1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Scan pressure balancing between anon and file LRUs
94 unsigned long anon_cost;
95 unsigned long file_cost;
97 /* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 unsigned int may_deactivate:2;
101 unsigned int force_deactivate:1;
102 unsigned int skipped_deactivate:1;
104 /* Writepage batching in laptop mode; RECLAIM_WRITE */
105 unsigned int may_writepage:1;
107 /* Can mapped folios be reclaimed? */
108 unsigned int may_unmap:1;
110 /* Can folios be swapped as part of reclaim? */
111 unsigned int may_swap:1;
113 /* Proactive reclaim invoked by userspace through memory.reclaim */
114 unsigned int proactive:1;
117 * Cgroup memory below memory.low is protected as long as we
118 * don't threaten to OOM. If any cgroup is reclaimed at
119 * reduced force or passed over entirely due to its memory.low
120 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 * result, then go back for one more cycle that reclaims the protected
122 * memory (memcg_low_reclaim) to avert OOM.
124 unsigned int memcg_low_reclaim:1;
125 unsigned int memcg_low_skipped:1;
127 unsigned int hibernation_mode:1;
129 /* One of the zones is ready for compaction */
130 unsigned int compaction_ready:1;
132 /* There is easily reclaimable cold cache in the current node */
133 unsigned int cache_trim_mode:1;
135 /* The file folios on the current node are dangerously low */
136 unsigned int file_is_tiny:1;
138 /* Always discard instead of demoting to lower tier memory */
139 unsigned int no_demotion:1;
141 /* Allocation order */
144 /* Scan (total_size >> priority) pages at once */
147 /* The highest zone to isolate folios for reclaim from */
150 /* This context's GFP mask */
153 /* Incremented by the number of inactive pages that were scanned */
154 unsigned long nr_scanned;
156 /* Number of pages freed so far during a call to shrink_zones() */
157 unsigned long nr_reclaimed;
161 unsigned int unqueued_dirty;
162 unsigned int congested;
163 unsigned int writeback;
164 unsigned int immediate;
165 unsigned int file_taken;
169 /* for recording the reclaimed slab by now */
170 struct reclaim_state reclaim_state;
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
176 if ((_folio)->lru.prev != _base) { \
177 struct folio *prev; \
179 prev = lru_to_folio(&(_folio->lru)); \
180 prefetchw(&prev->_field); \
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 * From 0 .. 200. Higher means more swappy.
190 int vm_swappiness = 60;
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
198 static int shrinker_nr_max;
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
206 static inline int shrinker_defer_size(int nr_items)
208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
216 lockdep_is_held(&shrinker_mutex));
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
226 static void free_shrinker_info_rcu(struct rcu_head *head)
228 kvfree(container_of(head, struct shrinker_info, rcu));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size,
236 struct shrinker_info *new, *old;
237 struct mem_cgroup_per_node *pn;
239 int size = map_size + defer_size;
242 pn = memcg->nodeinfo[nid];
243 old = shrinker_info_protected(memcg, nid);
244 /* Not yet online memcg */
248 /* Already expanded this shrinker_info */
249 if (new_nr_max <= old->map_nr_max)
252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
256 new->nr_deferred = (atomic_long_t *)(new + 1);
257 new->map = (void *)new->nr_deferred + defer_size;
258 new->map_nr_max = new_nr_max;
260 /* map: set all old bits, clear all new bits */
261 memset(new->map, (int)0xff, old_map_size);
262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 /* nr_deferred: copy old values, clear all new values */
264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 memset((void *)new->nr_deferred + old_defer_size, 0,
266 defer_size - old_defer_size);
268 rcu_assign_pointer(pn->shrinker_info, new);
269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
275 void free_shrinker_info(struct mem_cgroup *memcg)
277 struct mem_cgroup_per_node *pn;
278 struct shrinker_info *info;
282 pn = memcg->nodeinfo[nid];
283 info = rcu_dereference_protected(pn->shrinker_info, true);
285 rcu_assign_pointer(pn->shrinker_info, NULL);
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
291 struct shrinker_info *info;
292 int nid, size, ret = 0;
293 int map_size, defer_size = 0;
295 mutex_lock(&shrinker_mutex);
296 map_size = shrinker_map_size(shrinker_nr_max);
297 defer_size = shrinker_defer_size(shrinker_nr_max);
298 size = map_size + defer_size;
300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
302 free_shrinker_info(memcg);
306 info->nr_deferred = (atomic_long_t *)(info + 1);
307 info->map = (void *)info->nr_deferred + defer_size;
308 info->map_nr_max = shrinker_nr_max;
309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
311 mutex_unlock(&shrinker_mutex);
316 static int expand_shrinker_info(int new_id)
319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 int map_size, defer_size = 0;
321 int old_map_size, old_defer_size = 0;
322 struct mem_cgroup *memcg;
324 if (!root_mem_cgroup)
327 lockdep_assert_held(&shrinker_mutex);
329 map_size = shrinker_map_size(new_nr_max);
330 defer_size = shrinker_defer_size(new_nr_max);
331 old_map_size = shrinker_map_size(shrinker_nr_max);
332 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 old_map_size, old_defer_size,
340 mem_cgroup_iter_break(NULL, memcg);
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
346 shrinker_nr_max = new_nr_max;
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 struct shrinker_info *info;
357 srcu_idx = srcu_read_lock(&shrinker_srcu);
358 info = shrinker_info_srcu(memcg, nid);
359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 /* Pairs with smp mb in shrink_slab() */
361 smp_mb__before_atomic();
362 set_bit(shrinker_id, info->map);
364 srcu_read_unlock(&shrinker_srcu, srcu_idx);
368 static DEFINE_IDR(shrinker_idr);
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
372 int id, ret = -ENOMEM;
374 if (mem_cgroup_disabled())
377 mutex_lock(&shrinker_mutex);
378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
382 if (id >= shrinker_nr_max) {
383 if (expand_shrinker_info(id)) {
384 idr_remove(&shrinker_idr, id);
391 mutex_unlock(&shrinker_mutex);
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
397 int id = shrinker->id;
401 lockdep_assert_held(&shrinker_mutex);
403 idr_remove(&shrinker_idr, id);
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 struct mem_cgroup *memcg)
409 struct shrinker_info *info;
411 info = shrinker_info_srcu(memcg, nid);
412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 struct mem_cgroup *memcg)
418 struct shrinker_info *info;
420 info = shrinker_info_srcu(memcg, nid);
421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
428 struct mem_cgroup *parent;
429 struct shrinker_info *child_info, *parent_info;
431 parent = parent_mem_cgroup(memcg);
433 parent = root_mem_cgroup;
435 /* Prevent from concurrent shrinker_info expand */
436 mutex_lock(&shrinker_mutex);
438 child_info = shrinker_info_protected(memcg, nid);
439 parent_info = shrinker_info_protected(parent, nid);
440 for (i = 0; i < child_info->map_nr_max; i++) {
441 nr = atomic_long_read(&child_info->nr_deferred[i]);
442 atomic_long_add(nr, &parent_info->nr_deferred[i]);
445 mutex_unlock(&shrinker_mutex);
448 static bool cgroup_reclaim(struct scan_control *sc)
450 return sc->target_mem_cgroup;
453 static bool global_reclaim(struct scan_control *sc)
455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
459 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460 * @sc: scan_control in question
462 * The normal page dirty throttling mechanism in balance_dirty_pages() is
463 * completely broken with the legacy memcg and direct stalling in
464 * shrink_folio_list() is used for throttling instead, which lacks all the
465 * niceties such as fairness, adaptive pausing, bandwidth proportional
466 * allocation and configurability.
468 * This function tests whether the vmscan currently in progress can assume
469 * that the normal dirty throttling mechanism is operational.
471 static bool writeback_throttling_sane(struct scan_control *sc)
473 if (!cgroup_reclaim(sc))
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 struct mem_cgroup *memcg)
503 static bool cgroup_reclaim(struct scan_control *sc)
508 static bool global_reclaim(struct scan_control *sc)
513 static bool writeback_throttling_sane(struct scan_control *sc)
519 static void set_task_reclaim_state(struct task_struct *task,
520 struct reclaim_state *rs)
522 /* Check for an overwrite */
523 WARN_ON_ONCE(rs && task->reclaim_state);
525 /* Check for the nulling of an already-nulled member */
526 WARN_ON_ONCE(!rs && !task->reclaim_state);
528 task->reclaim_state = rs;
532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533 * scan_control->nr_reclaimed.
535 static void flush_reclaim_state(struct scan_control *sc)
538 * Currently, reclaim_state->reclaimed includes three types of pages
539 * freed outside of vmscan:
541 * (2) Clean file pages from pruned inodes (on highmem systems).
542 * (3) XFS freed buffer pages.
544 * For all of these cases, we cannot universally link the pages to a
545 * single memcg. For example, a memcg-aware shrinker can free one object
546 * charged to the target memcg, causing an entire page to be freed.
547 * If we count the entire page as reclaimed from the memcg, we end up
548 * overestimating the reclaimed amount (potentially under-reclaiming).
550 * Only count such pages for global reclaim to prevent under-reclaiming
551 * from the target memcg; preventing unnecessary retries during memcg
552 * charging and false positives from proactive reclaim.
554 * For uncommon cases where the freed pages were actually mostly
555 * charged to the target memcg, we end up underestimating the reclaimed
556 * amount. This should be fine. The freed pages will be uncharged
557 * anyway, even if they are not counted here properly, and we will be
558 * able to make forward progress in charging (which is usually in a
561 * We can go one step further, and report the uncharged objcg pages in
562 * memcg reclaim, to make reporting more accurate and reduce
563 * underestimation, but it's probably not worth the complexity for now.
565 if (current->reclaim_state && global_reclaim(sc)) {
566 sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 current->reclaim_state->reclaimed = 0;
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 struct shrink_control *sc)
576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
580 (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 return xchg_nr_deferred_memcg(nid, shrinker,
584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 struct shrink_control *sc)
593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
597 (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 return add_nr_deferred_memcg(nr, nid, shrinker,
601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
604 static bool can_demote(int nid, struct scan_control *sc)
606 if (!numa_demotion_enabled)
608 if (sc && sc->no_demotion)
610 if (next_demotion_node(nid) == NUMA_NO_NODE)
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
618 struct scan_control *sc)
622 * For non-memcg reclaim, is there
623 * space in any swap device?
625 if (get_nr_swap_pages() > 0)
628 /* Is the memcg below its swap limit? */
629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
634 * The page can not be swapped.
636 * Can it be reclaimed from this node via demotion?
638 return can_demote(nid, sc);
642 * This misses isolated folios which are not accounted for to save counters.
643 * As the data only determines if reclaim or compaction continues, it is
644 * not expected that isolated folios will be a dominating factor.
646 unsigned long zone_reclaimable_pages(struct zone *zone)
650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
660 * lruvec_lru_size - Returns the number of pages on the given LRU list.
661 * @lruvec: lru vector
663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
668 unsigned long size = 0;
671 for (zid = 0; zid <= zone_idx; zid++) {
672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
674 if (!managed_zone(zone))
677 if (!mem_cgroup_disabled())
678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
686 * Add a shrinker callback to be called from the vm.
688 static int __prealloc_shrinker(struct shrinker *shrinker)
693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 err = prealloc_memcg_shrinker(shrinker);
698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
701 size = sizeof(*shrinker->nr_deferred);
702 if (shrinker->flags & SHRINKER_NUMA_AWARE)
705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 if (!shrinker->nr_deferred)
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __prealloc_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
735 return __prealloc_shrinker(shrinker);
739 void free_prealloced_shrinker(struct shrinker *shrinker)
741 #ifdef CONFIG_SHRINKER_DEBUG
742 kfree_const(shrinker->name);
743 shrinker->name = NULL;
745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 mutex_lock(&shrinker_mutex);
747 unregister_memcg_shrinker(shrinker);
748 mutex_unlock(&shrinker_mutex);
752 kfree(shrinker->nr_deferred);
753 shrinker->nr_deferred = NULL;
756 void register_shrinker_prepared(struct shrinker *shrinker)
758 mutex_lock(&shrinker_mutex);
759 list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 shrinker->flags |= SHRINKER_REGISTERED;
761 shrinker_debugfs_add(shrinker);
762 mutex_unlock(&shrinker_mutex);
765 static int __register_shrinker(struct shrinker *shrinker)
767 int err = __prealloc_shrinker(shrinker);
771 register_shrinker_prepared(shrinker);
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
787 err = __register_shrinker(shrinker);
789 kfree_const(shrinker->name);
790 shrinker->name = NULL;
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
797 return __register_shrinker(shrinker);
800 EXPORT_SYMBOL(register_shrinker);
805 void unregister_shrinker(struct shrinker *shrinker)
807 struct dentry *debugfs_entry;
810 if (!(shrinker->flags & SHRINKER_REGISTERED))
813 mutex_lock(&shrinker_mutex);
814 list_del_rcu(&shrinker->list);
815 shrinker->flags &= ~SHRINKER_REGISTERED;
816 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
817 unregister_memcg_shrinker(shrinker);
818 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
819 mutex_unlock(&shrinker_mutex);
821 atomic_inc(&shrinker_srcu_generation);
822 synchronize_srcu(&shrinker_srcu);
824 shrinker_debugfs_remove(debugfs_entry, debugfs_id);
826 kfree(shrinker->nr_deferred);
827 shrinker->nr_deferred = NULL;
829 EXPORT_SYMBOL(unregister_shrinker);
832 * synchronize_shrinkers - Wait for all running shrinkers to complete.
834 * This is useful to guarantee that all shrinker invocations have seen an
835 * update, before freeing memory.
837 void synchronize_shrinkers(void)
839 atomic_inc(&shrinker_srcu_generation);
840 synchronize_srcu(&shrinker_srcu);
842 EXPORT_SYMBOL(synchronize_shrinkers);
844 #define SHRINK_BATCH 128
846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
847 struct shrinker *shrinker, int priority)
849 unsigned long freed = 0;
850 unsigned long long delta;
855 long batch_size = shrinker->batch ? shrinker->batch
857 long scanned = 0, next_deferred;
859 freeable = shrinker->count_objects(shrinker, shrinkctl);
860 if (freeable == 0 || freeable == SHRINK_EMPTY)
864 * copy the current shrinker scan count into a local variable
865 * and zero it so that other concurrent shrinker invocations
866 * don't also do this scanning work.
868 nr = xchg_nr_deferred(shrinker, shrinkctl);
870 if (shrinker->seeks) {
871 delta = freeable >> priority;
873 do_div(delta, shrinker->seeks);
876 * These objects don't require any IO to create. Trim
877 * them aggressively under memory pressure to keep
878 * them from causing refetches in the IO caches.
880 delta = freeable / 2;
883 total_scan = nr >> priority;
885 total_scan = min(total_scan, (2 * freeable));
887 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
888 freeable, delta, total_scan, priority);
891 * Normally, we should not scan less than batch_size objects in one
892 * pass to avoid too frequent shrinker calls, but if the slab has less
893 * than batch_size objects in total and we are really tight on memory,
894 * we will try to reclaim all available objects, otherwise we can end
895 * up failing allocations although there are plenty of reclaimable
896 * objects spread over several slabs with usage less than the
899 * We detect the "tight on memory" situations by looking at the total
900 * number of objects we want to scan (total_scan). If it is greater
901 * than the total number of objects on slab (freeable), we must be
902 * scanning at high prio and therefore should try to reclaim as much as
905 while (total_scan >= batch_size ||
906 total_scan >= freeable) {
908 unsigned long nr_to_scan = min(batch_size, total_scan);
910 shrinkctl->nr_to_scan = nr_to_scan;
911 shrinkctl->nr_scanned = nr_to_scan;
912 ret = shrinker->scan_objects(shrinker, shrinkctl);
913 if (ret == SHRINK_STOP)
917 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
918 total_scan -= shrinkctl->nr_scanned;
919 scanned += shrinkctl->nr_scanned;
925 * The deferred work is increased by any new work (delta) that wasn't
926 * done, decreased by old deferred work that was done now.
928 * And it is capped to two times of the freeable items.
930 next_deferred = max_t(long, (nr + delta - scanned), 0);
931 next_deferred = min(next_deferred, (2 * freeable));
934 * move the unused scan count back into the shrinker in a
935 * manner that handles concurrent updates.
937 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
939 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
945 struct mem_cgroup *memcg, int priority)
947 struct shrinker_info *info;
948 unsigned long ret, freed = 0;
949 int srcu_idx, generation;
952 if (!mem_cgroup_online(memcg))
956 srcu_idx = srcu_read_lock(&shrinker_srcu);
957 info = shrinker_info_srcu(memcg, nid);
961 generation = atomic_read(&shrinker_srcu_generation);
962 for_each_set_bit_from(i, info->map, info->map_nr_max) {
963 struct shrink_control sc = {
964 .gfp_mask = gfp_mask,
968 struct shrinker *shrinker;
970 shrinker = idr_find(&shrinker_idr, i);
971 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
973 clear_bit(i, info->map);
977 /* Call non-slab shrinkers even though kmem is disabled */
978 if (!memcg_kmem_online() &&
979 !(shrinker->flags & SHRINKER_NONSLAB))
982 ret = do_shrink_slab(&sc, shrinker, priority);
983 if (ret == SHRINK_EMPTY) {
984 clear_bit(i, info->map);
986 * After the shrinker reported that it had no objects to
987 * free, but before we cleared the corresponding bit in
988 * the memcg shrinker map, a new object might have been
989 * added. To make sure, we have the bit set in this
990 * case, we invoke the shrinker one more time and reset
991 * the bit if it reports that it is not empty anymore.
992 * The memory barrier here pairs with the barrier in
993 * set_shrinker_bit():
995 * list_lru_add() shrink_slab_memcg()
996 * list_add_tail() clear_bit()
998 * set_bit() do_shrink_slab()
1000 smp_mb__after_atomic();
1001 ret = do_shrink_slab(&sc, shrinker, priority);
1002 if (ret == SHRINK_EMPTY)
1005 set_shrinker_bit(memcg, nid, i);
1008 if (atomic_read(&shrinker_srcu_generation) != generation) {
1009 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1015 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1018 #else /* CONFIG_MEMCG */
1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1020 struct mem_cgroup *memcg, int priority)
1024 #endif /* CONFIG_MEMCG */
1027 * shrink_slab - shrink slab caches
1028 * @gfp_mask: allocation context
1029 * @nid: node whose slab caches to target
1030 * @memcg: memory cgroup whose slab caches to target
1031 * @priority: the reclaim priority
1033 * Call the shrink functions to age shrinkable caches.
1035 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1036 * unaware shrinkers will receive a node id of 0 instead.
1038 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1039 * are called only if it is the root cgroup.
1041 * @priority is sc->priority, we take the number of objects and >> by priority
1042 * in order to get the scan target.
1044 * Returns the number of reclaimed slab objects.
1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1047 struct mem_cgroup *memcg,
1050 unsigned long ret, freed = 0;
1051 struct shrinker *shrinker;
1052 int srcu_idx, generation;
1055 * The root memcg might be allocated even though memcg is disabled
1056 * via "cgroup_disable=memory" boot parameter. This could make
1057 * mem_cgroup_is_root() return false, then just run memcg slab
1058 * shrink, but skip global shrink. This may result in premature
1061 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1062 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1064 srcu_idx = srcu_read_lock(&shrinker_srcu);
1066 generation = atomic_read(&shrinker_srcu_generation);
1067 list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1068 srcu_read_lock_held(&shrinker_srcu)) {
1069 struct shrink_control sc = {
1070 .gfp_mask = gfp_mask,
1075 ret = do_shrink_slab(&sc, shrinker, priority);
1076 if (ret == SHRINK_EMPTY)
1080 if (atomic_read(&shrinker_srcu_generation) != generation) {
1081 freed = freed ? : 1;
1086 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1091 static unsigned long drop_slab_node(int nid)
1093 unsigned long freed = 0;
1094 struct mem_cgroup *memcg = NULL;
1096 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1098 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1099 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1104 void drop_slab(void)
1108 unsigned long freed;
1112 for_each_online_node(nid) {
1113 if (fatal_signal_pending(current))
1116 freed += drop_slab_node(nid);
1118 } while ((freed >> shift++) > 1);
1121 static int reclaimer_offset(void)
1123 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1124 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1125 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1126 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1127 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1128 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1129 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1130 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1132 if (current_is_kswapd())
1134 if (current_is_khugepaged())
1135 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1136 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1139 static inline int is_page_cache_freeable(struct folio *folio)
1142 * A freeable page cache folio is referenced only by the caller
1143 * that isolated the folio, the page cache and optional filesystem
1144 * private data at folio->private.
1146 return folio_ref_count(folio) - folio_test_private(folio) ==
1147 1 + folio_nr_pages(folio);
1151 * We detected a synchronous write error writing a folio out. Probably
1152 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1153 * fsync(), msync() or close().
1155 * The tricky part is that after writepage we cannot touch the mapping: nothing
1156 * prevents it from being freed up. But we have a ref on the folio and once
1157 * that folio is locked, the mapping is pinned.
1159 * We're allowed to run sleeping folio_lock() here because we know the caller has
1162 static void handle_write_error(struct address_space *mapping,
1163 struct folio *folio, int error)
1166 if (folio_mapping(folio) == mapping)
1167 mapping_set_error(mapping, error);
1168 folio_unlock(folio);
1171 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1173 int reclaimable = 0, write_pending = 0;
1177 * If kswapd is disabled, reschedule if necessary but do not
1178 * throttle as the system is likely near OOM.
1180 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1184 * If there are a lot of dirty/writeback folios then do not
1185 * throttle as throttling will occur when the folios cycle
1186 * towards the end of the LRU if still under writeback.
