]> Git Repo - linux.git/blob - mm/mmap.c
mm/pagewalk: walk_pte_range() allow for pte_offset_map()
[linux.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <[email protected]>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158                         unsigned long start, unsigned long end, gfp_t gfp)
159 {
160         vmi->mas.index = start;
161         vmi->mas.last = end - 1;
162         mas_store_gfp(&vmi->mas, NULL, gfp);
163         if (unlikely(mas_is_err(&vmi->mas)))
164                 return -ENOMEM;
165
166         return 0;
167 }
168
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179         unsigned long mapped_addr;
180
181         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182         if (IS_ERR_VALUE(mapped_addr))
183                 return mapped_addr;
184
185         return mlock_future_ok(current->mm, current->mm->def_flags, len)
186                 ? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189                 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long newbrk, oldbrk, origbrk;
193         struct mm_struct *mm = current->mm;
194         struct vm_area_struct *brkvma, *next = NULL;
195         unsigned long min_brk;
196         bool populate;
197         bool downgraded = false;
198         LIST_HEAD(uf);
199         struct vma_iterator vmi;
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * do_vma_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /* Search one past newbrk */
247                 vma_iter_init(&vmi, mm, newbrk);
248                 brkvma = vma_find(&vmi, oldbrk);
249                 if (!brkvma || brkvma->vm_start >= oldbrk)
250                         goto out; /* mapping intersects with an existing non-brk vma. */
251                 /*
252                  * mm->brk must be protected by write mmap_lock.
253                  * do_vma_munmap() may downgrade the lock,  so update it
254                  * before calling do_vma_munmap().
255                  */
256                 mm->brk = brk;
257                 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
258                 if (ret == 1)  {
259                         downgraded = true;
260                         goto success;
261                 } else if (!ret)
262                         goto success;
263
264                 mm->brk = origbrk;
265                 goto out;
266         }
267
268         if (check_brk_limits(oldbrk, newbrk - oldbrk))
269                 goto out;
270
271         /*
272          * Only check if the next VMA is within the stack_guard_gap of the
273          * expansion area
274          */
275         vma_iter_init(&vmi, mm, oldbrk);
276         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
277         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
278                 goto out;
279
280         brkvma = vma_prev_limit(&vmi, mm->start_brk);
281         /* Ok, looks good - let it rip. */
282         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
283                 goto out;
284
285         mm->brk = brk;
286
287 success:
288         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
289         if (downgraded)
290                 mmap_read_unlock(mm);
291         else
292                 mmap_write_unlock(mm);
293         userfaultfd_unmap_complete(mm, &uf);
294         if (populate)
295                 mm_populate(oldbrk, newbrk - oldbrk);
296         return brk;
297
298 out:
299         mmap_write_unlock(mm);
300         return origbrk;
301 }
302
303 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
304 static void validate_mm(struct mm_struct *mm)
305 {
306         int bug = 0;
307         int i = 0;
308         struct vm_area_struct *vma;
309         VMA_ITERATOR(vmi, mm, 0);
310
311         mt_validate(&mm->mm_mt);
312         for_each_vma(vmi, vma) {
313 #ifdef CONFIG_DEBUG_VM_RB
314                 struct anon_vma *anon_vma = vma->anon_vma;
315                 struct anon_vma_chain *avc;
316 #endif
317                 unsigned long vmi_start, vmi_end;
318                 bool warn = 0;
319
320                 vmi_start = vma_iter_addr(&vmi);
321                 vmi_end = vma_iter_end(&vmi);
322                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
323                         warn = 1;
324
325                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
326                         warn = 1;
327
328                 if (warn) {
329                         pr_emerg("issue in %s\n", current->comm);
330                         dump_stack();
331                         dump_vma(vma);
332                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
333                                  vmi_start, vmi_end - 1);
334                         vma_iter_dump_tree(&vmi);
335                 }
336
337 #ifdef CONFIG_DEBUG_VM_RB
338                 if (anon_vma) {
339                         anon_vma_lock_read(anon_vma);
340                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
341                                 anon_vma_interval_tree_verify(avc);
342                         anon_vma_unlock_read(anon_vma);
343                 }
344 #endif
345                 i++;
346         }
347         if (i != mm->map_count) {
348                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
349                 bug = 1;
350         }
351         VM_BUG_ON_MM(bug, mm);
352 }
353
354 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
355 #define validate_mm(mm) do { } while (0)
356 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
357
358 /*
359  * vma has some anon_vma assigned, and is already inserted on that
360  * anon_vma's interval trees.
361  *
362  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
363  * vma must be removed from the anon_vma's interval trees using
364  * anon_vma_interval_tree_pre_update_vma().
365  *
366  * After the update, the vma will be reinserted using
367  * anon_vma_interval_tree_post_update_vma().
368  *
369  * The entire update must be protected by exclusive mmap_lock and by
370  * the root anon_vma's mutex.
371  */
372 static inline void
373 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
374 {
375         struct anon_vma_chain *avc;
376
377         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
378                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
379 }
380
381 static inline void
382 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
383 {
384         struct anon_vma_chain *avc;
385
386         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
387                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
388 }
389
390 static unsigned long count_vma_pages_range(struct mm_struct *mm,
391                 unsigned long addr, unsigned long end)
392 {
393         VMA_ITERATOR(vmi, mm, addr);
394         struct vm_area_struct *vma;
395         unsigned long nr_pages = 0;
396
397         for_each_vma_range(vmi, vma, end) {
398                 unsigned long vm_start = max(addr, vma->vm_start);
399                 unsigned long vm_end = min(end, vma->vm_end);
400
401                 nr_pages += PHYS_PFN(vm_end - vm_start);
402         }
403
404         return nr_pages;
405 }
406
407 static void __vma_link_file(struct vm_area_struct *vma,
408                             struct address_space *mapping)
409 {
410         if (vma->vm_flags & VM_SHARED)
411                 mapping_allow_writable(mapping);
412
413         flush_dcache_mmap_lock(mapping);
414         vma_interval_tree_insert(vma, &mapping->i_mmap);
415         flush_dcache_mmap_unlock(mapping);
416 }
417
418 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
419 {
420         VMA_ITERATOR(vmi, mm, 0);
421         struct address_space *mapping = NULL;
422
423         if (vma_iter_prealloc(&vmi))
424                 return -ENOMEM;
425
426         if (vma->vm_file) {
427                 mapping = vma->vm_file->f_mapping;
428                 i_mmap_lock_write(mapping);
429         }
430
431         vma_iter_store(&vmi, vma);
432
433         if (mapping) {
434                 __vma_link_file(vma, mapping);
435                 i_mmap_unlock_write(mapping);
436         }
437
438         mm->map_count++;
439         validate_mm(mm);
440         return 0;
441 }
442
443 /*
444  * init_multi_vma_prep() - Initializer for struct vma_prepare
445  * @vp: The vma_prepare struct
446  * @vma: The vma that will be altered once locked
447  * @next: The next vma if it is to be adjusted
448  * @remove: The first vma to be removed
449  * @remove2: The second vma to be removed
450  */
451 static inline void init_multi_vma_prep(struct vma_prepare *vp,
452                 struct vm_area_struct *vma, struct vm_area_struct *next,
453                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
454 {
455         memset(vp, 0, sizeof(struct vma_prepare));
456         vp->vma = vma;
457         vp->anon_vma = vma->anon_vma;
458         vp->remove = remove;
459         vp->remove2 = remove2;
460         vp->adj_next = next;
461         if (!vp->anon_vma && next)
462                 vp->anon_vma = next->anon_vma;
463
464         vp->file = vma->vm_file;
465         if (vp->file)
466                 vp->mapping = vma->vm_file->f_mapping;
467
468 }
469
470 /*
471  * init_vma_prep() - Initializer wrapper for vma_prepare struct
472  * @vp: The vma_prepare struct
473  * @vma: The vma that will be altered once locked
474  */
475 static inline void init_vma_prep(struct vma_prepare *vp,
476                                  struct vm_area_struct *vma)
477 {
478         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
479 }
480
481
482 /*
483  * vma_prepare() - Helper function for handling locking VMAs prior to altering
484  * @vp: The initialized vma_prepare struct
485  */
486 static inline void vma_prepare(struct vma_prepare *vp)
487 {
488         vma_start_write(vp->vma);
489         if (vp->adj_next)
490                 vma_start_write(vp->adj_next);
491         /* vp->insert is always a newly created VMA, no need for locking */
492         if (vp->remove)
493                 vma_start_write(vp->remove);
494         if (vp->remove2)
495                 vma_start_write(vp->remove2);
496
497         if (vp->file) {
498                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
499
500                 if (vp->adj_next)
501                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
502                                       vp->adj_next->vm_end);
503
504                 i_mmap_lock_write(vp->mapping);
505                 if (vp->insert && vp->insert->vm_file) {
506                         /*
507                          * Put into interval tree now, so instantiated pages
508                          * are visible to arm/parisc __flush_dcache_page
509                          * throughout; but we cannot insert into address
510                          * space until vma start or end is updated.
511                          */
512                         __vma_link_file(vp->insert,
513                                         vp->insert->vm_file->f_mapping);
514                 }
515         }
516
517         if (vp->anon_vma) {
518                 anon_vma_lock_write(vp->anon_vma);
519                 anon_vma_interval_tree_pre_update_vma(vp->vma);
520                 if (vp->adj_next)
521                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
522         }
523
524         if (vp->file) {
525                 flush_dcache_mmap_lock(vp->mapping);
526                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
527                 if (vp->adj_next)
528                         vma_interval_tree_remove(vp->adj_next,
529                                                  &vp->mapping->i_mmap);
530         }
531
532 }
533
534 /*
535  * vma_complete- Helper function for handling the unlocking after altering VMAs,
536  * or for inserting a VMA.
537  *
538  * @vp: The vma_prepare struct
539  * @vmi: The vma iterator
540  * @mm: The mm_struct
541  */
542 static inline void vma_complete(struct vma_prepare *vp,
543                                 struct vma_iterator *vmi, struct mm_struct *mm)
544 {
545         if (vp->file) {
546                 if (vp->adj_next)
547                         vma_interval_tree_insert(vp->adj_next,
548                                                  &vp->mapping->i_mmap);
549                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
550                 flush_dcache_mmap_unlock(vp->mapping);
551         }
552
553         if (vp->remove && vp->file) {
554                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
555                 if (vp->remove2)
556                         __remove_shared_vm_struct(vp->remove2, vp->file,
557                                                   vp->mapping);
558         } else if (vp->insert) {
559                 /*
560                  * split_vma has split insert from vma, and needs
561                  * us to insert it before dropping the locks
562                  * (it may either follow vma or precede it).
563                  */
564                 vma_iter_store(vmi, vp->insert);
565                 mm->map_count++;
566         }
567
568         if (vp->anon_vma) {
569                 anon_vma_interval_tree_post_update_vma(vp->vma);
570                 if (vp->adj_next)
571                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
572                 anon_vma_unlock_write(vp->anon_vma);
573         }
574
575         if (vp->file) {
576                 i_mmap_unlock_write(vp->mapping);
577                 uprobe_mmap(vp->vma);
578
579                 if (vp->adj_next)
580                         uprobe_mmap(vp->adj_next);
581         }
582
583         if (vp->remove) {
584 again:
585                 vma_mark_detached(vp->remove, true);
586                 if (vp->file) {
587                         uprobe_munmap(vp->remove, vp->remove->vm_start,
588                                       vp->remove->vm_end);
589                         fput(vp->file);
590                 }
591                 if (vp->remove->anon_vma)
592                         anon_vma_merge(vp->vma, vp->remove);
593                 mm->map_count--;
594                 mpol_put(vma_policy(vp->remove));
595                 if (!vp->remove2)
596                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
597                 vm_area_free(vp->remove);
598
599                 /*
600                  * In mprotect's case 6 (see comments on vma_merge),
601                  * we are removing both mid and next vmas
602                  */
603                 if (vp->remove2) {
604                         vp->remove = vp->remove2;
605                         vp->remove2 = NULL;
606                         goto again;
607                 }
608         }
609         if (vp->insert && vp->file)
610                 uprobe_mmap(vp->insert);
611 }
612
613 /*
614  * dup_anon_vma() - Helper function to duplicate anon_vma
615  * @dst: The destination VMA
616  * @src: The source VMA
617  *
618  * Returns: 0 on success.
619  */
620 static inline int dup_anon_vma(struct vm_area_struct *dst,
621                                struct vm_area_struct *src)
622 {
623         /*
624          * Easily overlooked: when mprotect shifts the boundary, make sure the
625          * expanding vma has anon_vma set if the shrinking vma had, to cover any
626          * anon pages imported.
627          */
628         if (src->anon_vma && !dst->anon_vma) {
629                 dst->anon_vma = src->anon_vma;
630                 return anon_vma_clone(dst, src);
631         }
632
633         return 0;
634 }
635
636 /*
637  * vma_expand - Expand an existing VMA
638  *
639  * @vmi: The vma iterator
640  * @vma: The vma to expand
641  * @start: The start of the vma
642  * @end: The exclusive end of the vma
643  * @pgoff: The page offset of vma
644  * @next: The current of next vma.
645  *
646  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
647  * expand over @next if it's different from @vma and @end == @next->vm_end.
648  * Checking if the @vma can expand and merge with @next needs to be handled by
649  * the caller.
