1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 static unsigned long release_freepages(struct list_head *freelist)
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
85 static void split_map_pages(struct list_head *list)
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
91 list_for_each_entry_safe(page, next, list, lru) {
94 order = page_private(page);
95 nr_pages = 1 << order;
97 post_alloc_hook(page, order, __GFP_MOVABLE);
99 split_page(page, order);
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
107 list_splice(&tmp_list, list);
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
113 const struct movable_operations *mops;
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
119 mops = page_movable_ops(page);
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
132 EXPORT_SYMBOL(__SetPageMovable);
134 void __ClearPageMovable(struct page *page)
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
143 EXPORT_SYMBOL(__ClearPageMovable);
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153 static void defer_compaction(struct zone *zone, int order)
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164 trace_mm_compaction_defer_compaction(zone, order);
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172 if (order < zone->compact_order_failed)
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
181 trace_mm_compaction_deferred(zone, order);
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
191 void compaction_defer_reset(struct zone *zone, int order,
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
201 trace_mm_compaction_defer_reset(zone, order);
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
207 if (order < zone->compact_order_failed)
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
218 if (cc->ignore_skip_hint)
221 return !get_pageblock_skip(page);
224 static void reset_cached_positions(struct zone *zone)
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 * Compound pages of >= pageblock_order should consistently be skipped until
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
237 static bool pageblock_skip_persistent(struct page *page)
239 if (!PageCompound(page))
242 page = compound_head(page);
244 if (compound_order(page) >= pageblock_order)
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
254 struct page *page = pfn_to_online_page(pfn);
255 struct page *block_page;
256 struct page *end_page;
257 unsigned long block_pfn;
261 if (zone != page_zone(page))
263 if (pageblock_skip_persistent(page))
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
270 if (check_source && check_target && !get_pageblock_skip(page))
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
290 /* Ensure the end of the pageblock or zone is online and valid */
291 block_pfn = pageblock_end_pfn(pfn) - 1;
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 } while (page <= end_page);
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
324 static void __reset_isolation_suitable(struct zone *zone)
326 unsigned long migrate_pfn = zone->zone_start_pfn;
327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
333 if (!zone->compact_blockskip_flush)
336 zone->compact_blockskip_flush = false;
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
376 void reset_isolation_suitable(pg_data_t *pgdat)
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
399 /* Do not update if skip hint is being ignored */
400 if (cc->ignore_skip_hint)
403 skip = get_pageblock_skip(page);
404 if (!skip && !cc->no_set_skip_hint)
405 set_pageblock_skip(page);
410 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
412 struct zone *zone = cc->zone;
414 pfn = pageblock_end_pfn(pfn);
416 /* Set for isolation rather than compaction */
417 if (cc->no_set_skip_hint)
420 if (pfn > zone->compact_cached_migrate_pfn[0])
421 zone->compact_cached_migrate_pfn[0] = pfn;
422 if (cc->mode != MIGRATE_ASYNC &&
423 pfn > zone->compact_cached_migrate_pfn[1])
424 zone->compact_cached_migrate_pfn[1] = pfn;
428 * If no pages were isolated then mark this pageblock to be skipped in the
429 * future. The information is later cleared by __reset_isolation_suitable().
431 static void update_pageblock_skip(struct compact_control *cc,
432 struct page *page, unsigned long pfn)
434 struct zone *zone = cc->zone;
436 if (cc->no_set_skip_hint)
439 set_pageblock_skip(page);
441 /* Update where async and sync compaction should restart */
442 if (pfn < zone->compact_cached_free_pfn)
443 zone->compact_cached_free_pfn = pfn;
446 static inline bool isolation_suitable(struct compact_control *cc,
452 static inline bool pageblock_skip_persistent(struct page *page)
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 struct page *page, unsigned long pfn)
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
470 #endif /* CONFIG_COMPACTION */
473 * Compaction requires the taking of some coarse locks that are potentially
474 * very heavily contended. For async compaction, trylock and record if the
475 * lock is contended. The lock will still be acquired but compaction will
476 * abort when the current block is finished regardless of success rate.
477 * Sync compaction acquires the lock.
479 * Always returns true which makes it easier to track lock state in callers.
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482 struct compact_control *cc)
485 /* Track if the lock is contended in async mode */
486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 if (spin_trylock_irqsave(lock, *flags))
490 cc->contended = true;
493 spin_lock_irqsave(lock, *flags);
498 * Compaction requires the taking of some coarse locks that are potentially
499 * very heavily contended. The lock should be periodically unlocked to avoid
500 * having disabled IRQs for a long time, even when there is nobody waiting on
501 * the lock. It might also be that allowing the IRQs will result in
502 * need_resched() becoming true. If scheduling is needed, compaction schedules.
