2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
64 #include <linux/local_lock.h>
66 #define ZSPAGE_MAGIC 0x58
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * a single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
108 #define OBJ_ALLOCATED_TAG 1
112 * The second least-significant bit in the object's header identifies if the
113 * value stored at the header is a deferred handle from the last reclaim
116 * As noted above, this is valid because we have room for two bits.
118 #define OBJ_DEFERRED_HANDLE_TAG 2
119 #define OBJ_TAG_BITS 2
120 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
122 #define OBJ_TAG_BITS 1
123 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
126 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
130 #define FULLNESS_BITS 4
132 #define ISOLATED_BITS 5
133 #define MAGIC_VAL_BITS 8
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
146 * On systems with 4K page size, this gives 255 size classes! There is a
148 * - Large number of size classes is potentially wasteful as free page are
149 * spread across these classes
150 * - Small number of size classes causes large internal fragmentation
151 * - Probably its better to use specific size classes (empirically
152 * determined). NOTE: all those class sizes must be set as multiple of
153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 ZS_SIZE_CLASS_DELTA) + 1)
163 * Pages are distinguished by the ratio of used memory (that is the ratio
164 * of ->inuse objects to all objects that page can store). For example,
165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
167 * The number of fullness groups is not random. It allows us to keep
168 * difference between the least busy page in the group (minimum permitted
169 * number of ->inuse objects) and the most busy page (maximum permitted
170 * number of ->inuse objects) at a reasonable value.
172 enum fullness_group {
175 /* NOTE: 8 more fullness groups here */
176 ZS_INUSE_RATIO_99 = 10,
181 enum class_stat_type {
182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
188 struct zs_size_stat {
189 unsigned long objs[NR_CLASS_STAT_TYPES];
192 #ifdef CONFIG_ZSMALLOC_STAT
193 static struct dentry *zs_stat_root;
196 static size_t huge_class_size;
199 struct list_head fullness_list[NR_FULLNESS_GROUPS];
201 * Size of objects stored in this class. Must be multiple
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
210 struct zs_size_stat stats;
214 * Placed within free objects to form a singly linked list.
215 * For every zspage, zspage->freeobj gives head of this list.
217 * This must be power of 2 and less than or equal to ZS_ALIGN
223 * It's valid for non-allocated object
227 * Handle of allocated object.
229 unsigned long handle;
232 * Deferred handle of a reclaimed object.
234 unsigned long deferred_handle;
242 struct size_class *size_class[ZS_SIZE_CLASSES];
243 struct kmem_cache *handle_cachep;
244 struct kmem_cache *zspage_cachep;
246 atomic_long_t pages_allocated;
248 struct zs_pool_stats stats;
250 /* Compact classes */
251 struct shrinker shrinker;
254 /* List tracking the zspages in LRU order by most recently added object */
255 struct list_head lru;
257 const struct zpool_ops *zpool_ops;
260 #ifdef CONFIG_ZSMALLOC_STAT
261 struct dentry *stat_dentry;
263 #ifdef CONFIG_COMPACTION
264 struct work_struct free_work;
267 atomic_t compaction_in_progress;
272 unsigned int huge:HUGE_BITS;
273 unsigned int fullness:FULLNESS_BITS;
274 unsigned int class:CLASS_BITS + 1;
275 unsigned int isolated:ISOLATED_BITS;
276 unsigned int magic:MAGIC_VAL_BITS;
279 unsigned int freeobj;
280 struct page *first_page;
281 struct list_head list; /* fullness list */
284 /* links the zspage to the lru list in the pool */
285 struct list_head lru;
289 struct zs_pool *pool;
293 struct mapping_area {
295 char *vm_buf; /* copy buffer for objects that span pages */
296 char *vm_addr; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm; /* mapping mode */
300 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
301 static void SetZsHugePage(struct zspage *zspage)
306 static bool ZsHugePage(struct zspage *zspage)
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
315 #ifdef CONFIG_COMPACTION
316 static void migrate_write_lock(struct zspage *zspage);
317 static void migrate_write_lock_nested(struct zspage *zspage);
318 static void migrate_write_unlock(struct zspage *zspage);
319 static void kick_deferred_free(struct zs_pool *pool);
320 static void init_deferred_free(struct zs_pool *pool);
321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
323 static void migrate_write_lock(struct zspage *zspage) {}
324 static void migrate_write_lock_nested(struct zspage *zspage) {}
325 static void migrate_write_unlock(struct zspage *zspage) {}
326 static void kick_deferred_free(struct zs_pool *pool) {}
327 static void init_deferred_free(struct zs_pool *pool) {}
328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
331 static int create_cache(struct zs_pool *pool)
333 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
335 if (!pool->handle_cachep)
338 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
340 if (!pool->zspage_cachep) {
341 kmem_cache_destroy(pool->handle_cachep);
342 pool->handle_cachep = NULL;
349 static void destroy_cache(struct zs_pool *pool)
351 kmem_cache_destroy(pool->handle_cachep);
352 kmem_cache_destroy(pool->zspage_cachep);
355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
357 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
358 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
363 kmem_cache_free(pool->handle_cachep, (void *)handle);
366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
368 return kmem_cache_zalloc(pool->zspage_cachep,
369 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
374 kmem_cache_free(pool->zspage_cachep, zspage);
377 /* pool->lock(which owns the handle) synchronizes races */
378 static void record_obj(unsigned long handle, unsigned long obj)
380 *(unsigned long *)handle = obj;
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388 const struct zpool_ops *zpool_ops,
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
396 struct zs_pool *pool = zs_create_pool(name);
400 pool->zpool_ops = zpool_ops;
406 static void zs_zpool_destroy(void *pool)
408 zs_destroy_pool(pool);
411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
412 unsigned long *handle)
414 *handle = zs_malloc(pool, size, gfp);
416 if (IS_ERR_VALUE(*handle))
417 return PTR_ERR((void *)*handle);
420 static void zs_zpool_free(void *pool, unsigned long handle)
422 zs_free(pool, handle);
425 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
427 static int zs_zpool_shrink(void *pool, unsigned int pages,
428 unsigned int *reclaimed)
430 unsigned int total = 0;
433 while (total < pages) {
434 ret = zs_reclaim_page(pool, 8);
446 static void *zs_zpool_map(void *pool, unsigned long handle,
447 enum zpool_mapmode mm)
449 enum zs_mapmode zs_mm;
464 return zs_map_object(pool, handle, zs_mm);
466 static void zs_zpool_unmap(void *pool, unsigned long handle)
468 zs_unmap_object(pool, handle);
471 static u64 zs_zpool_total_size(void *pool)
473 return zs_get_total_pages(pool) << PAGE_SHIFT;
476 static struct zpool_driver zs_zpool_driver = {
478 .owner = THIS_MODULE,
479 .create = zs_zpool_create,
480 .destroy = zs_zpool_destroy,
481 .malloc_support_movable = true,
482 .malloc = zs_zpool_malloc,
483 .free = zs_zpool_free,
484 .shrink = zs_zpool_shrink,
486 .unmap = zs_zpool_unmap,
487 .total_size = zs_zpool_total_size,
490 MODULE_ALIAS("zpool-zsmalloc");
491 #endif /* CONFIG_ZPOOL */
493 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
494 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
495 .lock = INIT_LOCAL_LOCK(lock),
498 static __maybe_unused int is_first_page(struct page *page)
500 return PagePrivate(page);
503 /* Protected by pool->lock */
504 static inline int get_zspage_inuse(struct zspage *zspage)
506 return zspage->inuse;
510 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
512 zspage->inuse += val;
515 static inline struct page *get_first_page(struct zspage *zspage)
517 struct page *first_page = zspage->first_page;
519 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
523 static inline unsigned int get_first_obj_offset(struct page *page)
525 return page->page_type;
528 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
530 page->page_type = offset;
533 static inline unsigned int get_freeobj(struct zspage *zspage)
535 return zspage->freeobj;
538 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
540 zspage->freeobj = obj;
543 static void get_zspage_mapping(struct zspage *zspage,
544 unsigned int *class_idx,
547 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
549 *fullness = zspage->fullness;
550 *class_idx = zspage->class;
553 static struct size_class *zspage_class(struct zs_pool *pool,
554 struct zspage *zspage)
556 return pool->size_class[zspage->class];
559 static void set_zspage_mapping(struct zspage *zspage,
560 unsigned int class_idx,
563 zspage->class = class_idx;
564 zspage->fullness = fullness;
568 * zsmalloc divides the pool into various size classes where each
569 * class maintains a list of zspages where each zspage is divided
570 * into equal sized chunks. Each allocation falls into one of these
571 * classes depending on its size. This function returns index of the
572 * size class which has chunk size big enough to hold the given size.