650  *
651  * Returns: 0 on success
652  */
653 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
654                unsigned long start, unsigned long end, pgoff_t pgoff,
655                struct vm_area_struct *next)
656 {
657         bool remove_next = false;
658         struct vma_prepare vp;
659
660         if (next && (vma != next) && (end == next->vm_end)) {
661                 int ret;
662
663                 remove_next = true;
664                 ret = dup_anon_vma(vma, next);
665                 if (ret)
666                         return ret;
667         }
668
669         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
670         /* Not merging but overwriting any part of next is not handled. */
671         VM_WARN_ON(next && !vp.remove &&
672                   next != vma && end > next->vm_start);
673         /* Only handles expanding */
674         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
675
676         if (vma_iter_prealloc(vmi))
677                 goto nomem;
678
679         vma_prepare(&vp);
680         vma_adjust_trans_huge(vma, start, end, 0);
681         /* VMA iterator points to previous, so set to start if necessary */
682         if (vma_iter_addr(vmi) != start)
683                 vma_iter_set(vmi, start);
684
685         vma->vm_start = start;
686         vma->vm_end = end;
687         vma->vm_pgoff = pgoff;
688         /* Note: mas must be pointing to the expanding VMA */
689         vma_iter_store(vmi, vma);
690
691         vma_complete(&vp, vmi, vma->vm_mm);
692         validate_mm(vma->vm_mm);
693         return 0;
694
695 nomem:
696         return -ENOMEM;
697 }
698
699 /*
700  * vma_shrink() - Reduce an existing VMAs memory area
701  * @vmi: The vma iterator
702  * @vma: The VMA to modify
703  * @start: The new start
704  * @end: The new end
705  *
706  * Returns: 0 on success, -ENOMEM otherwise
707  */
708 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
709                unsigned long start, unsigned long end, pgoff_t pgoff)
710 {
711         struct vma_prepare vp;
712
713         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
714
715         if (vma_iter_prealloc(vmi))
716                 return -ENOMEM;
717
718         init_vma_prep(&vp, vma);
719         vma_prepare(&vp);
720         vma_adjust_trans_huge(vma, start, end, 0);
721
722         if (vma->vm_start < start)
723                 vma_iter_clear(vmi, vma->vm_start, start);
724
725         if (vma->vm_end > end)
726                 vma_iter_clear(vmi, end, vma->vm_end);
727
728         vma->vm_start = start;
729         vma->vm_end = end;
730         vma->vm_pgoff = pgoff;
731         vma_complete(&vp, vmi, vma->vm_mm);
732         validate_mm(vma->vm_mm);
733         return 0;
734 }
735
736 /*
737  * If the vma has a ->close operation then the driver probably needs to release
738  * per-vma resources, so we don't attempt to merge those if the caller indicates
739  * the current vma may be removed as part of the merge.
740  */
741 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
742                 struct file *file, unsigned long vm_flags,
743                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
744                 struct anon_vma_name *anon_name, bool may_remove_vma)
745 {
746         /*
747          * VM_SOFTDIRTY should not prevent from VMA merging, if we
748          * match the flags but dirty bit -- the caller should mark
749          * merged VMA as dirty. If dirty bit won't be excluded from
750          * comparison, we increase pressure on the memory system forcing
751          * the kernel to generate new VMAs when old one could be
752          * extended instead.
753          */
754         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
755                 return false;
756         if (vma->vm_file != file)
757                 return false;
758         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
759                 return false;
760         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
761                 return false;
762         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
763                 return false;
764         return true;
765 }
766
767 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
768                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
769 {
770         /*
771          * The list_is_singular() test is to avoid merging VMA cloned from
772          * parents. This can improve scalability caused by anon_vma lock.
773          */
774         if ((!anon_vma1 || !anon_vma2) && (!vma ||
775                 list_is_singular(&vma->anon_vma_chain)))
776                 return true;
777         return anon_vma1 == anon_vma2;
778 }
779
780 /*
781  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
782  * in front of (at a lower virtual address and file offset than) the vma.
783  *
784  * We cannot merge two vmas if they have differently assigned (non-NULL)
785  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
786  *
787  * We don't check here for the merged mmap wrapping around the end of pagecache
788  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
789  * wrap, nor mmaps which cover the final page at index -1UL.
790  *
791  * We assume the vma may be removed as part of the merge.
792  */
793 static bool
794 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
795                 struct anon_vma *anon_vma, struct file *file,
796                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
797                 struct anon_vma_name *anon_name)
798 {
799         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
800             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
801                 if (vma->vm_pgoff == vm_pgoff)
802                         return true;
803         }
804         return false;
805 }
806
807 /*
808  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
809  * beyond (at a higher virtual address and file offset than) the vma.
810  *
811  * We cannot merge two vmas if they have differently assigned (non-NULL)
812  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
813  *
814  * We assume that vma is not removed as part of the merge.
815  */
816 static bool
817 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
818                 struct anon_vma *anon_vma, struct file *file,
819                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
820                 struct anon_vma_name *anon_name)
821 {
822         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
823             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
824                 pgoff_t vm_pglen;
825                 vm_pglen = vma_pages(vma);
826                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
827                         return true;
828         }
829         return false;
830 }
831
832 /*
833  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
834  * figure out whether that can be merged with its predecessor or its
835  * successor.  Or both (it neatly fills a hole).
836  *
837  * In most cases - when called for mmap, brk or mremap - [addr,end) is
838  * certain not to be mapped by the time vma_merge is called; but when
839  * called for mprotect, it is certain to be already mapped (either at
840  * an offset within prev, or at the start of next), and the flags of
841  * this area are about to be changed to vm_flags - and the no-change
842  * case has already been eliminated.
843  *
844  * The following mprotect cases have to be considered, where **** is
845  * the area passed down from mprotect_fixup, never extending beyond one
846  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
847  * at the same address as **** and is of the same or larger span, and
848  * NNNN the next vma after ****:
849  *
850  *     ****             ****                   ****
851  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
852  *    cannot merge    might become       might become
853  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
854  *    mmap, brk or    case 4 below       case 5 below
855  *    mremap move:
856  *                        ****               ****
857  *                    PPPP    NNNN       PPPPCCCCNNNN
858  *                    might become       might become
859  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
860  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
861  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
862  *
863  * It is important for case 8 that the vma CCCC overlapping the
864  * region **** is never going to extended over NNNN. Instead NNNN must
865  * be extended in region **** and CCCC must be removed. This way in
866  * all cases where vma_merge succeeds, the moment vma_merge drops the
867  * rmap_locks, the properties of the merged vma will be already
868  * correct for the whole merged range. Some of those properties like
869  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
870  * be correct for the whole merged range immediately after the
871  * rmap_locks are released. Otherwise if NNNN would be removed and
872  * CCCC would be extended over the NNNN range, remove_migration_ptes
873  * or other rmap walkers (if working on addresses beyond the "end"
874  * parameter) may establish ptes with the wrong permissions of CCCC
875  * instead of the right permissions of NNNN.
876  *
877  * In the code below:
878  * PPPP is represented by *prev
879  * CCCC is represented by *curr or not represented at all (NULL)
880  * NNNN is represented by *next or not represented at all (NULL)
881  * **** is not represented - it will be merged and the vma containing the
882  *      area is returned, or the function will return NULL
883  */
884 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
885                         struct vm_area_struct *prev, unsigned long addr,
886                         unsigned long end, unsigned long vm_flags,
887                         struct anon_vma *anon_vma, struct file *file,
888                         pgoff_t pgoff, struct mempolicy *policy,
889                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
890                         struct anon_vma_name *anon_name)
891 {
892         struct vm_area_struct *curr, *next, *res;
893         struct vm_area_struct *vma, *adjust, *remove, *remove2;
894         struct vma_prepare vp;
895         pgoff_t vma_pgoff;
896         int err = 0;
897         bool merge_prev = false;
898         bool merge_next = false;
899         bool vma_expanded = false;
900         unsigned long vma_start = addr;
901         unsigned long vma_end = end;
902         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
903         long adj_start = 0;
904
905         validate_mm(mm);
906         /*
907          * We later require that vma->vm_flags == vm_flags,
908          * so this tests vma->vm_flags & VM_SPECIAL, too.
909          */
910         if (vm_flags & VM_SPECIAL)
911                 return NULL;
912
913         /* Does the input range span an existing VMA? (cases 5 - 8) */
914         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
915
916         if (!curr ||                    /* cases 1 - 4 */
917             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
918                 next = vma_lookup(mm, end);
919         else
920                 next = NULL;            /* case 5 */
921
922         if (prev) {
923                 vma_start = prev->vm_start;
924                 vma_pgoff = prev->vm_pgoff;
925
926                 /* Can we merge the predecessor? */
927                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
928                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
929                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
930                         merge_prev = true;
931                         vma_prev(vmi);
932                 }
933         }
934
935         /* Can we merge the successor? */
936         if (next && mpol_equal(policy, vma_policy(next)) &&
937             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
938                                  vm_userfaultfd_ctx, anon_name)) {
939                 merge_next = true;
940         }
941
942         /* Verify some invariant that must be enforced by the caller. */
943         VM_WARN_ON(prev && addr <= prev->vm_start);
944         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
945         VM_WARN_ON(addr >= end);
946
947         if (!merge_prev && !merge_next)
948                 return NULL; /* Not mergeable. */
949
950         res = vma = prev;
951         remove = remove2 = adjust = NULL;
952
953         /* Can we merge both the predecessor and the successor? */
954         if (merge_prev && merge_next &&
955             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
956                 remove = next;                          /* case 1 */
957                 vma_end = next->vm_end;
958                 err = dup_anon_vma(prev, next);
959                 if (curr) {                             /* case 6 */
960                         remove = curr;
961                         remove2 = next;
962                         if (!next->anon_vma)
963                                 err = dup_anon_vma(prev, curr);
964                 }
965         } else if (merge_prev) {                        /* case 2 */
966                 if (curr) {
967                         err = dup_anon_vma(prev, curr);
968                         if (end == curr->vm_end) {      /* case 7 */
969                                 remove = curr;
970                         } else {                        /* case 5 */
971                                 adjust = curr;
972                                 adj_start = (end - curr->vm_start);
973                         }
974                 }
975         } else { /* merge_next */
976                 res = next;
977                 if (prev && addr < prev->vm_end) {      /* case 4 */
978                         vma_end = addr;
979                         adjust = next;
980                         adj_start = -(prev->vm_end - addr);
981                         err = dup_anon_vma(next, prev);
982                 } else {
983                         /*
984                          * Note that cases 3 and 8 are the ONLY ones where prev
985                          * is permitted to be (but is not necessarily) NULL.
986                          */
987                         vma = next;                     /* case 3 */
988                         vma_start = addr;
989                         vma_end = next->vm_end;
990                         vma_pgoff = next->vm_pgoff - pglen;
991                         if (curr) {                     /* case 8 */
992                                 vma_pgoff = curr->vm_pgoff;
993                                 remove = curr;
994                                 err = dup_anon_vma(next, curr);
995                         }
996                 }
997         }
998
999         /* Error in anon_vma clone. */
1000         if (err)
1001                 return NULL;
1002
1003         if (vma_iter_prealloc(vmi))
1004                 return NULL;
1005
1006         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1007         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1008                    vp.anon_vma != adjust->anon_vma);
1009
1010         vma_prepare(&vp);
1011         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1012         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1013                 vma_expanded = true;
1014
1015         vma->vm_start = vma_start;
1016         vma->vm_end = vma_end;
1017         vma->vm_pgoff = vma_pgoff;
1018
1019         if (vma_expanded)
1020                 vma_iter_store(vmi, vma);
1021
1022         if (adj_start) {
1023                 adjust->vm_start += adj_start;
1024                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1025                 if (adj_start < 0) {
1026                         WARN_ON(vma_expanded);
1027                         vma_iter_store(vmi, next);
1028                 }
1029         }
1030
1031         vma_complete(&vp, vmi, mm);
1032         vma_iter_free(vmi);
1033         validate_mm(mm);
1034         khugepaged_enter_vma(res, vm_flags);
1035
1036         return res;
1037 }
1038
1039 /*
1040  * Rough compatibility check to quickly see if it's even worth looking
1041  * at sharing an anon_vma.
1042  *
1043  * They need to have the same vm_file, and the flags can only differ
1044  * in things that mprotect may change.
1045  *
1046  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1047  * we can merge the two vma's. For example, we refuse to merge a vma if
1048  * there is a vm_ops->close() function, because that indicates that the
1049  * driver is doing some kind of reference counting. But that doesn't
1050  * really matter for the anon_vma sharing case.
1051  */
1052 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1053 {
1054         return a->vm_end == b->vm_start &&
1055                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1056                 a->vm_file == b->vm_file &&
1057                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1058                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1059 }
1060
1061 /*
1062  * Do some basic sanity checking to see if we can re-use the anon_vma
1063  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1064  * the same as 'old', the other will be the new one that is trying
1065  * to share the anon_vma.
1066  *
1067  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1068  * the anon_vma of 'old' is concurrently in the process of being set up
1069  * by another page fault trying to merge _that_. But that's ok: if it
1070  * is being set up, that automatically means that it will be a singleton
1071  * acceptable for merging, so we can do all of this optimistically. But
1072  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1073  *
1074  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1075  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1076  * is to return an anon_vma that is "complex" due to having gone through
1077  * a fork).
1078  *
1079  * We also make sure that the two vma's are compatible (adjacent,
1080  * and with the same memory policies). That's all stable, even with just
1081  * a read lock on the mmap_lock.
1082  */
1083 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1084 {
1085         if (anon_vma_compatible(a, b)) {
1086                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1087
1088                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1089                         return anon_vma;
1090         }
1091         return NULL;
1092 }
1093
1094 /*
1095  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1096  * neighbouring vmas for a suitable anon_vma, before it goes off
1097  * to allocate a new anon_vma.  It checks because a repetitive
1098  * sequence of mprotects and faults may otherwise lead to distinct
1099  * anon_vmas being allocated, preventing vma merge in subsequent
1100  * mprotect.
1101  */
1102 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1103 {
1104         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1105         struct anon_vma *anon_vma = NULL;
1106         struct vm_area_struct *prev, *next;
1107
1108         /* Try next first. */
1109         next = mas_walk(&mas);
1110         if (next) {
1111                 anon_vma = reusable_anon_vma(next, vma, next);
1112                 if (anon_vma)
1113                         return anon_vma;
1114         }
1115
1116         prev = mas_prev(&mas, 0);
1117         VM_BUG_ON_VMA(prev != vma, vma);
1118         prev = mas_prev(&mas, 0);
1119         /* Try prev next. */
1120         if (prev)
1121                 anon_vma = reusable_anon_vma(prev, prev, vma);
1122
1123         /*
1124          * We might reach here with anon_vma == NULL if we can't find
1125          * any reusable anon_vma.