503 * Either compaction type will also abort if a fatal signal is pending.
504 * In either case if the lock was locked, it is dropped and not regained.
506 * Returns true if compaction should abort due to fatal signal pending.
507 * Returns false when compaction can continue.
509 static bool compact_unlock_should_abort(spinlock_t *lock,
510 unsigned long flags, bool *locked, struct compact_control *cc)
513 spin_unlock_irqrestore(lock, flags);
517 if (fatal_signal_pending(current)) {
518 cc->contended = true;
528 * Isolate free pages onto a private freelist. If @strict is true, will abort
529 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
530 * (even though it may still end up isolating some pages).
532 static unsigned long isolate_freepages_block(struct compact_control *cc,
533 unsigned long *start_pfn,
534 unsigned long end_pfn,
535 struct list_head *freelist,
539 int nr_scanned = 0, total_isolated = 0;
541 unsigned long flags = 0;
543 unsigned long blockpfn = *start_pfn;
546 /* Strict mode is for isolation, speed is secondary */
550 cursor = pfn_to_page(blockpfn);
552 /* Isolate free pages. */
553 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
555 struct page *page = cursor;
558 * Periodically drop the lock (if held) regardless of its
559 * contention, to give chance to IRQs. Abort if fatal signal
562 if (!(blockpfn % COMPACT_CLUSTER_MAX)
563 && compact_unlock_should_abort(&cc->zone->lock, flags,
570 * For compound pages such as THP and hugetlbfs, we can save
571 * potentially a lot of iterations if we skip them at once.
572 * The check is racy, but we can consider only valid values
573 * and the only danger is skipping too much.
575 if (PageCompound(page)) {
576 const unsigned int order = compound_order(page);
578 if (likely(order <= MAX_ORDER)) {
579 blockpfn += (1UL << order) - 1;
580 cursor += (1UL << order) - 1;
581 nr_scanned += (1UL << order) - 1;
586 if (!PageBuddy(page))
589 /* If we already hold the lock, we can skip some rechecking. */
591 locked = compact_lock_irqsave(&cc->zone->lock,
594 /* Recheck this is a buddy page under lock */
595 if (!PageBuddy(page))
599 /* Found a free page, will break it into order-0 pages */
600 order = buddy_order(page);
601 isolated = __isolate_free_page(page, order);
604 set_page_private(page, order);
606 nr_scanned += isolated - 1;
607 total_isolated += isolated;
608 cc->nr_freepages += isolated;
609 list_add_tail(&page->lru, freelist);
611 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
612 blockpfn += isolated;
615 /* Advance to the end of split page */
616 blockpfn += isolated - 1;
617 cursor += isolated - 1;
629 spin_unlock_irqrestore(&cc->zone->lock, flags);
632 * There is a tiny chance that we have read bogus compound_order(),
633 * so be careful to not go outside of the pageblock.
635 if (unlikely(blockpfn > end_pfn))
638 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
639 nr_scanned, total_isolated);
641 /* Record how far we have got within the block */
642 *start_pfn = blockpfn;
645 * If strict isolation is requested by CMA then check that all the
646 * pages requested were isolated. If there were any failures, 0 is
647 * returned and CMA will fail.
649 if (strict && blockpfn < end_pfn)
652 cc->total_free_scanned += nr_scanned;
654 count_compact_events(COMPACTISOLATED, total_isolated);
655 return total_isolated;
659 * isolate_freepages_range() - isolate free pages.
660 * @cc: Compaction control structure.
661 * @start_pfn: The first PFN to start isolating.
662 * @end_pfn: The one-past-last PFN.
664 * Non-free pages, invalid PFNs, or zone boundaries within the
665 * [start_pfn, end_pfn) range are considered errors, cause function to
666 * undo its actions and return zero.
668 * Otherwise, function returns one-past-the-last PFN of isolated page
669 * (which may be greater then end_pfn if end fell in a middle of
673 isolate_freepages_range(struct compact_control *cc,
674 unsigned long start_pfn, unsigned long end_pfn)
676 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
680 block_start_pfn = pageblock_start_pfn(pfn);
681 if (block_start_pfn < cc->zone->zone_start_pfn)
682 block_start_pfn = cc->zone->zone_start_pfn;
683 block_end_pfn = pageblock_end_pfn(pfn);
685 for (; pfn < end_pfn; pfn += isolated,
686 block_start_pfn = block_end_pfn,
687 block_end_pfn += pageblock_nr_pages) {
688 /* Protect pfn from changing by isolate_freepages_block */
689 unsigned long isolate_start_pfn = pfn;
691 block_end_pfn = min(block_end_pfn, end_pfn);
694 * pfn could pass the block_end_pfn if isolated freepage
695 * is more than pageblock order. In this case, we adjust
696 * scanning range to right one.