574 static int get_size_class_index(int size)
578 if (likely(size > ZS_MIN_ALLOC_SIZE))
579 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
580 ZS_SIZE_CLASS_DELTA);
582 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
585 static inline void class_stat_inc(struct size_class *class,
586 int type, unsigned long cnt)
588 class->stats.objs[type] += cnt;
591 static inline void class_stat_dec(struct size_class *class,
592 int type, unsigned long cnt)
594 class->stats.objs[type] -= cnt;
597 static inline unsigned long zs_stat_get(struct size_class *class, int type)
599 return class->stats.objs[type];
602 #ifdef CONFIG_ZSMALLOC_STAT
604 static void __init zs_stat_init(void)
606 if (!debugfs_initialized()) {
607 pr_warn("debugfs not available, stat dir not created\n");
611 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
614 static void __exit zs_stat_exit(void)
616 debugfs_remove_recursive(zs_stat_root);
619 static unsigned long zs_can_compact(struct size_class *class);
621 static int zs_stats_size_show(struct seq_file *s, void *v)
624 struct zs_pool *pool = s->private;
625 struct size_class *class;
627 unsigned long obj_allocated, obj_used, pages_used, freeable;
628 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
629 unsigned long total_freeable = 0;
630 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
632 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
633 "class", "size", "10%", "20%", "30%", "40%",
634 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
635 "obj_allocated", "obj_used", "pages_used",
636 "pages_per_zspage", "freeable");
638 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
640 class = pool->size_class[i];
642 if (class->index != i)
645 spin_lock(&pool->lock);
647 seq_printf(s, " %5u %5u ", i, class->size);
648 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
649 inuse_totals[fg] += zs_stat_get(class, fg);
650 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
653 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
654 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
655 freeable = zs_can_compact(class);
656 spin_unlock(&pool->lock);
658 objs_per_zspage = class->objs_per_zspage;
659 pages_used = obj_allocated / objs_per_zspage *
660 class->pages_per_zspage;
662 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
663 obj_allocated, obj_used, pages_used,
664 class->pages_per_zspage, freeable);
666 total_objs += obj_allocated;
667 total_used_objs += obj_used;
668 total_pages += pages_used;
669 total_freeable += freeable;
673 seq_printf(s, " %5s %5s ", "Total", "");
675 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
676 seq_printf(s, "%9lu ", inuse_totals[fg]);
678 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
679 total_objs, total_used_objs, total_pages, "",
684 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
686 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
689 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
693 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
695 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
696 &zs_stats_size_fops);
699 static void zs_pool_stat_destroy(struct zs_pool *pool)
701 debugfs_remove_recursive(pool->stat_dentry);
704 #else /* CONFIG_ZSMALLOC_STAT */
705 static void __init zs_stat_init(void)
709 static void __exit zs_stat_exit(void)
713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
717 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
724 * For each size class, zspages are divided into different groups
725 * depending on their usage ratio. This function returns fullness
726 * status of the given page.
728 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
730 int inuse, objs_per_zspage, ratio;
732 inuse = get_zspage_inuse(zspage);
733 objs_per_zspage = class->objs_per_zspage;
736 return ZS_INUSE_RATIO_0;
737 if (inuse == objs_per_zspage)
738 return ZS_INUSE_RATIO_100;
740 ratio = 100 * inuse / objs_per_zspage;
742 * Take integer division into consideration: a page with one inuse
743 * object out of 127 possible, will end up having 0 usage ratio,
744 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
746 return ratio / 10 + 1;
750 * Each size class maintains various freelists and zspages are assigned
751 * to one of these freelists based on the number of live objects they
752 * have. This functions inserts the given zspage into the freelist
753 * identified by <class, fullness_group>.
755 static void insert_zspage(struct size_class *class,
756 struct zspage *zspage,
759 class_stat_inc(class, fullness, 1);
760 list_add(&zspage->list, &class->fullness_list[fullness]);
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
767 static void remove_zspage(struct size_class *class,
768 struct zspage *zspage,
771 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
773 list_del_init(&zspage->list);
774 class_stat_dec(class, fullness, 1);
778 * Each size class maintains zspages in different fullness groups depending
779 * on the number of live objects they contain. When allocating or freeing
780 * objects, the fullness status of the page can change, for instance, from
781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
782 * checks if such a status change has occurred for the given page and
783 * accordingly moves the page from the list of the old fullness group to that
784 * of the new fullness group.