1126          * There's no absolute need to look only at touching neighbours:
1127          * we could search further afield for "compatible" anon_vmas.
1128          * But it would probably just be a waste of time searching,
1129          * or lead to too many vmas hanging off the same anon_vma.
1130          * We're trying to allow mprotect remerging later on,
1131          * not trying to minimize memory used for anon_vmas.
1132          */
1133         return anon_vma;
1134 }
1135
1136 /*
1137  * If a hint addr is less than mmap_min_addr change hint to be as
1138  * low as possible but still greater than mmap_min_addr
1139  */
1140 static inline unsigned long round_hint_to_min(unsigned long hint)
1141 {
1142         hint &= PAGE_MASK;
1143         if (((void *)hint != NULL) &&
1144             (hint < mmap_min_addr))
1145                 return PAGE_ALIGN(mmap_min_addr);
1146         return hint;
1147 }
1148
1149 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1150                         unsigned long bytes)
1151 {
1152         unsigned long locked_pages, limit_pages;
1153
1154         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1155                 return true;
1156
1157         locked_pages = bytes >> PAGE_SHIFT;
1158         locked_pages += mm->locked_vm;
1159
1160         limit_pages = rlimit(RLIMIT_MEMLOCK);
1161         limit_pages >>= PAGE_SHIFT;
1162
1163         return locked_pages <= limit_pages;
1164 }
1165
1166 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1167 {
1168         if (S_ISREG(inode->i_mode))
1169                 return MAX_LFS_FILESIZE;
1170
1171         if (S_ISBLK(inode->i_mode))
1172                 return MAX_LFS_FILESIZE;
1173
1174         if (S_ISSOCK(inode->i_mode))
1175                 return MAX_LFS_FILESIZE;
1176
1177         /* Special "we do even unsigned file positions" case */
1178         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1179                 return 0;
1180
1181         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1182         return ULONG_MAX;
1183 }
1184
1185 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1186                                 unsigned long pgoff, unsigned long len)
1187 {
1188         u64 maxsize = file_mmap_size_max(file, inode);
1189
1190         if (maxsize && len > maxsize)
1191                 return false;
1192         maxsize -= len;
1193         if (pgoff > maxsize >> PAGE_SHIFT)
1194                 return false;
1195         return true;
1196 }
1197
1198 /*
1199  * The caller must write-lock current->mm->mmap_lock.
1200  */
1201 unsigned long do_mmap(struct file *file, unsigned long addr,
1202                         unsigned long len, unsigned long prot,
1203                         unsigned long flags, unsigned long pgoff,
1204                         unsigned long *populate, struct list_head *uf)
1205 {
1206         struct mm_struct *mm = current->mm;
1207         vm_flags_t vm_flags;
1208         int pkey = 0;
1209
1210         validate_mm(mm);
1211         *populate = 0;
1212
1213         if (!len)
1214                 return -EINVAL;
1215
1216         /*
1217          * Does the application expect PROT_READ to imply PROT_EXEC?
1218          *
1219          * (the exception is when the underlying filesystem is noexec
1220          *  mounted, in which case we dont add PROT_EXEC.)
1221          */
1222         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1223                 if (!(file && path_noexec(&file->f_path)))
1224                         prot |= PROT_EXEC;
1225
1226         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1227         if (flags & MAP_FIXED_NOREPLACE)
1228                 flags |= MAP_FIXED;
1229
1230         if (!(flags & MAP_FIXED))
1231                 addr = round_hint_to_min(addr);
1232
1233         /* Careful about overflows.. */
1234         len = PAGE_ALIGN(len);
1235         if (!len)
1236                 return -ENOMEM;
1237
1238         /* offset overflow? */
1239         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1240                 return -EOVERFLOW;
1241
1242         /* Too many mappings? */
1243         if (mm->map_count > sysctl_max_map_count)
1244                 return -ENOMEM;
1245
1246         /* Obtain the address to map to. we verify (or select) it and ensure
1247          * that it represents a valid section of the address space.
1248          */
1249         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1250         if (IS_ERR_VALUE(addr))
1251                 return addr;
1252
1253         if (flags & MAP_FIXED_NOREPLACE) {
1254                 if (find_vma_intersection(mm, addr, addr + len))
1255                         return -EEXIST;
1256         }
1257
1258         if (prot == PROT_EXEC) {
1259                 pkey = execute_only_pkey(mm);
1260                 if (pkey < 0)
1261                         pkey = 0;
1262         }
1263
1264         /* Do simple checking here so the lower-level routines won't have
1265          * to. we assume access permissions have been handled by the open
1266          * of the memory object, so we don't do any here.
1267          */
1268         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270
1271         if (flags & MAP_LOCKED)
1272                 if (!can_do_mlock())
1273                         return -EPERM;
1274
1275         if (!mlock_future_ok(mm, vm_flags, len))
1276                 return -EAGAIN;
1277
1278         if (file) {
1279                 struct inode *inode = file_inode(file);
1280                 unsigned long flags_mask;
1281
1282                 if (!file_mmap_ok(file, inode, pgoff, len))
1283                         return -EOVERFLOW;
1284
1285                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1286
1287                 switch (flags & MAP_TYPE) {
1288                 case MAP_SHARED:
1289                         /*
1290                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1291                          * flags. E.g. MAP_SYNC is dangerous to use with
1292                          * MAP_SHARED as you don't know which consistency model
1293                          * you will get. We silently ignore unsupported flags
1294                          * with MAP_SHARED to preserve backward compatibility.
1295                          */
1296                         flags &= LEGACY_MAP_MASK;
1297                         fallthrough;
1298                 case MAP_SHARED_VALIDATE:
1299                         if (flags & ~flags_mask)
1300                                 return -EOPNOTSUPP;
1301                         if (prot & PROT_WRITE) {
1302                                 if (!(file->f_mode & FMODE_WRITE))
1303                                         return -EACCES;
1304                                 if (IS_SWAPFILE(file->f_mapping->host))
1305                                         return -ETXTBSY;
1306                         }
1307
1308                         /*
1309                          * Make sure we don't allow writing to an append-only
1310                          * file..
1311                          */
1312                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1313                                 return -EACCES;
1314
1315                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1316                         if (!(file->f_mode & FMODE_WRITE))
1317                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1318                         fallthrough;
1319                 case MAP_PRIVATE:
1320                         if (!(file->f_mode & FMODE_READ))
1321                                 return -EACCES;
1322                         if (path_noexec(&file->f_path)) {
1323                                 if (vm_flags & VM_EXEC)
1324                                         return -EPERM;
1325                                 vm_flags &= ~VM_MAYEXEC;
1326                         }
1327
1328                         if (!file->f_op->mmap)
1329                                 return -ENODEV;
1330                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331                                 return -EINVAL;
1332                         break;
1333
1334                 default:
1335                         return -EINVAL;
1336                 }
1337         } else {
1338                 switch (flags & MAP_TYPE) {
1339                 case MAP_SHARED:
1340                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1341                                 return -EINVAL;
1342                         /*
1343                          * Ignore pgoff.
1344                          */
1345                         pgoff = 0;
1346                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1347                         break;
1348                 case MAP_PRIVATE:
1349                         /*
1350                          * Set pgoff according to addr for anon_vma.
1351                          */
1352                         pgoff = addr >> PAGE_SHIFT;
1353                         break;
1354                 default:
1355                         return -EINVAL;
1356                 }
1357         }
1358
1359         /*
1360          * Set 'VM_NORESERVE' if we should not account for the
1361          * memory use of this mapping.
1362          */
1363         if (flags & MAP_NORESERVE) {
1364                 /* We honor MAP_NORESERVE if allowed to overcommit */
1365                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366                         vm_flags |= VM_NORESERVE;
1367
1368                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369                 if (file && is_file_hugepages(file))
1370                         vm_flags |= VM_NORESERVE;
1371         }
1372
1373         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1374         if (!IS_ERR_VALUE(addr) &&
1375             ((vm_flags & VM_LOCKED) ||
1376              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1377                 *populate = len;
1378         return addr;
1379 }
1380
1381 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1382                               unsigned long prot, unsigned long flags,
1383                               unsigned long fd, unsigned long pgoff)
1384 {
1385         struct file *file = NULL;
1386         unsigned long retval;
1387
1388         if (!(flags & MAP_ANONYMOUS)) {
1389                 audit_mmap_fd(fd, flags);
1390                 file = fget(fd);
1391                 if (!file)
1392                         return -EBADF;
1393                 if (is_file_hugepages(file)) {
1394                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1395                 } else if (unlikely(flags & MAP_HUGETLB)) {
1396                         retval = -EINVAL;
1397                         goto out_fput;
1398                 }
1399         } else if (flags & MAP_HUGETLB) {
1400                 struct hstate *hs;
1401
1402                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1403                 if (!hs)
1404                         return -EINVAL;
1405
1406                 len = ALIGN(len, huge_page_size(hs));
1407                 /*
1408                  * VM_NORESERVE is used because the reservations will be
1409                  * taken when vm_ops->mmap() is called
1410                  */
1411                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1412                                 VM_NORESERVE,
1413                                 HUGETLB_ANONHUGE_INODE,
1414                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415                 if (IS_ERR(file))
1416                         return PTR_ERR(file);
1417         }
1418
1419         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1420 out_fput:
1421         if (file)
1422                 fput(file);
1423         return retval;
1424 }
1425
1426 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1427                 unsigned long, prot, unsigned long, flags,
1428                 unsigned long, fd, unsigned long, pgoff)
1429 {
1430         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1431 }
1432
1433 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1434 struct mmap_arg_struct {
1435         unsigned long addr;
1436         unsigned long len;
1437         unsigned long prot;
1438         unsigned long flags;
1439         unsigned long fd;
1440         unsigned long offset;
1441 };
1442
1443 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1444 {
1445         struct mmap_arg_struct a;
1446
1447         if (copy_from_user(&a, arg, sizeof(a)))
1448                 return -EFAULT;
1449         if (offset_in_page(a.offset))
1450                 return -EINVAL;
1451
1452         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1453                                a.offset >> PAGE_SHIFT);
1454 }
1455 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1456
1457 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1458 {
1459         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1460 }
1461
1462 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1463 {
1464         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1465                 (VM_WRITE | VM_SHARED);
1466 }
1467
1468 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1469 {
1470         /* No managed pages to writeback. */
1471         if (vma->vm_flags & VM_PFNMAP)
1472                 return false;
1473
1474         return vma->vm_file && vma->vm_file->f_mapping &&
1475                 mapping_can_writeback(vma->vm_file->f_mapping);
1476 }
1477
1478 /*
1479  * Does this VMA require the underlying folios to have their dirty state
1480  * tracked?
1481  */
1482 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1483 {
1484         /* Only shared, writable VMAs require dirty tracking. */
1485         if (!vma_is_shared_writable(vma))
1486                 return false;
1487
1488         /* Does the filesystem need to be notified? */
1489         if (vm_ops_needs_writenotify(vma->vm_ops))
1490                 return true;
1491
1492         /*
1493          * Even if the filesystem doesn't indicate a need for writenotify, if it
1494          * can writeback, dirty tracking is still required.
1495          */
1496         return vma_fs_can_writeback(vma);
1497 }
1498
1499 /*
1500  * Some shared mappings will want the pages marked read-only
1501  * to track write events. If so, we'll downgrade vm_page_prot
1502  * to the private version (using protection_map[] without the
1503  * VM_SHARED bit).
1504  */
1505 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1506 {
1507         /* If it was private or non-writable, the write bit is already clear */
1508         if (!vma_is_shared_writable(vma))
1509                 return 0;
1510
1511         /* The backer wishes to know when pages are first written to? */
1512         if (vm_ops_needs_writenotify(vma->vm_ops))
1513                 return 1;
1514
1515         /* The open routine did something to the protections that pgprot_modify
1516          * won't preserve? */
1517         if (pgprot_val(vm_page_prot) !=
1518             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1519                 return 0;
1520
1521         /*
1522          * Do we need to track softdirty? hugetlb does not support softdirty
1523          * tracking yet.
1524          */
1525         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1526                 return 1;
1527
1528         /* Do we need write faults for uffd-wp tracking? */
1529         if (userfaultfd_wp(vma))
1530                 return 1;
1531
1532         /* Can the mapping track the dirty pages? */
1533         return vma_fs_can_writeback(vma);
1534 }
1535
1536 /*
1537  * We account for memory if it's a private writeable mapping,
1538  * not hugepages and VM_NORESERVE wasn't set.
1539  */
1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1541 {
1542         /*
1543          * hugetlb has its own accounting separate from the core VM
1544          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1545          */
1546         if (file && is_file_hugepages(file))
1547                 return 0;
1548
1549         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1550 }
1551
1552 /**
1553  * unmapped_area() - Find an area between the low_limit and the high_limit with
1554  * the correct alignment and offset, all from @info. Note: current->mm is used
1555  * for the search.
1556  *
1557  * @info: The unmapped area information including the range [low_limit -
1558  * high_limit), the alignment offset and mask.
1559  *
1560  * Return: A memory address or -ENOMEM.
1561  */
1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1563 {
1564         unsigned long length, gap;
1565         unsigned long low_limit, high_limit;
1566         struct vm_area_struct *tmp;
1567
1568         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1569
1570         /* Adjust search length to account for worst case alignment overhead */
1571         length = info->length + info->align_mask;
1572         if (length < info->length)
1573                 return -ENOMEM;
1574
1575         low_limit = info->low_limit;
1576         if (low_limit < mmap_min_addr)
1577                 low_limit = mmap_min_addr;
1578         high_limit = info->high_limit;
1579 retry:
1580         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1581                 return -ENOMEM;
1582
1583         gap = mas.index;
1584         gap += (info->align_offset - gap) & info->align_mask;
1585         tmp = mas_next(&mas, ULONG_MAX);
1586         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1587                 if (vm_start_gap(tmp) < gap + length - 1) {
1588                         low_limit = tmp->vm_end;
1589                         mas_reset(&mas);
1590                         goto retry;
1591                 }
1592         } else {
1593                 tmp = mas_prev(&mas, 0);
1594                 if (tmp && vm_end_gap(tmp) > gap) {
1595                         low_limit = vm_end_gap(tmp);
1596                         mas_reset(&mas);
1597                         goto retry;
1598                 }
1599         }
1600
1601         return gap;
1602 }
1603
1604 /**
1605  * unmapped_area_topdown() - Find an area between the low_limit and the
1606  * high_limit with the correct alignment and offset at the highest available
1607  * address, all from @info. Note: current->mm is used for the search.