698 if (pfn >= block_end_pfn) {
699 block_start_pfn = pageblock_start_pfn(pfn);
700 block_end_pfn = pageblock_end_pfn(pfn);
701 block_end_pfn = min(block_end_pfn, end_pfn);
704 if (!pageblock_pfn_to_page(block_start_pfn,
705 block_end_pfn, cc->zone))
708 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
709 block_end_pfn, &freelist, 0, true);
712 * In strict mode, isolate_freepages_block() returns 0 if
713 * there are any holes in the block (ie. invalid PFNs or
720 * If we managed to isolate pages, it is always (1 << n) *
721 * pageblock_nr_pages for some non-negative n. (Max order
722 * page may span two pageblocks).
726 /* __isolate_free_page() does not map the pages */
727 split_map_pages(&freelist);
730 /* Loop terminated early, cleanup. */
731 release_freepages(&freelist);
735 /* We don't use freelists for anything. */
739 /* Similar to reclaim, but different enough that they don't share logic */
740 static bool too_many_isolated(struct compact_control *cc)
742 pg_data_t *pgdat = cc->zone->zone_pgdat;
745 unsigned long active, inactive, isolated;
747 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
748 node_page_state(pgdat, NR_INACTIVE_ANON);
749 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
750 node_page_state(pgdat, NR_ACTIVE_ANON);
751 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
752 node_page_state(pgdat, NR_ISOLATED_ANON);
755 * Allow GFP_NOFS to isolate past the limit set for regular
756 * compaction runs. This prevents an ABBA deadlock when other
757 * compactors have already isolated to the limit, but are
758 * blocked on filesystem locks held by the GFP_NOFS thread.
760 if (cc->gfp_mask & __GFP_FS) {
765 too_many = isolated > (inactive + active) / 2;
767 wake_throttle_isolated(pgdat);
773 * isolate_migratepages_block() - isolate all migrate-able pages within
775 * @cc: Compaction control structure.
776 * @low_pfn: The first PFN to isolate
777 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
778 * @mode: Isolation mode to be used.
780 * Isolate all pages that can be migrated from the range specified by
781 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
782 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
783 * -ENOMEM in case we could not allocate a page, or 0.
784 * cc->migrate_pfn will contain the next pfn to scan.
786 * The pages are isolated on cc->migratepages list (not required to be empty),
787 * and cc->nr_migratepages is updated accordingly.
790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
791 unsigned long end_pfn, isolate_mode_t mode)
793 pg_data_t *pgdat = cc->zone->zone_pgdat;
794 unsigned long nr_scanned = 0, nr_isolated = 0;
795 struct lruvec *lruvec;
796 unsigned long flags = 0;
797 struct lruvec *locked = NULL;
798 struct page *page = NULL, *valid_page = NULL;
799 struct address_space *mapping;
800 unsigned long start_pfn = low_pfn;
801 bool skip_on_failure = false;
802 unsigned long next_skip_pfn = 0;
803 bool skip_updated = false;
806 cc->migrate_pfn = low_pfn;
809 * Ensure that there are not too many pages isolated from the LRU
810 * list by either parallel reclaimers or compaction. If there are,
811 * delay for some time until fewer pages are isolated
813 while (unlikely(too_many_isolated(cc))) {
814 /* stop isolation if there are still pages not migrated */
815 if (cc->nr_migratepages)
818 /* async migration should just abort */
819 if (cc->mode == MIGRATE_ASYNC)
822 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
824 if (fatal_signal_pending(current))
830 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831 skip_on_failure = true;
832 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
835 /* Time to isolate some pages for migration */
836 for (; low_pfn < end_pfn; low_pfn++) {
838 if (skip_on_failure && low_pfn >= next_skip_pfn) {
840 * We have isolated all migration candidates in the
841 * previous order-aligned block, and did not skip it due
842 * to failure. We should migrate the pages now and
843 * hopefully succeed compaction.
849 * We failed to isolate in the previous order-aligned
850 * block. Set the new boundary to the end of the
851 * current block. Note we can't simply increase
852 * next_skip_pfn by 1 << order, as low_pfn might have
853 * been incremented by a higher number due to skipping
854 * a compound or a high-order buddy page in the
855 * previous loop iteration.
857 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 * Periodically drop the lock (if held) regardless of its
862 * contention, to give chance to IRQs. Abort completely if
863 * a fatal signal is pending.
865 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
867 unlock_page_lruvec_irqrestore(locked, flags);
871 if (fatal_signal_pending(current)) {
872 cc->contended = true;
883 page = pfn_to_page(low_pfn);
886 * Check if the pageblock has already been marked skipped.