1188 for (i = 0; i < MAX_NR_ZONES; i++) {
1189 struct zone *zone = pgdat->node_zones + i;
1191 if (!managed_zone(zone))
1194 reclaimable += zone_reclaimable_pages(zone);
1195 write_pending += zone_page_state_snapshot(zone,
1196 NR_ZONE_WRITE_PENDING);
1198 if (2 * write_pending <= reclaimable)
1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1206 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1211 * Do not throttle user workers, kthreads other than kswapd or
1212 * workqueues. They may be required for reclaim to make
1213 * forward progress (e.g. journalling workqueues or kthreads).
1215 if (!current_is_kswapd() &&
1216 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1222 * These figures are pulled out of thin air.
1223 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1224 * parallel reclaimers which is a short-lived event so the timeout is
1225 * short. Failing to make progress or waiting on writeback are
1226 * potentially long-lived events so use a longer timeout. This is shaky
1227 * logic as a failure to make progress could be due to anything from
1228 * writeback to a slow device to excessive referenced folios at the tail
1229 * of the inactive LRU.
1232 case VMSCAN_THROTTLE_WRITEBACK:
1235 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1236 WRITE_ONCE(pgdat->nr_reclaim_start,
1237 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1241 case VMSCAN_THROTTLE_CONGESTED:
1243 case VMSCAN_THROTTLE_NOPROGRESS:
1244 if (skip_throttle_noprogress(pgdat)) {
1252 case VMSCAN_THROTTLE_ISOLATED:
1261 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1262 ret = schedule_timeout(timeout);
1263 finish_wait(wqh, &wait);
1265 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1266 atomic_dec(&pgdat->nr_writeback_throttled);
1268 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1269 jiffies_to_usecs(timeout - ret),
1274 * Account for folios written if tasks are throttled waiting on dirty
1275 * folios to clean. If enough folios have been cleaned since throttling
1276 * started then wakeup the throttled tasks.
1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1281 unsigned long nr_written;
1283 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1286 * This is an inaccurate read as the per-cpu deltas may not
1287 * be synchronised. However, given that the system is
1288 * writeback throttled, it is not worth taking the penalty
1289 * of getting an accurate count. At worst, the throttle
1290 * timeout guarantees forward progress.
1292 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1293 READ_ONCE(pgdat->nr_reclaim_start);
1295 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1296 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1299 /* possible outcome of pageout() */
1301 /* failed to write folio out, folio is locked */
1303 /* move folio to the active list, folio is locked */
1305 /* folio has been sent to the disk successfully, folio is unlocked */
1307 /* folio is clean and locked */
1312 * pageout is called by shrink_folio_list() for each dirty folio.
1313 * Calls ->writepage().
1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1316 struct swap_iocb **plug)
1319 * If the folio is dirty, only perform writeback if that write
1320 * will be non-blocking. To prevent this allocation from being
1321 * stalled by pagecache activity. But note that there may be
1322 * stalls if we need to run get_block(). We could test
1323 * PagePrivate for that.
1325 * If this process is currently in __generic_file_write_iter() against
1326 * this folio's queue, we can perform writeback even if that
1329 * If the folio is swapcache, write it back even if that would
1330 * block, for some throttling. This happens by accident, because
1331 * swap_backing_dev_info is bust: it doesn't reflect the
1332 * congestion state of the swapdevs. Easy to fix, if needed.
1334 if (!is_page_cache_freeable(folio))
1338 * Some data journaling orphaned folios can have
1339 * folio->mapping == NULL while being dirty with clean buffers.
1341 if (folio_test_private(folio)) {
1342 if (try_to_free_buffers(folio)) {
1343 folio_clear_dirty(folio);
1344 pr_info("%s: orphaned folio\n", __func__);
1350 if (mapping->a_ops->writepage == NULL)
1351 return PAGE_ACTIVATE;
1353 if (folio_clear_dirty_for_io(folio)) {
1355 struct writeback_control wbc = {
1356 .sync_mode = WB_SYNC_NONE,
1357 .nr_to_write = SWAP_CLUSTER_MAX,
1359 .range_end = LLONG_MAX,
1364 folio_set_reclaim(folio);
1365 res = mapping->a_ops->writepage(&folio->page, &wbc);
1367 handle_write_error(mapping, folio, res);
1368 if (res == AOP_WRITEPAGE_ACTIVATE) {
1369 folio_clear_reclaim(folio);
1370 return PAGE_ACTIVATE;
1373 if (!folio_test_writeback(folio)) {
1374 /* synchronous write or broken a_ops? */
1375 folio_clear_reclaim(folio);
1377 trace_mm_vmscan_write_folio(folio);
1378 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1379 return PAGE_SUCCESS;
1386 * Same as remove_mapping, but if the folio is removed from the mapping, it
1387 * gets returned with a refcount of 0.
1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1390 bool reclaimed, struct mem_cgroup *target_memcg)
1393 void *shadow = NULL;
1395 BUG_ON(!folio_test_locked(folio));
1396 BUG_ON(mapping != folio_mapping(folio));
1398 if (!folio_test_swapcache(folio))
1399 spin_lock(&mapping->host->i_lock);
1400 xa_lock_irq(&mapping->i_pages);
1402 * The non racy check for a busy folio.
1404 * Must be careful with the order of the tests. When someone has
1405 * a ref to the folio, it may be possible that they dirty it then
1406 * drop the reference. So if the dirty flag is tested before the
1407 * refcount here, then the following race may occur:
1409 * get_user_pages(&page);
1410 * [user mapping goes away]
1412 * !folio_test_dirty(folio) [good]
1413 * folio_set_dirty(folio);
1415 * !refcount(folio) [good, discard it]
1417 * [oops, our write_to data is lost]
1419 * Reversing the order of the tests ensures such a situation cannot
1420 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1421 * load is not satisfied before that of folio->_refcount.
1423 * Note that if the dirty flag is always set via folio_mark_dirty,
1424 * and thus under the i_pages lock, then this ordering is not required.
1426 refcount = 1 + folio_nr_pages(folio);
1427 if (!folio_ref_freeze(folio, refcount))
1429 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1430 if (unlikely(folio_test_dirty(folio))) {
1431 folio_ref_unfreeze(folio, refcount);
1435 if (folio_test_swapcache(folio)) {
1436 swp_entry_t swap = folio_swap_entry(folio);
1438 if (reclaimed && !mapping_exiting(mapping))
1439 shadow = workingset_eviction(folio, target_memcg);
1440 __delete_from_swap_cache(folio, swap, shadow);
1441 mem_cgroup_swapout(folio, swap);
1442 xa_unlock_irq(&mapping->i_pages);
1443 put_swap_folio(folio, swap);
1445 void (*free_folio)(struct folio *);
1447 free_folio = mapping->a_ops->free_folio;
1449 * Remember a shadow entry for reclaimed file cache in
1450 * order to detect refaults, thus thrashing, later on.
1452 * But don't store shadows in an address space that is
1453 * already exiting. This is not just an optimization,
1454 * inode reclaim needs to empty out the radix tree or
1455 * the nodes are lost. Don't plant shadows behind its
1458 * We also don't store shadows for DAX mappings because the
1459 * only page cache folios found in these are zero pages
1460 * covering holes, and because we don't want to mix DAX
1461 * exceptional entries and shadow exceptional entries in the
1462 * same address_space.
1464 if (reclaimed && folio_is_file_lru(folio) &&
1465 !mapping_exiting(mapping) && !dax_mapping(mapping))
1466 shadow = workingset_eviction(folio, target_memcg);
1467 __filemap_remove_folio(folio, shadow);
1468 xa_unlock_irq(&mapping->i_pages);
1469 if (mapping_shrinkable(mapping))
1470 inode_add_lru(mapping->host);
1471 spin_unlock(&mapping->host->i_lock);
1480 xa_unlock_irq(&mapping->i_pages);
1481 if (!folio_test_swapcache(folio))
1482 spin_unlock(&mapping->host->i_lock);
1487 * remove_mapping() - Attempt to remove a folio from its mapping.
1488 * @mapping: The address space.
1489 * @folio: The folio to remove.
1491 * If the folio is dirty, under writeback or if someone else has a ref
1492 * on it, removal will fail.
1493 * Return: The number of pages removed from the mapping. 0 if the folio
1494 * could not be removed.
1495 * Context: The caller should have a single refcount on the folio and
1498 long remove_mapping(struct address_space *mapping, struct folio *folio)
1500 if (__remove_mapping(mapping, folio, false, NULL)) {
1502 * Unfreezing the refcount with 1 effectively
1503 * drops the pagecache ref for us without requiring another
1506 folio_ref_unfreeze(folio, 1);
1507 return folio_nr_pages(folio);
1513 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1514 * @folio: Folio to be returned to an LRU list.
1516 * Add previously isolated @folio to appropriate LRU list.
1517 * The folio may still be unevictable for other reasons.
1519 * Context: lru_lock must not be held, interrupts must be enabled.
1521 void folio_putback_lru(struct folio *folio)
1523 folio_add_lru(folio);
1524 folio_put(folio); /* drop ref from isolate */
1527 enum folio_references {
1529 FOLIOREF_RECLAIM_CLEAN,
1534 static enum folio_references folio_check_references(struct folio *folio,
1535 struct scan_control *sc)
1537 int referenced_ptes, referenced_folio;
1538 unsigned long vm_flags;
1540 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1542 referenced_folio = folio_test_clear_referenced(folio);
1545 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1546 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1548 if (vm_flags & VM_LOCKED)
1549 return FOLIOREF_ACTIVATE;
1551 /* rmap lock contention: rotate */
1552 if (referenced_ptes == -1)
1553 return FOLIOREF_KEEP;
1555 if (referenced_ptes) {
1557 * All mapped folios start out with page table
1558 * references from the instantiating fault, so we need
1559 * to look twice if a mapped file/anon folio is used more
1562 * Mark it and spare it for another trip around the
1563 * inactive list. Another page table reference will
1564 * lead to its activation.
1566 * Note: the mark is set for activated folios as well
1567 * so that recently deactivated but used folios are
1568 * quickly recovered.
1570 folio_set_referenced(folio);
1572 if (referenced_folio || referenced_ptes > 1)
1573 return FOLIOREF_ACTIVATE;
1576 * Activate file-backed executable folios after first usage.
1578 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1579 return FOLIOREF_ACTIVATE;
1581 return FOLIOREF_KEEP;
1584 /* Reclaim if clean, defer dirty folios to writeback */
1585 if (referenced_folio && folio_is_file_lru(folio))
1586 return FOLIOREF_RECLAIM_CLEAN;
1588 return FOLIOREF_RECLAIM;
1591 /* Check if a folio is dirty or under writeback */
1592 static void folio_check_dirty_writeback(struct folio *folio,
1593 bool *dirty, bool *writeback)
1595 struct address_space *mapping;
1598 * Anonymous folios are not handled by flushers and must be written
1599 * from reclaim context. Do not stall reclaim based on them.
1600 * MADV_FREE anonymous folios are put into inactive file list too.
1601 * They could be mistakenly treated as file lru. So further anon
1604 if (!folio_is_file_lru(folio) ||
1605 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1611 /* By default assume that the folio flags are accurate */
1612 *dirty = folio_test_dirty(folio);
1613 *writeback = folio_test_writeback(folio);
1615 /* Verify dirty/writeback state if the filesystem supports it */
1616 if (!folio_test_private(folio))
1619 mapping = folio_mapping(folio);
1620 if (mapping && mapping->a_ops->is_dirty_writeback)
1621 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1624 static struct folio *alloc_demote_folio(struct folio *src,
1625 unsigned long private)
1628 nodemask_t *allowed_mask;
1629 struct migration_target_control *mtc;
1631 mtc = (struct migration_target_control *)private;
1633 allowed_mask = mtc->nmask;
1635 * make sure we allocate from the target node first also trying to
1636 * demote or reclaim pages from the target node via kswapd if we are
1637 * low on free memory on target node. If we don't do this and if
1638 * we have free memory on the slower(lower) memtier, we would start
1639 * allocating pages from slower(lower) memory tiers without even forcing
1640 * a demotion of cold pages from the target memtier. This can result
1641 * in the kernel placing hot pages in slower(lower) memory tiers.
1644 mtc->gfp_mask |= __GFP_THISNODE;
1645 dst = alloc_migration_target(src, (unsigned long)mtc);
1649 mtc->gfp_mask &= ~__GFP_THISNODE;
1650 mtc->nmask = allowed_mask;
1652 return alloc_migration_target(src, (unsigned long)mtc);
1656 * Take folios on @demote_folios and attempt to demote them to another node.
1657 * Folios which are not demoted are left on @demote_folios.
1659 static unsigned int demote_folio_list(struct list_head *demote_folios,
1660 struct pglist_data *pgdat)
1662 int target_nid = next_demotion_node(pgdat->node_id);
1663 unsigned int nr_succeeded;
1664 nodemask_t allowed_mask;
1666 struct migration_target_control mtc = {
1668 * Allocate from 'node', or fail quickly and quietly.
1669 * When this happens, 'page' will likely just be discarded
1670 * instead of migrated.
1672 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1673 __GFP_NOMEMALLOC | GFP_NOWAIT,
1675 .nmask = &allowed_mask
1678 if (list_empty(demote_folios))
1681 if (target_nid == NUMA_NO_NODE)
1684 node_get_allowed_targets(pgdat, &allowed_mask);
1686 /* Demotion ignores all cpuset and mempolicy settings */
1687 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1688 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1691 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1693 return nr_succeeded;
1696 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1698 if (gfp_mask & __GFP_FS)
1700 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1703 * We can "enter_fs" for swap-cache with only __GFP_IO
1704 * providing this isn't SWP_FS_OPS.
1705 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1706 * but that will never affect SWP_FS_OPS, so the data_race
1709 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1713 * shrink_folio_list() returns the number of reclaimed pages
1715 static unsigned int shrink_folio_list(struct list_head *folio_list,
1716 struct pglist_data *pgdat, struct scan_control *sc,
1717 struct reclaim_stat *stat, bool ignore_references)
1719 LIST_HEAD(ret_folios);
1720 LIST_HEAD(free_folios);
1721 LIST_HEAD(demote_folios);
1722 unsigned int nr_reclaimed = 0;
1723 unsigned int pgactivate = 0;
1724 bool do_demote_pass;
1725 struct swap_iocb *plug = NULL;
1727 memset(stat, 0, sizeof(*stat));
1729 do_demote_pass = can_demote(pgdat->node_id, sc);
1732 while (!list_empty(folio_list)) {
1733 struct address_space *mapping;
1734 struct folio *folio;
1735 enum folio_references references = FOLIOREF_RECLAIM;
1736 bool dirty, writeback;
1737 unsigned int nr_pages;
1741 folio = lru_to_folio(folio_list);
1742 list_del(&folio->lru);
1744 if (!folio_trylock(folio))
1747 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1749 nr_pages = folio_nr_pages(folio);
1751 /* Account the number of base pages */
1752 sc->nr_scanned += nr_pages;
1754 if (unlikely(!folio_evictable(folio)))
1755 goto activate_locked;
1757 if (!sc->may_unmap && folio_mapped(folio))
1760 /* folio_update_gen() tried to promote this page? */
1761 if (lru_gen_enabled() && !ignore_references &&
1762 folio_mapped(folio) && folio_test_referenced(folio))
1766 * The number of dirty pages determines if a node is marked
1767 * reclaim_congested. kswapd will stall and start writing
1768 * folios if the tail of the LRU is all dirty unqueued folios.
1770 folio_check_dirty_writeback(folio, &dirty, &writeback);
1771 if (dirty || writeback)
1772 stat->nr_dirty += nr_pages;
1774 if (dirty && !writeback)
1775 stat->nr_unqueued_dirty += nr_pages;
1778 * Treat this folio as congested if folios are cycling
1779 * through the LRU so quickly that the folios marked
1780 * for immediate reclaim are making it to the end of
1781 * the LRU a second time.
1783 if (writeback && folio_test_reclaim(folio))
1784 stat->nr_congested += nr_pages;
1787 * If a folio at the tail of the LRU is under writeback, there
1788 * are three cases to consider.
1790 * 1) If reclaim is encountering an excessive number
1791 * of folios under writeback and this folio has both
1792 * the writeback and reclaim flags set, then it
1793 * indicates that folios are being queued for I/O but
1794 * are being recycled through the LRU before the I/O
1795 * can complete. Waiting on the folio itself risks an
1796 * indefinite stall if it is impossible to writeback
1797 * the folio due to I/O error or disconnected storage
1798 * so instead note that the LRU is being scanned too
1799 * quickly and the caller can stall after the folio
1800 * list has been processed.
1802 * 2) Global or new memcg reclaim encounters a folio that is
1803 * not marked for immediate reclaim, or the caller does not
1804 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1805 * not to fs). In this case mark the folio for immediate
1806 * reclaim and continue scanning.
1808 * Require may_enter_fs() because we would wait on fs, which
1809 * may not have submitted I/O yet. And the loop driver might
1810 * enter reclaim, and deadlock if it waits on a folio for
1811 * which it is needed to do the write (loop masks off
1812 * __GFP_IO|__GFP_FS for this reason); but more thought
1813 * would probably show more reasons.
1815 * 3) Legacy memcg encounters a folio that already has the
1816 * reclaim flag set. memcg does not have any dirty folio
1817 * throttling so we could easily OOM just because too many
1818 * folios are in writeback and there is nothing else to
1819 * reclaim. Wait for the writeback to complete.
1821 * In cases 1) and 2) we activate the folios to get them out of
1822 * the way while we continue scanning for clean folios on the
1823 * inactive list and refilling from the active list. The
1824 * observation here is that waiting for disk writes is more
1825 * expensive than potentially causing reloads down the line.
1826 * Since they're marked for immediate reclaim, they won't put
1827 * memory pressure on the cache working set any longer than it
1828 * takes to write them to disk.
1830 if (folio_test_writeback(folio)) {
1832 if (current_is_kswapd() &&
1833 folio_test_reclaim(folio) &&
1834 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1835 stat->nr_immediate += nr_pages;
1836 goto activate_locked;
1839 } else if (writeback_throttling_sane(sc) ||
1840 !folio_test_reclaim(folio) ||
1841 !may_enter_fs(folio, sc->gfp_mask)) {
1843 * This is slightly racy -
1844 * folio_end_writeback() might have
1845 * just cleared the reclaim flag, then
1846 * setting the reclaim flag here ends up
1847 * interpreted as the readahead flag - but
1848 * that does not matter enough to care.
1849 * What we do want is for this folio to
1850 * have the reclaim flag set next time
1851 * memcg reclaim reaches the tests above,
1852 * so it will then wait for writeback to
1853 * avoid OOM; and it's also appropriate
1854 * in global reclaim.
1856 folio_set_reclaim(folio);
1857 stat->nr_writeback += nr_pages;
1858 goto activate_locked;
1862 folio_unlock(folio);
1863 folio_wait_writeback(folio);
1864 /* then go back and try same folio again */
1865 list_add_tail(&folio->lru, folio_list);
1870 if (!ignore_references)
1871 references = folio_check_references(folio, sc);
1873 switch (references) {
1874 case FOLIOREF_ACTIVATE:
1875 goto activate_locked;
1877 stat->nr_ref_keep += nr_pages;
1879 case FOLIOREF_RECLAIM:
1880 case FOLIOREF_RECLAIM_CLEAN:
1881 ; /* try to reclaim the folio below */
1885 * Before reclaiming the folio, try to relocate
1886 * its contents to another node.
1888 if (do_demote_pass &&
1889 (thp_migration_supported() || !folio_test_large(folio))) {
1890 list_add(&folio->lru, &demote_folios);
1891 folio_unlock(folio);
1896 * Anonymous process memory has backing store?
1897 * Try to allocate it some swap space here.
1898 * Lazyfree folio could be freed directly
1900 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1901 if (!folio_test_swapcache(folio)) {
1902 if (!(sc->gfp_mask & __GFP_IO))
1904 if (folio_maybe_dma_pinned(folio))
1906 if (folio_test_large(folio)) {
1907 /* cannot split folio, skip it */
1908 if (!can_split_folio(folio, NULL))
1909 goto activate_locked;
1911 * Split folios without a PMD map right
1912 * away. Chances are some or all of the
1913 * tail pages can be freed without IO.
1915 if (!folio_entire_mapcount(folio) &&
1916 split_folio_to_list(folio,
1918 goto activate_locked;
1920 if (!add_to_swap(folio)) {
1921 if (!folio_test_large(folio))
1922 goto activate_locked_split;
1923 /* Fallback to swap normal pages */
1924 if (split_folio_to_list(folio,
1926 goto activate_locked;
1927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1928 count_vm_event(THP_SWPOUT_FALLBACK);
1930 if (!add_to_swap(folio))
1931 goto activate_locked_split;
1934 } else if (folio_test_swapbacked(folio) &&
1935 folio_test_large(folio)) {
1936 /* Split shmem folio */
1937 if (split_folio_to_list(folio, folio_list))
1942 * If the folio was split above, the tail pages will make
1943 * their own pass through this function and be accounted
1946 if ((nr_pages > 1) && !folio_test_large(folio)) {
1947 sc->nr_scanned -= (nr_pages - 1);
1952 * The folio is mapped into the page tables of one or more
1953 * processes. Try to unmap it here.
1955 if (folio_mapped(folio)) {
1956 enum ttu_flags flags = TTU_BATCH_FLUSH;
1957 bool was_swapbacked = folio_test_swapbacked(folio);
1959 if (folio_test_pmd_mappable(folio))
1960 flags |= TTU_SPLIT_HUGE_PMD;
1962 try_to_unmap(folio, flags);
1963 if (folio_mapped(folio)) {
1964 stat->nr_unmap_fail += nr_pages;
1965 if (!was_swapbacked &&
1966 folio_test_swapbacked(folio))
1967 stat->nr_lazyfree_fail += nr_pages;
1968 goto activate_locked;
1973 * Folio is unmapped now so it cannot be newly pinned anymore.
1974 * No point in trying to reclaim folio if it is pinned.