786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
791 get_zspage_mapping(zspage, &class_idx, &currfg);
792 newfg = get_fullness_group(class, zspage);
796 remove_zspage(class, zspage, currfg);
797 insert_zspage(class, zspage, newfg);
798 set_zspage_mapping(zspage, class_idx, newfg);
803 static struct zspage *get_zspage(struct page *page)
805 struct zspage *zspage = (struct zspage *)page_private(page);
807 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
811 static struct page *get_next_page(struct page *page)
813 struct zspage *zspage = get_zspage(page);
815 if (unlikely(ZsHugePage(zspage)))
818 return (struct page *)page->index;
822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
823 * @obj: the encoded object value
824 * @page: page object resides in zspage
825 * @obj_idx: object index
827 static void obj_to_location(unsigned long obj, struct page **page,
828 unsigned int *obj_idx)
830 obj >>= OBJ_TAG_BITS;
831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 *obj_idx = (obj & OBJ_INDEX_MASK);
835 static void obj_to_page(unsigned long obj, struct page **page)
837 obj >>= OBJ_TAG_BITS;
838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843 * @page: page object resides in zspage
844 * @obj_idx: object index
846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
850 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
851 obj |= obj_idx & OBJ_INDEX_MASK;
852 obj <<= OBJ_TAG_BITS;
857 static unsigned long handle_to_obj(unsigned long handle)
859 return *(unsigned long *)handle;
862 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
865 unsigned long handle;
866 struct zspage *zspage = get_zspage(page);
868 if (unlikely(ZsHugePage(zspage))) {
869 VM_BUG_ON_PAGE(!is_first_page(page), page);
870 handle = page->index;
872 handle = *(unsigned long *)obj;
877 /* Clear all tags before returning the handle */
878 *phandle = handle & ~OBJ_TAG_MASK;
882 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
884 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
888 static bool obj_stores_deferred_handle(struct page *page, void *obj,
889 unsigned long *phandle)
891 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
895 static void reset_page(struct page *page)
897 __ClearPageMovable(page);
898 ClearPagePrivate(page);
899 set_page_private(page, 0);
900 page_mapcount_reset(page);
904 static int trylock_zspage(struct zspage *zspage)
906 struct page *cursor, *fail;
908 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
909 get_next_page(cursor)) {
910 if (!trylock_page(cursor)) {
918 for (cursor = get_first_page(zspage); cursor != fail; cursor =
919 get_next_page(cursor))
926 static unsigned long find_deferred_handle_obj(struct size_class *class,
927 struct page *page, int *obj_idx);
930 * Free all the deferred handles whose objects are freed in zs_free.
932 static void free_handles(struct zs_pool *pool, struct size_class *class,
933 struct zspage *zspage)
936 struct page *page = get_first_page(zspage);
937 unsigned long handle;
940 handle = find_deferred_handle_obj(class, page, &obj_idx);
942 page = get_next_page(page);
949 cache_free_handle(pool, handle);
954 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
955 struct zspage *zspage) {}
958 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959 struct zspage *zspage)
961 struct page *page, *next;
963 unsigned int class_idx;
965 get_zspage_mapping(zspage, &class_idx, &fg);
967 assert_spin_locked(&pool->lock);
969 VM_BUG_ON(get_zspage_inuse(zspage));
970 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
972 /* Free all deferred handles from zs_free */
973 free_handles(pool, class, zspage);
975 next = page = get_first_page(zspage);
977 VM_BUG_ON_PAGE(!PageLocked(page), page);
978 next = get_next_page(page);
981 dec_zone_page_state(page, NR_ZSPAGES);
984 } while (page != NULL);
986 cache_free_zspage(pool, zspage);
988 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
989 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
992 static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 struct zspage *zspage)
995 VM_BUG_ON(get_zspage_inuse(zspage));
996 VM_BUG_ON(list_empty(&zspage->list));
999 * Since zs_free couldn't be sleepable, this function cannot call
1000 * lock_page. The page locks trylock_zspage got will be released
1003 if (!trylock_zspage(zspage)) {
1004 kick_deferred_free(pool);
1008 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
1010 list_del(&zspage->lru);
1012 __free_zspage(pool, class, zspage);
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class *class, struct zspage *zspage)
1018 unsigned int freeobj = 1;
1019 unsigned long off = 0;
1020 struct page *page = get_first_page(zspage);
1023 struct page *next_page;
1024 struct link_free *link;
1027 set_first_obj_offset(page, off);
1029 vaddr = kmap_atomic(page);
1030 link = (struct link_free *)vaddr + off / sizeof(*link);
1032 while ((off += class->size) < PAGE_SIZE) {
1033 link->next = freeobj++ << OBJ_TAG_BITS;
1034 link += class->size / sizeof(*link);
1038 * We now come to the last (full or partial) object on this
1039 * page, which must point to the first object on the next
1042 next_page = get_next_page(page);
1044 link->next = freeobj++ << OBJ_TAG_BITS;
1047 * Reset OBJ_TAG_BITS bit to last link to tell
1048 * whether it's allocated object or not.
1050 link->next = -1UL << OBJ_TAG_BITS;
1052 kunmap_atomic(vaddr);
1058 INIT_LIST_HEAD(&zspage->lru);
1059 zspage->under_reclaim = false;
1062 set_freeobj(zspage, 0);
1065 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1066 struct page *pages[])
1070 struct page *prev_page = NULL;
1071 int nr_pages = class->pages_per_zspage;
1074 * Allocate individual pages and link them together as:
1075 * 1. all pages are linked together using page->index
1076 * 2. each sub-page point to zspage using page->private
1078 * we set PG_private to identify the first page (i.e. no other sub-page
1079 * has this flag set).
1081 for (i = 0; i < nr_pages; i++) {
1083 set_page_private(page, (unsigned long)zspage);
1086 zspage->first_page = page;
1087 SetPagePrivate(page);
1088 if (unlikely(class->objs_per_zspage == 1 &&
1089 class->pages_per_zspage == 1))
1090 SetZsHugePage(zspage);
1092 prev_page->index = (unsigned long)page;
1099 * Allocate a zspage for the given size class
1101 static struct zspage *alloc_zspage(struct zs_pool *pool,
1102 struct size_class *class,
1106 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1107 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1112 zspage->magic = ZSPAGE_MAGIC;
1113 migrate_lock_init(zspage);
1115 for (i = 0; i < class->pages_per_zspage; i++) {
1118 page = alloc_page(gfp);
1121 dec_zone_page_state(pages[i], NR_ZSPAGES);
1122 __free_page(pages[i]);
1124 cache_free_zspage(pool, zspage);
1128 inc_zone_page_state(page, NR_ZSPAGES);
1132 create_page_chain(class, zspage, pages);
1133 init_zspage(class, zspage);
1134 zspage->pool = pool;
1139 static struct zspage *find_get_zspage(struct size_class *class)
1142 struct zspage *zspage;
1144 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1145 zspage = list_first_entry_or_null(&class->fullness_list[i],
1146 struct zspage, list);
1154 static inline int __zs_cpu_up(struct mapping_area *area)
1157 * Make sure we don't leak memory if a cpu UP notification
1158 * and zs_init() race and both call zs_cpu_up() on the same cpu
1162 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1168 static inline void __zs_cpu_down(struct mapping_area *area)
1170 kfree(area->vm_buf);
1171 area->vm_buf = NULL;
1174 static void *__zs_map_object(struct mapping_area *area,
1175 struct page *pages[2], int off, int size)
1179 char *buf = area->vm_buf;
1181 /* disable page faults to match kmap_atomic() return conditions */
1182 pagefault_disable();
1184 /* no read fastpath */
1185 if (area->vm_mm == ZS_MM_WO)
1188 sizes[0] = PAGE_SIZE - off;
1189 sizes[1] = size - sizes[0];
1191 /* copy object to per-cpu buffer */
1192 addr = kmap_atomic(pages[0]);
1193 memcpy(buf, addr + off, sizes[0]);
1194 kunmap_atomic(addr);
1195 addr = kmap_atomic(pages[1]);
1196 memcpy(buf + sizes[0], addr, sizes[1]);
1197 kunmap_atomic(addr);
1199 return area->vm_buf;
1202 static void __zs_unmap_object(struct mapping_area *area,
1203 struct page *pages[2], int off, int size)
1209 /* no write fastpath */
1210 if (area->vm_mm == ZS_MM_RO)
1214 buf = buf + ZS_HANDLE_SIZE;
1215 size -= ZS_HANDLE_SIZE;
1216 off += ZS_HANDLE_SIZE;
1218 sizes[0] = PAGE_SIZE - off;
1219 sizes[1] = size - sizes[0];
1221 /* copy per-cpu buffer to object */
1222 addr = kmap_atomic(pages[0]);
1223 memcpy(addr + off, buf, sizes[0]);
1224 kunmap_atomic(addr);
1225 addr = kmap_atomic(pages[1]);
1226 memcpy(addr, buf + sizes[0], sizes[1]);
1227 kunmap_atomic(addr);
1230 /* enable page faults to match kunmap_atomic() return conditions */
1234 static int zs_cpu_prepare(unsigned int cpu)
1236 struct mapping_area *area;
1238 area = &per_cpu(zs_map_area, cpu);
1239 return __zs_cpu_up(area);
1242 static int zs_cpu_dead(unsigned int cpu)
1244 struct mapping_area *area;
1246 area = &per_cpu(zs_map_area, cpu);
1247 __zs_cpu_down(area);
1251 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1252 int objs_per_zspage)
1254 if (prev->pages_per_zspage == pages_per_zspage &&
1255 prev->objs_per_zspage == objs_per_zspage)
1261 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1263 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1267 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1268 * that hold objects of the provided size.