887 * Only the aligned PFN is checked as the caller isolates
888 * COMPACT_CLUSTER_MAX at a time so the second call must
889 * not falsely conclude that the block should be skipped.
891 if (!valid_page && pageblock_aligned(low_pfn)) {
892 if (!isolation_suitable(cc, page)) {
900 if (PageHuge(page) && cc->alloc_contig) {
902 unlock_page_lruvec_irqrestore(locked, flags);
906 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
909 * Fail isolation in case isolate_or_dissolve_huge_page()
910 * reports an error. In case of -ENOMEM, abort right away.
913 /* Do not report -EBUSY down the chain */
916 low_pfn += compound_nr(page) - 1;
917 nr_scanned += compound_nr(page) - 1;
921 if (PageHuge(page)) {
923 * Hugepage was successfully isolated and placed
924 * on the cc->migratepages list.
926 low_pfn += compound_nr(page) - 1;
927 goto isolate_success_no_list;
931 * Ok, the hugepage was dissolved. Now these pages are
932 * Buddy and cannot be re-allocated because they are
933 * isolated. Fall-through as the check below handles
939 * Skip if free. We read page order here without zone lock
940 * which is generally unsafe, but the race window is small and
941 * the worst thing that can happen is that we skip some
942 * potential isolation targets.
944 if (PageBuddy(page)) {
945 unsigned long freepage_order = buddy_order_unsafe(page);
948 * Without lock, we cannot be sure that what we got is
949 * a valid page order. Consider only values in the
950 * valid order range to prevent low_pfn overflow.
952 if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
953 low_pfn += (1UL << freepage_order) - 1;
954 nr_scanned += (1UL << freepage_order) - 1;
960 * Regardless of being on LRU, compound pages such as THP and
961 * hugetlbfs are not to be compacted unless we are attempting
962 * an allocation much larger than the huge page size (eg CMA).
963 * We can potentially save a lot of iterations if we skip them
964 * at once. The check is racy, but we can consider only valid
965 * values and the only danger is skipping too much.
967 if (PageCompound(page) && !cc->alloc_contig) {
968 const unsigned int order = compound_order(page);
970 if (likely(order <= MAX_ORDER)) {
971 low_pfn += (1UL << order) - 1;
972 nr_scanned += (1UL << order) - 1;
978 * Check may be lockless but that's ok as we recheck later.
979 * It's possible to migrate LRU and non-lru movable pages.
980 * Skip any other type of page
982 if (!PageLRU(page)) {
984 * __PageMovable can return false positive so we need
985 * to verify it under page_lock.
987 if (unlikely(__PageMovable(page)) &&
988 !PageIsolated(page)) {
990 unlock_page_lruvec_irqrestore(locked, flags);
994 if (isolate_movable_page(page, mode))
995 goto isolate_success;
1002 * Be careful not to clear PageLRU until after we're
1003 * sure the page is not being freed elsewhere -- the
1004 * page release code relies on it.
1006 if (unlikely(!get_page_unless_zero(page)))
1010 * Migration will fail if an anonymous page is pinned in memory,
1011 * so avoid taking lru_lock and isolating it unnecessarily in an
1012 * admittedly racy check.
1014 mapping = page_mapping(page);
1015 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1016 goto isolate_fail_put;
1019 * Only allow to migrate anonymous pages in GFP_NOFS context
1020 * because those do not depend on fs locks.
1022 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1023 goto isolate_fail_put;
1025 /* Only take pages on LRU: a check now makes later tests safe */
1027 goto isolate_fail_put;
1029 /* Compaction might skip unevictable pages but CMA takes them */
1030 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031 goto isolate_fail_put;
1034 * To minimise LRU disruption, the caller can indicate with
1035 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036 * it will be able to migrate without blocking - clean pages
1037 * for the most part. PageWriteback would require blocking.
1039 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1040 goto isolate_fail_put;
1042 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1046 * Only pages without mappings or that have a
1047 * ->migrate_folio callback are possible to migrate
1048 * without blocking. However, we can be racing with
1049 * truncation so it's necessary to lock the page
1050 * to stabilise the mapping as truncation holds
1051 * the page lock until after the page is removed
1052 * from the page cache.
1054 if (!trylock_page(page))
1055 goto isolate_fail_put;
1057 mapping = page_mapping(page);
1058 migrate_dirty = !mapping ||
1059 mapping->a_ops->migrate_folio;
1062 goto isolate_fail_put;
1065 /* Try isolate the page */
1066 if (!TestClearPageLRU(page))
1067 goto isolate_fail_put;
1069 lruvec = folio_lruvec(page_folio(page));
1071 /* If we already hold the lock, we can skip some rechecking */
1072 if (lruvec != locked) {
1074 unlock_page_lruvec_irqrestore(locked, flags);
1076 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1079 lruvec_memcg_debug(lruvec, page_folio(page));
1082 * Try get exclusive access under lock. If marked for
1083 * skip, the scan is aborted unless the current context
1084 * is a rescan to reach the end of the pageblock.