1975 * Furthermore we don't want to reclaim underlying fs metadata
1976 * if the folio is pinned and thus potentially modified by the
1977 * pinning process as that may upset the filesystem.
1979 if (folio_maybe_dma_pinned(folio))
1980 goto activate_locked;
1982 mapping = folio_mapping(folio);
1983 if (folio_test_dirty(folio)) {
1985 * Only kswapd can writeback filesystem folios
1986 * to avoid risk of stack overflow. But avoid
1987 * injecting inefficient single-folio I/O into
1988 * flusher writeback as much as possible: only
1989 * write folios when we've encountered many
1990 * dirty folios, and when we've already scanned
1991 * the rest of the LRU for clean folios and see
1992 * the same dirty folios again (with the reclaim
1995 if (folio_is_file_lru(folio) &&
1996 (!current_is_kswapd() ||
1997 !folio_test_reclaim(folio) ||
1998 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
2000 * Immediately reclaim when written back.
2001 * Similar in principle to folio_deactivate()
2002 * except we already have the folio isolated
2003 * and know it's dirty
2005 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2007 folio_set_reclaim(folio);
2009 goto activate_locked;
2012 if (references == FOLIOREF_RECLAIM_CLEAN)
2014 if (!may_enter_fs(folio, sc->gfp_mask))
2016 if (!sc->may_writepage)
2020 * Folio is dirty. Flush the TLB if a writable entry
2021 * potentially exists to avoid CPU writes after I/O
2022 * starts and then write it out here.
2024 try_to_unmap_flush_dirty();
2025 switch (pageout(folio, mapping, &plug)) {
2029 goto activate_locked;
2031 stat->nr_pageout += nr_pages;
2033 if (folio_test_writeback(folio))
2035 if (folio_test_dirty(folio))
2039 * A synchronous write - probably a ramdisk. Go
2040 * ahead and try to reclaim the folio.
2042 if (!folio_trylock(folio))
2044 if (folio_test_dirty(folio) ||
2045 folio_test_writeback(folio))
2047 mapping = folio_mapping(folio);
2050 ; /* try to free the folio below */
2055 * If the folio has buffers, try to free the buffer
2056 * mappings associated with this folio. If we succeed
2057 * we try to free the folio as well.
2059 * We do this even if the folio is dirty.
2060 * filemap_release_folio() does not perform I/O, but it
2061 * is possible for a folio to have the dirty flag set,
2062 * but it is actually clean (all its buffers are clean).
2063 * This happens if the buffers were written out directly,
2064 * with submit_bh(). ext3 will do this, as well as
2065 * the blockdev mapping. filemap_release_folio() will
2066 * discover that cleanness and will drop the buffers
2067 * and mark the folio clean - it can be freed.
2069 * Rarely, folios can have buffers and no ->mapping.
2070 * These are the folios which were not successfully
2071 * invalidated in truncate_cleanup_folio(). We try to
2072 * drop those buffers here and if that worked, and the
2073 * folio is no longer mapped into process address space
2074 * (refcount == 1) it can be freed. Otherwise, leave
2075 * the folio on the LRU so it is swappable.
2077 if (folio_has_private(folio)) {
2078 if (!filemap_release_folio(folio, sc->gfp_mask))
2079 goto activate_locked;
2080 if (!mapping && folio_ref_count(folio) == 1) {
2081 folio_unlock(folio);
2082 if (folio_put_testzero(folio))
2086 * rare race with speculative reference.
2087 * the speculative reference will free
2088 * this folio shortly, so we may
2089 * increment nr_reclaimed here (and
2090 * leave it off the LRU).
2092 nr_reclaimed += nr_pages;
2098 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2099 /* follow __remove_mapping for reference */
2100 if (!folio_ref_freeze(folio, 1))
2103 * The folio has only one reference left, which is
2104 * from the isolation. After the caller puts the
2105 * folio back on the lru and drops the reference, the
2106 * folio will be freed anyway. It doesn't matter
2107 * which lru it goes on. So we don't bother checking
2108 * the dirty flag here.
2110 count_vm_events(PGLAZYFREED, nr_pages);
2111 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2112 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2113 sc->target_mem_cgroup))
2116 folio_unlock(folio);
2119 * Folio may get swapped out as a whole, need to account
2122 nr_reclaimed += nr_pages;
2125 * Is there need to periodically free_folio_list? It would
2126 * appear not as the counts should be low
2128 if (unlikely(folio_test_large(folio)))
2129 destroy_large_folio(folio);
2131 list_add(&folio->lru, &free_folios);
2134 activate_locked_split:
2136 * The tail pages that are failed to add into swap cache
2137 * reach here. Fixup nr_scanned and nr_pages.
2140 sc->nr_scanned -= (nr_pages - 1);
2144 /* Not a candidate for swapping, so reclaim swap space. */
2145 if (folio_test_swapcache(folio) &&
2146 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2147 folio_free_swap(folio);
2148 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2149 if (!folio_test_mlocked(folio)) {
2150 int type = folio_is_file_lru(folio);
2151 folio_set_active(folio);
2152 stat->nr_activate[type] += nr_pages;
2153 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2156 folio_unlock(folio);
2158 list_add(&folio->lru, &ret_folios);
2159 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2160 folio_test_unevictable(folio), folio);
2162 /* 'folio_list' is always empty here */
2164 /* Migrate folios selected for demotion */
2165 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2166 /* Folios that could not be demoted are still in @demote_folios */
2167 if (!list_empty(&demote_folios)) {
2168 /* Folios which weren't demoted go back on @folio_list */
2169 list_splice_init(&demote_folios, folio_list);
2172 * goto retry to reclaim the undemoted folios in folio_list if
2175 * Reclaiming directly from top tier nodes is not often desired
2176 * due to it breaking the LRU ordering: in general memory
2177 * should be reclaimed from lower tier nodes and demoted from
2180 * However, disabling reclaim from top tier nodes entirely
2181 * would cause ooms in edge scenarios where lower tier memory
2182 * is unreclaimable for whatever reason, eg memory being
2183 * mlocked or too hot to reclaim. We can disable reclaim
2184 * from top tier nodes in proactive reclaim though as that is
2185 * not real memory pressure.
2187 if (!sc->proactive) {
2188 do_demote_pass = false;
2193 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2195 mem_cgroup_uncharge_list(&free_folios);
2196 try_to_unmap_flush();
2197 free_unref_page_list(&free_folios);
2199 list_splice(&ret_folios, folio_list);
2200 count_vm_events(PGACTIVATE, pgactivate);
2203 swap_write_unplug(plug);
2204 return nr_reclaimed;
2207 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2208 struct list_head *folio_list)
2210 struct scan_control sc = {
2211 .gfp_mask = GFP_KERNEL,
2214 struct reclaim_stat stat;
2215 unsigned int nr_reclaimed;
2216 struct folio *folio, *next;
2217 LIST_HEAD(clean_folios);
2218 unsigned int noreclaim_flag;
2220 list_for_each_entry_safe(folio, next, folio_list, lru) {
2221 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2222 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2223 !folio_test_unevictable(folio)) {
2224 folio_clear_active(folio);
2225 list_move(&folio->lru, &clean_folios);
2230 * We should be safe here since we are only dealing with file pages and
2231 * we are not kswapd and therefore cannot write dirty file pages. But
2232 * call memalloc_noreclaim_save() anyway, just in case these conditions
2233 * change in the future.
2235 noreclaim_flag = memalloc_noreclaim_save();
2236 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2238 memalloc_noreclaim_restore(noreclaim_flag);
2240 list_splice(&clean_folios, folio_list);
2241 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2242 -(long)nr_reclaimed);
2244 * Since lazyfree pages are isolated from file LRU from the beginning,
2245 * they will rotate back to anonymous LRU in the end if it failed to
2246 * discard so isolated count will be mismatched.
2247 * Compensate the isolated count for both LRU lists.
2249 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2250 stat.nr_lazyfree_fail);
2251 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2252 -(long)stat.nr_lazyfree_fail);
2253 return nr_reclaimed;
2257 * Update LRU sizes after isolating pages. The LRU size updates must
2258 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2260 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2261 enum lru_list lru, unsigned long *nr_zone_taken)
2265 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2266 if (!nr_zone_taken[zid])
2269 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2276 * It is waste of effort to scan and reclaim CMA pages if it is not available
2277 * for current allocation context. Kswapd can not be enrolled as it can not
2278 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
2280 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2282 return !current_is_kswapd() &&
2283 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
2284 get_pageblock_migratetype(&folio->page) == MIGRATE_CMA;
2287 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2294 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2296 * lruvec->lru_lock is heavily contended. Some of the functions that
2297 * shrink the lists perform better by taking out a batch of pages
2298 * and working on them outside the LRU lock.
2300 * For pagecache intensive workloads, this function is the hottest
2301 * spot in the kernel (apart from copy_*_user functions).
2303 * Lru_lock must be held before calling this function.
2305 * @nr_to_scan: The number of eligible pages to look through on the list.
2306 * @lruvec: The LRU vector to pull pages from.
2307 * @dst: The temp list to put pages on to.
2308 * @nr_scanned: The number of pages that were scanned.
2309 * @sc: The scan_control struct for this reclaim session
2310 * @lru: LRU list id for isolating
2312 * returns how many pages were moved onto *@dst.
2314 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2315 struct lruvec *lruvec, struct list_head *dst,
2316 unsigned long *nr_scanned, struct scan_control *sc,
2319 struct list_head *src = &lruvec->lists[lru];
2320 unsigned long nr_taken = 0;
2321 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2322 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2323 unsigned long skipped = 0;
2324 unsigned long scan, total_scan, nr_pages;
2325 LIST_HEAD(folios_skipped);
2329 while (scan < nr_to_scan && !list_empty(src)) {
2330 struct list_head *move_to = src;
2331 struct folio *folio;
2333 folio = lru_to_folio(src);
2334 prefetchw_prev_lru_folio(folio, src, flags);
2336 nr_pages = folio_nr_pages(folio);
2337 total_scan += nr_pages;
2339 if (folio_zonenum(folio) > sc->reclaim_idx ||
2340 skip_cma(folio, sc)) {
2341 nr_skipped[folio_zonenum(folio)] += nr_pages;
2342 move_to = &folios_skipped;
2347 * Do not count skipped folios because that makes the function
2348 * return with no isolated folios if the LRU mostly contains
2349 * ineligible folios. This causes the VM to not reclaim any
2350 * folios, triggering a premature OOM.
2351 * Account all pages in a folio.
2355 if (!folio_test_lru(folio))
2357 if (!sc->may_unmap && folio_mapped(folio))
2361 * Be careful not to clear the lru flag until after we're
2362 * sure the folio is not being freed elsewhere -- the
2363 * folio release code relies on it.
2365 if (unlikely(!folio_try_get(folio)))
2368 if (!folio_test_clear_lru(folio)) {
2369 /* Another thread is already isolating this folio */
2374 nr_taken += nr_pages;
2375 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2378 list_move(&folio->lru, move_to);
2382 * Splice any skipped folios to the start of the LRU list. Note that
2383 * this disrupts the LRU order when reclaiming for lower zones but
2384 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2385 * scanning would soon rescan the same folios to skip and waste lots
2388 if (!list_empty(&folios_skipped)) {
2391 list_splice(&folios_skipped, src);
2392 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2393 if (!nr_skipped[zid])
2396 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2397 skipped += nr_skipped[zid];
2400 *nr_scanned = total_scan;
2401 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2402 total_scan, skipped, nr_taken,
2403 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2404 update_lru_sizes(lruvec, lru, nr_zone_taken);
2409 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2410 * @folio: Folio to isolate from its LRU list.
2412 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2413 * corresponding to whatever LRU list the folio was on.
2415 * The folio will have its LRU flag cleared. If it was found on the
2416 * active list, it will have the Active flag set. If it was found on the
2417 * unevictable list, it will have the Unevictable flag set. These flags
2418 * may need to be cleared by the caller before letting the page go.
2422 * (1) Must be called with an elevated refcount on the folio. This is a
2423 * fundamental difference from isolate_lru_folios() (which is called
2424 * without a stable reference).
2425 * (2) The lru_lock must not be held.
2426 * (3) Interrupts must be enabled.
2428 * Return: true if the folio was removed from an LRU list.
2429 * false if the folio was not on an LRU list.
2431 bool folio_isolate_lru(struct folio *folio)
2435 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2437 if (folio_test_clear_lru(folio)) {
2438 struct lruvec *lruvec;
2441 lruvec = folio_lruvec_lock_irq(folio);
2442 lruvec_del_folio(lruvec, folio);
2443 unlock_page_lruvec_irq(lruvec);
2451 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2452 * then get rescheduled. When there are massive number of tasks doing page
2453 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2454 * the LRU list will go small and be scanned faster than necessary, leading to
2455 * unnecessary swapping, thrashing and OOM.
2457 static int too_many_isolated(struct pglist_data *pgdat, int file,
2458 struct scan_control *sc)
2460 unsigned long inactive, isolated;
2463 if (current_is_kswapd())
2466 if (!writeback_throttling_sane(sc))
2470 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2471 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2473 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2474 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2478 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2479 * won't get blocked by normal direct-reclaimers, forming a circular
2482 if (gfp_has_io_fs(sc->gfp_mask))
2485 too_many = isolated > inactive;
2487 /* Wake up tasks throttled due to too_many_isolated. */
2489 wake_throttle_isolated(pgdat);
2495 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2496 * On return, @list is reused as a list of folios to be freed by the caller.
2498 * Returns the number of pages moved to the given lruvec.
2500 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2501 struct list_head *list)
2503 int nr_pages, nr_moved = 0;
2504 LIST_HEAD(folios_to_free);
2506 while (!list_empty(list)) {
2507 struct folio *folio = lru_to_folio(list);
2509 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2510 list_del(&folio->lru);
2511 if (unlikely(!folio_evictable(folio))) {
2512 spin_unlock_irq(&lruvec->lru_lock);
2513 folio_putback_lru(folio);
2514 spin_lock_irq(&lruvec->lru_lock);
2519 * The folio_set_lru needs to be kept here for list integrity.
2521 * #0 move_folios_to_lru #1 release_pages
2522 * if (!folio_put_testzero())
2523 * if (folio_put_testzero())
2524 * !lru //skip lru_lock
2526 * list_add(&folio->lru,)
2527 * list_add(&folio->lru,)
2529 folio_set_lru(folio);
2531 if (unlikely(folio_put_testzero(folio))) {
2532 __folio_clear_lru_flags(folio);
2534 if (unlikely(folio_test_large(folio))) {
2535 spin_unlock_irq(&lruvec->lru_lock);
2536 destroy_large_folio(folio);
2537 spin_lock_irq(&lruvec->lru_lock);
2539 list_add(&folio->lru, &folios_to_free);
2545 * All pages were isolated from the same lruvec (and isolation
2546 * inhibits memcg migration).
2548 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2549 lruvec_add_folio(lruvec, folio);
2550 nr_pages = folio_nr_pages(folio);
2551 nr_moved += nr_pages;
2552 if (folio_test_active(folio))
2553 workingset_age_nonresident(lruvec, nr_pages);
2557 * To save our caller's stack, now use input list for pages to free.
2559 list_splice(&folios_to_free, list);
2565 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2566 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2567 * we should not throttle. Otherwise it is safe to do so.
2569 static int current_may_throttle(void)
2571 return !(current->flags & PF_LOCAL_THROTTLE);
2575 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2576 * of reclaimed pages
2578 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2579 struct lruvec *lruvec, struct scan_control *sc,
2582 LIST_HEAD(folio_list);
2583 unsigned long nr_scanned;
2584 unsigned int nr_reclaimed = 0;
2585 unsigned long nr_taken;
2586 struct reclaim_stat stat;
2587 bool file = is_file_lru(lru);
2588 enum vm_event_item item;
2589 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2590 bool stalled = false;
2592 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2596 /* wait a bit for the reclaimer. */
2598 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2600 /* We are about to die and free our memory. Return now. */
2601 if (fatal_signal_pending(current))
2602 return SWAP_CLUSTER_MAX;
2607 spin_lock_irq(&lruvec->lru_lock);
2609 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2610 &nr_scanned, sc, lru);
2612 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2613 item = PGSCAN_KSWAPD + reclaimer_offset();
2614 if (!cgroup_reclaim(sc))
2615 __count_vm_events(item, nr_scanned);
2616 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2617 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2619 spin_unlock_irq(&lruvec->lru_lock);
2624 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2626 spin_lock_irq(&lruvec->lru_lock);
2627 move_folios_to_lru(lruvec, &folio_list);
2629 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2630 item = PGSTEAL_KSWAPD + reclaimer_offset();
2631 if (!cgroup_reclaim(sc))
2632 __count_vm_events(item, nr_reclaimed);
2633 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2634 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2635 spin_unlock_irq(&lruvec->lru_lock);
2637 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2638 mem_cgroup_uncharge_list(&folio_list);
2639 free_unref_page_list(&folio_list);
2642 * If dirty folios are scanned that are not queued for IO, it
2643 * implies that flushers are not doing their job. This can
2644 * happen when memory pressure pushes dirty folios to the end of
2645 * the LRU before the dirty limits are breached and the dirty
2646 * data has expired. It can also happen when the proportion of
2647 * dirty folios grows not through writes but through memory
2648 * pressure reclaiming all the clean cache. And in some cases,
2649 * the flushers simply cannot keep up with the allocation
2650 * rate. Nudge the flusher threads in case they are asleep.
2652 if (stat.nr_unqueued_dirty == nr_taken) {
2653 wakeup_flusher_threads(WB_REASON_VMSCAN);
2655 * For cgroupv1 dirty throttling is achieved by waking up
2656 * the kernel flusher here and later waiting on folios
2657 * which are in writeback to finish (see shrink_folio_list()).
2659 * Flusher may not be able to issue writeback quickly
2660 * enough for cgroupv1 writeback throttling to work
2661 * on a large system.
2663 if (!writeback_throttling_sane(sc))
2664 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2667 sc->nr.dirty += stat.nr_dirty;
2668 sc->nr.congested += stat.nr_congested;
2669 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2670 sc->nr.writeback += stat.nr_writeback;
2671 sc->nr.immediate += stat.nr_immediate;
2672 sc->nr.taken += nr_taken;
2674 sc->nr.file_taken += nr_taken;
2676 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2677 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2678 return nr_reclaimed;
2682 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2684 * We move them the other way if the folio is referenced by one or more
2687 * If the folios are mostly unmapped, the processing is fast and it is
2688 * appropriate to hold lru_lock across the whole operation. But if
2689 * the folios are mapped, the processing is slow (folio_referenced()), so
2690 * we should drop lru_lock around each folio. It's impossible to balance
2691 * this, so instead we remove the folios from the LRU while processing them.
2692 * It is safe to rely on the active flag against the non-LRU folios in here
2693 * because nobody will play with that bit on a non-LRU folio.
2695 * The downside is that we have to touch folio->_refcount against each folio.
2696 * But we had to alter folio->flags anyway.
2698 static void shrink_active_list(unsigned long nr_to_scan,
2699 struct lruvec *lruvec,
2700 struct scan_control *sc,
2703 unsigned long nr_taken;
2704 unsigned long nr_scanned;
2705 unsigned long vm_flags;
2706 LIST_HEAD(l_hold); /* The folios which were snipped off */
2707 LIST_HEAD(l_active);
2708 LIST_HEAD(l_inactive);
2709 unsigned nr_deactivate, nr_activate;
2710 unsigned nr_rotated = 0;
2711 int file = is_file_lru(lru);
2712 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2716 spin_lock_irq(&lruvec->lru_lock);
2718 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2719 &nr_scanned, sc, lru);
2721 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2723 if (!cgroup_reclaim(sc))
2724 __count_vm_events(PGREFILL, nr_scanned);
2725 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2727 spin_unlock_irq(&lruvec->lru_lock);
2729 while (!list_empty(&l_hold)) {
2730 struct folio *folio;
2733 folio = lru_to_folio(&l_hold);
2734 list_del(&folio->lru);
2736 if (unlikely(!folio_evictable(folio))) {
2737 folio_putback_lru(folio);
2741 if (unlikely(buffer_heads_over_limit)) {
2742 if (folio_test_private(folio) && folio_trylock(folio)) {
2743 if (folio_test_private(folio))
2744 filemap_release_folio(folio, 0);
2745 folio_unlock(folio);
2749 /* Referenced or rmap lock contention: rotate */
2750 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2753 * Identify referenced, file-backed active folios and
2754 * give them one more trip around the active list. So
2755 * that executable code get better chances to stay in
2756 * memory under moderate memory pressure. Anon folios
2757 * are not likely to be evicted by use-once streaming
2758 * IO, plus JVM can create lots of anon VM_EXEC folios,
2759 * so we ignore them here.
2761 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2762 nr_rotated += folio_nr_pages(folio);
2763 list_add(&folio->lru, &l_active);
2768 folio_clear_active(folio); /* we are de-activating */
2769 folio_set_workingset(folio);
2770 list_add(&folio->lru, &l_inactive);
2774 * Move folios back to the lru list.