1269 * @pool: zsmalloc pool to use
1270 * @size: object size
1272 * Context: Any context.
1274 * Return: the index of the zsmalloc &size_class that hold objects of the
1277 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1279 struct size_class *class;
1281 class = pool->size_class[get_size_class_index(size)];
1283 return class->index;
1285 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1287 unsigned long zs_get_total_pages(struct zs_pool *pool)
1289 return atomic_long_read(&pool->pages_allocated);
1291 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1294 * zs_map_object - get address of allocated object from handle.
1295 * @pool: pool from which the object was allocated
1296 * @handle: handle returned from zs_malloc
1297 * @mm: mapping mode to use
1299 * Before using an object allocated from zs_malloc, it must be mapped using
1300 * this function. When done with the object, it must be unmapped using
1303 * Only one object can be mapped per cpu at a time. There is no protection
1304 * against nested mappings.
1306 * This function returns with preemption and page faults disabled.
1308 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1311 struct zspage *zspage;
1313 unsigned long obj, off;
1314 unsigned int obj_idx;
1316 struct size_class *class;
1317 struct mapping_area *area;
1318 struct page *pages[2];
1322 * Because we use per-cpu mapping areas shared among the
1323 * pools/users, we can't allow mapping in interrupt context
1324 * because it can corrupt another users mappings.
1326 BUG_ON(in_interrupt());
1328 /* It guarantees it can get zspage from handle safely */
1329 spin_lock(&pool->lock);
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
1332 zspage = get_zspage(page);
1335 * migration cannot move any zpages in this zspage. Here, pool->lock
1336 * is too heavy since callers would take some time until they calls
1337 * zs_unmap_object API so delegate the locking from class to zspage
1338 * which is smaller granularity.
1340 migrate_read_lock(zspage);
1341 spin_unlock(&pool->lock);
1343 class = zspage_class(pool, zspage);
1344 off = offset_in_page(class->size * obj_idx);
1346 local_lock(&zs_map_area.lock);
1347 area = this_cpu_ptr(&zs_map_area);
1349 if (off + class->size <= PAGE_SIZE) {
1350 /* this object is contained entirely within a page */
1351 area->vm_addr = kmap_atomic(page);
1352 ret = area->vm_addr + off;
1356 /* this object spans two pages */
1358 pages[1] = get_next_page(page);
1361 ret = __zs_map_object(area, pages, off, class->size);
1363 if (likely(!ZsHugePage(zspage)))
1364 ret += ZS_HANDLE_SIZE;
1368 EXPORT_SYMBOL_GPL(zs_map_object);
1370 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1372 struct zspage *zspage;
1374 unsigned long obj, off;
1375 unsigned int obj_idx;
1377 struct size_class *class;
1378 struct mapping_area *area;
1380 obj = handle_to_obj(handle);
1381 obj_to_location(obj, &page, &obj_idx);
1382 zspage = get_zspage(page);
1383 class = zspage_class(pool, zspage);
1384 off = offset_in_page(class->size * obj_idx);
1386 area = this_cpu_ptr(&zs_map_area);
1387 if (off + class->size <= PAGE_SIZE)
1388 kunmap_atomic(area->vm_addr);
1390 struct page *pages[2];
1393 pages[1] = get_next_page(page);
1396 __zs_unmap_object(area, pages, off, class->size);
1398 local_unlock(&zs_map_area.lock);
1400 migrate_read_unlock(zspage);
1402 EXPORT_SYMBOL_GPL(zs_unmap_object);
1405 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1406 * zsmalloc &size_class.
1407 * @pool: zsmalloc pool to use
1409 * The function returns the size of the first huge class - any object of equal
1410 * or bigger size will be stored in zspage consisting of a single physical
1413 * Context: Any context.
1415 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1417 size_t zs_huge_class_size(struct zs_pool *pool)
1419 return huge_class_size;
1421 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1423 static unsigned long obj_malloc(struct zs_pool *pool,
1424 struct zspage *zspage, unsigned long handle)
1426 int i, nr_page, offset;
1428 struct link_free *link;
1429 struct size_class *class;
1431 struct page *m_page;
1432 unsigned long m_offset;
1435 class = pool->size_class[zspage->class];
1436 handle |= OBJ_ALLOCATED_TAG;
1437 obj = get_freeobj(zspage);
1439 offset = obj * class->size;
1440 nr_page = offset >> PAGE_SHIFT;
1441 m_offset = offset_in_page(offset);
1442 m_page = get_first_page(zspage);
1444 for (i = 0; i < nr_page; i++)
1445 m_page = get_next_page(m_page);
1447 vaddr = kmap_atomic(m_page);
1448 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1449 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1450 if (likely(!ZsHugePage(zspage)))
1451 /* record handle in the header of allocated chunk */
1452 link->handle = handle;
1454 /* record handle to page->index */
1455 zspage->first_page->index = handle;
1457 kunmap_atomic(vaddr);
1458 mod_zspage_inuse(zspage, 1);
1460 obj = location_to_obj(m_page, obj);
1467 * zs_malloc - Allocate block of given size from pool.
1468 * @pool: pool to allocate from
1469 * @size: size of block to allocate
1470 * @gfp: gfp flags when allocating object
1472 * On success, handle to the allocated object is returned,
1473 * otherwise an ERR_PTR().