1086 if (!skip_updated && valid_page) {
1087 skip_updated = true;
1088 if (test_and_set_skip(cc, valid_page) &&
1089 !cc->finish_pageblock) {
1095 * Page become compound since the non-locked check,
1096 * and it's on LRU. It can only be a THP so the order
1097 * is safe to read and it's 0 for tail pages.
1099 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1100 low_pfn += compound_nr(page) - 1;
1101 nr_scanned += compound_nr(page) - 1;
1103 goto isolate_fail_put;
1107 /* The whole page is taken off the LRU; skip the tail pages. */
1108 if (PageCompound(page))
1109 low_pfn += compound_nr(page) - 1;
1111 /* Successfully isolated */
1112 del_page_from_lru_list(page, lruvec);
1113 mod_node_page_state(page_pgdat(page),
1114 NR_ISOLATED_ANON + page_is_file_lru(page),
1115 thp_nr_pages(page));
1118 list_add(&page->lru, &cc->migratepages);
1119 isolate_success_no_list:
1120 cc->nr_migratepages += compound_nr(page);
1121 nr_isolated += compound_nr(page);
1122 nr_scanned += compound_nr(page) - 1;
1125 * Avoid isolating too much unless this block is being
1126 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1127 * or a lock is contended. For contention, isolate quickly to
1128 * potentially remove one source of contention.
1130 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1131 !cc->finish_pageblock && !cc->contended) {
1139 /* Avoid potential deadlock in freeing page under lru_lock */
1141 unlock_page_lruvec_irqrestore(locked, flags);
1147 if (!skip_on_failure && ret != -ENOMEM)
1151 * We have isolated some pages, but then failed. Release them
1152 * instead of migrating, as we cannot form the cc->order buddy
1157 unlock_page_lruvec_irqrestore(locked, flags);
1160 putback_movable_pages(&cc->migratepages);
1161 cc->nr_migratepages = 0;
1165 if (low_pfn < next_skip_pfn) {
1166 low_pfn = next_skip_pfn - 1;
1168 * The check near the loop beginning would have updated
1169 * next_skip_pfn too, but this is a bit simpler.
1171 next_skip_pfn += 1UL << cc->order;
1179 * The PageBuddy() check could have potentially brought us outside
1180 * the range to be scanned.
1182 if (unlikely(low_pfn > end_pfn))
1189 unlock_page_lruvec_irqrestore(locked, flags);
1196 * Update the cached scanner pfn once the pageblock has been scanned.
1197 * Pages will either be migrated in which case there is no point
1198 * scanning in the near future or migration failed in which case the
1199 * failure reason may persist. The block is marked for skipping if
1200 * there were no pages isolated in the block or if the block is
1201 * rescanned twice in a row.
1203 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1204 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1205 set_pageblock_skip(valid_page);
1206 update_cached_migrate(cc, low_pfn);
1209 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1210 nr_scanned, nr_isolated);
1213 cc->total_migrate_scanned += nr_scanned;
1215 count_compact_events(COMPACTISOLATED, nr_isolated);
1217 cc->migrate_pfn = low_pfn;
1223 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1224 * @cc: Compaction control structure.
1225 * @start_pfn: The first PFN to start isolating.
1226 * @end_pfn: The one-past-last PFN.
1228 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1229 * in case we could not allocate a page, or 0.
1232 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1233 unsigned long end_pfn)
1235 unsigned long pfn, block_start_pfn, block_end_pfn;
1238 /* Scan block by block. First and last block may be incomplete */
1240 block_start_pfn = pageblock_start_pfn(pfn);
1241 if (block_start_pfn < cc->zone->zone_start_pfn)
1242 block_start_pfn = cc->zone->zone_start_pfn;
1243 block_end_pfn = pageblock_end_pfn(pfn);
1245 for (; pfn < end_pfn; pfn = block_end_pfn,
1246 block_start_pfn = block_end_pfn,
1247 block_end_pfn += pageblock_nr_pages) {
1249 block_end_pfn = min(block_end_pfn, end_pfn);
1251 if (!pageblock_pfn_to_page(block_start_pfn,
1252 block_end_pfn, cc->zone))
1255 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1256 ISOLATE_UNEVICTABLE);
1261 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1268 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1269 #ifdef CONFIG_COMPACTION
1271 static bool suitable_migration_source(struct compact_control *cc,
1276 if (pageblock_skip_persistent(page))
1279 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1282 block_mt = get_pageblock_migratetype(page);
1284 if (cc->migratetype == MIGRATE_MOVABLE)
1285 return is_migrate_movable(block_mt);
1287 return block_mt == cc->migratetype;
1290 /* Returns true if the page is within a block suitable for migration to */
1291 static bool suitable_migration_target(struct compact_control *cc,
1294 /* If the page is a large free page, then disallow migration */
1295 if (PageBuddy(page)) {
1297 * We are checking page_order without zone->lock taken. But
1298 * the only small danger is that we skip a potentially suitable
1299 * pageblock, so it's not worth to check order for valid range.