2776 spin_lock_irq(&lruvec->lru_lock);
2778 nr_activate = move_folios_to_lru(lruvec, &l_active);
2779 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2780 /* Keep all free folios in l_active list */
2781 list_splice(&l_inactive, &l_active);
2783 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2784 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2786 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2787 spin_unlock_irq(&lruvec->lru_lock);
2790 lru_note_cost(lruvec, file, 0, nr_rotated);
2791 mem_cgroup_uncharge_list(&l_active);
2792 free_unref_page_list(&l_active);
2793 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2794 nr_deactivate, nr_rotated, sc->priority, file);
2797 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2798 struct pglist_data *pgdat)
2800 struct reclaim_stat dummy_stat;
2801 unsigned int nr_reclaimed;
2802 struct folio *folio;
2803 struct scan_control sc = {
2804 .gfp_mask = GFP_KERNEL,
2811 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2812 while (!list_empty(folio_list)) {
2813 folio = lru_to_folio(folio_list);
2814 list_del(&folio->lru);
2815 folio_putback_lru(folio);
2818 return nr_reclaimed;
2821 unsigned long reclaim_pages(struct list_head *folio_list)
2824 unsigned int nr_reclaimed = 0;
2825 LIST_HEAD(node_folio_list);
2826 unsigned int noreclaim_flag;
2828 if (list_empty(folio_list))
2829 return nr_reclaimed;
2831 noreclaim_flag = memalloc_noreclaim_save();
2833 nid = folio_nid(lru_to_folio(folio_list));
2835 struct folio *folio = lru_to_folio(folio_list);
2837 if (nid == folio_nid(folio)) {
2838 folio_clear_active(folio);
2839 list_move(&folio->lru, &node_folio_list);
2843 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2844 nid = folio_nid(lru_to_folio(folio_list));
2845 } while (!list_empty(folio_list));
2847 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2849 memalloc_noreclaim_restore(noreclaim_flag);
2851 return nr_reclaimed;
2854 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2855 struct lruvec *lruvec, struct scan_control *sc)
2857 if (is_active_lru(lru)) {
2858 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2859 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2861 sc->skipped_deactivate = 1;
2865 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2869 * The inactive anon list should be small enough that the VM never has
2870 * to do too much work.
2872 * The inactive file list should be small enough to leave most memory
2873 * to the established workingset on the scan-resistant active list,
2874 * but large enough to avoid thrashing the aggregate readahead window.
2876 * Both inactive lists should also be large enough that each inactive
2877 * folio has a chance to be referenced again before it is reclaimed.
2879 * If that fails and refaulting is observed, the inactive list grows.
2881 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2882 * on this LRU, maintained by the pageout code. An inactive_ratio
2883 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2886 * memory ratio inactive
2887 * -------------------------------------
2896 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2898 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2899 unsigned long inactive, active;
2900 unsigned long inactive_ratio;
2903 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2904 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2906 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2908 inactive_ratio = int_sqrt(10 * gb);
2912 return inactive * inactive_ratio < active;
2922 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2925 struct lruvec *target_lruvec;
2927 if (lru_gen_enabled())
2930 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2933 * Flush the memory cgroup stats, so that we read accurate per-memcg
2934 * lruvec stats for heuristics.
2936 mem_cgroup_flush_stats();
2939 * Determine the scan balance between anon and file LRUs.
2941 spin_lock_irq(&target_lruvec->lru_lock);
2942 sc->anon_cost = target_lruvec->anon_cost;
2943 sc->file_cost = target_lruvec->file_cost;
2944 spin_unlock_irq(&target_lruvec->lru_lock);
2947 * Target desirable inactive:active list ratios for the anon
2948 * and file LRU lists.
2950 if (!sc->force_deactivate) {
2951 unsigned long refaults;
2954 * When refaults are being observed, it means a new
2955 * workingset is being established. Deactivate to get
2956 * rid of any stale active pages quickly.
2958 refaults = lruvec_page_state(target_lruvec,
2959 WORKINGSET_ACTIVATE_ANON);
2960 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2961 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2962 sc->may_deactivate |= DEACTIVATE_ANON;
2964 sc->may_deactivate &= ~DEACTIVATE_ANON;
2966 refaults = lruvec_page_state(target_lruvec,
2967 WORKINGSET_ACTIVATE_FILE);
2968 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2969 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2970 sc->may_deactivate |= DEACTIVATE_FILE;
2972 sc->may_deactivate &= ~DEACTIVATE_FILE;
2974 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2977 * If we have plenty of inactive file pages that aren't
2978 * thrashing, try to reclaim those first before touching
2981 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2982 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2983 sc->cache_trim_mode = 1;
2985 sc->cache_trim_mode = 0;
2988 * Prevent the reclaimer from falling into the cache trap: as
2989 * cache pages start out inactive, every cache fault will tip
2990 * the scan balance towards the file LRU. And as the file LRU
2991 * shrinks, so does the window for rotation from references.
2992 * This means we have a runaway feedback loop where a tiny
2993 * thrashing file LRU becomes infinitely more attractive than
2994 * anon pages. Try to detect this based on file LRU size.
2996 if (!cgroup_reclaim(sc)) {
2997 unsigned long total_high_wmark = 0;
2998 unsigned long free, anon;
3001 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3002 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3003 node_page_state(pgdat, NR_INACTIVE_FILE);
3005 for (z = 0; z < MAX_NR_ZONES; z++) {
3006 struct zone *zone = &pgdat->node_zones[z];
3008 if (!managed_zone(zone))
3011 total_high_wmark += high_wmark_pages(zone);
3015 * Consider anon: if that's low too, this isn't a
3016 * runaway file reclaim problem, but rather just
3017 * extreme pressure. Reclaim as per usual then.
3019 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3022 file + free <= total_high_wmark &&
3023 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3024 anon >> sc->priority;
3029 * Determine how aggressively the anon and file LRU lists should be
3032 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3033 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3035 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3038 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3039 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3040 unsigned long anon_cost, file_cost, total_cost;
3041 int swappiness = mem_cgroup_swappiness(memcg);
3042 u64 fraction[ANON_AND_FILE];
3043 u64 denominator = 0; /* gcc */
3044 enum scan_balance scan_balance;
3045 unsigned long ap, fp;
3048 /* If we have no swap space, do not bother scanning anon folios. */
3049 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3050 scan_balance = SCAN_FILE;
3055 * Global reclaim will swap to prevent OOM even with no
3056 * swappiness, but memcg users want to use this knob to
3057 * disable swapping for individual groups completely when
3058 * using the memory controller's swap limit feature would be
3061 if (cgroup_reclaim(sc) && !swappiness) {
3062 scan_balance = SCAN_FILE;
3067 * Do not apply any pressure balancing cleverness when the
3068 * system is close to OOM, scan both anon and file equally
3069 * (unless the swappiness setting disagrees with swapping).
3071 if (!sc->priority && swappiness) {
3072 scan_balance = SCAN_EQUAL;
3077 * If the system is almost out of file pages, force-scan anon.
3079 if (sc->file_is_tiny) {
3080 scan_balance = SCAN_ANON;
3085 * If there is enough inactive page cache, we do not reclaim
3086 * anything from the anonymous working right now.
3088 if (sc->cache_trim_mode) {
3089 scan_balance = SCAN_FILE;
3093 scan_balance = SCAN_FRACT;
3095 * Calculate the pressure balance between anon and file pages.
3097 * The amount of pressure we put on each LRU is inversely
3098 * proportional to the cost of reclaiming each list, as
3099 * determined by the share of pages that are refaulting, times
3100 * the relative IO cost of bringing back a swapped out
3101 * anonymous page vs reloading a filesystem page (swappiness).
3103 * Although we limit that influence to ensure no list gets
3104 * left behind completely: at least a third of the pressure is
3105 * applied, before swappiness.
3107 * With swappiness at 100, anon and file have equal IO cost.
3109 total_cost = sc->anon_cost + sc->file_cost;
3110 anon_cost = total_cost + sc->anon_cost;
3111 file_cost = total_cost + sc->file_cost;
3112 total_cost = anon_cost + file_cost;
3114 ap = swappiness * (total_cost + 1);
3115 ap /= anon_cost + 1;
3117 fp = (200 - swappiness) * (total_cost + 1);
3118 fp /= file_cost + 1;
3122 denominator = ap + fp;
3124 for_each_evictable_lru(lru) {
3125 int file = is_file_lru(lru);
3126 unsigned long lruvec_size;
3127 unsigned long low, min;
3130 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3131 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3136 * Scale a cgroup's reclaim pressure by proportioning
3137 * its current usage to its memory.low or memory.min
3140 * This is important, as otherwise scanning aggression
3141 * becomes extremely binary -- from nothing as we
3142 * approach the memory protection threshold, to totally
3143 * nominal as we exceed it. This results in requiring
3144 * setting extremely liberal protection thresholds. It
3145 * also means we simply get no protection at all if we
3146 * set it too low, which is not ideal.
3148 * If there is any protection in place, we reduce scan
3149 * pressure by how much of the total memory used is
3150 * within protection thresholds.
3152 * There is one special case: in the first reclaim pass,
3153 * we skip over all groups that are within their low
3154 * protection. If that fails to reclaim enough pages to
3155 * satisfy the reclaim goal, we come back and override
3156 * the best-effort low protection. However, we still
3157 * ideally want to honor how well-behaved groups are in
3158 * that case instead of simply punishing them all
3159 * equally. As such, we reclaim them based on how much
3160 * memory they are using, reducing the scan pressure
3161 * again by how much of the total memory used is under
3164 unsigned long cgroup_size = mem_cgroup_size(memcg);
3165 unsigned long protection;
3167 /* memory.low scaling, make sure we retry before OOM */
3168 if (!sc->memcg_low_reclaim && low > min) {
3170 sc->memcg_low_skipped = 1;
3175 /* Avoid TOCTOU with earlier protection check */
3176 cgroup_size = max(cgroup_size, protection);
3178 scan = lruvec_size - lruvec_size * protection /
3182 * Minimally target SWAP_CLUSTER_MAX pages to keep
3183 * reclaim moving forwards, avoiding decrementing
3184 * sc->priority further than desirable.
3186 scan = max(scan, SWAP_CLUSTER_MAX);
3191 scan >>= sc->priority;
3194 * If the cgroup's already been deleted, make sure to
3195 * scrape out the remaining cache.
3197 if (!scan && !mem_cgroup_online(memcg))
3198 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3200 switch (scan_balance) {
3202 /* Scan lists relative to size */
3206 * Scan types proportional to swappiness and
3207 * their relative recent reclaim efficiency.
3208 * Make sure we don't miss the last page on
3209 * the offlined memory cgroups because of a
3212 scan = mem_cgroup_online(memcg) ?
3213 div64_u64(scan * fraction[file], denominator) :
3214 DIV64_U64_ROUND_UP(scan * fraction[file],
3219 /* Scan one type exclusively */
3220 if ((scan_balance == SCAN_FILE) != file)
3224 /* Look ma, no brain */
3233 * Anonymous LRU management is a waste if there is
3234 * ultimately no way to reclaim the memory.
3236 static bool can_age_anon_pages(struct pglist_data *pgdat,
3237 struct scan_control *sc)
3239 /* Aging the anon LRU is valuable if swap is present: */
3240 if (total_swap_pages > 0)
3243 /* Also valuable if anon pages can be demoted: */
3244 return can_demote(pgdat->node_id, sc);
3247 #ifdef CONFIG_LRU_GEN
3249 #ifdef CONFIG_LRU_GEN_ENABLED
3250 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3251 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3253 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3254 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3257 static bool should_walk_mmu(void)
3259 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3262 static bool should_clear_pmd_young(void)
3264 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3267 /******************************************************************************
3269 ******************************************************************************/
3271 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3273 #define DEFINE_MAX_SEQ(lruvec) \
3274 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3276 #define DEFINE_MIN_SEQ(lruvec) \
3277 unsigned long min_seq[ANON_AND_FILE] = { \
3278 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3279 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3282 #define for_each_gen_type_zone(gen, type, zone) \
3283 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3284 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3285 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3287 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3288 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3290 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3292 struct pglist_data *pgdat = NODE_DATA(nid);
3296 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3298 /* see the comment in mem_cgroup_lruvec() */
3300 lruvec->pgdat = pgdat;
3305 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3307 return &pgdat->__lruvec;
3310 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3312 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3313 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3318 if (!can_demote(pgdat->node_id, sc) &&
3319 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3322 return mem_cgroup_swappiness(memcg);
3325 static int get_nr_gens(struct lruvec *lruvec, int type)
3327 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3330 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3332 /* see the comment on lru_gen_folio */
3333 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3334 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3335 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3338 /******************************************************************************
3340 ******************************************************************************/
3343 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3344 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3345 * bits in a bitmap, k is the number of hash functions and n is the number of
3348 * Page table walkers use one of the two filters to reduce their search space.
3349 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3350 * aging uses the double-buffering technique to flip to the other filter each
3351 * time it produces a new generation. For non-leaf entries that have enough
3352 * leaf entries, the aging carries them over to the next generation in
3353 * walk_pmd_range(); the eviction also report them when walking the rmap
3354 * in lru_gen_look_around().
3356 * For future optimizations:
3357 * 1. It's not necessary to keep both filters all the time. The spare one can be
3358 * freed after the RCU grace period and reallocated if needed again.
3359 * 2. And when reallocating, it's worth scaling its size according to the number
3360 * of inserted entries in the other filter, to reduce the memory overhead on
3361 * small systems and false positives on large systems.
3362 * 3. Jenkins' hash function is an alternative to Knuth's.
3364 #define BLOOM_FILTER_SHIFT 15
3366 static inline int filter_gen_from_seq(unsigned long seq)
3368 return seq % NR_BLOOM_FILTERS;
3371 static void get_item_key(void *item, int *key)
3373 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3375 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3377 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3378 key[1] = hash >> BLOOM_FILTER_SHIFT;
3381 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3384 unsigned long *filter;
3385 int gen = filter_gen_from_seq(seq);
3387 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3391 get_item_key(item, key);
3393 return test_bit(key[0], filter) && test_bit(key[1], filter);
3396 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3399 unsigned long *filter;
3400 int gen = filter_gen_from_seq(seq);
3402 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3406 get_item_key(item, key);
3408 if (!test_bit(key[0], filter))
3409 set_bit(key[0], filter);
3410 if (!test_bit(key[1], filter))
3411 set_bit(key[1], filter);
3414 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3416 unsigned long *filter;
3417 int gen = filter_gen_from_seq(seq);
3419 filter = lruvec->mm_state.filters[gen];
3421 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3425 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3426 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3427 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3430 /******************************************************************************
3432 ******************************************************************************/
3434 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3436 static struct lru_gen_mm_list mm_list = {
3437 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3438 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3443 return &memcg->mm_list;
3445 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3450 void lru_gen_add_mm(struct mm_struct *mm)
3453 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3454 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3456 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3458 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3459 mm->lru_gen.memcg = memcg;
3461 spin_lock(&mm_list->lock);
3463 for_each_node_state(nid, N_MEMORY) {
3464 struct lruvec *lruvec = get_lruvec(memcg, nid);
3466 /* the first addition since the last iteration */
3467 if (lruvec->mm_state.tail == &mm_list->fifo)
3468 lruvec->mm_state.tail = &mm->lru_gen.list;
3471 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3473 spin_unlock(&mm_list->lock);
3476 void lru_gen_del_mm(struct mm_struct *mm)
3479 struct lru_gen_mm_list *mm_list;
3480 struct mem_cgroup *memcg = NULL;
3482 if (list_empty(&mm->lru_gen.list))
3486 memcg = mm->lru_gen.memcg;
3488 mm_list = get_mm_list(memcg);
3490 spin_lock(&mm_list->lock);
3492 for_each_node(nid) {
3493 struct lruvec *lruvec = get_lruvec(memcg, nid);
3495 /* where the current iteration continues after */
3496 if (lruvec->mm_state.head == &mm->lru_gen.list)
3497 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3499 /* where the last iteration ended before */
3500 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3501 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3504 list_del_init(&mm->lru_gen.list);
3506 spin_unlock(&mm_list->lock);
3509 mem_cgroup_put(mm->lru_gen.memcg);
3510 mm->lru_gen.memcg = NULL;
3515 void lru_gen_migrate_mm(struct mm_struct *mm)
3517 struct mem_cgroup *memcg;
3518 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3520 VM_WARN_ON_ONCE(task->mm != mm);
3521 lockdep_assert_held(&task->alloc_lock);
3523 /* for mm_update_next_owner() */
3524 if (mem_cgroup_disabled())
3527 /* migration can happen before addition */
3528 if (!mm->lru_gen.memcg)
3532 memcg = mem_cgroup_from_task(task);
3534 if (memcg == mm->lru_gen.memcg)
3537 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3544 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3549 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3552 hist = lru_hist_from_seq(walk->max_seq);
3554 for (i = 0; i < NR_MM_STATS; i++) {
3555 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3556 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3557 walk->mm_stats[i] = 0;
3561 if (NR_HIST_GENS > 1 && last) {
3562 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3564 for (i = 0; i < NR_MM_STATS; i++)
3565 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3569 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3572 unsigned long size = 0;
3573 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3574 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3576 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3579 clear_bit(key, &mm->lru_gen.bitmap);
3581 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3582 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3583 get_mm_counter(mm, MM_ANONPAGES) +
3584 get_mm_counter(mm, MM_SHMEMPAGES);
3587 if (size < MIN_LRU_BATCH)
3590 return !mmget_not_zero(mm);
3593 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3594 struct mm_struct **iter)
3598 struct mm_struct *mm = NULL;
3599 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3600 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3601 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3604 * mm_state->seq is incremented after each iteration of mm_list. There
3605 * are three interesting cases for this page table walker:
3606 * 1. It tries to start a new iteration with a stale max_seq: there is
3607 * nothing left to do.
3608 * 2. It started the next iteration: it needs to reset the Bloom filter
3609 * so that a fresh set of PTE tables can be recorded.
3610 * 3. It ended the current iteration: it needs to reset the mm stats
3611 * counters and tell its caller to increment max_seq.
3613 spin_lock(&mm_list->lock);
3615 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3617 if (walk->max_seq <= mm_state->seq)
3620 if (!mm_state->head)
3621 mm_state->head = &mm_list->fifo;
3623 if (mm_state->head == &mm_list->fifo)
3627 mm_state->head = mm_state->head->next;
3628 if (mm_state->head == &mm_list->fifo) {
3629 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3634 /* force scan for those added after the last iteration */
3635 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3636 mm_state->tail = mm_state->head->next;
3637 walk->force_scan = true;
3640 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3641 if (should_skip_mm(mm, walk))
3646 reset_mm_stats(lruvec, walk, last);
3648 spin_unlock(&mm_list->lock);
3651 reset_bloom_filter(lruvec, walk->max_seq + 1);
3661 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3663 bool success = false;
3664 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3665 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3666 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3668 spin_lock(&mm_list->lock);
3670 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3672 if (max_seq > mm_state->seq) {
3673 mm_state->head = NULL;
3674 mm_state->tail = NULL;
3675 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3676 reset_mm_stats(lruvec, NULL, true);
3680 spin_unlock(&mm_list->lock);
3685 /******************************************************************************
3687 ******************************************************************************/
3690 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3692 * The P term is refaulted/(evicted+protected) from a tier in the generation
3693 * currently being evicted; the I term is the exponential moving average of the
3694 * P term over the generations previously evicted, using the smoothing factor
3695 * 1/2; the D term isn't supported.
3697 * The setpoint (SP) is always the first tier of one type; the process variable
3698 * (PV) is either any tier of the other type or any other tier of the same
3701 * The error is the difference between the SP and the PV; the correction is to
3702 * turn off protection when SP>PV or turn on protection when SP<PV.
3704 * For future optimizations:
3705 * 1. The D term may discount the other two terms over time so that long-lived
3706 * generations can resist stale information.
3709 unsigned long refaulted;
3710 unsigned long total;
3714 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3715 struct ctrl_pos *pos)
3717 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3718 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3720 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3721 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3722 pos->total = lrugen->avg_total[type][tier] +
3723 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3725 pos->total += lrugen->protected[hist][type][tier - 1];
3729 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3732 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3733 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3734 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3736 lockdep_assert_held(&lruvec->lru_lock);
3738 if (!carryover && !clear)
3741 hist = lru_hist_from_seq(seq);
3743 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3747 sum = lrugen->avg_refaulted[type][tier] +
3748 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3749 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3751 sum = lrugen->avg_total[type][tier] +
3752 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3754 sum += lrugen->protected[hist][type][tier - 1];
3755 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3759 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3760 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3762 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3767 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3770 * Return true if the PV has a limited number of refaults or a lower
3771 * refaulted/total than the SP.
3773 return pv->refaulted < MIN_LRU_BATCH ||
3774 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3775 (sp->refaulted + 1) * pv->total * pv->gain;
3778 /******************************************************************************
3780 ******************************************************************************/
3782 /* promote pages accessed through page tables */
3783 static int folio_update_gen(struct folio *folio, int gen)
3785 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3787 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3788 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3791 /* lru_gen_del_folio() has isolated this page? */
3792 if (!(old_flags & LRU_GEN_MASK)) {
3793 /* for shrink_folio_list() */
3794 new_flags = old_flags | BIT(PG_referenced);
3798 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3799 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3800 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3802 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3805 /* protect pages accessed multiple times through file descriptors */
3806 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3808 int type = folio_is_file_lru(folio);
3809 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3810 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3811 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3813 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3816 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3817 /* folio_update_gen() has promoted this page? */
3818 if (new_gen >= 0 && new_gen != old_gen)
3821 new_gen = (old_gen + 1) % MAX_NR_GENS;
3823 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3824 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3825 /* for folio_end_writeback() */
3827 new_flags |= BIT(PG_reclaim);
3828 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3830 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3835 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3836 int old_gen, int new_gen)
3838 int type = folio_is_file_lru(folio);
3839 int zone = folio_zonenum(folio);
3840 int delta = folio_nr_pages(folio);
3842 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3843 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3847 walk->nr_pages[old_gen][type][zone] -= delta;
3848 walk->nr_pages[new_gen][type][zone] += delta;
3851 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3853 int gen, type, zone;
3854 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3858 for_each_gen_type_zone(gen, type, zone) {
3859 enum lru_list lru = type * LRU_INACTIVE_FILE;
3860 int delta = walk->nr_pages[gen][type][zone];
3865 walk->nr_pages[gen][type][zone] = 0;
3866 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3867 lrugen->nr_pages[gen][type][zone] + delta);
3869 if (lru_gen_is_active(lruvec, gen))
3871 __update_lru_size(lruvec, lru, zone, delta);
3875 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3877 struct address_space *mapping;
3878 struct vm_area_struct *vma = args->vma;
3879 struct lru_gen_mm_walk *walk = args->private;
3881 if (!vma_is_accessible(vma))
3884 if (is_vm_hugetlb_page(vma))
3887 if (!vma_has_recency(vma))
3890 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3893 if (vma == get_gate_vma(vma->vm_mm))
3896 if (vma_is_anonymous(vma))
3897 return !walk->can_swap;
3899 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3902 mapping = vma->vm_file->f_mapping;
3903 if (mapping_unevictable(mapping))
3906 if (shmem_mapping(mapping))
3907 return !walk->can_swap;
3909 /* to exclude special mappings like dax, etc. */
3910 return !mapping->a_ops->read_folio;
3914 * Some userspace memory allocators map many single-page VMAs. Instead of
3915 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3916 * table to reduce zigzags and improve cache performance.