1474 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1476 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1478 unsigned long handle, obj;
1479 struct size_class *class;
1481 struct zspage *zspage;
1483 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1484 return (unsigned long)ERR_PTR(-EINVAL);
1486 handle = cache_alloc_handle(pool, gfp);
1488 return (unsigned long)ERR_PTR(-ENOMEM);
1490 /* extra space in chunk to keep the handle */
1491 size += ZS_HANDLE_SIZE;
1492 class = pool->size_class[get_size_class_index(size)];
1494 /* pool->lock effectively protects the zpage migration */
1495 spin_lock(&pool->lock);
1496 zspage = find_get_zspage(class);
1497 if (likely(zspage)) {
1498 obj = obj_malloc(pool, zspage, handle);
1499 /* Now move the zspage to another fullness group, if required */
1500 fix_fullness_group(class, zspage);
1501 record_obj(handle, obj);
1502 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1507 spin_unlock(&pool->lock);
1509 zspage = alloc_zspage(pool, class, gfp);
1511 cache_free_handle(pool, handle);
1512 return (unsigned long)ERR_PTR(-ENOMEM);
1515 spin_lock(&pool->lock);
1516 obj = obj_malloc(pool, zspage, handle);
1517 newfg = get_fullness_group(class, zspage);
1518 insert_zspage(class, zspage, newfg);
1519 set_zspage_mapping(zspage, class->index, newfg);
1520 record_obj(handle, obj);
1521 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1522 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1523 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1525 /* We completely set up zspage so mark them as movable */
1526 SetZsPageMovable(pool, zspage);
1529 /* Add/move zspage to beginning of LRU */
1530 if (!list_empty(&zspage->lru))
1531 list_del(&zspage->lru);
1532 list_add(&zspage->lru, &pool->lru);
1535 spin_unlock(&pool->lock);
1539 EXPORT_SYMBOL_GPL(zs_malloc);
1541 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1543 struct link_free *link;
1544 struct zspage *zspage;
1545 struct page *f_page;
1546 unsigned long f_offset;
1547 unsigned int f_objidx;
1550 obj_to_location(obj, &f_page, &f_objidx);
1551 f_offset = offset_in_page(class_size * f_objidx);
1552 zspage = get_zspage(f_page);
1554 vaddr = kmap_atomic(f_page);
1555 link = (struct link_free *)(vaddr + f_offset);
1559 /* Stores the (deferred) handle in the object's header */
1560 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1561 *handle &= ~OBJ_ALLOCATED_TAG;
1563 if (likely(!ZsHugePage(zspage)))
1564 link->deferred_handle = *handle;
1566 f_page->index = *handle;
1569 /* Insert this object in containing zspage's freelist */
1570 if (likely(!ZsHugePage(zspage)))
1571 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1574 set_freeobj(zspage, f_objidx);
1577 kunmap_atomic(vaddr);
1578 mod_zspage_inuse(zspage, -1);
1581 void zs_free(struct zs_pool *pool, unsigned long handle)
1583 struct zspage *zspage;
1584 struct page *f_page;
1586 struct size_class *class;
1589 if (IS_ERR_OR_NULL((void *)handle))
1593 * The pool->lock protects the race with zpage's migration
1594 * so it's safe to get the page from handle.
1596 spin_lock(&pool->lock);
1597 obj = handle_to_obj(handle);
1598 obj_to_page(obj, &f_page);
1599 zspage = get_zspage(f_page);
1600 class = zspage_class(pool, zspage);
1602 class_stat_dec(class, ZS_OBJS_INUSE, 1);
1605 if (zspage->under_reclaim) {
1607 * Reclaim needs the handles during writeback. It'll free
1608 * them along with the zspage when it's done with them.
1610 * Record current deferred handle in the object's header.
1612 obj_free(class->size, obj, &handle);
1613 spin_unlock(&pool->lock);
1617 obj_free(class->size, obj, NULL);
1619 fullness = fix_fullness_group(class, zspage);
1620 if (fullness == ZS_INUSE_RATIO_0)
1621 free_zspage(pool, class, zspage);
1623 spin_unlock(&pool->lock);
1624 cache_free_handle(pool, handle);
1626 EXPORT_SYMBOL_GPL(zs_free);
1628 static void zs_object_copy(struct size_class *class, unsigned long dst,
1631 struct page *s_page, *d_page;
1632 unsigned int s_objidx, d_objidx;
1633 unsigned long s_off, d_off;
1634 void *s_addr, *d_addr;
1635 int s_size, d_size, size;
1638 s_size = d_size = class->size;
1640 obj_to_location(src, &s_page, &s_objidx);
1641 obj_to_location(dst, &d_page, &d_objidx);
1643 s_off = offset_in_page(class->size * s_objidx);
1644 d_off = offset_in_page(class->size * d_objidx);
1646 if (s_off + class->size > PAGE_SIZE)
1647 s_size = PAGE_SIZE - s_off;
1649 if (d_off + class->size > PAGE_SIZE)
1650 d_size = PAGE_SIZE - d_off;
1652 s_addr = kmap_atomic(s_page);
1653 d_addr = kmap_atomic(d_page);
1656 size = min(s_size, d_size);
1657 memcpy(d_addr + d_off, s_addr + s_off, size);
1660 if (written == class->size)
1669 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1670 * calls must occurs in reverse order of calls to kmap_atomic().
1671 * So, to call kunmap_atomic(s_addr) we should first call
1672 * kunmap_atomic(d_addr). For more details see
1673 * Documentation/mm/highmem.rst.
1675 if (s_off >= PAGE_SIZE) {
1676 kunmap_atomic(d_addr);
1677 kunmap_atomic(s_addr);
1678 s_page = get_next_page(s_page);
1679 s_addr = kmap_atomic(s_page);
1680 d_addr = kmap_atomic(d_page);
1681 s_size = class->size - written;
1685 if (d_off >= PAGE_SIZE) {
1686 kunmap_atomic(d_addr);
1687 d_page = get_next_page(d_page);
1688 d_addr = kmap_atomic(d_page);
1689 d_size = class->size - written;
1694 kunmap_atomic(d_addr);
1695 kunmap_atomic(s_addr);
1699 * Find object with a certain tag in zspage from index object and
1702 static unsigned long find_tagged_obj(struct size_class *class,
1703 struct page *page, int *obj_idx, int tag)
1705 unsigned int offset;
1706 int index = *obj_idx;
1707 unsigned long handle = 0;
1708 void *addr = kmap_atomic(page);
1710 offset = get_first_obj_offset(page);
1711 offset += class->size * index;
1713 while (offset < PAGE_SIZE) {
1714 if (obj_tagged(page, addr + offset, &handle, tag))
1717 offset += class->size;
1721 kunmap_atomic(addr);
1729 * Find alloced object in zspage from index object and
1732 static unsigned long find_alloced_obj(struct size_class *class,
1733 struct page *page, int *obj_idx)
1735 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1740 * Find object storing a deferred handle in header in zspage from index object
1741 * and return handle.
