 "failure state error detected, request disconnect\n");
2078 return PCI_ERS_RESULT_DISCONNECT;
2080 return PCI_ERS_RESULT_NEED_RESET;
2083 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
2087 dev_info(dev->ctrl.device, "restart after slot reset\n");
2088 pci_restore_state(pdev);
2089 queue_work(nvme_workq, &dev->reset_work);
2090 return PCI_ERS_RESULT_RECOVERED;
2093 static void nvme_error_resume(struct pci_dev *pdev)
2095 pci_cleanup_aer_uncorrect_error_status(pdev);
2098 static const struct pci_error_handlers nvme_err_handler = {
2099 .error_detected = nvme_error_detected,
2100 .slot_reset = nvme_slot_reset,
2101 .resume = nvme_error_resume,
2102 .reset_notify = nvme_reset_notify,
2105 /* Move to pci_ids.h later */
2106 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2108 static const struct pci_device_id nvme_id_table[] = {
2109 { PCI_VDEVICE(INTEL, 0x0953),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a53),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
2115 { PCI_VDEVICE(INTEL, 0x0a54),
2116 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2117 NVME_QUIRK_DISCARD_ZEROES, },
2118 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2119 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2120 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2121 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2124 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2126 static struct pci_driver nvme_driver = {
2128 .id_table = nvme_id_table,
2129 .probe = nvme_probe,
2130 .remove = nvme_remove,
2131 .shutdown = nvme_shutdown,
2133 .pm = &nvme_dev_pm_ops,
2135 .err_handler = &nvme_err_handler,
2138 static int __init nvme_init(void)
2142 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2146 result = pci_register_driver(&nvme_driver);
2148 destroy_workqueue(nvme_workq);
2152 static void __exit nvme_exit(void)
2154 pci_unregister_driver(&nvme_driver);
2155 destroy_workqueue(nvme_workq);
2160 MODULE_LICENSE("GPL");
2161 MODULE_VERSION("1.0");
2162 module_init(nvme_init);
2163 module_exit(nvme_exit);