1608  *
1609  * @info: The unmapped area information including the range [low_limit -
1610  * high_limit), the alignment offset and mask.
1611  *
1612  * Return: A memory address or -ENOMEM.
1613  */
1614 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1615 {
1616         unsigned long length, gap, gap_end;
1617         unsigned long low_limit, high_limit;
1618         struct vm_area_struct *tmp;
1619
1620         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1621         /* Adjust search length to account for worst case alignment overhead */
1622         length = info->length + info->align_mask;
1623         if (length < info->length)
1624                 return -ENOMEM;
1625
1626         low_limit = info->low_limit;
1627         if (low_limit < mmap_min_addr)
1628                 low_limit = mmap_min_addr;
1629         high_limit = info->high_limit;
1630 retry:
1631         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1632                 return -ENOMEM;
1633
1634         gap = mas.last + 1 - info->length;
1635         gap -= (gap - info->align_offset) & info->align_mask;
1636         gap_end = mas.last;
1637         tmp = mas_next(&mas, ULONG_MAX);
1638         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1639                 if (vm_start_gap(tmp) <= gap_end) {
1640                         high_limit = vm_start_gap(tmp);
1641                         mas_reset(&mas);
1642                         goto retry;
1643                 }
1644         } else {
1645                 tmp = mas_prev(&mas, 0);
1646                 if (tmp && vm_end_gap(tmp) > gap) {
1647                         high_limit = tmp->vm_start;
1648                         mas_reset(&mas);
1649                         goto retry;
1650                 }
1651         }
1652
1653         return gap;
1654 }
1655
1656 /*
1657  * Search for an unmapped address range.
1658  *
1659  * We are looking for a range that:
1660  * - does not intersect with any VMA;
1661  * - is contained within the [low_limit, high_limit) interval;
1662  * - is at least the desired size.
1663  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1664  */
1665 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1666 {
1667         unsigned long addr;
1668
1669         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1670                 addr = unmapped_area_topdown(info);
1671         else
1672                 addr = unmapped_area(info);
1673
1674         trace_vm_unmapped_area(addr, info);
1675         return addr;
1676 }
1677
1678 /* Get an address range which is currently unmapped.
1679  * For shmat() with addr=0.
1680  *
1681  * Ugly calling convention alert:
1682  * Return value with the low bits set means error value,
1683  * ie
1684  *      if (ret & ~PAGE_MASK)
1685  *              error = ret;
1686  *
1687  * This function "knows" that -ENOMEM has the bits set.
1688  */
1689 unsigned long
1690 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1691                           unsigned long len, unsigned long pgoff,
1692                           unsigned long flags)
1693 {
1694         struct mm_struct *mm = current->mm;
1695         struct vm_area_struct *vma, *prev;
1696         struct vm_unmapped_area_info info;
1697         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1698
1699         if (len > mmap_end - mmap_min_addr)
1700                 return -ENOMEM;
1701
1702         if (flags & MAP_FIXED)
1703                 return addr;
1704
1705         if (addr) {
1706                 addr = PAGE_ALIGN(addr);
1707                 vma = find_vma_prev(mm, addr, &prev);
1708                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1709                     (!vma || addr + len <= vm_start_gap(vma)) &&
1710                     (!prev || addr >= vm_end_gap(prev)))
1711                         return addr;
1712         }
1713
1714         info.flags = 0;
1715         info.length = len;
1716         info.low_limit = mm->mmap_base;
1717         info.high_limit = mmap_end;
1718         info.align_mask = 0;
1719         info.align_offset = 0;
1720         return vm_unmapped_area(&info);
1721 }
1722
1723 #ifndef HAVE_ARCH_UNMAPPED_AREA
1724 unsigned long
1725 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1726                        unsigned long len, unsigned long pgoff,
1727                        unsigned long flags)
1728 {
1729         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1730 }
1731 #endif
1732
1733 /*
1734  * This mmap-allocator allocates new areas top-down from below the
1735  * stack's low limit (the base):
1736  */
1737 unsigned long
1738 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1739                                   unsigned long len, unsigned long pgoff,
1740                                   unsigned long flags)
1741 {
1742         struct vm_area_struct *vma, *prev;
1743         struct mm_struct *mm = current->mm;
1744         struct vm_unmapped_area_info info;
1745         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1746
1747         /* requested length too big for entire address space */
1748         if (len > mmap_end - mmap_min_addr)
1749                 return -ENOMEM;
1750
1751         if (flags & MAP_FIXED)
1752                 return addr;
1753
1754         /* requesting a specific address */
1755         if (addr) {
1756                 addr = PAGE_ALIGN(addr);
1757                 vma = find_vma_prev(mm, addr, &prev);
1758                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1759                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1760                                 (!prev || addr >= vm_end_gap(prev)))
1761                         return addr;
1762         }
1763
1764         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1765         info.length = len;
1766         info.low_limit = PAGE_SIZE;
1767         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1768         info.align_mask = 0;
1769         info.align_offset = 0;
1770         addr = vm_unmapped_area(&info);
1771
1772         /*
1773          * A failed mmap() very likely causes application failure,
1774          * so fall back to the bottom-up function here. This scenario
1775          * can happen with large stack limits and large mmap()
1776          * allocations.
1777          */
1778         if (offset_in_page(addr)) {
1779                 VM_BUG_ON(addr != -ENOMEM);
1780                 info.flags = 0;
1781                 info.low_limit = TASK_UNMAPPED_BASE;
1782                 info.high_limit = mmap_end;
1783                 addr = vm_unmapped_area(&info);
1784         }
1785
1786         return addr;
1787 }
1788
1789 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1790 unsigned long
1791 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1792                                unsigned long len, unsigned long pgoff,
1793                                unsigned long flags)
1794 {
1795         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1796 }
1797 #endif
1798
1799 unsigned long
1800 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1801                 unsigned long pgoff, unsigned long flags)
1802 {
1803         unsigned long (*get_area)(struct file *, unsigned long,
1804                                   unsigned long, unsigned long, unsigned long);
1805
1806         unsigned long error = arch_mmap_check(addr, len, flags);
1807         if (error)
1808                 return error;
1809
1810         /* Careful about overflows.. */
1811         if (len > TASK_SIZE)
1812                 return -ENOMEM;
1813
1814         get_area = current->mm->get_unmapped_area;
1815         if (file) {
1816                 if (file->f_op->get_unmapped_area)
1817                         get_area = file->f_op->get_unmapped_area;
1818         } else if (flags & MAP_SHARED) {
1819                 /*
1820                  * mmap_region() will call shmem_zero_setup() to create a file,
1821                  * so use shmem's get_unmapped_area in case it can be huge.
1822                  * do_mmap() will clear pgoff, so match alignment.
1823                  */
1824                 pgoff = 0;
1825                 get_area = shmem_get_unmapped_area;
1826         }
1827
1828         addr = get_area(file, addr, len, pgoff, flags);
1829         if (IS_ERR_VALUE(addr))
1830                 return addr;
1831
1832         if (addr > TASK_SIZE - len)
1833                 return -ENOMEM;
1834         if (offset_in_page(addr))
1835                 return -EINVAL;
1836
1837         error = security_mmap_addr(addr);
1838         return error ? error : addr;
1839 }
1840
1841 EXPORT_SYMBOL(get_unmapped_area);
1842
1843 /**
1844  * find_vma_intersection() - Look up the first VMA which intersects the interval
1845  * @mm: The process address space.
1846  * @start_addr: The inclusive start user address.
1847  * @end_addr: The exclusive end user address.
1848  *
1849  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1850  * start_addr < end_addr.
1851  */
1852 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1853                                              unsigned long start_addr,
1854                                              unsigned long end_addr)
1855 {
1856         unsigned long index = start_addr;
1857
1858         mmap_assert_locked(mm);
1859         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1860 }
1861 EXPORT_SYMBOL(find_vma_intersection);
1862
1863 /**
1864  * find_vma() - Find the VMA for a given address, or the next VMA.
1865  * @mm: The mm_struct to check
1866  * @addr: The address
1867  *
1868  * Returns: The VMA associated with addr, or the next VMA.
1869  * May return %NULL in the case of no VMA at addr or above.
1870  */
1871 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1872 {
1873         unsigned long index = addr;
1874
1875         mmap_assert_locked(mm);
1876         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1877 }
1878 EXPORT_SYMBOL(find_vma);
1879
1880 /**
1881  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1882  * set %pprev to the previous VMA, if any.
1883  * @mm: The mm_struct to check
1884  * @addr: The address
1885  * @pprev: The pointer to set to the previous VMA
1886  *
1887  * Note that RCU lock is missing here since the external mmap_lock() is used
1888  * instead.
1889  *
1890  * Returns: The VMA associated with @addr, or the next vma.
1891  * May return %NULL in the case of no vma at addr or above.
1892  */
1893 struct vm_area_struct *
1894 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1895                         struct vm_area_struct **pprev)
1896 {
1897         struct vm_area_struct *vma;
1898         MA_STATE(mas, &mm->mm_mt, addr, addr);
1899
1900         vma = mas_walk(&mas);
1901         *pprev = mas_prev(&mas, 0);
1902         if (!vma)
1903                 vma = mas_next(&mas, ULONG_MAX);
1904         return vma;
1905 }
1906
1907 /*
1908  * Verify that the stack growth is acceptable and
1909  * update accounting. This is shared with both the
1910  * grow-up and grow-down cases.
1911  */
1912 static int acct_stack_growth(struct vm_area_struct *vma,
1913                              unsigned long size, unsigned long grow)
1914 {
1915         struct mm_struct *mm = vma->vm_mm;
1916         unsigned long new_start;
1917
1918         /* address space limit tests */
1919         if (!may_expand_vm(mm, vma->vm_flags, grow))
1920                 return -ENOMEM;
1921
1922         /* Stack limit test */
1923         if (size > rlimit(RLIMIT_STACK))
1924                 return -ENOMEM;
1925
1926         /* mlock limit tests */
1927         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1928                 return -ENOMEM;
1929
1930         /* Check to ensure the stack will not grow into a hugetlb-only region */
1931         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1932                         vma->vm_end - size;
1933         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1934                 return -EFAULT;
1935
1936         /*
1937          * Overcommit..  This must be the final test, as it will
1938          * update security statistics.
1939          */
1940         if (security_vm_enough_memory_mm(mm, grow))
1941                 return -ENOMEM;
1942
1943         return 0;
1944 }
1945
1946 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1947 /*
1948  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1949  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1950  */
1951 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1952 {
1953         struct mm_struct *mm = vma->vm_mm;
1954         struct vm_area_struct *next;
1955         unsigned long gap_addr;
1956         int error = 0;
1957         MA_STATE(mas, &mm->mm_mt, 0, 0);
1958
1959         if (!(vma->vm_flags & VM_GROWSUP))
1960                 return -EFAULT;
1961
1962         /* Guard against exceeding limits of the address space. */
1963         address &= PAGE_MASK;
1964         if (address >= (TASK_SIZE & PAGE_MASK))
1965                 return -ENOMEM;
1966         address += PAGE_SIZE;
1967
1968         /* Enforce stack_guard_gap */
1969         gap_addr = address + stack_guard_gap;
1970
1971         /* Guard against overflow */
1972         if (gap_addr < address || gap_addr > TASK_SIZE)
1973                 gap_addr = TASK_SIZE;
1974
1975         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1976         if (next && vma_is_accessible(next)) {
1977                 if (!(next->vm_flags & VM_GROWSUP))
1978                         return -ENOMEM;
1979                 /* Check that both stack segments have the same anon_vma? */
1980         }
1981
1982         if (mas_preallocate(&mas, GFP_KERNEL))
1983                 return -ENOMEM;
1984
1985         /* We must make sure the anon_vma is allocated. */
1986         if (unlikely(anon_vma_prepare(vma))) {
1987                 mas_destroy(&mas);
1988                 return -ENOMEM;
1989         }
1990
1991         /*
1992          * vma->vm_start/vm_end cannot change under us because the caller
1993          * is required to hold the mmap_lock in read mode.  We need the
1994          * anon_vma lock to serialize against concurrent expand_stacks.
1995          */
1996         anon_vma_lock_write(vma->anon_vma);
1997
1998         /* Somebody else might have raced and expanded it already */
1999         if (address > vma->vm_end) {
2000                 unsigned long size, grow;
2001
2002                 size = address - vma->vm_start;
2003                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2004
2005                 error = -ENOMEM;
2006                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2007                         error = acct_stack_growth(vma, size, grow);
2008                         if (!error) {
2009                                 /*
2010                                  * We only hold a shared mmap_lock lock here, so
2011                                  * we need to protect against concurrent vma
2012                                  * expansions.  anon_vma_lock_write() doesn't
2013                                  * help here, as we don't guarantee that all
2014                                  * growable vmas in a mm share the same root
2015                                  * anon vma.  So, we reuse mm->page_table_lock
2016                                  * to guard against concurrent vma expansions.