1301 if (buddy_order_unsafe(page) >= pageblock_order)
1305 if (cc->ignore_block_suitable)
1308 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1309 if (is_migrate_movable(get_pageblock_migratetype(page)))
1312 /* Otherwise skip the block */
1316 static inline unsigned int
1317 freelist_scan_limit(struct compact_control *cc)
1319 unsigned short shift = BITS_PER_LONG - 1;
1321 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1325 * Test whether the free scanner has reached the same or lower pageblock than
1326 * the migration scanner, and compaction should thus terminate.
1328 static inline bool compact_scanners_met(struct compact_control *cc)
1330 return (cc->free_pfn >> pageblock_order)
1331 <= (cc->migrate_pfn >> pageblock_order);
1335 * Used when scanning for a suitable migration target which scans freelists
1336 * in reverse. Reorders the list such as the unscanned pages are scanned
1337 * first on the next iteration of the free scanner
1340 move_freelist_head(struct list_head *freelist, struct page *freepage)
1344 if (!list_is_last(freelist, &freepage->lru)) {
1345 list_cut_before(&sublist, freelist, &freepage->lru);
1346 list_splice_tail(&sublist, freelist);
1351 * Similar to move_freelist_head except used by the migration scanner
1352 * when scanning forward. It's possible for these list operations to
1353 * move against each other if they search the free list exactly in
1357 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1361 if (!list_is_first(freelist, &freepage->lru)) {
1362 list_cut_position(&sublist, freelist, &freepage->lru);
1363 list_splice_tail(&sublist, freelist);
1368 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1370 unsigned long start_pfn, end_pfn;
1373 /* Do not search around if there are enough pages already */
1374 if (cc->nr_freepages >= cc->nr_migratepages)
1377 /* Minimise scanning during async compaction */
1378 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1381 /* Pageblock boundaries */
1382 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1383 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1385 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1389 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1391 /* Skip this pageblock in the future as it's full or nearly full */
1392 if (start_pfn == end_pfn)
1393 set_pageblock_skip(page);
1398 /* Search orders in round-robin fashion */
1399 static int next_search_order(struct compact_control *cc, int order)
1403 order = cc->order - 1;
1405 /* Search wrapped around? */
1406 if (order == cc->search_order) {
1408 if (cc->search_order < 0)
1409 cc->search_order = cc->order - 1;
1416 static void fast_isolate_freepages(struct compact_control *cc)
1418 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1419 unsigned int nr_scanned = 0, total_isolated = 0;
1420 unsigned long low_pfn, min_pfn, highest = 0;
1421 unsigned long nr_isolated = 0;
1422 unsigned long distance;
1423 struct page *page = NULL;
1424 bool scan_start = false;
1427 /* Full compaction passes in a negative order */
1432 * If starting the scan, use a deeper search and use the highest
1433 * PFN found if a suitable one is not found.
1435 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1436 limit = pageblock_nr_pages >> 1;
1441 * Preferred point is in the top quarter of the scan space but take
1442 * a pfn from the top half if the search is problematic.