3918 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3919 unsigned long *vm_start, unsigned long *vm_end)
3921 unsigned long start = round_up(*vm_end, size);
3922 unsigned long end = (start | ~mask) + 1;
3923 VMA_ITERATOR(vmi, args->mm, start);
3925 VM_WARN_ON_ONCE(mask & size);
3926 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3928 for_each_vma(vmi, args->vma) {
3929 if (end && end <= args->vma->vm_start)
3932 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3935 *vm_start = max(start, args->vma->vm_start);
3936 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3944 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3946 unsigned long pfn = pte_pfn(pte);
3948 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3950 if (!pte_present(pte) || is_zero_pfn(pfn))
3953 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3956 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3963 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3965 unsigned long pfn = pmd_pfn(pmd);
3967 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3969 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3972 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3975 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3982 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3983 struct pglist_data *pgdat, bool can_swap)
3985 struct folio *folio;
3987 /* try to avoid unnecessary memory loads */
3988 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3991 folio = pfn_folio(pfn);
3992 if (folio_nid(folio) != pgdat->node_id)
3995 if (folio_memcg_rcu(folio) != memcg)
3998 /* file VMAs can contain anon pages from COW */
3999 if (!folio_is_file_lru(folio) && !can_swap)
4005 static bool suitable_to_scan(int total, int young)
4007 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
4009 /* suitable if the average number of young PTEs per cacheline is >=1 */
4010 return young * n >= total;
4013 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
4014 struct mm_walk *args)
4022 struct lru_gen_mm_walk *walk = args->private;
4023 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4024 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4025 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4027 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
4029 ptl = pte_lockptr(args->mm, pmd);
4030 if (!spin_trylock(ptl))
4033 arch_enter_lazy_mmu_mode();
4035 pte = pte_offset_map(pmd, start & PMD_MASK);
4037 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4039 struct folio *folio;
4042 walk->mm_stats[MM_LEAF_TOTAL]++;
4044 pfn = get_pte_pfn(pte[i], args->vma, addr);
4048 if (!pte_young(pte[i])) {
4049 walk->mm_stats[MM_LEAF_OLD]++;
4053 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4057 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4058 VM_WARN_ON_ONCE(true);
4061 walk->mm_stats[MM_LEAF_YOUNG]++;
4063 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4064 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4065 !folio_test_swapcache(folio)))
4066 folio_mark_dirty(folio);
4068 old_gen = folio_update_gen(folio, new_gen);
4069 if (old_gen >= 0 && old_gen != new_gen)
4070 update_batch_size(walk, folio, old_gen, new_gen);
4073 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4078 arch_leave_lazy_mmu_mode();
4081 return suitable_to_scan(total, young);
4084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4085 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4086 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4091 struct lru_gen_mm_walk *walk = args->private;
4092 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4093 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4094 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4096 VM_WARN_ON_ONCE(pud_leaf(*pud));
4098 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4101 bitmap_zero(bitmap, MIN_LRU_BATCH);
4105 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4106 if (i && i <= MIN_LRU_BATCH) {
4107 __set_bit(i - 1, bitmap);
4111 pmd = pmd_offset(pud, *first);
4113 ptl = pmd_lockptr(args->mm, pmd);
4114 if (!spin_trylock(ptl))
4117 arch_enter_lazy_mmu_mode();
4121 struct folio *folio;
4123 /* don't round down the first address */
4124 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4126 pfn = get_pmd_pfn(pmd[i], vma, addr);
4130 if (!pmd_trans_huge(pmd[i])) {
4131 if (should_clear_pmd_young())
4132 pmdp_test_and_clear_young(vma, addr, pmd + i);
4136 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4140 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4143 walk->mm_stats[MM_LEAF_YOUNG]++;
4145 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4146 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4147 !folio_test_swapcache(folio)))
4148 folio_mark_dirty(folio);
4150 old_gen = folio_update_gen(folio, new_gen);
4151 if (old_gen >= 0 && old_gen != new_gen)
4152 update_batch_size(walk, folio, old_gen, new_gen);
4154 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4155 } while (i <= MIN_LRU_BATCH);
4157 arch_leave_lazy_mmu_mode();
4163 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4164 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4169 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4170 struct mm_walk *args)
4176 struct vm_area_struct *vma;
4177 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4178 unsigned long first = -1;
4179 struct lru_gen_mm_walk *walk = args->private;
4181 VM_WARN_ON_ONCE(pud_leaf(*pud));
4184 * Finish an entire PMD in two passes: the first only reaches to PTE
4185 * tables to avoid taking the PMD lock; the second, if necessary, takes
4186 * the PMD lock to clear the accessed bit in PMD entries.
4188 pmd = pmd_offset(pud, start & PUD_MASK);
4190 /* walk_pte_range() may call get_next_vma() */
4192 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4193 pmd_t val = pmdp_get_lockless(pmd + i);
4195 next = pmd_addr_end(addr, end);
4197 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4198 walk->mm_stats[MM_LEAF_TOTAL]++;
4202 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4203 if (pmd_trans_huge(val)) {
4204 unsigned long pfn = pmd_pfn(val);
4205 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4207 walk->mm_stats[MM_LEAF_TOTAL]++;
4209 if (!pmd_young(val)) {
4210 walk->mm_stats[MM_LEAF_OLD]++;
4214 /* try to avoid unnecessary memory loads */
4215 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4218 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4222 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4224 if (should_clear_pmd_young()) {
4225 if (!pmd_young(val))
4228 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4231 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4234 walk->mm_stats[MM_NONLEAF_FOUND]++;
4236 if (!walk_pte_range(&val, addr, next, args))
4239 walk->mm_stats[MM_NONLEAF_ADDED]++;
4241 /* carry over to the next generation */
4242 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4245 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4247 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4251 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4252 struct mm_walk *args)
4258 struct lru_gen_mm_walk *walk = args->private;
4260 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4262 pud = pud_offset(p4d, start & P4D_MASK);
4264 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4265 pud_t val = READ_ONCE(pud[i]);
4267 next = pud_addr_end(addr, end);
4269 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4272 walk_pmd_range(&val, addr, next, args);
4274 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4275 end = (addr | ~PUD_MASK) + 1;
4280 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4283 end = round_up(end, P4D_SIZE);
4285 if (!end || !args->vma)
4288 walk->next_addr = max(end, args->vma->vm_start);
4293 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4295 static const struct mm_walk_ops mm_walk_ops = {
4296 .test_walk = should_skip_vma,
4297 .p4d_entry = walk_pud_range,
4301 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4303 walk->next_addr = FIRST_USER_ADDRESS;
4306 DEFINE_MAX_SEQ(lruvec);
4310 /* another thread might have called inc_max_seq() */
4311 if (walk->max_seq != max_seq)
4314 /* folio_update_gen() requires stable folio_memcg() */
4315 if (!mem_cgroup_trylock_pages(memcg))
4318 /* the caller might be holding the lock for write */
4319 if (mmap_read_trylock(mm)) {
4320 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4322 mmap_read_unlock(mm);
4325 mem_cgroup_unlock_pages();
4327 if (walk->batched) {
4328 spin_lock_irq(&lruvec->lru_lock);
4329 reset_batch_size(lruvec, walk);
4330 spin_unlock_irq(&lruvec->lru_lock);
4334 } while (err == -EAGAIN);
4337 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4339 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4341 if (pgdat && current_is_kswapd()) {
4342 VM_WARN_ON_ONCE(walk);
4344 walk = &pgdat->mm_walk;
4345 } else if (!walk && force_alloc) {
4346 VM_WARN_ON_ONCE(current_is_kswapd());
4348 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4351 current->reclaim_state->mm_walk = walk;
4356 static void clear_mm_walk(void)
4358 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4360 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4361 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4363 current->reclaim_state->mm_walk = NULL;
4365 if (!current_is_kswapd())
4369 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4372 int remaining = MAX_LRU_BATCH;
4373 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4374 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4376 if (type == LRU_GEN_ANON && !can_swap)
4379 /* prevent cold/hot inversion if force_scan is true */
4380 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4381 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4383 while (!list_empty(head)) {
4384 struct folio *folio = lru_to_folio(head);
4386 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4387 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4388 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4389 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4391 new_gen = folio_inc_gen(lruvec, folio, false);
4392 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4399 reset_ctrl_pos(lruvec, type, true);
4400 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4405 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4407 int gen, type, zone;
4408 bool success = false;
4409 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4410 DEFINE_MIN_SEQ(lruvec);
4412 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4414 /* find the oldest populated generation */
4415 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4416 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4417 gen = lru_gen_from_seq(min_seq[type]);
4419 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4420 if (!list_empty(&lrugen->folios[gen][type][zone]))
4430 /* see the comment on lru_gen_folio */
4432 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4433 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4436 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4437 if (min_seq[type] == lrugen->min_seq[type])
4440 reset_ctrl_pos(lruvec, type, true);
4441 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4448 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4452 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4454 spin_lock_irq(&lruvec->lru_lock);
4456 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4458 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4459 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4462 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4464 while (!inc_min_seq(lruvec, type, can_swap)) {
4465 spin_unlock_irq(&lruvec->lru_lock);
4467 spin_lock_irq(&lruvec->lru_lock);
4472 * Update the active/inactive LRU sizes for compatibility. Both sides of
4473 * the current max_seq need to be covered, since max_seq+1 can overlap
4474 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4475 * overlap, cold/hot inversion happens.
4477 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4478 next = lru_gen_from_seq(lrugen->max_seq + 1);
4480 for (type = 0; type < ANON_AND_FILE; type++) {
4481 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4482 enum lru_list lru = type * LRU_INACTIVE_FILE;
4483 long delta = lrugen->nr_pages[prev][type][zone] -
4484 lrugen->nr_pages[next][type][zone];
4489 __update_lru_size(lruvec, lru, zone, delta);
4490 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4494 for (type = 0; type < ANON_AND_FILE; type++)
4495 reset_ctrl_pos(lruvec, type, false);
4497 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4498 /* make sure preceding modifications appear */
4499 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4501 spin_unlock_irq(&lruvec->lru_lock);
4504 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4505 struct scan_control *sc, bool can_swap, bool force_scan)
4508 struct lru_gen_mm_walk *walk;
4509 struct mm_struct *mm = NULL;
4510 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4512 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4514 /* see the comment in iterate_mm_list() */
4515 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4521 * If the hardware doesn't automatically set the accessed bit, fallback
4522 * to lru_gen_look_around(), which only clears the accessed bit in a
4523 * handful of PTEs. Spreading the work out over a period of time usually
4524 * is less efficient, but it avoids bursty page faults.
4526 if (!should_walk_mmu()) {
4527 success = iterate_mm_list_nowalk(lruvec, max_seq);
4531 walk = set_mm_walk(NULL, true);
4533 success = iterate_mm_list_nowalk(lruvec, max_seq);
4537 walk->lruvec = lruvec;
4538 walk->max_seq = max_seq;
4539 walk->can_swap = can_swap;
4540 walk->force_scan = force_scan;
4543 success = iterate_mm_list(lruvec, walk, &mm);
4545 walk_mm(lruvec, mm, walk);
4549 inc_max_seq(lruvec, can_swap, force_scan);
4554 /******************************************************************************
4555 * working set protection
4556 ******************************************************************************/
4558 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4560 int gen, type, zone;
4561 unsigned long total = 0;
4562 bool can_swap = get_swappiness(lruvec, sc);
4563 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4564 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4565 DEFINE_MAX_SEQ(lruvec);
4566 DEFINE_MIN_SEQ(lruvec);
4568 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4571 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4572 gen = lru_gen_from_seq(seq);
4574 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4575 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4579 /* whether the size is big enough to be helpful */
4580 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4583 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4584 unsigned long min_ttl)
4587 unsigned long birth;
4588 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4589 DEFINE_MIN_SEQ(lruvec);
4591 /* see the comment on lru_gen_folio */
4592 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4593 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4595 if (time_is_after_jiffies(birth + min_ttl))
4598 if (!lruvec_is_sizable(lruvec, sc))
4601 mem_cgroup_calculate_protection(NULL, memcg);
4603 return !mem_cgroup_below_min(NULL, memcg);
4606 /* to protect the working set of the last N jiffies */
4607 static unsigned long lru_gen_min_ttl __read_mostly;
4609 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4611 struct mem_cgroup *memcg;
4612 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4614 VM_WARN_ON_ONCE(!current_is_kswapd());
4616 /* check the order to exclude compaction-induced reclaim */
4617 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4620 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4622 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4624 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4625 mem_cgroup_iter_break(NULL, memcg);
4630 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4633 * The main goal is to OOM kill if every generation from all memcgs is
4634 * younger than min_ttl. However, another possibility is all memcgs are
4635 * either too small or below min.
4637 if (mutex_trylock(&oom_lock)) {
4638 struct oom_control oc = {
4639 .gfp_mask = sc->gfp_mask,
4644 mutex_unlock(&oom_lock);
4648 /******************************************************************************
4649 * rmap/PT walk feedback
4650 ******************************************************************************/
4653 * This function exploits spatial locality when shrink_folio_list() walks the
4654 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4655 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4656 * the PTE table to the Bloom filter. This forms a feedback loop between the
4657 * eviction and the aging.
4659 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4662 unsigned long start;
4664 struct lru_gen_mm_walk *walk;
4666 pte_t *pte = pvmw->pte;
4667 unsigned long addr = pvmw->address;
4668 struct folio *folio = pfn_folio(pvmw->pfn);
4669 struct mem_cgroup *memcg = folio_memcg(folio);
4670 struct pglist_data *pgdat = folio_pgdat(folio);
4671 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4672 DEFINE_MAX_SEQ(lruvec);
4673 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4675 lockdep_assert_held(pvmw->ptl);
4676 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4678 if (spin_is_contended(pvmw->ptl))
4681 /* avoid taking the LRU lock under the PTL when possible */
4682 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4684 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4685 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4687 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4688 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4689 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4690 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4691 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4693 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4694 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4698 /* folio_update_gen() requires stable folio_memcg() */
4699 if (!mem_cgroup_trylock_pages(memcg))
4702 arch_enter_lazy_mmu_mode();
4704 pte -= (addr - start) / PAGE_SIZE;
4706 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4709 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4713 if (!pte_young(pte[i]))
4716 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4720 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4721 VM_WARN_ON_ONCE(true);
4725 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4726 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4727 !folio_test_swapcache(folio)))
4728 folio_mark_dirty(folio);
4731 old_gen = folio_update_gen(folio, new_gen);
4732 if (old_gen >= 0 && old_gen != new_gen)
4733 update_batch_size(walk, folio, old_gen, new_gen);
4738 old_gen = folio_lru_gen(folio);
4740 folio_set_referenced(folio);
4741 else if (old_gen != new_gen)
4742 folio_activate(folio);
4745 arch_leave_lazy_mmu_mode();
4746 mem_cgroup_unlock_pages();
4748 /* feedback from rmap walkers to page table walkers */
4749 if (suitable_to_scan(i, young))
4750 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4753 /******************************************************************************
4755 ******************************************************************************/
4757 /* see the comment on MEMCG_NR_GENS */
4768 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4770 return READ_ONCE(lruvec->lrugen.seg);
4773 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4777 int bin = get_random_u32_below(MEMCG_NR_BINS);
4778 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4780 spin_lock(&pgdat->memcg_lru.lock);
4782 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4785 new = old = lruvec->lrugen.gen;
4787 /* see the comment on MEMCG_NR_GENS */
4788 if (op == MEMCG_LRU_HEAD)
4789 seg = MEMCG_LRU_HEAD;
4790 else if (op == MEMCG_LRU_TAIL)
4791 seg = MEMCG_LRU_TAIL;
4792 else if (op == MEMCG_LRU_OLD)
4793 new = get_memcg_gen(pgdat->memcg_lru.seq);
4794 else if (op == MEMCG_LRU_YOUNG)
4795 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4797 VM_WARN_ON_ONCE(true);
4799 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4801 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4802 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4804 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4806 pgdat->memcg_lru.nr_memcgs[old]--;
4807 pgdat->memcg_lru.nr_memcgs[new]++;
4809 lruvec->lrugen.gen = new;
4810 WRITE_ONCE(lruvec->lrugen.seg, seg);
4812 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4813 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4815 spin_unlock(&pgdat->memcg_lru.lock);
4818 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4822 int bin = get_random_u32_below(MEMCG_NR_BINS);
4824 for_each_node(nid) {
4825 struct pglist_data *pgdat = NODE_DATA(nid);
4826 struct lruvec *lruvec = get_lruvec(memcg, nid);
4828 spin_lock(&pgdat->memcg_lru.lock);
4830 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4832 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4834 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4835 pgdat->memcg_lru.nr_memcgs[gen]++;
4837 lruvec->lrugen.gen = gen;
4839 spin_unlock(&pgdat->memcg_lru.lock);
4843 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4847 for_each_node(nid) {
4848 struct lruvec *lruvec = get_lruvec(memcg, nid);
4850 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4854 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4859 for_each_node(nid) {
4860 struct pglist_data *pgdat = NODE_DATA(nid);
4861 struct lruvec *lruvec = get_lruvec(memcg, nid);
4863 spin_lock(&pgdat->memcg_lru.lock);
4865 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4867 gen = lruvec->lrugen.gen;
4869 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4870 pgdat->memcg_lru.nr_memcgs[gen]--;
4872 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4873 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4875 spin_unlock(&pgdat->memcg_lru.lock);
4879 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4881 struct lruvec *lruvec = get_lruvec(memcg, nid);
4883 /* see the comment on MEMCG_NR_GENS */
4884 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4885 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4888 #else /* !CONFIG_MEMCG */
4890 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4897 /******************************************************************************
4899 ******************************************************************************/
4901 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4904 int gen = folio_lru_gen(folio);
4905 int type = folio_is_file_lru(folio);
4906 int zone = folio_zonenum(folio);
4907 int delta = folio_nr_pages(folio);
4908 int refs = folio_lru_refs(folio);
4909 int tier = lru_tier_from_refs(refs);
4910 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4912 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4915 if (!folio_evictable(folio)) {
4916 success = lru_gen_del_folio(lruvec, folio, true);
4917 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4918 folio_set_unevictable(folio);
4919 lruvec_add_folio(lruvec, folio);
4920 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4924 /* dirty lazyfree */
4925 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4926 success = lru_gen_del_folio(lruvec, folio, true);
4927 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4928 folio_set_swapbacked(folio);
4929 lruvec_add_folio_tail(lruvec, folio);
4934 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4935 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4940 if (tier > tier_idx) {
4941 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4943 gen = folio_inc_gen(lruvec, folio, false);
4944 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4946 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4947 lrugen->protected[hist][type][tier - 1] + delta);
4951 /* waiting for writeback */
4952 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4953 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4954 gen = folio_inc_gen(lruvec, folio, true);
4955 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4962 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4966 /* swapping inhibited */
4967 if (!(sc->gfp_mask & __GFP_IO) &&
4968 (folio_test_dirty(folio) ||
4969 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4972 /* raced with release_pages() */
4973 if (!folio_try_get(folio))
4976 /* raced with another isolation */
4977 if (!folio_test_clear_lru(folio)) {
4982 /* see the comment on MAX_NR_TIERS */
4983 if (!folio_test_referenced(folio))
4984 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4986 /* for shrink_folio_list() */
4987 folio_clear_reclaim(folio);
4988 folio_clear_referenced(folio);
4990 success = lru_gen_del_folio(lruvec, folio, true);
4991 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4996 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4997 int type, int tier, struct list_head *list)
5000 enum vm_event_item item;
5004 int remaining = MAX_LRU_BATCH;
5005 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5006 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5008 VM_WARN_ON_ONCE(!list_empty(list));
5010 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
5013 gen = lru_gen_from_seq(lrugen->min_seq[type]);
5015 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
5018 struct list_head *head = &lrugen->folios[gen][type][zone];
5020 while (!list_empty(head)) {
5021 struct folio *folio = lru_to_folio(head);
5022 int delta = folio_nr_pages(folio);
5024 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5025 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5026 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5027 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5031 if (sort_folio(lruvec, folio, tier))
5033 else if (isolate_folio(lruvec, folio, sc)) {
5034 list_add(&folio->lru, list);
5037 list_move(&folio->lru, &moved);
5041 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5046 list_splice(&moved, head);
5047 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5050 if (!remaining || isolated >= MIN_LRU_BATCH)
5054 item = PGSCAN_KSWAPD + reclaimer_offset();
5055 if (!cgroup_reclaim(sc)) {
5056 __count_vm_events(item, isolated);
5057 __count_vm_events(PGREFILL, sorted);
5059 __count_memcg_events(memcg, item, isolated);
5060 __count_memcg_events(memcg, PGREFILL, sorted);
5061 __count_vm_events(PGSCAN_ANON + type, isolated);
5064 * There might not be eligible folios due to reclaim_idx. Check the
5065 * remaining to prevent livelock if it's not making progress.
5067 return isolated || !remaining ? scanned : 0;
5070 static int get_tier_idx(struct lruvec *lruvec, int type)
5073 struct ctrl_pos sp, pv;
5076 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5077 * This value is chosen because any other tier would have at least twice
5078 * as many refaults as the first tier.