2017                                  */
2018                                 spin_lock(&mm->page_table_lock);
2019                                 if (vma->vm_flags & VM_LOCKED)
2020                                         mm->locked_vm += grow;
2021                                 vm_stat_account(mm, vma->vm_flags, grow);
2022                                 anon_vma_interval_tree_pre_update_vma(vma);
2023                                 vma->vm_end = address;
2024                                 /* Overwrite old entry in mtree. */
2025                                 mas_set_range(&mas, vma->vm_start, address - 1);
2026                                 mas_store_prealloc(&mas, vma);
2027                                 anon_vma_interval_tree_post_update_vma(vma);
2028                                 spin_unlock(&mm->page_table_lock);
2029
2030                                 perf_event_mmap(vma);
2031                         }
2032                 }
2033         }
2034         anon_vma_unlock_write(vma->anon_vma);
2035         khugepaged_enter_vma(vma, vma->vm_flags);
2036         mas_destroy(&mas);
2037         return error;
2038 }
2039 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2040
2041 /*
2042  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2043  */
2044 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2045 {
2046         struct mm_struct *mm = vma->vm_mm;
2047         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2048         struct vm_area_struct *prev;
2049         int error = 0;
2050
2051         address &= PAGE_MASK;
2052         if (address < mmap_min_addr)
2053                 return -EPERM;
2054
2055         /* Enforce stack_guard_gap */
2056         prev = mas_prev(&mas, 0);
2057         /* Check that both stack segments have the same anon_vma? */
2058         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2059                         vma_is_accessible(prev)) {
2060                 if (address - prev->vm_end < stack_guard_gap)
2061                         return -ENOMEM;
2062         }
2063
2064         if (mas_preallocate(&mas, GFP_KERNEL))
2065                 return -ENOMEM;
2066
2067         /* We must make sure the anon_vma is allocated. */
2068         if (unlikely(anon_vma_prepare(vma))) {
2069                 mas_destroy(&mas);
2070                 return -ENOMEM;
2071         }
2072
2073         /*
2074          * vma->vm_start/vm_end cannot change under us because the caller
2075          * is required to hold the mmap_lock in read mode.  We need the
2076          * anon_vma lock to serialize against concurrent expand_stacks.
2077          */
2078         anon_vma_lock_write(vma->anon_vma);
2079
2080         /* Somebody else might have raced and expanded it already */
2081         if (address < vma->vm_start) {
2082                 unsigned long size, grow;
2083
2084                 size = vma->vm_end - address;
2085                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2086
2087                 error = -ENOMEM;
2088                 if (grow <= vma->vm_pgoff) {
2089                         error = acct_stack_growth(vma, size, grow);
2090                         if (!error) {
2091                                 /*
2092                                  * We only hold a shared mmap_lock lock here, so
2093                                  * we need to protect against concurrent vma
2094                                  * expansions.  anon_vma_lock_write() doesn't
2095                                  * help here, as we don't guarantee that all
2096                                  * growable vmas in a mm share the same root
2097                                  * anon vma.  So, we reuse mm->page_table_lock
2098                                  * to guard against concurrent vma expansions.
2099                                  */
2100                                 spin_lock(&mm->page_table_lock);
2101                                 if (vma->vm_flags & VM_LOCKED)
2102                                         mm->locked_vm += grow;
2103                                 vm_stat_account(mm, vma->vm_flags, grow);
2104                                 anon_vma_interval_tree_pre_update_vma(vma);
2105                                 vma->vm_start = address;
2106                                 vma->vm_pgoff -= grow;
2107                                 /* Overwrite old entry in mtree. */
2108                                 mas_set_range(&mas, address, vma->vm_end - 1);
2109                                 mas_store_prealloc(&mas, vma);
2110                                 anon_vma_interval_tree_post_update_vma(vma);
2111                                 spin_unlock(&mm->page_table_lock);
2112
2113                                 perf_event_mmap(vma);
2114                         }
2115                 }
2116         }
2117         anon_vma_unlock_write(vma->anon_vma);
2118         khugepaged_enter_vma(vma, vma->vm_flags);
2119         mas_destroy(&mas);
2120         return error;
2121 }
2122
2123 /* enforced gap between the expanding stack and other mappings. */
2124 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2125
2126 static int __init cmdline_parse_stack_guard_gap(char *p)
2127 {
2128         unsigned long val;
2129         char *endptr;
2130
2131         val = simple_strtoul(p, &endptr, 10);
2132         if (!*endptr)
2133                 stack_guard_gap = val << PAGE_SHIFT;
2134
2135         return 1;
2136 }
2137 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2138
2139 #ifdef CONFIG_STACK_GROWSUP
2140 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2141 {
2142         return expand_upwards(vma, address);
2143 }
2144
2145 struct vm_area_struct *
2146 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2147 {
2148         struct vm_area_struct *vma, *prev;
2149
2150         addr &= PAGE_MASK;
2151         vma = find_vma_prev(mm, addr, &prev);
2152         if (vma && (vma->vm_start <= addr))
2153                 return vma;
2154         if (!prev || expand_stack(prev, addr))
2155                 return NULL;
2156         if (prev->vm_flags & VM_LOCKED)
2157                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2158         return prev;
2159 }
2160 #else
2161 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2162 {
2163         return expand_downwards(vma, address);
2164 }
2165
2166 struct vm_area_struct *
2167 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2168 {
2169         struct vm_area_struct *vma;
2170         unsigned long start;
2171
2172         addr &= PAGE_MASK;
2173         vma = find_vma(mm, addr);
2174         if (!vma)
2175                 return NULL;
2176         if (vma->vm_start <= addr)
2177                 return vma;
2178         if (!(vma->vm_flags & VM_GROWSDOWN))
2179                 return NULL;
2180         start = vma->vm_start;
2181         if (expand_stack(vma, addr))
2182                 return NULL;
2183         if (vma->vm_flags & VM_LOCKED)
2184                 populate_vma_page_range(vma, addr, start, NULL);
2185         return vma;
2186 }
2187 #endif
2188
2189 EXPORT_SYMBOL_GPL(find_extend_vma);
2190
2191 /*
2192  * Ok - we have the memory areas we should free on a maple tree so release them,
2193  * and do the vma updates.
2194  *
2195  * Called with the mm semaphore held.
2196  */
2197 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2198 {
2199         unsigned long nr_accounted = 0;
2200         struct vm_area_struct *vma;
2201
2202         /* Update high watermark before we lower total_vm */
2203         update_hiwater_vm(mm);
2204         mas_for_each(mas, vma, ULONG_MAX) {
2205                 long nrpages = vma_pages(vma);
2206
2207                 if (vma->vm_flags & VM_ACCOUNT)
2208                         nr_accounted += nrpages;
2209                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2210                 remove_vma(vma, false);
2211         }
2212         vm_unacct_memory(nr_accounted);
2213         validate_mm(mm);
2214 }
2215
2216 /*
2217  * Get rid of page table information in the indicated region.
2218  *
2219  * Called with the mm semaphore held.
2220  */
2221 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2222                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2223                 struct vm_area_struct *next,
2224                 unsigned long start, unsigned long end, bool mm_wr_locked)
2225 {
2226         struct mmu_gather tlb;
2227
2228         lru_add_drain();
2229         tlb_gather_mmu(&tlb, mm);
2230         update_hiwater_rss(mm);
2231         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2232         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2233                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2234                                  mm_wr_locked);
2235         tlb_finish_mmu(&tlb);
2236 }
2237
2238 /*
2239  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2240  * has already been checked or doesn't make sense to fail.
2241  * VMA Iterator will point to the end VMA.
2242  */
2243 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2244                 unsigned long addr, int new_below)
2245 {
2246         struct vma_prepare vp;
2247         struct vm_area_struct *new;
2248         int err;
2249
2250         validate_mm(vma->vm_mm);
2251
2252         WARN_ON(vma->vm_start >= addr);
2253         WARN_ON(vma->vm_end <= addr);
2254
2255         if (vma->vm_ops && vma->vm_ops->may_split) {
2256                 err = vma->vm_ops->may_split(vma, addr);
2257                 if (err)
2258                         return err;
2259         }
2260
2261         new = vm_area_dup(vma);
2262         if (!new)
2263                 return -ENOMEM;
2264
2265         err = -ENOMEM;
2266         if (vma_iter_prealloc(vmi))
2267                 goto out_free_vma;
2268
2269         if (new_below) {
2270                 new->vm_end = addr;
2271         } else {
2272                 new->vm_start = addr;
2273                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2274         }
2275
2276         err = vma_dup_policy(vma, new);
2277         if (err)
2278                 goto out_free_vmi;
2279
2280         err = anon_vma_clone(new, vma);
2281         if (err)
2282                 goto out_free_mpol;
2283
2284         if (new->vm_file)
2285                 get_file(new->vm_file);
2286
2287         if (new->vm_ops && new->vm_ops->open)
2288                 new->vm_ops->open(new);
2289
2290         init_vma_prep(&vp, vma);
2291         vp.insert = new;
2292         vma_prepare(&vp);
2293         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2294
2295         if (new_below) {
2296                 vma->vm_start = addr;
2297                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2298         } else {
2299                 vma->vm_end = addr;
2300         }
2301
2302         /* vma_complete stores the new vma */
2303         vma_complete(&vp, vmi, vma->vm_mm);
2304
2305         /* Success. */
2306         if (new_below)
2307                 vma_next(vmi);
2308         validate_mm(vma->vm_mm);
2309         return 0;
2310
2311 out_free_mpol:
2312         mpol_put(vma_policy(new));
2313 out_free_vmi:
2314         vma_iter_free(vmi);
2315 out_free_vma:
2316         vm_area_free(new);
2317         validate_mm(vma->vm_mm);
2318         return err;
2319 }
2320
2321 /*
2322  * Split a vma into two pieces at address 'addr', a new vma is allocated
2323  * either for the first part or the tail.
2324  */
2325 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326               unsigned long addr, int new_below)
2327 {
2328         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2329                 return -ENOMEM;
2330
2331         return __split_vma(vmi, vma, addr, new_below);
2332 }
2333
2334 static inline int munmap_sidetree(struct vm_area_struct *vma,
2335                                    struct ma_state *mas_detach)
2336 {
2337         vma_start_write(vma);
2338         mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2339         if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2340                 return -ENOMEM;
2341
2342         vma_mark_detached(vma, true);
2343         if (vma->vm_flags & VM_LOCKED)
2344                 vma->vm_mm->locked_vm -= vma_pages(vma);
2345
2346         return 0;
2347 }
2348
2349 /*
2350  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2351  * @vmi: The vma iterator
2352  * @vma: The starting vm_area_struct
2353  * @mm: The mm_struct
2354  * @start: The aligned start address to munmap.
2355  * @end: The aligned end address to munmap.
2356  * @uf: The userfaultfd list_head
2357  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2358  *
2359  * If @downgrade is true, check return code for potential release of the lock.
2360  */
2361 static int
2362 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2363                     struct mm_struct *mm, unsigned long start,
2364                     unsigned long end, struct list_head *uf, bool downgrade)
2365 {
2366         struct vm_area_struct *prev, *next = NULL;
2367         struct maple_tree mt_detach;
2368         int count = 0;
2369         int error = -ENOMEM;
2370         MA_STATE(mas_detach, &mt_detach, 0, 0);
2371         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2372         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2373
2374         /*
2375          * If we need to split any vma, do it now to save pain later.
2376          *
2377          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2378          * unmapped vm_area_struct will remain in use: so lower split_vma
2379          * places tmp vma above, and higher split_vma places tmp vma below.
2380          */
2381
2382         /* Does it split the first one? */
2383         if (start > vma->vm_start) {
2384
2385                 /*
2386                  * Make sure that map_count on return from munmap() will
2387                  * not exceed its limit; but let map_count go just above
2388                  * its limit temporarily, to help free resources as expected.
2389                  */
2390                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2391                         goto map_count_exceeded;
2392
2393                 error = __split_vma(vmi, vma, start, 0);
2394                 if (error)
2395                         goto start_split_failed;
2396
2397                 vma = vma_iter_load(vmi);
2398         }
2399
2400         prev = vma_prev(vmi);
2401         if (unlikely((!prev)))
2402                 vma_iter_set(vmi, start);
2403
2404         /*
2405          * Detach a range of VMAs from the mm. Using next as a temp variable as
2406          * it is always overwritten.
2407          */
2408         for_each_vma_range(*vmi, next, end) {
2409                 /* Does it split the end? */
2410                 if (next->vm_end > end) {
2411                         error = __split_vma(vmi, next, end, 0);
2412                         if (error)
2413                                 goto end_split_failed;
2414                 }
2415                 error = munmap_sidetree(next, &mas_detach);
2416                 if (error)
2417                         goto munmap_sidetree_failed;
2418
2419                 count++;
2420 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2421                 BUG_ON(next->vm_start < start);
2422                 BUG_ON(next->vm_start > end);
2423 #endif
2424         }
2425
2426         if (vma_iter_end(vmi) > end)
2427                 next = vma_iter_load(vmi);
2428
2429         if (!next)
2430                 next = vma_next(vmi);
2431
2432         if (unlikely(uf)) {
2433                 /*
2434                  * If userfaultfd_unmap_prep returns an error the vmas
2435                  * will remain split, but userland will get a
2436                  * highly unexpected error anyway. This is no
2437                  * different than the case where the first of the two
2438                  * __split_vma fails, but we don't undo the first
2439                  * split, despite we could. This is unlikely enough
2440                  * failure that it's not worth optimizing it for.
2441                  */
2442                 error = userfaultfd_unmap_prep(mm, start, end, uf);
2443
2444                 if (error)
2445                         goto userfaultfd_error;
2446         }
2447
2448 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2449         /* Make sure no VMAs are about to be lost. */
2450         {
2451                 MA_STATE(test, &mt_detach, start, end - 1);
2452                 struct vm_area_struct *vma_mas, *vma_test;
2453                 int test_count = 0;
2454
2455                 vma_iter_set(vmi, start);
2456                 rcu_read_lock();
2457                 vma_test = mas_find(&test, end - 1);
2458                 for_each_vma_range(*vmi, vma_mas, end) {
2459                         BUG_ON(vma_mas != vma_test);
2460                         test_count++;
2461                         vma_test = mas_next(&test, end - 1);
2462                 }
2463                 rcu_read_unlock();
2464                 BUG_ON(count != test_count);
2465         }
2466 #endif
2467         /* Point of no return */
2468         vma_iter_set(vmi, start);
2469         if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2470                 return -ENOMEM;
2471
2472         mm->map_count -= count;
2473         /*
2474          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2475          * VM_GROWSUP VMA. Such VMAs can change their size under
2476          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2477          */
2478         if (downgrade) {
2479                 if (next && (next->vm_flags & VM_GROWSDOWN))
2480                         downgrade = false;
2481                 else if (prev && (prev->vm_flags & VM_GROWSUP))
2482                         downgrade = false;
2483                 else
2484                         mmap_write_downgrade(mm);
2485         }
2486
2487         /*
2488          * We can free page tables without write-locking mmap_lock because VMAs
2489          * were isolated before we downgraded mmap_lock.