1444 distance = (cc->free_pfn - cc->migrate_pfn);
1445 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1448 if (WARN_ON_ONCE(min_pfn > low_pfn))
1452 * Search starts from the last successful isolation order or the next
1453 * order to search after a previous failure
1455 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1457 for (order = cc->search_order;
1458 !page && order >= 0;
1459 order = next_search_order(cc, order)) {
1460 struct free_area *area = &cc->zone->free_area[order];
1461 struct list_head *freelist;
1462 struct page *freepage;
1463 unsigned long flags;
1464 unsigned int order_scanned = 0;
1465 unsigned long high_pfn = 0;
1470 spin_lock_irqsave(&cc->zone->lock, flags);
1471 freelist = &area->free_list[MIGRATE_MOVABLE];
1472 list_for_each_entry_reverse(freepage, freelist, lru) {
1477 pfn = page_to_pfn(freepage);
1480 highest = max(pageblock_start_pfn(pfn),
1481 cc->zone->zone_start_pfn);
1483 if (pfn >= low_pfn) {
1484 cc->fast_search_fail = 0;
1485 cc->search_order = order;
1490 if (pfn >= min_pfn && pfn > high_pfn) {
1493 /* Shorten the scan if a candidate is found */
1497 if (order_scanned >= limit)
1501 /* Use a minimum pfn if a preferred one was not found */
1502 if (!page && high_pfn) {
1503 page = pfn_to_page(high_pfn);
1505 /* Update freepage for the list reorder below */
1509 /* Reorder to so a future search skips recent pages */
1510 move_freelist_head(freelist, freepage);
1512 /* Isolate the page if available */
1514 if (__isolate_free_page(page, order)) {
1515 set_page_private(page, order);
1516 nr_isolated = 1 << order;
1517 nr_scanned += nr_isolated - 1;
1518 total_isolated += nr_isolated;
1519 cc->nr_freepages += nr_isolated;
1520 list_add_tail(&page->lru, &cc->freepages);
1521 count_compact_events(COMPACTISOLATED, nr_isolated);
1523 /* If isolation fails, abort the search */
1524 order = cc->search_order + 1;
1529 spin_unlock_irqrestore(&cc->zone->lock, flags);
1531 /* Skip fast search if enough freepages isolated */
1532 if (cc->nr_freepages >= cc->nr_migratepages)
1536 * Smaller scan on next order so the total scan is related
1537 * to freelist_scan_limit.
1539 if (order_scanned >= limit)
1540 limit = max(1U, limit >> 1);
1543 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1544 nr_scanned, total_isolated);
1547 cc->fast_search_fail++;
1550 * Use the highest PFN found above min. If one was
1551 * not found, be pessimistic for direct compaction
1552 * and use the min mark.
1554 if (highest >= min_pfn) {
1555 page = pfn_to_page(highest);
1556 cc->free_pfn = highest;
1558 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1559 page = pageblock_pfn_to_page(min_pfn,
1560 min(pageblock_end_pfn(min_pfn),
1561 zone_end_pfn(cc->zone)),
1563 cc->free_pfn = min_pfn;
1569 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1570 highest -= pageblock_nr_pages;
1571 cc->zone->compact_cached_free_pfn = highest;
1574 cc->total_free_scanned += nr_scanned;
1578 low_pfn = page_to_pfn(page);
1579 fast_isolate_around(cc, low_pfn);
1583 * Based on information in the current compact_control, find blocks
1584 * suitable for isolating free pages from and then isolate them.
1586 static void isolate_freepages(struct compact_control *cc)
1588 struct zone *zone = cc->zone;
1590 unsigned long block_start_pfn; /* start of current pageblock */
1591 unsigned long isolate_start_pfn; /* exact pfn we start at */
1592 unsigned long block_end_pfn; /* end of current pageblock */
1593 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1594 struct list_head *freelist = &cc->freepages;
1595 unsigned int stride;
1597 /* Try a small search of the free lists for a candidate */
1598 fast_isolate_freepages(cc);
1599 if (cc->nr_freepages)
1603 * Initialise the free scanner. The starting point is where we last
1604 * successfully isolated from, zone-cached value, or the end of the
1605 * zone when isolating for the first time. For looping we also need
1606 * this pfn aligned down to the pageblock boundary, because we do
1607 * block_start_pfn -= pageblock_nr_pages in the for loop.
1608 * For ending point, take care when isolating in last pageblock of a
1609 * zone which ends in the middle of a pageblock.
1610 * The low boundary is the end of the pageblock the migration scanner
1613 isolate_start_pfn = cc->free_pfn;
1614 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1615 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1616 zone_end_pfn(zone));
1617 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1618 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1621 * Isolate free pages until enough are available to migrate the
1622 * pages on cc->migratepages. We stop searching if the migrate
1623 * and free page scanners meet or enough free pages are isolated.
1625 for (; block_start_pfn >= low_pfn;
1626 block_end_pfn = block_start_pfn,
1627 block_start_pfn -= pageblock_nr_pages,
1628 isolate_start_pfn = block_start_pfn) {
1629 unsigned long nr_isolated;
1632 * This can iterate a massively long zone without finding any
1633 * suitable migration targets, so periodically check resched.
1635 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1638 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1643 /* Check the block is suitable for migration */
1644 if (!suitable_migration_target(cc, page))
1647 /* If isolation recently failed, do not retry */
1648 if (!isolation_suitable(cc, page))
1651 /* Found a block suitable for isolating free pages from. */
1652 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1653 block_end_pfn, freelist, stride, false);
1655 /* Update the skip hint if the full pageblock was scanned */
1656 if (isolate_start_pfn == block_end_pfn)
1657 update_pageblock_skip(cc, page, block_start_pfn);
1659 /* Are enough freepages isolated? */
1660 if (cc->nr_freepages >= cc->nr_migratepages) {
1661 if (isolate_start_pfn >= block_end_pfn) {
1663 * Restart at previous pageblock if more
1664 * freepages can be isolated next time.