1743 static unsigned long find_deferred_handle_obj(struct size_class *class,
1744 struct page *page, int *obj_idx)
1746 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1750 struct zs_compact_control {
1751 /* Source spage for migration which could be a subpage of zspage */
1752 struct page *s_page;
1753 /* Destination page for migration which should be a first page
1755 struct page *d_page;
1756 /* Starting object index within @s_page which used for live object
1757 * in the subpage. */
1761 static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1762 struct zs_compact_control *cc)
1764 unsigned long used_obj, free_obj;
1765 unsigned long handle;
1766 struct page *s_page = cc->s_page;
1767 struct page *d_page = cc->d_page;
1768 int obj_idx = cc->obj_idx;
1771 handle = find_alloced_obj(class, s_page, &obj_idx);
1773 s_page = get_next_page(s_page);
1780 /* Stop if there is no more space */
1781 if (zspage_full(class, get_zspage(d_page)))
1784 used_obj = handle_to_obj(handle);
1785 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1786 zs_object_copy(class, free_obj, used_obj);
1788 record_obj(handle, free_obj);
1789 obj_free(class->size, used_obj, NULL);
1792 /* Remember last position in this iteration */
1793 cc->s_page = s_page;
1794 cc->obj_idx = obj_idx;
1797 static struct zspage *isolate_src_zspage(struct size_class *class)
1799 struct zspage *zspage;
1802 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1803 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1804 struct zspage, list);
1806 remove_zspage(class, zspage, fg);
1814 static struct zspage *isolate_dst_zspage(struct size_class *class)
1816 struct zspage *zspage;
1819 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1820 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1821 struct zspage, list);
1823 remove_zspage(class, zspage, fg);
1832 * putback_zspage - add @zspage into right class's fullness list
1833 * @class: destination class
1834 * @zspage: target page
1836 * Return @zspage's fullness status
1838 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1842 fullness = get_fullness_group(class, zspage);
1843 insert_zspage(class, zspage, fullness);
1844 set_zspage_mapping(zspage, class->index, fullness);
1849 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1851 * To prevent zspage destroy during migration, zspage freeing should
1852 * hold locks of all pages in the zspage.
1854 static void lock_zspage(struct zspage *zspage)
1856 struct page *curr_page, *page;
1859 * Pages we haven't locked yet can be migrated off the list while we're
1860 * trying to lock them, so we need to be careful and only attempt to
1861 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1862 * may no longer belong to the zspage. This means that we may wait for
1863 * the wrong page to unlock, so we must take a reference to the page
1864 * prior to waiting for it to unlock outside migrate_read_lock().
1867 migrate_read_lock(zspage);
1868 page = get_first_page(zspage);
1869 if (trylock_page(page))
1872 migrate_read_unlock(zspage);
1873 wait_on_page_locked(page);
1878 while ((page = get_next_page(curr_page))) {
1879 if (trylock_page(page)) {
1883 migrate_read_unlock(zspage);
1884 wait_on_page_locked(page);
1886 migrate_read_lock(zspage);
1889 migrate_read_unlock(zspage);
1891 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1895 * Unlocks all the pages of the zspage.
1897 * pool->lock must be held before this function is called
1898 * to prevent the underlying pages from migrating.
1900 static void unlock_zspage(struct zspage *zspage)
1902 struct page *page = get_first_page(zspage);
1906 } while ((page = get_next_page(page)) != NULL);
1908 #endif /* CONFIG_ZPOOL */
1910 static void migrate_lock_init(struct zspage *zspage)
1912 rwlock_init(&zspage->lock);
1915 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1917 read_lock(&zspage->lock);
1920 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1922 read_unlock(&zspage->lock);
1925 #ifdef CONFIG_COMPACTION
1926 static void migrate_write_lock(struct zspage *zspage)
1928 write_lock(&zspage->lock);
1931 static void migrate_write_lock_nested(struct zspage *zspage)
1933 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1936 static void migrate_write_unlock(struct zspage *zspage)
1938 write_unlock(&zspage->lock);
1941 /* Number of isolated subpage for *page migration* in this zspage */
1942 static void inc_zspage_isolation(struct zspage *zspage)
1947 static void dec_zspage_isolation(struct zspage *zspage)
1949 VM_BUG_ON(zspage->isolated == 0);
1953 static const struct movable_operations zsmalloc_mops;
1955 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1956 struct page *newpage, struct page *oldpage)
1959 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1962 page = get_first_page(zspage);
1964 if (page == oldpage)
1965 pages[idx] = newpage;
1969 } while ((page = get_next_page(page)) != NULL);
1971 create_page_chain(class, zspage, pages);
1972 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1973 if (unlikely(ZsHugePage(zspage)))
1974 newpage->index = oldpage->index;
1975 __SetPageMovable(newpage, &zsmalloc_mops);
1978 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1980 struct zspage *zspage;
1983 * Page is locked so zspage couldn't be destroyed. For detail, look at
1984 * lock_zspage in free_zspage.
1986 VM_BUG_ON_PAGE(PageIsolated(page), page);
1988 zspage = get_zspage(page);
1989 migrate_write_lock(zspage);
1990 inc_zspage_isolation(zspage);
1991 migrate_write_unlock(zspage);
1996 static int zs_page_migrate(struct page *newpage, struct page *page,
1997 enum migrate_mode mode)
1999 struct zs_pool *pool;
2000 struct size_class *class;
2001 struct zspage *zspage;
2003 void *s_addr, *d_addr, *addr;
2004 unsigned int offset;
2005 unsigned long handle;
2006 unsigned long old_obj, new_obj;
2007 unsigned int obj_idx;
2010 * We cannot support the _NO_COPY case here, because copy needs to
2011 * happen under the zs lock, which does not work with
2012 * MIGRATE_SYNC_NO_COPY workflow.
2014 if (mode == MIGRATE_SYNC_NO_COPY)
2017 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2019 /* The page is locked, so this pointer must remain valid */
2020 zspage = get_zspage(page);
2021 pool = zspage->pool;
2024 * The pool's lock protects the race between zpage migration
2027 spin_lock(&pool->lock);
2028 class = zspage_class(pool, zspage);
2030 /* the migrate_write_lock protects zpage access via zs_map_object */
2031 migrate_write_lock(zspage);
2033 offset = get_first_obj_offset(page);
2034 s_addr = kmap_atomic(page);
2037 * Here, any user cannot access all objects in the zspage so let's move.
2039 d_addr = kmap_atomic(newpage);
2040 memcpy(d_addr, s_addr, PAGE_SIZE);
2041 kunmap_atomic(d_addr);
2043 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2044 addr += class->size) {
2045 if (obj_allocated(page, addr, &handle)) {
2047 old_obj = handle_to_obj(handle);
2048 obj_to_location(old_obj, &dummy, &obj_idx);
2049 new_obj = (unsigned long)location_to_obj(newpage,
2051 record_obj(handle, new_obj);
2054 kunmap_atomic(s_addr);
2056 replace_sub_page(class, zspage, newpage, page);
2058 * Since we complete the data copy and set up new zspage structure,
2059 * it's okay to release the pool's lock.