2490          */
2491         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2492         /* Statistics and freeing VMAs */
2493         mas_set(&mas_detach, start);
2494         remove_mt(mm, &mas_detach);
2495         __mt_destroy(&mt_detach);
2496
2497
2498         validate_mm(mm);
2499         return downgrade ? 1 : 0;
2500
2501 userfaultfd_error:
2502 munmap_sidetree_failed:
2503 end_split_failed:
2504         __mt_destroy(&mt_detach);
2505 start_split_failed:
2506 map_count_exceeded:
2507         return error;
2508 }
2509
2510 /*
2511  * do_vmi_munmap() - munmap a given range.
2512  * @vmi: The vma iterator
2513  * @mm: The mm_struct
2514  * @start: The start address to munmap
2515  * @len: The length of the range to munmap
2516  * @uf: The userfaultfd list_head
2517  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2518  * mmap_lock
2519  *
2520  * This function takes a @mas that is either pointing to the previous VMA or set
2521  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2522  * aligned and any arch_unmap work will be preformed.
2523  *
2524  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2525  */
2526 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2527                   unsigned long start, size_t len, struct list_head *uf,
2528                   bool downgrade)
2529 {
2530         unsigned long end;
2531         struct vm_area_struct *vma;
2532
2533         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2534                 return -EINVAL;
2535
2536         end = start + PAGE_ALIGN(len);
2537         if (end == start)
2538                 return -EINVAL;
2539
2540          /* arch_unmap() might do unmaps itself.  */
2541         arch_unmap(mm, start, end);
2542
2543         /* Find the first overlapping VMA */
2544         vma = vma_find(vmi, end);
2545         if (!vma)
2546                 return 0;
2547
2548         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2549 }
2550
2551 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2552  * @mm: The mm_struct
2553  * @start: The start address to munmap
2554  * @len: The length to be munmapped.
2555  * @uf: The userfaultfd list_head
2556  */
2557 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2558               struct list_head *uf)
2559 {
2560         VMA_ITERATOR(vmi, mm, start);
2561
2562         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2563 }
2564
2565 unsigned long mmap_region(struct file *file, unsigned long addr,
2566                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2567                 struct list_head *uf)
2568 {
2569         struct mm_struct *mm = current->mm;
2570         struct vm_area_struct *vma = NULL;
2571         struct vm_area_struct *next, *prev, *merge;
2572         pgoff_t pglen = len >> PAGE_SHIFT;
2573         unsigned long charged = 0;
2574         unsigned long end = addr + len;
2575         unsigned long merge_start = addr, merge_end = end;
2576         pgoff_t vm_pgoff;
2577         int error;
2578         VMA_ITERATOR(vmi, mm, addr);
2579
2580         /* Check against address space limit. */
2581         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2582                 unsigned long nr_pages;
2583
2584                 /*
2585                  * MAP_FIXED may remove pages of mappings that intersects with
2586                  * requested mapping. Account for the pages it would unmap.
2587                  */
2588                 nr_pages = count_vma_pages_range(mm, addr, end);
2589
2590                 if (!may_expand_vm(mm, vm_flags,
2591                                         (len >> PAGE_SHIFT) - nr_pages))
2592                         return -ENOMEM;
2593         }
2594
2595         /* Unmap any existing mapping in the area */
2596         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2597                 return -ENOMEM;
2598
2599         /*
2600          * Private writable mapping: check memory availability
2601          */
2602         if (accountable_mapping(file, vm_flags)) {
2603                 charged = len >> PAGE_SHIFT;
2604                 if (security_vm_enough_memory_mm(mm, charged))
2605                         return -ENOMEM;
2606                 vm_flags |= VM_ACCOUNT;
2607         }
2608
2609         next = vma_next(&vmi);
2610         prev = vma_prev(&vmi);
2611         if (vm_flags & VM_SPECIAL)
2612                 goto cannot_expand;
2613
2614         /* Attempt to expand an old mapping */
2615         /* Check next */
2616         if (next && next->vm_start == end && !vma_policy(next) &&
2617             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2618                                  NULL_VM_UFFD_CTX, NULL)) {
2619                 merge_end = next->vm_end;
2620                 vma = next;
2621                 vm_pgoff = next->vm_pgoff - pglen;
2622         }
2623
2624         /* Check prev */
2625         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2626             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2627                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2628                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2629                                        NULL_VM_UFFD_CTX, NULL))) {
2630                 merge_start = prev->vm_start;
2631                 vma = prev;
2632                 vm_pgoff = prev->vm_pgoff;
2633         }
2634
2635
2636         /* Actually expand, if possible */
2637         if (vma &&
2638             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2639                 khugepaged_enter_vma(vma, vm_flags);
2640                 goto expanded;
2641         }
2642
2643 cannot_expand:
2644         if (prev)
2645                 vma_iter_next_range(&vmi);
2646
2647         /*
2648          * Determine the object being mapped and call the appropriate
2649          * specific mapper. the address has already been validated, but
2650          * not unmapped, but the maps are removed from the list.
2651          */
2652         vma = vm_area_alloc(mm);
2653         if (!vma) {
2654                 error = -ENOMEM;
2655                 goto unacct_error;
2656         }
2657
2658         vma_iter_set(&vmi, addr);
2659         vma->vm_start = addr;
2660         vma->vm_end = end;
2661         vm_flags_init(vma, vm_flags);
2662         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2663         vma->vm_pgoff = pgoff;
2664
2665         if (file) {
2666                 if (vm_flags & VM_SHARED) {
2667                         error = mapping_map_writable(file->f_mapping);
2668                         if (error)
2669                                 goto free_vma;
2670                 }
2671
2672                 vma->vm_file = get_file(file);
2673                 error = call_mmap(file, vma);
2674                 if (error)
2675                         goto unmap_and_free_vma;
2676
2677                 /*
2678                  * Expansion is handled above, merging is handled below.
2679                  * Drivers should not alter the address of the VMA.
2680                  */
2681                 error = -EINVAL;
2682                 if (WARN_ON((addr != vma->vm_start)))
2683                         goto close_and_free_vma;
2684
2685                 vma_iter_set(&vmi, addr);
2686                 /*
2687                  * If vm_flags changed after call_mmap(), we should try merge
2688                  * vma again as we may succeed this time.
2689                  */
2690                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2691                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2692                                     vma->vm_end, vma->vm_flags, NULL,
2693                                     vma->vm_file, vma->vm_pgoff, NULL,
2694                                     NULL_VM_UFFD_CTX, NULL);
2695                         if (merge) {
2696                                 /*
2697                                  * ->mmap() can change vma->vm_file and fput
2698                                  * the original file. So fput the vma->vm_file
2699                                  * here or we would add an extra fput for file
2700                                  * and cause general protection fault
2701                                  * ultimately.
2702                                  */
2703                                 fput(vma->vm_file);
2704                                 vm_area_free(vma);
2705                                 vma = merge;
2706                                 /* Update vm_flags to pick up the change. */
2707                                 vm_flags = vma->vm_flags;
2708                                 goto unmap_writable;
2709                         }
2710                 }
2711
2712                 vm_flags = vma->vm_flags;
2713         } else if (vm_flags & VM_SHARED) {
2714                 error = shmem_zero_setup(vma);
2715                 if (error)
2716                         goto free_vma;
2717         } else {
2718                 vma_set_anonymous(vma);
2719         }
2720
2721         if (map_deny_write_exec(vma, vma->vm_flags)) {
2722                 error = -EACCES;
2723                 goto close_and_free_vma;
2724         }
2725
2726         /* Allow architectures to sanity-check the vm_flags */
2727         error = -EINVAL;
2728         if (!arch_validate_flags(vma->vm_flags))
2729                 goto close_and_free_vma;
2730
2731         error = -ENOMEM;
2732         if (vma_iter_prealloc(&vmi))
2733                 goto close_and_free_vma;
2734
2735         if (vma->vm_file)
2736                 i_mmap_lock_write(vma->vm_file->f_mapping);
2737
2738         vma_iter_store(&vmi, vma);
2739         mm->map_count++;
2740         if (vma->vm_file) {
2741                 if (vma->vm_flags & VM_SHARED)
2742                         mapping_allow_writable(vma->vm_file->f_mapping);
2743
2744                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2745                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2746                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2747                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2748         }
2749
2750         /*
2751          * vma_merge() calls khugepaged_enter_vma() either, the below
2752          * call covers the non-merge case.
2753          */
2754         khugepaged_enter_vma(vma, vma->vm_flags);
2755
2756         /* Once vma denies write, undo our temporary denial count */
2757 unmap_writable:
2758         if (file && vm_flags & VM_SHARED)
2759                 mapping_unmap_writable(file->f_mapping);
2760         file = vma->vm_file;
2761         ksm_add_vma(vma);
2762 expanded:
2763         perf_event_mmap(vma);
2764
2765         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2766         if (vm_flags & VM_LOCKED) {
2767                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2768                                         is_vm_hugetlb_page(vma) ||
2769                                         vma == get_gate_vma(current->mm))
2770                         vm_flags_clear(vma, VM_LOCKED_MASK);
2771                 else
2772                         mm->locked_vm += (len >> PAGE_SHIFT);
2773         }
2774
2775         if (file)
2776                 uprobe_mmap(vma);
2777
2778         /*
2779          * New (or expanded) vma always get soft dirty status.
2780          * Otherwise user-space soft-dirty page tracker won't
2781          * be able to distinguish situation when vma area unmapped,
2782          * then new mapped in-place (which must be aimed as
2783          * a completely new data area).
2784          */
2785         vm_flags_set(vma, VM_SOFTDIRTY);
2786
2787         vma_set_page_prot(vma);
2788
2789         validate_mm(mm);
2790         return addr;
2791
2792 close_and_free_vma:
2793         if (file && vma->vm_ops && vma->vm_ops->close)
2794                 vma->vm_ops->close(vma);
2795
2796         if (file || vma->vm_file) {
2797 unmap_and_free_vma:
2798                 fput(vma->vm_file);
2799                 vma->vm_file = NULL;
2800
2801                 /* Undo any partial mapping done by a device driver. */
2802                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2803                              vma->vm_end, true);
2804         }
2805         if (file && (vm_flags & VM_SHARED))
2806                 mapping_unmap_writable(file->f_mapping);
2807 free_vma:
2808         vm_area_free(vma);
2809 unacct_error:
2810         if (charged)
2811                 vm_unacct_memory(charged);
2812         validate_mm(mm);
2813         return error;
2814 }
2815
2816 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2817 {
2818         int ret;
2819         struct mm_struct *mm = current->mm;
2820         LIST_HEAD(uf);
2821         VMA_ITERATOR(vmi, mm, start);
2822
2823         if (mmap_write_lock_killable(mm))
2824                 return -EINTR;
2825
2826         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2827         /*
2828          * Returning 1 indicates mmap_lock is downgraded.
2829          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2830          * it to 0 before return.
2831          */
2832         if (ret == 1) {
2833                 mmap_read_unlock(mm);
2834                 ret = 0;
2835         } else
2836                 mmap_write_unlock(mm);
2837
2838         userfaultfd_unmap_complete(mm, &uf);
2839         return ret;
2840 }
2841
2842 int vm_munmap(unsigned long start, size_t len)
2843 {
2844         return __vm_munmap(start, len, false);
2845 }
2846 EXPORT_SYMBOL(vm_munmap);
2847
2848 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2849 {
2850         addr = untagged_addr(addr);
2851         return __vm_munmap(addr, len, true);
2852 }
2853
2854
2855 /*
2856  * Emulation of deprecated remap_file_pages() syscall.
2857  */
2858 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2859                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2860 {
2861
2862         struct mm_struct *mm = current->mm;
2863         struct vm_area_struct *vma;
2864         unsigned long populate = 0;
2865         unsigned long ret = -EINVAL;
2866         struct file *file;
2867
2868         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2869                      current->comm, current->pid);
2870
2871         if (prot)
2872                 return ret;
2873         start = start & PAGE_MASK;
2874         size = size & PAGE_MASK;
2875
2876         if (start + size <= start)
2877                 return ret;
2878
2879         /* Does pgoff wrap? */
2880         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2881                 return ret;
2882
2883         if (mmap_write_lock_killable(mm))
2884                 return -EINTR;
2885
2886         vma = vma_lookup(mm, start);
2887
2888         if (!vma || !(vma->vm_flags & VM_SHARED))
2889                 goto out;
2890
2891         if (start + size > vma->vm_end) {
2892                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2893                 struct vm_area_struct *next, *prev = vma;
2894
2895                 for_each_vma_range(vmi, next, start + size) {
2896                         /* hole between vmas ? */
2897                         if (next->vm_start != prev->vm_end)
2898                                 goto out;
2899
2900                         if (next->vm_file != vma->vm_file)
2901                                 goto out;
2902
2903                         if (next->vm_flags != vma->vm_flags)
2904                                 goto out;
2905
2906                         if (start + size <= next->vm_end)
2907                                 break;
2908
2909                         prev = next;
2910                 }
2911
2912                 if (!next)
2913                         goto out;
2914         }
2915
2916         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2917         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2918         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2919
2920         flags &= MAP_NONBLOCK;
2921         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2922         if (vma->vm_flags & VM_LOCKED)
2923                 flags |= MAP_LOCKED;
2924
2925         file = get_file(vma->vm_file);
2926         ret = do_mmap(vma->vm_file, start, size,
2927                         prot, flags, pgoff, &populate, NULL);
2928         fput(file);
2929 out:
2930         mmap_write_unlock(mm);
2931         if (populate)
2932                 mm_populate(ret, populate);
2933         if (!IS_ERR_VALUE(ret))
2934                 ret = 0;
2935         return ret;
2936 }
2937
2938 /*
2939  * do_vma_munmap() - Unmap a full or partial vma.