5080 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5081 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5082 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5083 if (!positive_ctrl_err(&sp, &pv))
5090 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5093 struct ctrl_pos sp, pv;
5094 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5097 * Compare the first tier of anon with that of file to determine which
5098 * type to scan. Also need to compare other tiers of the selected type
5099 * with the first tier of the other type to determine the last tier (of
5100 * the selected type) to evict.
5102 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5103 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5104 type = positive_ctrl_err(&sp, &pv);
5106 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5107 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5108 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5109 if (!positive_ctrl_err(&sp, &pv))
5113 *tier_idx = tier - 1;
5118 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5119 int *type_scanned, struct list_head *list)
5125 DEFINE_MIN_SEQ(lruvec);
5128 * Try to make the obvious choice first. When anon and file are both
5129 * available from the same generation, interpret swappiness 1 as file
5130 * first and 200 as anon first.
5133 type = LRU_GEN_FILE;
5134 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5135 type = LRU_GEN_ANON;
5136 else if (swappiness == 1)
5137 type = LRU_GEN_FILE;
5138 else if (swappiness == 200)
5139 type = LRU_GEN_ANON;
5141 type = get_type_to_scan(lruvec, swappiness, &tier);
5143 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5145 tier = get_tier_idx(lruvec, type);
5147 scanned = scan_folios(lruvec, sc, type, tier, list);
5155 *type_scanned = type;
5160 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5167 struct folio *folio;
5169 enum vm_event_item item;
5170 struct reclaim_stat stat;
5171 struct lru_gen_mm_walk *walk;
5172 bool skip_retry = false;
5173 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5174 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5176 spin_lock_irq(&lruvec->lru_lock);
5178 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5180 scanned += try_to_inc_min_seq(lruvec, swappiness);
5182 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5185 spin_unlock_irq(&lruvec->lru_lock);
5187 if (list_empty(&list))
5190 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5191 sc->nr_reclaimed += reclaimed;
5193 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5194 if (!folio_evictable(folio)) {
5195 list_del(&folio->lru);
5196 folio_putback_lru(folio);
5200 if (folio_test_reclaim(folio) &&
5201 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5202 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5203 if (folio_test_workingset(folio))
5204 folio_set_referenced(folio);
5208 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5209 folio_mapped(folio) || folio_test_locked(folio) ||
5210 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5211 /* don't add rejected folios to the oldest generation */
5212 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5217 /* retry folios that may have missed folio_rotate_reclaimable() */
5218 list_move(&folio->lru, &clean);
5219 sc->nr_scanned -= folio_nr_pages(folio);
5222 spin_lock_irq(&lruvec->lru_lock);
5224 move_folios_to_lru(lruvec, &list);
5226 walk = current->reclaim_state->mm_walk;
5227 if (walk && walk->batched)
5228 reset_batch_size(lruvec, walk);
5230 item = PGSTEAL_KSWAPD + reclaimer_offset();
5231 if (!cgroup_reclaim(sc))
5232 __count_vm_events(item, reclaimed);
5233 __count_memcg_events(memcg, item, reclaimed);
5234 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5236 spin_unlock_irq(&lruvec->lru_lock);
5238 mem_cgroup_uncharge_list(&list);
5239 free_unref_page_list(&list);
5241 INIT_LIST_HEAD(&list);
5242 list_splice_init(&clean, &list);
5244 if (!list_empty(&list)) {
5252 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5253 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5255 int gen, type, zone;
5256 unsigned long old = 0;
5257 unsigned long young = 0;
5258 unsigned long total = 0;
5259 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5260 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5261 DEFINE_MIN_SEQ(lruvec);
5263 /* whether this lruvec is completely out of cold folios */
5264 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5269 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5272 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5273 unsigned long size = 0;
5275 gen = lru_gen_from_seq(seq);
5277 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5278 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5283 else if (seq + MIN_NR_GENS == max_seq)
5288 /* try to scrape all its memory if this memcg was deleted */
5289 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5292 * The aging tries to be lazy to reduce the overhead, while the eviction
5293 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5294 * ideal number of generations is MIN_NR_GENS+1.
5296 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5300 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5301 * of the total number of pages for each generation. A reasonable range
5302 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5303 * aging cares about the upper bound of hot pages, while the eviction
5304 * cares about the lower bound of cold pages.
5306 if (young * MIN_NR_GENS > total)
5308 if (old * (MIN_NR_GENS + 2) < total)
5315 * For future optimizations:
5316 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5319 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5321 unsigned long nr_to_scan;
5322 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5323 DEFINE_MAX_SEQ(lruvec);
5325 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5328 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5331 /* skip the aging path at the default priority */
5332 if (sc->priority == DEF_PRIORITY)
5335 /* skip this lruvec as it's low on cold folios */
5336 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5339 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5341 /* don't abort memcg reclaim to ensure fairness */
5342 if (!global_reclaim(sc))
5345 return max(sc->nr_to_reclaim, compact_gap(sc->order));
5348 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5351 unsigned long scanned = 0;
5352 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5353 int swappiness = get_swappiness(lruvec, sc);
5355 /* clean file folios are more likely to exist */
5356 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5362 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5363 if (nr_to_scan <= 0)
5366 delta = evict_folios(lruvec, sc, swappiness);
5371 if (scanned >= nr_to_scan)
5374 if (sc->nr_reclaimed >= nr_to_reclaim)
5380 /* whether try_to_inc_max_seq() was successful */
5381 return nr_to_scan < 0;
5384 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5387 unsigned long scanned = sc->nr_scanned;
5388 unsigned long reclaimed = sc->nr_reclaimed;
5389 int seg = lru_gen_memcg_seg(lruvec);
5390 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5391 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5393 /* see the comment on MEMCG_NR_GENS */
5394 if (!lruvec_is_sizable(lruvec, sc))
5395 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5397 mem_cgroup_calculate_protection(NULL, memcg);
5399 if (mem_cgroup_below_min(NULL, memcg))
5400 return MEMCG_LRU_YOUNG;
5402 if (mem_cgroup_below_low(NULL, memcg)) {
5403 /* see the comment on MEMCG_NR_GENS */
5404 if (seg != MEMCG_LRU_TAIL)
5405 return MEMCG_LRU_TAIL;
5407 memcg_memory_event(memcg, MEMCG_LOW);
5410 success = try_to_shrink_lruvec(lruvec, sc);
5412 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5415 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5416 sc->nr_reclaimed - reclaimed);
5418 flush_reclaim_state(sc);
5420 return success ? MEMCG_LRU_YOUNG : 0;
5425 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5431 struct lruvec *lruvec;
5432 struct lru_gen_folio *lrugen;
5433 struct mem_cgroup *memcg;
5434 const struct hlist_nulls_node *pos;
5435 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5437 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5441 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5445 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5447 lru_gen_rotate_memcg(lruvec, op);
5449 mem_cgroup_put(memcg);
5451 lruvec = container_of(lrugen, struct lruvec, lrugen);
5452 memcg = lruvec_memcg(lruvec);
5454 if (!mem_cgroup_tryget(memcg)) {
5462 op = shrink_one(lruvec, sc);
5466 if (sc->nr_reclaimed >= nr_to_reclaim)
5473 lru_gen_rotate_memcg(lruvec, op);
5475 mem_cgroup_put(memcg);
5477 if (sc->nr_reclaimed >= nr_to_reclaim)
5480 /* restart if raced with lru_gen_rotate_memcg() */
5481 if (gen != get_nulls_value(pos))
5484 /* try the rest of the bins of the current generation */
5485 bin = get_memcg_bin(bin + 1);
5486 if (bin != first_bin)
5490 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5492 struct blk_plug plug;
5494 VM_WARN_ON_ONCE(global_reclaim(sc));
5495 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5499 blk_start_plug(&plug);
5501 set_mm_walk(NULL, sc->proactive);
5503 if (try_to_shrink_lruvec(lruvec, sc))
5504 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5508 blk_finish_plug(&plug);
5511 #else /* !CONFIG_MEMCG */
5513 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5518 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5525 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5528 unsigned long reclaimable;
5529 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5531 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5534 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5535 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5536 * estimated reclaimed_to_scanned_ratio = inactive / total.
5538 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5539 if (get_swappiness(lruvec, sc))
5540 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5542 reclaimable /= MEMCG_NR_GENS;
5544 /* round down reclaimable and round up sc->nr_to_reclaim */
5545 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5547 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5550 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5552 struct blk_plug plug;
5553 unsigned long reclaimed = sc->nr_reclaimed;
5555 VM_WARN_ON_ONCE(!global_reclaim(sc));
5558 * Unmapped clean folios are already prioritized. Scanning for more of
5559 * them is likely futile and can cause high reclaim latency when there
5560 * is a large number of memcgs.
5562 if (!sc->may_writepage || !sc->may_unmap)
5567 blk_start_plug(&plug);
5569 set_mm_walk(pgdat, sc->proactive);
5571 set_initial_priority(pgdat, sc);
5573 if (current_is_kswapd())
5574 sc->nr_reclaimed = 0;
5576 if (mem_cgroup_disabled())
5577 shrink_one(&pgdat->__lruvec, sc);
5579 shrink_many(pgdat, sc);
5581 if (current_is_kswapd())
5582 sc->nr_reclaimed += reclaimed;
5586 blk_finish_plug(&plug);
5588 /* kswapd should never fail */
5589 pgdat->kswapd_failures = 0;
5592 /******************************************************************************
5594 ******************************************************************************/
5596 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5598 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5600 if (lrugen->enabled) {
5603 for_each_evictable_lru(lru) {
5604 if (!list_empty(&lruvec->lists[lru]))
5608 int gen, type, zone;
5610 for_each_gen_type_zone(gen, type, zone) {
5611 if (!list_empty(&lrugen->folios[gen][type][zone]))
5619 static bool fill_evictable(struct lruvec *lruvec)
5622 int remaining = MAX_LRU_BATCH;
5624 for_each_evictable_lru(lru) {
5625 int type = is_file_lru(lru);
5626 bool active = is_active_lru(lru);
5627 struct list_head *head = &lruvec->lists[lru];
5629 while (!list_empty(head)) {
5631 struct folio *folio = lru_to_folio(head);
5633 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5634 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5635 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5636 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5638 lruvec_del_folio(lruvec, folio);
5639 success = lru_gen_add_folio(lruvec, folio, false);
5640 VM_WARN_ON_ONCE(!success);
5650 static bool drain_evictable(struct lruvec *lruvec)
5652 int gen, type, zone;
5653 int remaining = MAX_LRU_BATCH;
5655 for_each_gen_type_zone(gen, type, zone) {
5656 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5658 while (!list_empty(head)) {
5660 struct folio *folio = lru_to_folio(head);
5662 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5663 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5664 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5665 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5667 success = lru_gen_del_folio(lruvec, folio, false);
5668 VM_WARN_ON_ONCE(!success);
5669 lruvec_add_folio(lruvec, folio);
5679 static void lru_gen_change_state(bool enabled)
5681 static DEFINE_MUTEX(state_mutex);
5683 struct mem_cgroup *memcg;
5688 mutex_lock(&state_mutex);
5690 if (enabled == lru_gen_enabled())
5694 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5696 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5698 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5702 for_each_node(nid) {
5703 struct lruvec *lruvec = get_lruvec(memcg, nid);
5705 spin_lock_irq(&lruvec->lru_lock);
5707 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5708 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5710 lruvec->lrugen.enabled = enabled;
5712 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5713 spin_unlock_irq(&lruvec->lru_lock);
5715 spin_lock_irq(&lruvec->lru_lock);
5718 spin_unlock_irq(&lruvec->lru_lock);
5722 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5724 mutex_unlock(&state_mutex);
5730 /******************************************************************************
5732 ******************************************************************************/
5734 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5736 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5740 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5741 const char *buf, size_t len)
5745 if (kstrtouint(buf, 0, &msecs))
5748 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5753 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5755 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5757 unsigned int caps = 0;
5759 if (get_cap(LRU_GEN_CORE))
5760 caps |= BIT(LRU_GEN_CORE);
5762 if (should_walk_mmu())
5763 caps |= BIT(LRU_GEN_MM_WALK);
5765 if (should_clear_pmd_young())
5766 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5768 return sysfs_emit(buf, "0x%04x\n", caps);
5771 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5772 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5773 const char *buf, size_t len)
5778 if (tolower(*buf) == 'n')
5780 else if (tolower(*buf) == 'y')
5782 else if (kstrtouint(buf, 0, &caps))
5785 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5786 bool enabled = caps & BIT(i);
5788 if (i == LRU_GEN_CORE)
5789 lru_gen_change_state(enabled);
5791 static_branch_enable(&lru_gen_caps[i]);
5793 static_branch_disable(&lru_gen_caps[i]);
5799 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5801 static struct attribute *lru_gen_attrs[] = {
5802 &lru_gen_min_ttl_attr.attr,
5803 &lru_gen_enabled_attr.attr,
5807 static const struct attribute_group lru_gen_attr_group = {
5809 .attrs = lru_gen_attrs,
5812 /******************************************************************************
5814 ******************************************************************************/
5816 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5818 struct mem_cgroup *memcg;
5819 loff_t nr_to_skip = *pos;
5821 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5823 return ERR_PTR(-ENOMEM);
5825 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5829 for_each_node_state(nid, N_MEMORY) {
5831 return get_lruvec(memcg, nid);
5833 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5838 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5840 if (!IS_ERR_OR_NULL(v))
5841 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5847 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5849 int nid = lruvec_pgdat(v)->node_id;
5850 struct mem_cgroup *memcg = lruvec_memcg(v);
5854 nid = next_memory_node(nid);
5855 if (nid == MAX_NUMNODES) {
5856 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5860 nid = first_memory_node;
5863 return get_lruvec(memcg, nid);
5866 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5867 unsigned long max_seq, unsigned long *min_seq,
5872 int hist = lru_hist_from_seq(seq);
5873 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5875 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5876 seq_printf(m, " %10d", tier);
5877 for (type = 0; type < ANON_AND_FILE; type++) {
5878 const char *s = " ";
5879 unsigned long n[3] = {};
5881 if (seq == max_seq) {
5883 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5884 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5885 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5887 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5888 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5890 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5893 for (i = 0; i < 3; i++)
5894 seq_printf(m, " %10lu%c", n[i], s[i]);
5900 for (i = 0; i < NR_MM_STATS; i++) {
5901 const char *s = " ";
5902 unsigned long n = 0;
5904 if (seq == max_seq && NR_HIST_GENS == 1) {
5906 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5907 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5909 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5912 seq_printf(m, " %10lu%c", n, s[i]);
5917 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5918 static int lru_gen_seq_show(struct seq_file *m, void *v)
5921 bool full = !debugfs_real_fops(m->file)->write;
5922 struct lruvec *lruvec = v;
5923 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5924 int nid = lruvec_pgdat(lruvec)->node_id;
5925 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5926 DEFINE_MAX_SEQ(lruvec);
5927 DEFINE_MIN_SEQ(lruvec);
5929 if (nid == first_memory_node) {
5930 const char *path = memcg ? m->private : "";
5934 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5936 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5939 seq_printf(m, " node %5d\n", nid);
5942 seq = min_seq[LRU_GEN_ANON];
5943 else if (max_seq >= MAX_NR_GENS)
5944 seq = max_seq - MAX_NR_GENS + 1;
5948 for (; seq <= max_seq; seq++) {
5950 int gen = lru_gen_from_seq(seq);
5951 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5953 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5955 for (type = 0; type < ANON_AND_FILE; type++) {
5956 unsigned long size = 0;
5957 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5959 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5960 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5962 seq_printf(m, " %10lu%c", size, mark);
5968 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5974 static const struct seq_operations lru_gen_seq_ops = {
5975 .start = lru_gen_seq_start,
5976 .stop = lru_gen_seq_stop,
5977 .next = lru_gen_seq_next,
5978 .show = lru_gen_seq_show,
5981 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5982 bool can_swap, bool force_scan)
5984 DEFINE_MAX_SEQ(lruvec);
5985 DEFINE_MIN_SEQ(lruvec);
5993 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5996 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
6001 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6002 int swappiness, unsigned long nr_to_reclaim)
6004 DEFINE_MAX_SEQ(lruvec);
6006 if (seq + MIN_NR_GENS > max_seq)
6009 sc->nr_reclaimed = 0;
6011 while (!signal_pending(current)) {
6012 DEFINE_MIN_SEQ(lruvec);
6014 if (seq < min_seq[!swappiness])
6017 if (sc->nr_reclaimed >= nr_to_reclaim)
6020 if (!evict_folios(lruvec, sc, swappiness))
6029 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6030 struct scan_control *sc, int swappiness, unsigned long opt)
6032 struct lruvec *lruvec;
6034 struct mem_cgroup *memcg = NULL;
6036 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6039 if (!mem_cgroup_disabled()) {
6042 memcg = mem_cgroup_from_id(memcg_id);
6043 if (!mem_cgroup_tryget(memcg))
6052 if (memcg_id != mem_cgroup_id(memcg))
6055 lruvec = get_lruvec(memcg, nid);
6058 swappiness = get_swappiness(lruvec, sc);
6059 else if (swappiness > 200)
6064 err = run_aging(lruvec, seq, sc, swappiness, opt);
6067 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6071 mem_cgroup_put(memcg);
6076 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6077 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6078 size_t len, loff_t *pos)
6083 struct blk_plug plug;
6085 struct scan_control sc = {
6086 .may_writepage = true,
6089 .reclaim_idx = MAX_NR_ZONES - 1,
6090 .gfp_mask = GFP_KERNEL,
6093 buf = kvmalloc(len + 1, GFP_KERNEL);
6097 if (copy_from_user(buf, src, len)) {
6102 set_task_reclaim_state(current, &sc.reclaim_state);
6103 flags = memalloc_noreclaim_save();
6104 blk_start_plug(&plug);
6105 if (!set_mm_walk(NULL, true)) {
6113 while ((cur = strsep(&next, ",;\n"))) {
6117 unsigned int memcg_id;
6120 unsigned int swappiness = -1;
6121 unsigned long opt = -1;
6123 cur = skip_spaces(cur);
6127 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6128 &seq, &end, &swappiness, &end, &opt, &end);
6129 if (n < 4 || cur[end]) {
6134 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6140 blk_finish_plug(&plug);
6141 memalloc_noreclaim_restore(flags);
6142 set_task_reclaim_state(current, NULL);
6149 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6151 return seq_open(file, &lru_gen_seq_ops);
6154 static const struct file_operations lru_gen_rw_fops = {
6155 .open = lru_gen_seq_open,
6157 .write = lru_gen_seq_write,
6158 .llseek = seq_lseek,
6159 .release = seq_release,
6162 static const struct file_operations lru_gen_ro_fops = {
6163 .open = lru_gen_seq_open,
6165 .llseek = seq_lseek,
6166 .release = seq_release,
6169 /******************************************************************************
6171 ******************************************************************************/
6173 void lru_gen_init_lruvec(struct lruvec *lruvec)
6176 int gen, type, zone;
6177 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6179 lrugen->max_seq = MIN_NR_GENS + 1;
6180 lrugen->enabled = lru_gen_enabled();
6182 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6183 lrugen->timestamps[i] = jiffies;
6185 for_each_gen_type_zone(gen, type, zone)
6186 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6188 lruvec->mm_state.seq = MIN_NR_GENS;
6193 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6197 spin_lock_init(&pgdat->memcg_lru.lock);
6199 for (i = 0; i < MEMCG_NR_GENS; i++) {
6200 for (j = 0; j < MEMCG_NR_BINS; j++)
6201 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6205 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6207 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6208 spin_lock_init(&memcg->mm_list.lock);
6211 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6216 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6218 for_each_node(nid) {
6219 struct lruvec *lruvec = get_lruvec(memcg, nid);
6221 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6222 sizeof(lruvec->lrugen.nr_pages)));
6224 lruvec->lrugen.list.next = LIST_POISON1;
6226 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6227 bitmap_free(lruvec->mm_state.filters[i]);
6228 lruvec->mm_state.filters[i] = NULL;
6233 #endif /* CONFIG_MEMCG */
6235 static int __init init_lru_gen(void)
6237 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6238 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6240 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6241 pr_err("lru_gen: failed to create sysfs group\n");
6243 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6244 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6248 late_initcall(init_lru_gen);
6250 #else /* !CONFIG_LRU_GEN */
6252 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6256 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6260 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6264 #endif /* CONFIG_LRU_GEN */
6266 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6268 unsigned long nr[NR_LRU_LISTS];
6269 unsigned long targets[NR_LRU_LISTS];
6270 unsigned long nr_to_scan;
6272 unsigned long nr_reclaimed = 0;
6273 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6274 bool proportional_reclaim;
6275 struct blk_plug plug;
6277 if (lru_gen_enabled() && !global_reclaim(sc)) {
6278 lru_gen_shrink_lruvec(lruvec, sc);
6282 get_scan_count(lruvec, sc, nr);
6284 /* Record the original scan target for proportional adjustments later */
6285 memcpy(targets, nr, sizeof(nr));
6288 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6289 * event that can occur when there is little memory pressure e.g.
6290 * multiple streaming readers/writers. Hence, we do not abort scanning
6291 * when the requested number of pages are reclaimed when scanning at
6292 * DEF_PRIORITY on the assumption that the fact we are direct
6293 * reclaiming implies that kswapd is not keeping up and it is best to
6294 * do a batch of work at once. For memcg reclaim one check is made to
6295 * abort proportional reclaim if either the file or anon lru has already
6296 * dropped to zero at the first pass.