2061 spin_unlock(&pool->lock);
2062 dec_zspage_isolation(zspage);
2063 migrate_write_unlock(zspage);
2066 if (page_zone(newpage) != page_zone(page)) {
2067 dec_zone_page_state(page, NR_ZSPAGES);
2068 inc_zone_page_state(newpage, NR_ZSPAGES);
2074 return MIGRATEPAGE_SUCCESS;
2077 static void zs_page_putback(struct page *page)
2079 struct zspage *zspage;
2081 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2083 zspage = get_zspage(page);
2084 migrate_write_lock(zspage);
2085 dec_zspage_isolation(zspage);
2086 migrate_write_unlock(zspage);
2089 static const struct movable_operations zsmalloc_mops = {
2090 .isolate_page = zs_page_isolate,
2091 .migrate_page = zs_page_migrate,
2092 .putback_page = zs_page_putback,
2096 * Caller should hold page_lock of all pages in the zspage
2097 * In here, we cannot use zspage meta data.
2099 static void async_free_zspage(struct work_struct *work)
2102 struct size_class *class;
2103 unsigned int class_idx;
2105 struct zspage *zspage, *tmp;
2106 LIST_HEAD(free_pages);
2107 struct zs_pool *pool = container_of(work, struct zs_pool,
2110 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2111 class = pool->size_class[i];
2112 if (class->index != i)
2115 spin_lock(&pool->lock);
2116 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2118 spin_unlock(&pool->lock);
2121 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2122 list_del(&zspage->list);
2123 lock_zspage(zspage);
2125 get_zspage_mapping(zspage, &class_idx, &fullness);
2126 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
2127 class = pool->size_class[class_idx];
2128 spin_lock(&pool->lock);
2130 list_del(&zspage->lru);
2132 __free_zspage(pool, class, zspage);
2133 spin_unlock(&pool->lock);
2137 static void kick_deferred_free(struct zs_pool *pool)
2139 schedule_work(&pool->free_work);
2142 static void zs_flush_migration(struct zs_pool *pool)
2144 flush_work(&pool->free_work);
2147 static void init_deferred_free(struct zs_pool *pool)
2149 INIT_WORK(&pool->free_work, async_free_zspage);
2152 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2154 struct page *page = get_first_page(zspage);
2157 WARN_ON(!trylock_page(page));
2158 __SetPageMovable(page, &zsmalloc_mops);
2160 } while ((page = get_next_page(page)) != NULL);
2163 static inline void zs_flush_migration(struct zs_pool *pool) { }
2168 * Based on the number of unused allocated objects calculate
2169 * and return the number of pages that we can free.
2171 static unsigned long zs_can_compact(struct size_class *class)
2173 unsigned long obj_wasted;
2174 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2175 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
2177 if (obj_allocated <= obj_used)
2180 obj_wasted = obj_allocated - obj_used;
2181 obj_wasted /= class->objs_per_zspage;
2183 return obj_wasted * class->pages_per_zspage;
2186 static unsigned long __zs_compact(struct zs_pool *pool,
2187 struct size_class *class)
2189 struct zs_compact_control cc;
2190 struct zspage *src_zspage = NULL;
2191 struct zspage *dst_zspage = NULL;
2192 unsigned long pages_freed = 0;
2195 * protect the race between zpage migration and zs_free
2196 * as well as zpage allocation/free
2198 spin_lock(&pool->lock);
2199 while (zs_can_compact(class)) {
2203 dst_zspage = isolate_dst_zspage(class);
2206 migrate_write_lock(dst_zspage);
2207 cc.d_page = get_first_page(dst_zspage);
2210 src_zspage = isolate_src_zspage(class);
2214 migrate_write_lock_nested(src_zspage);
2217 cc.s_page = get_first_page(src_zspage);
2218 migrate_zspage(pool, class, &cc);
2219 fg = putback_zspage(class, src_zspage);
2220 migrate_write_unlock(src_zspage);
2222 if (fg == ZS_INUSE_RATIO_0) {
2223 free_zspage(pool, class, src_zspage);
2224 pages_freed += class->pages_per_zspage;
2228 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2229 || spin_is_contended(&pool->lock)) {
2230 putback_zspage(class, dst_zspage);
2231 migrate_write_unlock(dst_zspage);
2234 spin_unlock(&pool->lock);
2236 spin_lock(&pool->lock);
2241 putback_zspage(class, src_zspage);
2242 migrate_write_unlock(src_zspage);
2246 putback_zspage(class, dst_zspage);
2247 migrate_write_unlock(dst_zspage);
2249 spin_unlock(&pool->lock);
2254 unsigned long zs_compact(struct zs_pool *pool)
2257 struct size_class *class;
2258 unsigned long pages_freed = 0;
2261 * Pool compaction is performed under pool->lock so it is basically
2262 * single-threaded. Having more than one thread in __zs_compact()
2263 * will increase pool->lock contention, which will impact other
2264 * zsmalloc operations that need pool->lock.
2266 if (atomic_xchg(&pool->compaction_in_progress, 1))
2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270 class = pool->size_class[i];
2271 if (class->index != i)
2273 pages_freed += __zs_compact(pool, class);
2275 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2276 atomic_set(&pool->compaction_in_progress, 0);
2280 EXPORT_SYMBOL_GPL(zs_compact);
2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2284 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2286 EXPORT_SYMBOL_GPL(zs_pool_stats);
2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2289 struct shrink_control *sc)
2291 unsigned long pages_freed;
2292 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2296 * Compact classes and calculate compaction delta.
2297 * Can run concurrently with a manually triggered
2298 * (by user) compaction.
2300 pages_freed = zs_compact(pool);
2302 return pages_freed ? pages_freed : SHRINK_STOP;
2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306 struct shrink_control *sc)
2309 struct size_class *class;
2310 unsigned long pages_to_free = 0;
2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315 class = pool->size_class[i];
2316 if (class->index != i)
2319 pages_to_free += zs_can_compact(class);
2322 return pages_to_free;
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2327 unregister_shrinker(&pool->shrinker);
2330 static int zs_register_shrinker(struct zs_pool *pool)
2332 pool->shrinker.scan_objects = zs_shrinker_scan;
2333 pool->shrinker.count_objects = zs_shrinker_count;
2334 pool->shrinker.batch = 0;
2335 pool->shrinker.seeks = DEFAULT_SEEKS;
2337 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2341 static int calculate_zspage_chain_size(int class_size)
2343 int i, min_waste = INT_MAX;
2346 if (is_power_of_2(class_size))
2349 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2352 waste = (i * PAGE_SIZE) % class_size;
2353 if (waste < min_waste) {
2363 * zs_create_pool - Creates an allocation pool to work from.
2364 * @name: pool name to be created
2366 * This function must be called before anything when using
2367 * the zsmalloc allocator.
2369 * On success, a pointer to the newly created pool is returned,
2372 struct zs_pool *zs_create_pool(const char *name)
2375 struct zs_pool *pool;
2376 struct size_class *prev_class = NULL;
2378 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2382 init_deferred_free(pool);
2383 spin_lock_init(&pool->lock);
2384 atomic_set(&pool->compaction_in_progress, 0);
2386 pool->name = kstrdup(name, GFP_KERNEL);
2390 if (create_cache(pool))
2394 * Iterate reversely, because, size of size_class that we want to use
2395 * for merging should be larger or equal to current size.