2940  * @vmi: The vma iterator pointing at the vma
2941  * @vma: The first vma to be munmapped
2942  * @start: the start of the address to unmap
2943  * @end: The end of the address to unmap
2944  * @uf: The userfaultfd list_head
2945  * @downgrade: Attempt to downgrade or not
2946  *
2947  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2948  * unmaps a VMA mapping when the vma iterator is already in position.
2949  * Does not handle alignment.
2950  */
2951 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2952                   unsigned long start, unsigned long end,
2953                   struct list_head *uf, bool downgrade)
2954 {
2955         struct mm_struct *mm = vma->vm_mm;
2956         int ret;
2957
2958         arch_unmap(mm, start, end);
2959         ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2960         validate_mm(mm);
2961         return ret;
2962 }
2963
2964 /*
2965  * do_brk_flags() - Increase the brk vma if the flags match.
2966  * @vmi: The vma iterator
2967  * @addr: The start address
2968  * @len: The length of the increase
2969  * @vma: The vma,
2970  * @flags: The VMA Flags
2971  *
2972  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2973  * do not match then create a new anonymous VMA.  Eventually we may be able to
2974  * do some brk-specific accounting here.
2975  */
2976 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2977                 unsigned long addr, unsigned long len, unsigned long flags)
2978 {
2979         struct mm_struct *mm = current->mm;
2980         struct vma_prepare vp;
2981
2982         validate_mm(mm);
2983         /*
2984          * Check against address space limits by the changed size
2985          * Note: This happens *after* clearing old mappings in some code paths.
2986          */
2987         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2988         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2989                 return -ENOMEM;
2990
2991         if (mm->map_count > sysctl_max_map_count)
2992                 return -ENOMEM;
2993
2994         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2995                 return -ENOMEM;
2996
2997         /*
2998          * Expand the existing vma if possible; Note that singular lists do not
2999          * occur after forking, so the expand will only happen on new VMAs.
3000          */
3001         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3002             can_vma_merge_after(vma, flags, NULL, NULL,
3003                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3004                 if (vma_iter_prealloc(vmi))
3005                         goto unacct_fail;
3006
3007                 init_vma_prep(&vp, vma);
3008                 vma_prepare(&vp);
3009                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3010                 vma->vm_end = addr + len;
3011                 vm_flags_set(vma, VM_SOFTDIRTY);
3012                 vma_iter_store(vmi, vma);
3013
3014                 vma_complete(&vp, vmi, mm);
3015                 khugepaged_enter_vma(vma, flags);
3016                 goto out;
3017         }
3018
3019         /* create a vma struct for an anonymous mapping */
3020         vma = vm_area_alloc(mm);
3021         if (!vma)
3022                 goto unacct_fail;
3023
3024         vma_set_anonymous(vma);
3025         vma->vm_start = addr;
3026         vma->vm_end = addr + len;
3027         vma->vm_pgoff = addr >> PAGE_SHIFT;
3028         vm_flags_init(vma, flags);
3029         vma->vm_page_prot = vm_get_page_prot(flags);
3030         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3031                 goto mas_store_fail;
3032
3033         mm->map_count++;
3034         ksm_add_vma(vma);
3035 out:
3036         perf_event_mmap(vma);
3037         mm->total_vm += len >> PAGE_SHIFT;
3038         mm->data_vm += len >> PAGE_SHIFT;
3039         if (flags & VM_LOCKED)
3040                 mm->locked_vm += (len >> PAGE_SHIFT);
3041         vm_flags_set(vma, VM_SOFTDIRTY);
3042         validate_mm(mm);
3043         return 0;
3044
3045 mas_store_fail:
3046         vm_area_free(vma);
3047 unacct_fail:
3048         vm_unacct_memory(len >> PAGE_SHIFT);
3049         return -ENOMEM;
3050 }
3051
3052 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3053 {
3054         struct mm_struct *mm = current->mm;
3055         struct vm_area_struct *vma = NULL;
3056         unsigned long len;
3057         int ret;
3058         bool populate;
3059         LIST_HEAD(uf);
3060         VMA_ITERATOR(vmi, mm, addr);
3061
3062         len = PAGE_ALIGN(request);
3063         if (len < request)
3064                 return -ENOMEM;
3065         if (!len)
3066                 return 0;
3067
3068         if (mmap_write_lock_killable(mm))
3069                 return -EINTR;
3070
3071         /* Until we need other flags, refuse anything except VM_EXEC. */
3072         if ((flags & (~VM_EXEC)) != 0)
3073                 return -EINVAL;
3074
3075         ret = check_brk_limits(addr, len);
3076         if (ret)
3077                 goto limits_failed;
3078
3079         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3080         if (ret)
3081                 goto munmap_failed;
3082
3083         vma = vma_prev(&vmi);
3084         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3085         populate = ((mm->def_flags & VM_LOCKED) != 0);
3086         mmap_write_unlock(mm);
3087         userfaultfd_unmap_complete(mm, &uf);
3088         if (populate && !ret)
3089                 mm_populate(addr, len);
3090         return ret;
3091
3092 munmap_failed:
3093 limits_failed:
3094         mmap_write_unlock(mm);
3095         return ret;
3096 }
3097 EXPORT_SYMBOL(vm_brk_flags);
3098
3099 int vm_brk(unsigned long addr, unsigned long len)
3100 {
3101         return vm_brk_flags(addr, len, 0);
3102 }
3103 EXPORT_SYMBOL(vm_brk);
3104
3105 /* Release all mmaps. */
3106 void exit_mmap(struct mm_struct *mm)
3107 {
3108         struct mmu_gather tlb;
3109         struct vm_area_struct *vma;
3110         unsigned long nr_accounted = 0;
3111         MA_STATE(mas, &mm->mm_mt, 0, 0);
3112         int count = 0;
3113
3114         /* mm's last user has gone, and its about to be pulled down */
3115         mmu_notifier_release(mm);
3116
3117         mmap_read_lock(mm);
3118         arch_exit_mmap(mm);
3119
3120         vma = mas_find(&mas, ULONG_MAX);
3121         if (!vma) {
3122                 /* Can happen if dup_mmap() received an OOM */
3123                 mmap_read_unlock(mm);
3124                 return;
3125         }
3126
3127         lru_add_drain();
3128         flush_cache_mm(mm);
3129         tlb_gather_mmu_fullmm(&tlb, mm);
3130         /* update_hiwater_rss(mm) here? but nobody should be looking */
3131         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3132         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3133         mmap_read_unlock(mm);
3134
3135         /*
3136          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3137          * because the memory has been already freed.
3138          */
3139         set_bit(MMF_OOM_SKIP, &mm->flags);
3140         mmap_write_lock(mm);
3141         mt_clear_in_rcu(&mm->mm_mt);
3142         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3143                       USER_PGTABLES_CEILING, true);
3144         tlb_finish_mmu(&tlb);
3145
3146         /*
3147          * Walk the list again, actually closing and freeing it, with preemption
3148          * enabled, without holding any MM locks besides the unreachable
3149          * mmap_write_lock.
3150          */
3151         do {
3152                 if (vma->vm_flags & VM_ACCOUNT)
3153                         nr_accounted += vma_pages(vma);
3154                 remove_vma(vma, true);
3155                 count++;
3156                 cond_resched();
3157         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3158
3159         BUG_ON(count != mm->map_count);
3160
3161         trace_exit_mmap(mm);
3162         __mt_destroy(&mm->mm_mt);
3163         mmap_write_unlock(mm);
3164         vm_unacct_memory(nr_accounted);
3165 }
3166
3167 /* Insert vm structure into process list sorted by address
3168  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3169  * then i_mmap_rwsem is taken here.
3170  */
3171 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3172 {
3173         unsigned long charged = vma_pages(vma);
3174
3175
3176         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3177                 return -ENOMEM;
3178
3179         if ((vma->vm_flags & VM_ACCOUNT) &&
3180              security_vm_enough_memory_mm(mm, charged))
3181                 return -ENOMEM;
3182
3183         /*
3184          * The vm_pgoff of a purely anonymous vma should be irrelevant
3185          * until its first write fault, when page's anon_vma and index
3186          * are set.  But now set the vm_pgoff it will almost certainly
3187          * end up with (unless mremap moves it elsewhere before that
3188          * first wfault), so /proc/pid/maps tells a consistent story.
3189          *
3190          * By setting it to reflect the virtual start address of the
3191          * vma, merges and splits can happen in a seamless way, just
3192          * using the existing file pgoff checks and manipulations.
3193          * Similarly in do_mmap and in do_brk_flags.
3194          */
3195         if (vma_is_anonymous(vma)) {
3196                 BUG_ON(vma->anon_vma);
3197                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3198         }
3199
3200         if (vma_link(mm, vma)) {
3201                 vm_unacct_memory(charged);
3202                 return -ENOMEM;
3203         }
3204
3205         return 0;
3206 }
3207
3208 /*
3209  * Copy the vma structure to a new location in the same mm,
3210  * prior to moving page table entries, to effect an mremap move.
3211  */
3212 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3213         unsigned long addr, unsigned long len, pgoff_t pgoff,
3214         bool *need_rmap_locks)
3215 {
3216         struct vm_area_struct *vma = *vmap;
3217         unsigned long vma_start = vma->vm_start;
3218         struct mm_struct *mm = vma->vm_mm;
3219         struct vm_area_struct *new_vma, *prev;
3220         bool faulted_in_anon_vma = true;
3221         VMA_ITERATOR(vmi, mm, addr);
3222
3223         validate_mm(mm);
3224         /*
3225          * If anonymous vma has not yet been faulted, update new pgoff
3226          * to match new location, to increase its chance of merging.
3227          */
3228         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3229                 pgoff = addr >> PAGE_SHIFT;
3230                 faulted_in_anon_vma = false;
3231         }
3232
3233         new_vma = find_vma_prev(mm, addr, &prev);
3234         if (new_vma && new_vma->vm_start < addr + len)
3235                 return NULL;    /* should never get here */
3236
3237         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3238                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3239                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3240         if (new_vma) {
3241                 /*
3242                  * Source vma may have been merged into new_vma
3243                  */
3244                 if (unlikely(vma_start >= new_vma->vm_start &&
3245                              vma_start < new_vma->vm_end)) {
3246                         /*
3247                          * The only way we can get a vma_merge with
3248                          * self during an mremap is if the vma hasn't
3249                          * been faulted in yet and we were allowed to
3250                          * reset the dst vma->vm_pgoff to the
3251                          * destination address of the mremap to allow
3252                          * the merge to happen. mremap must change the
3253                          * vm_pgoff linearity between src and dst vmas
3254                          * (in turn preventing a vma_merge) to be
3255                          * safe. It is only safe to keep the vm_pgoff
3256                          * linear if there are no pages mapped yet.
3257                          */
3258                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3259                         *vmap = vma = new_vma;
3260                 }
3261                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3262         } else {
3263                 new_vma = vm_area_dup(vma);
3264                 if (!new_vma)
3265                         goto out;
3266                 new_vma->vm_start = addr;
3267                 new_vma->vm_end = addr + len;
3268                 new_vma->vm_pgoff = pgoff;
3269                 if (vma_dup_policy(vma, new_vma))
3270                         goto out_free_vma;
3271                 if (anon_vma_clone(new_vma, vma))
3272                         goto out_free_mempol;
3273                 if (new_vma->vm_file)
3274                         get_file(new_vma->vm_file);
3275                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3276                         new_vma->vm_ops->open(new_vma);
3277                 vma_start_write(new_vma);
3278                 if (vma_link(mm, new_vma))
3279                         goto out_vma_link;
3280                 *need_rmap_locks = false;
3281         }
3282         validate_mm(mm);
3283         return new_vma;
3284
3285 out_vma_link:
3286         if (new_vma->vm_ops && new_vma->vm_ops->close)
3287                 new_vma->vm_ops->close(new_vma);
3288
3289         if (new_vma->vm_file)
3290                 fput(new_vma->vm_file);
3291
3292         unlink_anon_vmas(new_vma);
3293 out_free_mempol:
3294         mpol_put(vma_policy(new_vma));
3295 out_free_vma:
3296         vm_area_free(new_vma);
3297 out:
3298         validate_mm(mm);
3299         return NULL;
3300 }
3301
3302 /*
3303  * Return true if the calling process may expand its vm space by the passed
3304  * number of pages
3305  */
3306 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3307 {
3308         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3309                 return false;
3310
3311         if (is_data_mapping(flags) &&
3312             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3313                 /* Workaround for Valgrind */
3314                 if (rlimit(RLIMIT_DATA) == 0 &&
3315                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3316                         return true;
3317
3318                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3319                              current->comm, current->pid,
3320                              (mm->data_vm + npages) << PAGE_SHIFT,
3321                              rlimit(RLIMIT_DATA),
3322                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3323
3324                 if (!ignore_rlimit_data)
3325                         return false;
3326         }
3327
3328         return true;
3329 }
3330
3331 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3332 {
3333         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3334
3335         if (is_exec_mapping(flags))
3336                 mm->exec_vm += npages;
3337         else if (is_stack_mapping(flags))
3338                 mm->stack_vm += npages;
3339         else if (is_data_mapping(flags))
3340                 mm->data_vm += npages;
3341 }
3342
3343 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3344
3345 /*
3346  * Having a close hook prevents vma merging regardless of flags.