6298 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6299 sc->priority == DEF_PRIORITY);
6301 blk_start_plug(&plug);
6302 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6303 nr[LRU_INACTIVE_FILE]) {
6304 unsigned long nr_anon, nr_file, percentage;
6305 unsigned long nr_scanned;
6307 for_each_evictable_lru(lru) {
6309 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6310 nr[lru] -= nr_to_scan;
6312 nr_reclaimed += shrink_list(lru, nr_to_scan,
6319 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6323 * For kswapd and memcg, reclaim at least the number of pages
6324 * requested. Ensure that the anon and file LRUs are scanned
6325 * proportionally what was requested by get_scan_count(). We
6326 * stop reclaiming one LRU and reduce the amount scanning
6327 * proportional to the original scan target.
6329 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6330 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6333 * It's just vindictive to attack the larger once the smaller
6334 * has gone to zero. And given the way we stop scanning the
6335 * smaller below, this makes sure that we only make one nudge
6336 * towards proportionality once we've got nr_to_reclaim.
6338 if (!nr_file || !nr_anon)
6341 if (nr_file > nr_anon) {
6342 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6343 targets[LRU_ACTIVE_ANON] + 1;
6345 percentage = nr_anon * 100 / scan_target;
6347 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6348 targets[LRU_ACTIVE_FILE] + 1;
6350 percentage = nr_file * 100 / scan_target;
6353 /* Stop scanning the smaller of the LRU */
6355 nr[lru + LRU_ACTIVE] = 0;
6358 * Recalculate the other LRU scan count based on its original
6359 * scan target and the percentage scanning already complete
6361 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6362 nr_scanned = targets[lru] - nr[lru];
6363 nr[lru] = targets[lru] * (100 - percentage) / 100;
6364 nr[lru] -= min(nr[lru], nr_scanned);
6367 nr_scanned = targets[lru] - nr[lru];
6368 nr[lru] = targets[lru] * (100 - percentage) / 100;
6369 nr[lru] -= min(nr[lru], nr_scanned);
6371 blk_finish_plug(&plug);
6372 sc->nr_reclaimed += nr_reclaimed;
6375 * Even if we did not try to evict anon pages at all, we want to
6376 * rebalance the anon lru active/inactive ratio.
6378 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6379 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6380 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6381 sc, LRU_ACTIVE_ANON);
6384 /* Use reclaim/compaction for costly allocs or under memory pressure */
6385 static bool in_reclaim_compaction(struct scan_control *sc)
6387 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6388 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6389 sc->priority < DEF_PRIORITY - 2))
6396 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6397 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6398 * true if more pages should be reclaimed such that when the page allocator
6399 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6400 * It will give up earlier than that if there is difficulty reclaiming pages.
6402 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6403 unsigned long nr_reclaimed,
6404 struct scan_control *sc)
6406 unsigned long pages_for_compaction;
6407 unsigned long inactive_lru_pages;
6410 /* If not in reclaim/compaction mode, stop */
6411 if (!in_reclaim_compaction(sc))
6415 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6416 * number of pages that were scanned. This will return to the caller
6417 * with the risk reclaim/compaction and the resulting allocation attempt
6418 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6419 * allocations through requiring that the full LRU list has been scanned
6420 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6421 * scan, but that approximation was wrong, and there were corner cases
6422 * where always a non-zero amount of pages were scanned.
6427 /* If compaction would go ahead or the allocation would succeed, stop */
6428 for (z = 0; z <= sc->reclaim_idx; z++) {
6429 struct zone *zone = &pgdat->node_zones[z];
6430 if (!managed_zone(zone))
6433 /* Allocation can already succeed, nothing to do */
6434 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6435 sc->reclaim_idx, 0))
6438 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6443 * If we have not reclaimed enough pages for compaction and the
6444 * inactive lists are large enough, continue reclaiming
6446 pages_for_compaction = compact_gap(sc->order);
6447 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6448 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6449 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6451 return inactive_lru_pages > pages_for_compaction;
6454 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6456 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6457 struct mem_cgroup *memcg;
6459 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6461 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6462 unsigned long reclaimed;
6463 unsigned long scanned;
6466 * This loop can become CPU-bound when target memcgs
6467 * aren't eligible for reclaim - either because they
6468 * don't have any reclaimable pages, or because their
6469 * memory is explicitly protected. Avoid soft lockups.
6473 mem_cgroup_calculate_protection(target_memcg, memcg);
6475 if (mem_cgroup_below_min(target_memcg, memcg)) {
6478 * If there is no reclaimable memory, OOM.
6481 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6484 * Respect the protection only as long as
6485 * there is an unprotected supply
6486 * of reclaimable memory from other cgroups.
6488 if (!sc->memcg_low_reclaim) {
6489 sc->memcg_low_skipped = 1;
6492 memcg_memory_event(memcg, MEMCG_LOW);
6495 reclaimed = sc->nr_reclaimed;
6496 scanned = sc->nr_scanned;
6498 shrink_lruvec(lruvec, sc);
6500 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6503 /* Record the group's reclaim efficiency */
6505 vmpressure(sc->gfp_mask, memcg, false,
6506 sc->nr_scanned - scanned,
6507 sc->nr_reclaimed - reclaimed);
6509 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6512 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6514 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6515 struct lruvec *target_lruvec;
6516 bool reclaimable = false;
6518 if (lru_gen_enabled() && global_reclaim(sc)) {
6519 lru_gen_shrink_node(pgdat, sc);
6523 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6526 memset(&sc->nr, 0, sizeof(sc->nr));
6528 nr_reclaimed = sc->nr_reclaimed;
6529 nr_scanned = sc->nr_scanned;
6531 prepare_scan_count(pgdat, sc);
6533 shrink_node_memcgs(pgdat, sc);
6535 flush_reclaim_state(sc);
6537 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6539 /* Record the subtree's reclaim efficiency */
6541 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6542 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6544 if (nr_node_reclaimed)
6547 if (current_is_kswapd()) {
6549 * If reclaim is isolating dirty pages under writeback,
6550 * it implies that the long-lived page allocation rate
6551 * is exceeding the page laundering rate. Either the
6552 * global limits are not being effective at throttling
6553 * processes due to the page distribution throughout
6554 * zones or there is heavy usage of a slow backing
6555 * device. The only option is to throttle from reclaim
6556 * context which is not ideal as there is no guarantee
6557 * the dirtying process is throttled in the same way
6558 * balance_dirty_pages() manages.
6560 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6561 * count the number of pages under pages flagged for
6562 * immediate reclaim and stall if any are encountered
6563 * in the nr_immediate check below.
6565 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6566 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6568 /* Allow kswapd to start writing pages during reclaim.*/
6569 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6570 set_bit(PGDAT_DIRTY, &pgdat->flags);
6573 * If kswapd scans pages marked for immediate
6574 * reclaim and under writeback (nr_immediate), it
6575 * implies that pages are cycling through the LRU
6576 * faster than they are written so forcibly stall
6577 * until some pages complete writeback.
6579 if (sc->nr.immediate)
6580 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6584 * Tag a node/memcg as congested if all the dirty pages were marked
6585 * for writeback and immediate reclaim (counted in nr.congested).
6587 * Legacy memcg will stall in page writeback so avoid forcibly
6588 * stalling in reclaim_throttle().
6590 if ((current_is_kswapd() ||
6591 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6592 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6593 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6596 * Stall direct reclaim for IO completions if the lruvec is
6597 * node is congested. Allow kswapd to continue until it
6598 * starts encountering unqueued dirty pages or cycling through
6599 * the LRU too quickly.
6601 if (!current_is_kswapd() && current_may_throttle() &&
6602 !sc->hibernation_mode &&
6603 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6604 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6606 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6610 * Kswapd gives up on balancing particular nodes after too
6611 * many failures to reclaim anything from them and goes to
6612 * sleep. On reclaim progress, reset the failure counter. A
6613 * successful direct reclaim run will revive a dormant kswapd.
6616 pgdat->kswapd_failures = 0;
6620 * Returns true if compaction should go ahead for a costly-order request, or
6621 * the allocation would already succeed without compaction. Return false if we
6622 * should reclaim first.
6624 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6626 unsigned long watermark;
6628 /* Allocation can already succeed, nothing to do */
6629 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6630 sc->reclaim_idx, 0))
6633 /* Compaction cannot yet proceed. Do reclaim. */
6634 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6638 * Compaction is already possible, but it takes time to run and there
6639 * are potentially other callers using the pages just freed. So proceed
6640 * with reclaim to make a buffer of free pages available to give
6641 * compaction a reasonable chance of completing and allocating the page.
6642 * Note that we won't actually reclaim the whole buffer in one attempt
6643 * as the target watermark in should_continue_reclaim() is lower. But if
6644 * we are already above the high+gap watermark, don't reclaim at all.
6646 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6648 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6651 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6654 * If reclaim is making progress greater than 12% efficiency then
6655 * wake all the NOPROGRESS throttled tasks.
6657 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6658 wait_queue_head_t *wqh;
6660 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6661 if (waitqueue_active(wqh))
6668 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6669 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6670 * under writeback and marked for immediate reclaim at the tail of the
6673 if (current_is_kswapd() || cgroup_reclaim(sc))
6676 /* Throttle if making no progress at high prioities. */
6677 if (sc->priority == 1 && !sc->nr_reclaimed)
6678 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6682 * This is the direct reclaim path, for page-allocating processes. We only
6683 * try to reclaim pages from zones which will satisfy the caller's allocation
6686 * If a zone is deemed to be full of pinned pages then just give it a light
6687 * scan then give up on it.
6689 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6693 unsigned long nr_soft_reclaimed;
6694 unsigned long nr_soft_scanned;
6696 pg_data_t *last_pgdat = NULL;
6697 pg_data_t *first_pgdat = NULL;
6700 * If the number of buffer_heads in the machine exceeds the maximum
6701 * allowed level, force direct reclaim to scan the highmem zone as
6702 * highmem pages could be pinning lowmem pages storing buffer_heads
6704 orig_mask = sc->gfp_mask;
6705 if (buffer_heads_over_limit) {
6706 sc->gfp_mask |= __GFP_HIGHMEM;
6707 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6710 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6711 sc->reclaim_idx, sc->nodemask) {
6713 * Take care memory controller reclaiming has small influence
6716 if (!cgroup_reclaim(sc)) {
6717 if (!cpuset_zone_allowed(zone,
6718 GFP_KERNEL | __GFP_HARDWALL))
6722 * If we already have plenty of memory free for
6723 * compaction in this zone, don't free any more.
6724 * Even though compaction is invoked for any
6725 * non-zero order, only frequent costly order
6726 * reclamation is disruptive enough to become a
6727 * noticeable problem, like transparent huge
6730 if (IS_ENABLED(CONFIG_COMPACTION) &&
6731 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6732 compaction_ready(zone, sc)) {
6733 sc->compaction_ready = true;
6738 * Shrink each node in the zonelist once. If the
6739 * zonelist is ordered by zone (not the default) then a
6740 * node may be shrunk multiple times but in that case
6741 * the user prefers lower zones being preserved.
6743 if (zone->zone_pgdat == last_pgdat)
6747 * This steals pages from memory cgroups over softlimit
6748 * and returns the number of reclaimed pages and
6749 * scanned pages. This works for global memory pressure
6750 * and balancing, not for a memcg's limit.
6752 nr_soft_scanned = 0;
6753 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6754 sc->order, sc->gfp_mask,
6756 sc->nr_reclaimed += nr_soft_reclaimed;
6757 sc->nr_scanned += nr_soft_scanned;
6758 /* need some check for avoid more shrink_zone() */
6762 first_pgdat = zone->zone_pgdat;
6764 /* See comment about same check for global reclaim above */
6765 if (zone->zone_pgdat == last_pgdat)
6767 last_pgdat = zone->zone_pgdat;
6768 shrink_node(zone->zone_pgdat, sc);
6772 consider_reclaim_throttle(first_pgdat, sc);
6775 * Restore to original mask to avoid the impact on the caller if we
6776 * promoted it to __GFP_HIGHMEM.
6778 sc->gfp_mask = orig_mask;
6781 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6783 struct lruvec *target_lruvec;
6784 unsigned long refaults;
6786 if (lru_gen_enabled())
6789 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6790 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6791 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6792 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6793 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6797 * This is the main entry point to direct page reclaim.
6799 * If a full scan of the inactive list fails to free enough memory then we
6800 * are "out of memory" and something needs to be killed.
6802 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6803 * high - the zone may be full of dirty or under-writeback pages, which this
6804 * caller can't do much about. We kick the writeback threads and take explicit
6805 * naps in the hope that some of these pages can be written. But if the
6806 * allocating task holds filesystem locks which prevent writeout this might not
6807 * work, and the allocation attempt will fail.
6809 * returns: 0, if no pages reclaimed
6810 * else, the number of pages reclaimed
6812 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6813 struct scan_control *sc)
6815 int initial_priority = sc->priority;
6816 pg_data_t *last_pgdat;
6820 delayacct_freepages_start();
6822 if (!cgroup_reclaim(sc))
6823 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6827 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6830 shrink_zones(zonelist, sc);
6832 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6835 if (sc->compaction_ready)
6839 * If we're getting trouble reclaiming, start doing
6840 * writepage even in laptop mode.
6842 if (sc->priority < DEF_PRIORITY - 2)
6843 sc->may_writepage = 1;
6844 } while (--sc->priority >= 0);
6847 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6849 if (zone->zone_pgdat == last_pgdat)
6851 last_pgdat = zone->zone_pgdat;
6853 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6855 if (cgroup_reclaim(sc)) {
6856 struct lruvec *lruvec;
6858 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6860 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6864 delayacct_freepages_end();
6866 if (sc->nr_reclaimed)
6867 return sc->nr_reclaimed;
6869 /* Aborted reclaim to try compaction? don't OOM, then */
6870 if (sc->compaction_ready)
6874 * We make inactive:active ratio decisions based on the node's
6875 * composition of memory, but a restrictive reclaim_idx or a
6876 * memory.low cgroup setting can exempt large amounts of
6877 * memory from reclaim. Neither of which are very common, so
6878 * instead of doing costly eligibility calculations of the
6879 * entire cgroup subtree up front, we assume the estimates are
6880 * good, and retry with forcible deactivation if that fails.
6882 if (sc->skipped_deactivate) {
6883 sc->priority = initial_priority;
6884 sc->force_deactivate = 1;
6885 sc->skipped_deactivate = 0;
6889 /* Untapped cgroup reserves? Don't OOM, retry. */
6890 if (sc->memcg_low_skipped) {
6891 sc->priority = initial_priority;
6892 sc->force_deactivate = 0;
6893 sc->memcg_low_reclaim = 1;
6894 sc->memcg_low_skipped = 0;
6901 static bool allow_direct_reclaim(pg_data_t *pgdat)
6904 unsigned long pfmemalloc_reserve = 0;
6905 unsigned long free_pages = 0;
6909 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6912 for (i = 0; i <= ZONE_NORMAL; i++) {
6913 zone = &pgdat->node_zones[i];
6914 if (!managed_zone(zone))
6917 if (!zone_reclaimable_pages(zone))
6920 pfmemalloc_reserve += min_wmark_pages(zone);
6921 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6924 /* If there are no reserves (unexpected config) then do not throttle */
6925 if (!pfmemalloc_reserve)
6928 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6930 /* kswapd must be awake if processes are being throttled */
6931 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6932 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6933 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6935 wake_up_interruptible(&pgdat->kswapd_wait);
6942 * Throttle direct reclaimers if backing storage is backed by the network
6943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6944 * depleted. kswapd will continue to make progress and wake the processes
6945 * when the low watermark is reached.
6947 * Returns true if a fatal signal was delivered during throttling. If this
6948 * happens, the page allocator should not consider triggering the OOM killer.
6950 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6951 nodemask_t *nodemask)
6955 pg_data_t *pgdat = NULL;
6958 * Kernel threads should not be throttled as they may be indirectly
6959 * responsible for cleaning pages necessary for reclaim to make forward
6960 * progress. kjournald for example may enter direct reclaim while
6961 * committing a transaction where throttling it could forcing other
6962 * processes to block on log_wait_commit().
6964 if (current->flags & PF_KTHREAD)
6968 * If a fatal signal is pending, this process should not throttle.
6969 * It should return quickly so it can exit and free its memory
6971 if (fatal_signal_pending(current))
6975 * Check if the pfmemalloc reserves are ok by finding the first node
6976 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6977 * GFP_KERNEL will be required for allocating network buffers when
6978 * swapping over the network so ZONE_HIGHMEM is unusable.
6980 * Throttling is based on the first usable node and throttled processes
6981 * wait on a queue until kswapd makes progress and wakes them. There
6982 * is an affinity then between processes waking up and where reclaim
6983 * progress has been made assuming the process wakes on the same node.
6984 * More importantly, processes running on remote nodes will not compete
6985 * for remote pfmemalloc reserves and processes on different nodes
6986 * should make reasonable progress.
6988 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6989 gfp_zone(gfp_mask), nodemask) {
6990 if (zone_idx(zone) > ZONE_NORMAL)
6993 /* Throttle based on the first usable node */
6994 pgdat = zone->zone_pgdat;
6995 if (allow_direct_reclaim(pgdat))
7000 /* If no zone was usable by the allocation flags then do not throttle */
7004 /* Account for the throttling */
7005 count_vm_event(PGSCAN_DIRECT_THROTTLE);
7008 * If the caller cannot enter the filesystem, it's possible that it
7009 * is due to the caller holding an FS lock or performing a journal
7010 * transaction in the case of a filesystem like ext[3|4]. In this case,
7011 * it is not safe to block on pfmemalloc_wait as kswapd could be
7012 * blocked waiting on the same lock. Instead, throttle for up to a
7013 * second before continuing.
7015 if (!(gfp_mask & __GFP_FS))
7016 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7017 allow_direct_reclaim(pgdat), HZ);
7019 /* Throttle until kswapd wakes the process */
7020 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7021 allow_direct_reclaim(pgdat));
7023 if (fatal_signal_pending(current))
7030 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7031 gfp_t gfp_mask, nodemask_t *nodemask)
7033 unsigned long nr_reclaimed;
7034 struct scan_control sc = {
7035 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7036 .gfp_mask = current_gfp_context(gfp_mask),
7037 .reclaim_idx = gfp_zone(gfp_mask),
7039 .nodemask = nodemask,
7040 .priority = DEF_PRIORITY,
7041 .may_writepage = !laptop_mode,
7047 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7048 * Confirm they are large enough for max values.
7050 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7051 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7052 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7055 * Do not enter reclaim if fatal signal was delivered while throttled.
7056 * 1 is returned so that the page allocator does not OOM kill at this
7059 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7062 set_task_reclaim_state(current, &sc.reclaim_state);
7063 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7065 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7067 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7068 set_task_reclaim_state(current, NULL);
7070 return nr_reclaimed;
7075 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7076 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7077 gfp_t gfp_mask, bool noswap,
7079 unsigned long *nr_scanned)
7081 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7082 struct scan_control sc = {
7083 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7084 .target_mem_cgroup = memcg,
7085 .may_writepage = !laptop_mode,
7087 .reclaim_idx = MAX_NR_ZONES - 1,
7088 .may_swap = !noswap,
7091 WARN_ON_ONCE(!current->reclaim_state);
7093 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7094 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7096 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7100 * NOTE: Although we can get the priority field, using it
7101 * here is not a good idea, since it limits the pages we can scan.
7102 * if we don't reclaim here, the shrink_node from balance_pgdat
7103 * will pick up pages from other mem cgroup's as well. We hack
7104 * the priority and make it zero.
7106 shrink_lruvec(lruvec, &sc);
7108 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7110 *nr_scanned = sc.nr_scanned;
7112 return sc.nr_reclaimed;
7115 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7116 unsigned long nr_pages,
7118 unsigned int reclaim_options)
7120 unsigned long nr_reclaimed;
7121 unsigned int noreclaim_flag;
7122 struct scan_control sc = {
7123 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7124 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7125 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7126 .reclaim_idx = MAX_NR_ZONES - 1,
7127 .target_mem_cgroup = memcg,
7128 .priority = DEF_PRIORITY,
7129 .may_writepage = !laptop_mode,
7131 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7132 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7135 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7136 * equal pressure on all the nodes. This is based on the assumption that
7137 * the reclaim does not bail out early.
7139 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7141 set_task_reclaim_state(current, &sc.reclaim_state);
7142 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7143 noreclaim_flag = memalloc_noreclaim_save();
7145 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7147 memalloc_noreclaim_restore(noreclaim_flag);
7148 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7149 set_task_reclaim_state(current, NULL);
7151 return nr_reclaimed;
7155 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7157 struct mem_cgroup *memcg;
7158 struct lruvec *lruvec;
7160 if (lru_gen_enabled()) {
7161 lru_gen_age_node(pgdat, sc);
7165 if (!can_age_anon_pages(pgdat, sc))
7168 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7169 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7172 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7174 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7175 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7176 sc, LRU_ACTIVE_ANON);
7177 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7181 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7187 * Check for watermark boosts top-down as the higher zones
7188 * are more likely to be boosted. Both watermarks and boosts
7189 * should not be checked at the same time as reclaim would
7190 * start prematurely when there is no boosting and a lower
7193 for (i = highest_zoneidx; i >= 0; i--) {
7194 zone = pgdat->node_zones + i;
7195 if (!managed_zone(zone))
7198 if (zone->watermark_boost)
7206 * Returns true if there is an eligible zone balanced for the request order
7207 * and highest_zoneidx
7209 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7212 unsigned long mark = -1;
7216 * Check watermarks bottom-up as lower zones are more likely to
7219 for (i = 0; i <= highest_zoneidx; i++) {
7220 zone = pgdat->node_zones + i;
7222 if (!managed_zone(zone))
7225 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7226 mark = wmark_pages(zone, WMARK_PROMO);
7228 mark = high_wmark_pages(zone);
7229 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7234 * If a node has no managed zone within highest_zoneidx, it does not
7235 * need balancing by definition. This can happen if a zone-restricted
7236 * allocation tries to wake a remote kswapd.