2397 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2399 int pages_per_zspage;
2400 int objs_per_zspage;
2401 struct size_class *class;
2404 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2405 if (size > ZS_MAX_ALLOC_SIZE)
2406 size = ZS_MAX_ALLOC_SIZE;
2407 pages_per_zspage = calculate_zspage_chain_size(size);
2408 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2411 * We iterate from biggest down to smallest classes,
2412 * so huge_class_size holds the size of the first huge
2413 * class. Any object bigger than or equal to that will
2414 * endup in the huge class.
2416 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2418 huge_class_size = size;
2420 * The object uses ZS_HANDLE_SIZE bytes to store the
2421 * handle. We need to subtract it, because zs_malloc()
2422 * unconditionally adds handle size before it performs
2423 * size class search - so object may be smaller than
2424 * huge class size, yet it still can end up in the huge
2425 * class because it grows by ZS_HANDLE_SIZE extra bytes
2426 * right before class lookup.
2428 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2432 * size_class is used for normal zsmalloc operation such
2433 * as alloc/free for that size. Although it is natural that we
2434 * have one size_class for each size, there is a chance that we
2435 * can get more memory utilization if we use one size_class for
2436 * many different sizes whose size_class have same
2437 * characteristics. So, we makes size_class point to
2438 * previous size_class if possible.
2441 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2442 pool->size_class[i] = prev_class;
2447 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2453 class->pages_per_zspage = pages_per_zspage;
2454 class->objs_per_zspage = objs_per_zspage;
2455 pool->size_class[i] = class;
2457 fullness = ZS_INUSE_RATIO_0;
2458 while (fullness < NR_FULLNESS_GROUPS) {
2459 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2466 /* debug only, don't abort if it fails */
2467 zs_pool_stat_create(pool, name);
2470 * Not critical since shrinker is only used to trigger internal
2471 * defragmentation of the pool which is pretty optional thing. If
2472 * registration fails we still can use the pool normally and user can
2473 * trigger compaction manually. Thus, ignore return code.
2475 zs_register_shrinker(pool);
2478 INIT_LIST_HEAD(&pool->lru);
2484 zs_destroy_pool(pool);
2487 EXPORT_SYMBOL_GPL(zs_create_pool);
2489 void zs_destroy_pool(struct zs_pool *pool)
2493 zs_unregister_shrinker(pool);
2494 zs_flush_migration(pool);
2495 zs_pool_stat_destroy(pool);
2497 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2499 struct size_class *class = pool->size_class[i];
2504 if (class->index != i)
2507 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2508 if (list_empty(&class->fullness_list[fg]))
2511 pr_err("Class-%d fullness group %d is not empty\n",
2517 destroy_cache(pool);
2521 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2524 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2525 struct zspage *zspage)
2527 unsigned int obj_idx = 0;
2528 unsigned long handle, off = 0; /* off is within-page offset */
2529 struct page *page = get_first_page(zspage);
2530 struct link_free *prev_free = NULL;
2531 void *prev_page_vaddr = NULL;
2533 /* in case no free object found */
2534 set_freeobj(zspage, (unsigned int)(-1UL));
2537 void *vaddr = kmap_atomic(page);
2538 struct page *next_page;
2540 while (off < PAGE_SIZE) {
2541 void *obj_addr = vaddr + off;
2543 /* skip allocated object */
2544 if (obj_allocated(page, obj_addr, &handle)) {
2550 /* free deferred handle from reclaim attempt */
2551 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2552 cache_free_handle(pool, handle);
2555 prev_free->next = obj_idx << OBJ_TAG_BITS;
2556 else /* first free object found */
2557 set_freeobj(zspage, obj_idx);
2559 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2560 /* if last free object in a previous page, need to unmap */
2561 if (prev_page_vaddr) {
2562 kunmap_atomic(prev_page_vaddr);
2563 prev_page_vaddr = NULL;
2571 * Handle the last (full or partial) object on this page.
2573 next_page = get_next_page(page);
2575 if (!prev_free || prev_page_vaddr) {
2577 * There is no free object in this page, so we can safely
2580 kunmap_atomic(vaddr);
2582 /* update prev_page_vaddr since prev_free is on this page */
2583 prev_page_vaddr = vaddr;
2585 } else { /* this is the last page */
2588 * Reset OBJ_TAG_BITS bit to last link to tell
2589 * whether it's allocated object or not.
2591 prev_free->next = -1UL << OBJ_TAG_BITS;
2594 /* unmap previous page (if not done yet) */
2595 if (prev_page_vaddr) {
2596 kunmap_atomic(prev_page_vaddr);
2597 prev_page_vaddr = NULL;
2600 kunmap_atomic(vaddr);
2608 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2610 int i, obj_idx, ret = 0;
2611 unsigned long handle;
2612 struct zspage *zspage;
2616 /* Lock LRU and fullness list */
2617 spin_lock(&pool->lock);
2618 if (list_empty(&pool->lru)) {
2619 spin_unlock(&pool->lock);
2623 for (i = 0; i < retries; i++) {
2624 struct size_class *class;
2626 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2627 list_del(&zspage->lru);
2629 /* zs_free may free objects, but not the zspage and handles */
2630 zspage->under_reclaim = true;
2632 class = zspage_class(pool, zspage);
2633 fullness = get_fullness_group(class, zspage);
2635 /* Lock out object allocations and object compaction */
2636 remove_zspage(class, zspage, fullness);
2638 spin_unlock(&pool->lock);
2641 /* Lock backing pages into place */
2642 lock_zspage(zspage);
2645 page = get_first_page(zspage);
2647 handle = find_alloced_obj(class, page, &obj_idx);
2649 page = get_next_page(page);
2657 * This will write the object and call zs_free.
2659 * zs_free will free the object, but the
2660 * under_reclaim flag prevents it from freeing
2661 * the zspage altogether. This is necessary so
2662 * that we can continue working with the
2663 * zspage potentially after the last object
2666 ret = pool->zpool_ops->evict(pool->zpool, handle);
2674 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2675 spin_lock(&pool->lock);
2676 zspage->under_reclaim = false;
2678 if (!get_zspage_inuse(zspage)) {
2680 * Fullness went stale as zs_free() won't touch it
2681 * while the page is removed from the pool. Fix it
2682 * up for the check in __free_zspage().
2684 zspage->fullness = ZS_INUSE_RATIO_0;
2686 __free_zspage(pool, class, zspage);
2687 spin_unlock(&pool->lock);
2692 * Eviction fails on one of the handles, so we need to restore zspage.
2693 * We need to rebuild its freelist (and free stored deferred handles),
2694 * put it back to the correct size class, and add it to the LRU list.
2696 restore_freelist(pool, class, zspage);
2697 putback_zspage(class, zspage);
2698 list_add(&zspage->lru, &pool->lru);
2699 unlock_zspage(zspage);
2702 spin_unlock(&pool->lock);
2705 #endif /* CONFIG_ZPOOL */
2707 static int __init zs_init(void)
2711 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2712 zs_cpu_prepare, zs_cpu_dead);
2717 zpool_register_driver(&zs_zpool_driver);
2728 static void __exit zs_exit(void)
2731 zpool_unregister_driver(&zs_zpool_driver);
2733 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2738 module_init(zs_init);
2739 module_exit(zs_exit);
2741 MODULE_LICENSE("Dual BSD/GPL");