3347  */
3348 static void special_mapping_close(struct vm_area_struct *vma)
3349 {
3350 }
3351
3352 static const char *special_mapping_name(struct vm_area_struct *vma)
3353 {
3354         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3355 }
3356
3357 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3358 {
3359         struct vm_special_mapping *sm = new_vma->vm_private_data;
3360
3361         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3362                 return -EFAULT;
3363
3364         if (sm->mremap)
3365                 return sm->mremap(sm, new_vma);
3366
3367         return 0;
3368 }
3369
3370 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3371 {
3372         /*
3373          * Forbid splitting special mappings - kernel has expectations over
3374          * the number of pages in mapping. Together with VM_DONTEXPAND
3375          * the size of vma should stay the same over the special mapping's
3376          * lifetime.
3377          */
3378         return -EINVAL;
3379 }
3380
3381 static const struct vm_operations_struct special_mapping_vmops = {
3382         .close = special_mapping_close,
3383         .fault = special_mapping_fault,
3384         .mremap = special_mapping_mremap,
3385         .name = special_mapping_name,
3386         /* vDSO code relies that VVAR can't be accessed remotely */
3387         .access = NULL,
3388         .may_split = special_mapping_split,
3389 };
3390
3391 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3392         .close = special_mapping_close,
3393         .fault = special_mapping_fault,
3394 };
3395
3396 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3397 {
3398         struct vm_area_struct *vma = vmf->vma;
3399         pgoff_t pgoff;
3400         struct page **pages;
3401
3402         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3403                 pages = vma->vm_private_data;
3404         } else {
3405                 struct vm_special_mapping *sm = vma->vm_private_data;
3406
3407                 if (sm->fault)
3408                         return sm->fault(sm, vmf->vma, vmf);
3409
3410                 pages = sm->pages;
3411         }
3412
3413         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3414                 pgoff--;
3415
3416         if (*pages) {
3417                 struct page *page = *pages;
3418                 get_page(page);
3419                 vmf->page = page;
3420                 return 0;
3421         }
3422
3423         return VM_FAULT_SIGBUS;
3424 }
3425
3426 static struct vm_area_struct *__install_special_mapping(
3427         struct mm_struct *mm,
3428         unsigned long addr, unsigned long len,
3429         unsigned long vm_flags, void *priv,
3430         const struct vm_operations_struct *ops)
3431 {
3432         int ret;
3433         struct vm_area_struct *vma;
3434
3435         validate_mm(mm);
3436         vma = vm_area_alloc(mm);
3437         if (unlikely(vma == NULL))
3438                 return ERR_PTR(-ENOMEM);
3439
3440         vma->vm_start = addr;
3441         vma->vm_end = addr + len;
3442
3443         vm_flags_init(vma, (vm_flags | mm->def_flags |
3444                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3445         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3446
3447         vma->vm_ops = ops;
3448         vma->vm_private_data = priv;
3449
3450         ret = insert_vm_struct(mm, vma);
3451         if (ret)
3452                 goto out;
3453
3454         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3455
3456         perf_event_mmap(vma);
3457
3458         validate_mm(mm);
3459         return vma;
3460
3461 out:
3462         vm_area_free(vma);
3463         validate_mm(mm);
3464         return ERR_PTR(ret);
3465 }
3466
3467 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3468         const struct vm_special_mapping *sm)
3469 {
3470         return vma->vm_private_data == sm &&
3471                 (vma->vm_ops == &special_mapping_vmops ||
3472                  vma->vm_ops == &legacy_special_mapping_vmops);
3473 }
3474
3475 /*
3476  * Called with mm->mmap_lock held for writing.
3477  * Insert a new vma covering the given region, with the given flags.
3478  * Its pages are supplied by the given array of struct page *.
3479  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3480  * The region past the last page supplied will always produce SIGBUS.
3481  * The array pointer and the pages it points to are assumed to stay alive
3482  * for as long as this mapping might exist.
3483  */
3484 struct vm_area_struct *_install_special_mapping(
3485         struct mm_struct *mm,
3486         unsigned long addr, unsigned long len,
3487         unsigned long vm_flags, const struct vm_special_mapping *spec)
3488 {
3489         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3490                                         &special_mapping_vmops);
3491 }
3492
3493 int install_special_mapping(struct mm_struct *mm,
3494                             unsigned long addr, unsigned long len,
3495                             unsigned long vm_flags, struct page **pages)
3496 {
3497         struct vm_area_struct *vma = __install_special_mapping(
3498                 mm, addr, len, vm_flags, (void *)pages,
3499                 &legacy_special_mapping_vmops);
3500
3501         return PTR_ERR_OR_ZERO(vma);
3502 }
3503
3504 static DEFINE_MUTEX(mm_all_locks_mutex);
3505
3506 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3507 {
3508         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3509                 /*
3510                  * The LSB of head.next can't change from under us
3511                  * because we hold the mm_all_locks_mutex.
3512                  */
3513                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3514                 /*
3515                  * We can safely modify head.next after taking the
3516                  * anon_vma->root->rwsem. If some other vma in this mm shares
3517                  * the same anon_vma we won't take it again.
3518                  *
3519                  * No need of atomic instructions here, head.next
3520                  * can't change from under us thanks to the
3521                  * anon_vma->root->rwsem.
3522                  */
3523                 if (__test_and_set_bit(0, (unsigned long *)
3524                                        &anon_vma->root->rb_root.rb_root.rb_node))
3525                         BUG();
3526         }
3527 }
3528
3529 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3530 {
3531         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3532                 /*
3533                  * AS_MM_ALL_LOCKS can't change from under us because
3534                  * we hold the mm_all_locks_mutex.
3535                  *
3536                  * Operations on ->flags have to be atomic because
3537                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3538                  * mm_all_locks_mutex, there may be other cpus
3539                  * changing other bitflags in parallel to us.
3540                  */
3541                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3542                         BUG();
3543                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3544         }
3545 }
3546
3547 /*
3548  * This operation locks against the VM for all pte/vma/mm related
3549  * operations that could ever happen on a certain mm. This includes
3550  * vmtruncate, try_to_unmap, and all page faults.
3551  *
3552  * The caller must take the mmap_lock in write mode before calling
3553  * mm_take_all_locks(). The caller isn't allowed to release the
3554  * mmap_lock until mm_drop_all_locks() returns.
3555  *
3556  * mmap_lock in write mode is required in order to block all operations
3557  * that could modify pagetables and free pages without need of
3558  * altering the vma layout. It's also needed in write mode to avoid new
3559  * anon_vmas to be associated with existing vmas.
3560  *
3561  * A single task can't take more than one mm_take_all_locks() in a row
3562  * or it would deadlock.
3563  *
3564  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3565  * mapping->flags avoid to take the same lock twice, if more than one
3566  * vma in this mm is backed by the same anon_vma or address_space.
3567  *
3568  * We take locks in following order, accordingly to comment at beginning
3569  * of mm/rmap.c:
3570  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3571  *     hugetlb mapping);
3572  *   - all vmas marked locked
3573  *   - all i_mmap_rwsem locks;
3574  *   - all anon_vma->rwseml
3575  *
3576  * We can take all locks within these types randomly because the VM code
3577  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3578  * mm_all_locks_mutex.
3579  *
3580  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3581  * that may have to take thousand of locks.
3582  *
3583  * mm_take_all_locks() can fail if it's interrupted by signals.
3584  */
3585 int mm_take_all_locks(struct mm_struct *mm)
3586 {
3587         struct vm_area_struct *vma;
3588         struct anon_vma_chain *avc;
3589         MA_STATE(mas, &mm->mm_mt, 0, 0);
3590
3591         mmap_assert_write_locked(mm);
3592
3593         mutex_lock(&mm_all_locks_mutex);
3594
3595         mas_for_each(&mas, vma, ULONG_MAX) {
3596                 if (signal_pending(current))
3597                         goto out_unlock;
3598                 vma_start_write(vma);
3599         }
3600
3601         mas_set(&mas, 0);
3602         mas_for_each(&mas, vma, ULONG_MAX) {
3603                 if (signal_pending(current))
3604                         goto out_unlock;
3605                 if (vma->vm_file && vma->vm_file->f_mapping &&
3606                                 is_vm_hugetlb_page(vma))
3607                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3608         }
3609
3610         mas_set(&mas, 0);
3611         mas_for_each(&mas, vma, ULONG_MAX) {
3612                 if (signal_pending(current))
3613                         goto out_unlock;
3614                 if (vma->vm_file && vma->vm_file->f_mapping &&
3615                                 !is_vm_hugetlb_page(vma))
3616                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3617         }
3618
3619         mas_set(&mas, 0);
3620         mas_for_each(&mas, vma, ULONG_MAX) {
3621                 if (signal_pending(current))
3622                         goto out_unlock;
3623                 if (vma->anon_vma)
3624                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3625                                 vm_lock_anon_vma(mm, avc->anon_vma);
3626         }
3627
3628         return 0;
3629
3630 out_unlock:
3631         mm_drop_all_locks(mm);
3632         return -EINTR;
3633 }
3634
3635 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3636 {
3637         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3638                 /*
3639                  * The LSB of head.next can't change to 0 from under
3640                  * us because we hold the mm_all_locks_mutex.
3641                  *
3642                  * We must however clear the bitflag before unlocking
3643                  * the vma so the users using the anon_vma->rb_root will
3644                  * never see our bitflag.
3645                  *
3646                  * No need of atomic instructions here, head.next
3647                  * can't change from under us until we release the
3648                  * anon_vma->root->rwsem.
3649                  */
3650                 if (!__test_and_clear_bit(0, (unsigned long *)
3651                                           &anon_vma->root->rb_root.rb_root.rb_node))
3652                         BUG();
3653                 anon_vma_unlock_write(anon_vma);
3654         }
3655 }
3656
3657 static void vm_unlock_mapping(struct address_space *mapping)
3658 {
3659         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3660                 /*
3661                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3662                  * because we hold the mm_all_locks_mutex.
3663                  */
3664                 i_mmap_unlock_write(mapping);
3665                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3666                                         &mapping->flags))
3667                         BUG();
3668         }
3669 }
3670
3671 /*
3672  * The mmap_lock cannot be released by the caller until
3673  * mm_drop_all_locks() returns.
3674  */
3675 void mm_drop_all_locks(struct mm_struct *mm)
3676 {
3677         struct vm_area_struct *vma;
3678         struct anon_vma_chain *avc;
3679         MA_STATE(mas, &mm->mm_mt, 0, 0);
3680
3681         mmap_assert_write_locked(mm);
3682         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3683
3684         mas_for_each(&mas, vma, ULONG_MAX) {
3685                 if (vma->anon_vma)
3686                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3687                                 vm_unlock_anon_vma(avc->anon_vma);
3688                 if (vma->vm_file && vma->vm_file->f_mapping)
3689                         vm_unlock_mapping(vma->vm_file->f_mapping);
3690         }
3691         vma_end_write_all(mm);
3692
3693         mutex_unlock(&mm_all_locks_mutex);
3694 }
3695
3696 /*
3697  * initialise the percpu counter for VM
3698  */
3699 void __init mmap_init(void)
3700 {
3701         int ret;
3702
3703         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3704         VM_BUG_ON(ret);
3705 }
3706
3707 /*
3708  * Initialise sysctl_user_reserve_kbytes.
3709  *
3710  * This is intended to prevent a user from starting a single memory hogging
3711  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3712  * mode.
3713  *
3714  * The default value is min(3% of free memory, 128MB)
3715  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3716  */
3717 static int init_user_reserve(void)
3718 {
3719         unsigned long free_kbytes;
3720
3721         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3722
3723         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3724         return 0;
3725 }
3726 subsys_initcall(init_user_reserve);
3727
3728 /*
3729  * Initialise sysctl_admin_reserve_kbytes.
3730  *
3731  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3732  * to log in and kill a memory hogging process.
3733  *
3734  * Systems with more than 256MB will reserve 8MB, enough to recover
3735  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3736  * only reserve 3% of free pages by default.
3737  */
3738 static int init_admin_reserve(void)
3739 {
3740         unsigned long free_kbytes;
3741
3742         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3743
3744         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3745         return 0;
3746 }
3747 subsys_initcall(init_admin_reserve);
3748
3749 /*
3750  * Reinititalise user and admin reserves if memory is added or removed.
3751  *
3752  * The default user reserve max is 128MB, and the default max for the
3753  * admin reserve is 8MB. These are usually, but not always, enough to
3754  * enable recovery from a memory hogging process using login/sshd, a shell,
3755  * and tools like top. It may make sense to increase or even disable the
3756  * reserve depending on the existence of swap or variations in the recovery
3757  * tools. So, the admin may have changed them.
3758  *
3759  * If memory is added and the reserves have been eliminated or increased above
3760  * the default max, then we'll trust the admin.
3761  *
3762  * If memory is removed and there isn't enough free memory, then we
3763  * need to reset the reserves.
3764  *
3765  * Otherwise keep the reserve set by the admin.
3766  */
3767 static int reserve_mem_notifier(struct notifier_block *nb,
3768                              unsigned long action, void *data)
3769 {
3770         unsigned long tmp, free_kbytes;
3771
3772         switch (action) {
3773         case MEM_ONLINE:
3774                 /* Default max is 128MB. Leave alone if modified by operator. */
3775                 tmp = sysctl_user_reserve_kbytes;
3776                 if (0 < tmp && tmp < (1UL << 17))
3777                         init_user_reserve();
3778
3779                 /* Default max is 8MB.  Leave alone if modified by operator. */
3780                 tmp = sysctl_admin_reserve_kbytes;
3781                 if (0 < tmp && tmp < (1UL << 13))
3782                         init_admin_reserve();
3783
3784                 break;
3785         case MEM_OFFLINE:
3786                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3787
3788                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3789                         init_user_reserve();
3790                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3791                                 sysctl_user_reserve_kbytes);
3792                 }
3793
3794                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3795                         init_admin_reserve();
3796                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3797                                 sysctl_admin_reserve_kbytes);
3798                 }
3799                 break;
3800         default:
3801                 break;
3802         }
3803         return NOTIFY_OK;
3804 }
3805
3806 static int __meminit init_reserve_notifier(void)
3807 {
3808         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3809                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3810
3811         return 0;
3812 }
3813 subsys_initcall(init_reserve_notifier);
This page took 0.246672 seconds and 4 git commands to generate.