7244 /* Clear pgdat state for congested, dirty or under writeback. */
7245 static void clear_pgdat_congested(pg_data_t *pgdat)
7247 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7249 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7250 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7251 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7255 * Prepare kswapd for sleeping. This verifies that there are no processes
7256 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7258 * Returns true if kswapd is ready to sleep
7260 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7261 int highest_zoneidx)
7264 * The throttled processes are normally woken up in balance_pgdat() as
7265 * soon as allow_direct_reclaim() is true. But there is a potential
7266 * race between when kswapd checks the watermarks and a process gets
7267 * throttled. There is also a potential race if processes get
7268 * throttled, kswapd wakes, a large process exits thereby balancing the
7269 * zones, which causes kswapd to exit balance_pgdat() before reaching
7270 * the wake up checks. If kswapd is going to sleep, no process should
7271 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7272 * the wake up is premature, processes will wake kswapd and get
7273 * throttled again. The difference from wake ups in balance_pgdat() is
7274 * that here we are under prepare_to_wait().
7276 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7277 wake_up_all(&pgdat->pfmemalloc_wait);
7279 /* Hopeless node, leave it to direct reclaim */
7280 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7283 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7284 clear_pgdat_congested(pgdat);
7292 * kswapd shrinks a node of pages that are at or below the highest usable
7293 * zone that is currently unbalanced.
7295 * Returns true if kswapd scanned at least the requested number of pages to
7296 * reclaim or if the lack of progress was due to pages under writeback.
7297 * This is used to determine if the scanning priority needs to be raised.
7299 static bool kswapd_shrink_node(pg_data_t *pgdat,
7300 struct scan_control *sc)
7305 /* Reclaim a number of pages proportional to the number of zones */
7306 sc->nr_to_reclaim = 0;
7307 for (z = 0; z <= sc->reclaim_idx; z++) {
7308 zone = pgdat->node_zones + z;
7309 if (!managed_zone(zone))
7312 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7316 * Historically care was taken to put equal pressure on all zones but
7317 * now pressure is applied based on node LRU order.
7319 shrink_node(pgdat, sc);
7322 * Fragmentation may mean that the system cannot be rebalanced for
7323 * high-order allocations. If twice the allocation size has been
7324 * reclaimed then recheck watermarks only at order-0 to prevent
7325 * excessive reclaim. Assume that a process requested a high-order
7326 * can direct reclaim/compact.
7328 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7331 return sc->nr_scanned >= sc->nr_to_reclaim;
7334 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7336 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7341 for (i = 0; i <= highest_zoneidx; i++) {
7342 zone = pgdat->node_zones + i;
7344 if (!managed_zone(zone))
7348 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7350 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7355 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7357 update_reclaim_active(pgdat, highest_zoneidx, true);
7361 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7363 update_reclaim_active(pgdat, highest_zoneidx, false);
7367 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7368 * that are eligible for use by the caller until at least one zone is
7371 * Returns the order kswapd finished reclaiming at.
7373 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7374 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7375 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7376 * or lower is eligible for reclaim until at least one usable zone is
7379 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7382 unsigned long nr_soft_reclaimed;
7383 unsigned long nr_soft_scanned;
7384 unsigned long pflags;
7385 unsigned long nr_boost_reclaim;
7386 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7389 struct scan_control sc = {
7390 .gfp_mask = GFP_KERNEL,
7395 set_task_reclaim_state(current, &sc.reclaim_state);
7396 psi_memstall_enter(&pflags);
7397 __fs_reclaim_acquire(_THIS_IP_);
7399 count_vm_event(PAGEOUTRUN);
7402 * Account for the reclaim boost. Note that the zone boost is left in
7403 * place so that parallel allocations that are near the watermark will
7404 * stall or direct reclaim until kswapd is finished.
7406 nr_boost_reclaim = 0;
7407 for (i = 0; i <= highest_zoneidx; i++) {
7408 zone = pgdat->node_zones + i;
7409 if (!managed_zone(zone))
7412 nr_boost_reclaim += zone->watermark_boost;
7413 zone_boosts[i] = zone->watermark_boost;
7415 boosted = nr_boost_reclaim;
7418 set_reclaim_active(pgdat, highest_zoneidx);
7419 sc.priority = DEF_PRIORITY;
7421 unsigned long nr_reclaimed = sc.nr_reclaimed;
7422 bool raise_priority = true;
7426 sc.reclaim_idx = highest_zoneidx;
7429 * If the number of buffer_heads exceeds the maximum allowed
7430 * then consider reclaiming from all zones. This has a dual
7431 * purpose -- on 64-bit systems it is expected that
7432 * buffer_heads are stripped during active rotation. On 32-bit
7433 * systems, highmem pages can pin lowmem memory and shrinking
7434 * buffers can relieve lowmem pressure. Reclaim may still not
7435 * go ahead if all eligible zones for the original allocation
7436 * request are balanced to avoid excessive reclaim from kswapd.
7438 if (buffer_heads_over_limit) {
7439 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7440 zone = pgdat->node_zones + i;
7441 if (!managed_zone(zone))
7450 * If the pgdat is imbalanced then ignore boosting and preserve
7451 * the watermarks for a later time and restart. Note that the
7452 * zone watermarks will be still reset at the end of balancing
7453 * on the grounds that the normal reclaim should be enough to
7454 * re-evaluate if boosting is required when kswapd next wakes.
7456 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7457 if (!balanced && nr_boost_reclaim) {
7458 nr_boost_reclaim = 0;
7463 * If boosting is not active then only reclaim if there are no
7464 * eligible zones. Note that sc.reclaim_idx is not used as
7465 * buffer_heads_over_limit may have adjusted it.
7467 if (!nr_boost_reclaim && balanced)
7470 /* Limit the priority of boosting to avoid reclaim writeback */
7471 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7472 raise_priority = false;
7475 * Do not writeback or swap pages for boosted reclaim. The
7476 * intent is to relieve pressure not issue sub-optimal IO
7477 * from reclaim context. If no pages are reclaimed, the
7478 * reclaim will be aborted.
7480 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7481 sc.may_swap = !nr_boost_reclaim;
7484 * Do some background aging, to give pages a chance to be
7485 * referenced before reclaiming. All pages are rotated
7486 * regardless of classzone as this is about consistent aging.
7488 kswapd_age_node(pgdat, &sc);
7491 * If we're getting trouble reclaiming, start doing writepage
7492 * even in laptop mode.
7494 if (sc.priority < DEF_PRIORITY - 2)
7495 sc.may_writepage = 1;
7497 /* Call soft limit reclaim before calling shrink_node. */
7499 nr_soft_scanned = 0;
7500 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7501 sc.gfp_mask, &nr_soft_scanned);
7502 sc.nr_reclaimed += nr_soft_reclaimed;
7505 * There should be no need to raise the scanning priority if
7506 * enough pages are already being scanned that that high
7507 * watermark would be met at 100% efficiency.
7509 if (kswapd_shrink_node(pgdat, &sc))
7510 raise_priority = false;
7513 * If the low watermark is met there is no need for processes
7514 * to be throttled on pfmemalloc_wait as they should not be
7515 * able to safely make forward progress. Wake them
7517 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7518 allow_direct_reclaim(pgdat))
7519 wake_up_all(&pgdat->pfmemalloc_wait);
7521 /* Check if kswapd should be suspending */
7522 __fs_reclaim_release(_THIS_IP_);
7523 ret = try_to_freeze();
7524 __fs_reclaim_acquire(_THIS_IP_);
7525 if (ret || kthread_should_stop())
7529 * Raise priority if scanning rate is too low or there was no
7530 * progress in reclaiming pages
7532 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7533 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7536 * If reclaim made no progress for a boost, stop reclaim as
7537 * IO cannot be queued and it could be an infinite loop in
7538 * extreme circumstances.
7540 if (nr_boost_reclaim && !nr_reclaimed)
7543 if (raise_priority || !nr_reclaimed)
7545 } while (sc.priority >= 1);
7547 if (!sc.nr_reclaimed)
7548 pgdat->kswapd_failures++;
7551 clear_reclaim_active(pgdat, highest_zoneidx);
7553 /* If reclaim was boosted, account for the reclaim done in this pass */
7555 unsigned long flags;
7557 for (i = 0; i <= highest_zoneidx; i++) {
7558 if (!zone_boosts[i])
7561 /* Increments are under the zone lock */
7562 zone = pgdat->node_zones + i;
7563 spin_lock_irqsave(&zone->lock, flags);
7564 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7565 spin_unlock_irqrestore(&zone->lock, flags);
7569 * As there is now likely space, wakeup kcompact to defragment
7572 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7575 snapshot_refaults(NULL, pgdat);
7576 __fs_reclaim_release(_THIS_IP_);
7577 psi_memstall_leave(&pflags);
7578 set_task_reclaim_state(current, NULL);
7581 * Return the order kswapd stopped reclaiming at as
7582 * prepare_kswapd_sleep() takes it into account. If another caller
7583 * entered the allocator slow path while kswapd was awake, order will
7584 * remain at the higher level.
7590 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7591 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7592 * not a valid index then either kswapd runs for first time or kswapd couldn't
7593 * sleep after previous reclaim attempt (node is still unbalanced). In that
7594 * case return the zone index of the previous kswapd reclaim cycle.
7596 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7597 enum zone_type prev_highest_zoneidx)
7599 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7601 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7604 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7605 unsigned int highest_zoneidx)
7610 if (freezing(current) || kthread_should_stop())
7613 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7616 * Try to sleep for a short interval. Note that kcompactd will only be
7617 * woken if it is possible to sleep for a short interval. This is
7618 * deliberate on the assumption that if reclaim cannot keep an
7619 * eligible zone balanced that it's also unlikely that compaction will
7622 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7624 * Compaction records what page blocks it recently failed to
7625 * isolate pages from and skips them in the future scanning.
7626 * When kswapd is going to sleep, it is reasonable to assume
7627 * that pages and compaction may succeed so reset the cache.
7629 reset_isolation_suitable(pgdat);
7632 * We have freed the memory, now we should compact it to make
7633 * allocation of the requested order possible.
7635 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7637 remaining = schedule_timeout(HZ/10);
7640 * If woken prematurely then reset kswapd_highest_zoneidx and
7641 * order. The values will either be from a wakeup request or
7642 * the previous request that slept prematurely.
7645 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7646 kswapd_highest_zoneidx(pgdat,
7649 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7650 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7653 finish_wait(&pgdat->kswapd_wait, &wait);
7654 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7658 * After a short sleep, check if it was a premature sleep. If not, then
7659 * go fully to sleep until explicitly woken up.
7662 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7663 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7666 * vmstat counters are not perfectly accurate and the estimated
7667 * value for counters such as NR_FREE_PAGES can deviate from the
7668 * true value by nr_online_cpus * threshold. To avoid the zone
7669 * watermarks being breached while under pressure, we reduce the
7670 * per-cpu vmstat threshold while kswapd is awake and restore
7671 * them before going back to sleep.
7673 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7675 if (!kthread_should_stop())
7678 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7681 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7683 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7685 finish_wait(&pgdat->kswapd_wait, &wait);
7689 * The background pageout daemon, started as a kernel thread
7690 * from the init process.
7692 * This basically trickles out pages so that we have _some_
7693 * free memory available even if there is no other activity
7694 * that frees anything up. This is needed for things like routing
7695 * etc, where we otherwise might have all activity going on in
7696 * asynchronous contexts that cannot page things out.
7698 * If there are applications that are active memory-allocators
7699 * (most normal use), this basically shouldn't matter.
7701 static int kswapd(void *p)
7703 unsigned int alloc_order, reclaim_order;
7704 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7705 pg_data_t *pgdat = (pg_data_t *)p;
7706 struct task_struct *tsk = current;
7707 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7709 if (!cpumask_empty(cpumask))
7710 set_cpus_allowed_ptr(tsk, cpumask);
7713 * Tell the memory management that we're a "memory allocator",
7714 * and that if we need more memory we should get access to it
7715 * regardless (see "__alloc_pages()"). "kswapd" should
7716 * never get caught in the normal page freeing logic.
7718 * (Kswapd normally doesn't need memory anyway, but sometimes
7719 * you need a small amount of memory in order to be able to
7720 * page out something else, and this flag essentially protects
7721 * us from recursively trying to free more memory as we're
7722 * trying to free the first piece of memory in the first place).
7724 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7727 WRITE_ONCE(pgdat->kswapd_order, 0);
7728 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7729 atomic_set(&pgdat->nr_writeback_throttled, 0);
7733 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7734 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7738 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7741 /* Read the new order and highest_zoneidx */
7742 alloc_order = READ_ONCE(pgdat->kswapd_order);
7743 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7745 WRITE_ONCE(pgdat->kswapd_order, 0);
7746 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7748 ret = try_to_freeze();
7749 if (kthread_should_stop())
7753 * We can speed up thawing tasks if we don't call balance_pgdat
7754 * after returning from the refrigerator
7760 * Reclaim begins at the requested order but if a high-order
7761 * reclaim fails then kswapd falls back to reclaiming for
7762 * order-0. If that happens, kswapd will consider sleeping
7763 * for the order it finished reclaiming at (reclaim_order)
7764 * but kcompactd is woken to compact for the original
7765 * request (alloc_order).
7767 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7769 reclaim_order = balance_pgdat(pgdat, alloc_order,
7771 if (reclaim_order < alloc_order)
7772 goto kswapd_try_sleep;
7775 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7781 * A zone is low on free memory or too fragmented for high-order memory. If
7782 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7783 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7784 * has failed or is not needed, still wake up kcompactd if only compaction is
7787 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7788 enum zone_type highest_zoneidx)
7791 enum zone_type curr_idx;
7793 if (!managed_zone(zone))
7796 if (!cpuset_zone_allowed(zone, gfp_flags))
7799 pgdat = zone->zone_pgdat;
7800 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7802 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7803 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7805 if (READ_ONCE(pgdat->kswapd_order) < order)
7806 WRITE_ONCE(pgdat->kswapd_order, order);
7808 if (!waitqueue_active(&pgdat->kswapd_wait))
7811 /* Hopeless node, leave it to direct reclaim if possible */
7812 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7813 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7814 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7816 * There may be plenty of free memory available, but it's too
7817 * fragmented for high-order allocations. Wake up kcompactd
7818 * and rely on compaction_suitable() to determine if it's
7819 * needed. If it fails, it will defer subsequent attempts to
7820 * ratelimit its work.
7822 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7823 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7827 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7829 wake_up_interruptible(&pgdat->kswapd_wait);
7832 #ifdef CONFIG_HIBERNATION
7834 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7837 * Rather than trying to age LRUs the aim is to preserve the overall
7838 * LRU order by reclaiming preferentially
7839 * inactive > active > active referenced > active mapped
7841 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7843 struct scan_control sc = {
7844 .nr_to_reclaim = nr_to_reclaim,
7845 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7846 .reclaim_idx = MAX_NR_ZONES - 1,
7847 .priority = DEF_PRIORITY,
7851 .hibernation_mode = 1,
7853 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7854 unsigned long nr_reclaimed;
7855 unsigned int noreclaim_flag;
7857 fs_reclaim_acquire(sc.gfp_mask);
7858 noreclaim_flag = memalloc_noreclaim_save();
7859 set_task_reclaim_state(current, &sc.reclaim_state);
7861 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7863 set_task_reclaim_state(current, NULL);
7864 memalloc_noreclaim_restore(noreclaim_flag);
7865 fs_reclaim_release(sc.gfp_mask);
7867 return nr_reclaimed;
7869 #endif /* CONFIG_HIBERNATION */
7872 * This kswapd start function will be called by init and node-hot-add.
7874 void __meminit kswapd_run(int nid)
7876 pg_data_t *pgdat = NODE_DATA(nid);
7878 pgdat_kswapd_lock(pgdat);
7879 if (!pgdat->kswapd) {
7880 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7881 if (IS_ERR(pgdat->kswapd)) {
7882 /* failure at boot is fatal */
7883 BUG_ON(system_state < SYSTEM_RUNNING);
7884 pr_err("Failed to start kswapd on node %d\n", nid);
7885 pgdat->kswapd = NULL;
7888 pgdat_kswapd_unlock(pgdat);
7892 * Called by memory hotplug when all memory in a node is offlined. Caller must
7893 * be holding mem_hotplug_begin/done().
7895 void __meminit kswapd_stop(int nid)
7897 pg_data_t *pgdat = NODE_DATA(nid);
7898 struct task_struct *kswapd;
7900 pgdat_kswapd_lock(pgdat);
7901 kswapd = pgdat->kswapd;
7903 kthread_stop(kswapd);
7904 pgdat->kswapd = NULL;
7906 pgdat_kswapd_unlock(pgdat);
7909 static int __init kswapd_init(void)
7914 for_each_node_state(nid, N_MEMORY)
7919 module_init(kswapd_init)
7925 * If non-zero call node_reclaim when the number of free pages falls below
7928 int node_reclaim_mode __read_mostly;
7931 * Priority for NODE_RECLAIM. This determines the fraction of pages
7932 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7935 #define NODE_RECLAIM_PRIORITY 4
7938 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7941 int sysctl_min_unmapped_ratio = 1;
7944 * If the number of slab pages in a zone grows beyond this percentage then
7945 * slab reclaim needs to occur.
7947 int sysctl_min_slab_ratio = 5;
7949 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7951 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7952 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7953 node_page_state(pgdat, NR_ACTIVE_FILE);
7956 * It's possible for there to be more file mapped pages than
7957 * accounted for by the pages on the file LRU lists because
7958 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7960 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7963 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7964 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7966 unsigned long nr_pagecache_reclaimable;
7967 unsigned long delta = 0;
7970 * If RECLAIM_UNMAP is set, then all file pages are considered
7971 * potentially reclaimable. Otherwise, we have to worry about
7972 * pages like swapcache and node_unmapped_file_pages() provides
7975 if (node_reclaim_mode & RECLAIM_UNMAP)
7976 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7978 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7980 /* If we can't clean pages, remove dirty pages from consideration */
7981 if (!(node_reclaim_mode & RECLAIM_WRITE))
7982 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7984 /* Watch for any possible underflows due to delta */
7985 if (unlikely(delta > nr_pagecache_reclaimable))
7986 delta = nr_pagecache_reclaimable;
7988 return nr_pagecache_reclaimable - delta;
7992 * Try to free up some pages from this node through reclaim.
7994 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7996 /* Minimum pages needed in order to stay on node */
7997 const unsigned long nr_pages = 1 << order;
7998 struct task_struct *p = current;
7999 unsigned int noreclaim_flag;
8000 struct scan_control sc = {
8001 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8002 .gfp_mask = current_gfp_context(gfp_mask),
8004 .priority = NODE_RECLAIM_PRIORITY,
8005 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8006 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8008 .reclaim_idx = gfp_zone(gfp_mask),
8010 unsigned long pflags;
8012 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8016 psi_memstall_enter(&pflags);
8017 fs_reclaim_acquire(sc.gfp_mask);
8019 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8021 noreclaim_flag = memalloc_noreclaim_save();
8022 set_task_reclaim_state(p, &sc.reclaim_state);
8024 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8025 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8027 * Free memory by calling shrink node with increasing
8028 * priorities until we have enough memory freed.
8031 shrink_node(pgdat, &sc);
8032 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8035 set_task_reclaim_state(p, NULL);
8036 memalloc_noreclaim_restore(noreclaim_flag);
8037 fs_reclaim_release(sc.gfp_mask);
8038 psi_memstall_leave(&pflags);
8040 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8042 return sc.nr_reclaimed >= nr_pages;
8045 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8050 * Node reclaim reclaims unmapped file backed pages and
8051 * slab pages if we are over the defined limits.
8053 * A small portion of unmapped file backed pages is needed for
8054 * file I/O otherwise pages read by file I/O will be immediately
8055 * thrown out if the node is overallocated. So we do not reclaim
8056 * if less than a specified percentage of the node is used by
8057 * unmapped file backed pages.
8059 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8060 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8061 pgdat->min_slab_pages)
8062 return NODE_RECLAIM_FULL;
8065 * Do not scan if the allocation should not be delayed.
8067 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8068 return NODE_RECLAIM_NOSCAN;
8071 * Only run node reclaim on the local node or on nodes that do not
8072 * have associated processors. This will favor the local processor
8073 * over remote processors and spread off node memory allocations
8074 * as wide as possible.
8076 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8077 return NODE_RECLAIM_NOSCAN;
8079 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8080 return NODE_RECLAIM_NOSCAN;
8082 ret = __node_reclaim(pgdat, gfp_mask, order);
8083 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8086 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8092 void check_move_unevictable_pages(struct pagevec *pvec)
8094 struct folio_batch fbatch;
8097 folio_batch_init(&fbatch);
8098 for (i = 0; i < pvec->nr; i++) {
8099 struct page *page = pvec->pages[i];
8101 if (PageTransTail(page))
8103 folio_batch_add(&fbatch, page_folio(page));
8105 check_move_unevictable_folios(&fbatch);
8107 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8110 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8112 * @fbatch: Batch of lru folios to check.
8114 * Checks folios for evictability, if an evictable folio is in the unevictable
8115 * lru list, moves it to the appropriate evictable lru list. This function
8116 * should be only used for lru folios.
8118 void check_move_unevictable_folios(struct folio_batch *fbatch)
8120 struct lruvec *lruvec = NULL;
8125 for (i = 0; i < fbatch->nr; i++) {
8126 struct folio *folio = fbatch->folios[i];
8127 int nr_pages = folio_nr_pages(folio);
8129 pgscanned += nr_pages;
8131 /* block memcg migration while the folio moves between lrus */
8132 if (!folio_test_clear_lru(folio))
8135 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8136 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8137 lruvec_del_folio(lruvec, folio);
8138 folio_clear_unevictable(folio);
8139 lruvec_add_folio(lruvec, folio);
8140 pgrescued += nr_pages;
8142 folio_set_lru(folio);
8146 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8147 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8148 unlock_page_lruvec_irq(lruvec);
8149 } else if (pgscanned) {
8150 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8153 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);