1667 block_start_pfn - pageblock_nr_pages;
1670 } else if (isolate_start_pfn < block_end_pfn) {
1672 * If isolation failed early, do not continue
1678 /* Adjust stride depending on isolation */
1683 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1687 * Record where the free scanner will restart next time. Either we
1688 * broke from the loop and set isolate_start_pfn based on the last
1689 * call to isolate_freepages_block(), or we met the migration scanner
1690 * and the loop terminated due to isolate_start_pfn < low_pfn
1692 cc->free_pfn = isolate_start_pfn;
1695 /* __isolate_free_page() does not map the pages */
1696 split_map_pages(freelist);
1700 * This is a migrate-callback that "allocates" freepages by taking pages
1701 * from the isolated freelists in the block we are migrating to.
1703 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1705 struct compact_control *cc = (struct compact_control *)data;
1708 if (list_empty(&cc->freepages)) {
1709 isolate_freepages(cc);
1711 if (list_empty(&cc->freepages))
1715 dst = list_entry(cc->freepages.next, struct folio, lru);
1716 list_del(&dst->lru);
1723 * This is a migrate-callback that "frees" freepages back to the isolated
1724 * freelist. All pages on the freelist are from the same zone, so there is no
1725 * special handling needed for NUMA.
1727 static void compaction_free(struct folio *dst, unsigned long data)
1729 struct compact_control *cc = (struct compact_control *)data;
1731 list_add(&dst->lru, &cc->freepages);
1735 /* possible outcome of isolate_migratepages */
1737 ISOLATE_ABORT, /* Abort compaction now */
1738 ISOLATE_NONE, /* No pages isolated, continue scanning */
1739 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1740 } isolate_migrate_t;
1743 * Allow userspace to control policy on scanning the unevictable LRU for
1744 * compactable pages.
1746 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1748 * Tunable for proactive compaction. It determines how
1749 * aggressively the kernel should compact memory in the
1750 * background. It takes values in the range [0, 100].
1752 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1753 static int sysctl_extfrag_threshold = 500;
1754 static int __read_mostly sysctl_compact_memory;
1757 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1759 if (cc->fast_start_pfn == ULONG_MAX)
1762 if (!cc->fast_start_pfn)
1763 cc->fast_start_pfn = pfn;
1765 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1768 static inline unsigned long
1769 reinit_migrate_pfn(struct compact_control *cc)
1771 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1772 return cc->migrate_pfn;
1774 cc->migrate_pfn = cc->fast_start_pfn;
1775 cc->fast_start_pfn = ULONG_MAX;
1777 return cc->migrate_pfn;
1781 * Briefly search the free lists for a migration source that already has
1782 * some free pages to reduce the number of pages that need migration
1783 * before a pageblock is free.
1785 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1787 unsigned int limit = freelist_scan_limit(cc);
1788 unsigned int nr_scanned = 0;
1789 unsigned long distance;
1790 unsigned long pfn = cc->migrate_pfn;
1791 unsigned long high_pfn;
1793 bool found_block = false;
1795 /* Skip hints are relied on to avoid repeats on the fast search */
1796 if (cc->ignore_skip_hint)
1800 * If the pageblock should be finished then do not select a different
1803 if (cc->finish_pageblock)
1807 * If the migrate_pfn is not at the start of a zone or the start
1808 * of a pageblock then assume this is a continuation of a previous
1809 * scan restarted due to COMPACT_CLUSTER_MAX.
1811 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1815 * For smaller orders, just linearly scan as the number of pages
1816 * to migrate should be relatively small and does not necessarily
1817 * justify freeing up a large block for a small allocation.
1819 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1823 * Only allow kcompactd and direct requests for movable pages to
1824 * quickly clear out a MOVABLE pageblock for allocation. This
1825 * reduces the risk that a large movable pageblock is freed for
1826 * an unmovable/reclaimable small allocation.
1828 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1832 * When starting the migration scanner, pick any pageblock within the
1833 * first half of the search space. Otherwise try and pick a pageblock
1834 * within the first eighth to reduce the chances that a migration
1835 * target later becomes a source.
1837 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1838 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1840 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1842 for (order = cc->order - 1;
1843 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1845 struct free_area *area = &cc->zone->free_area[order];
1846 struct list_head *freelist;
1847 unsigned long flags;
1848 struct page *freepage;
1853 spin_lock_irqsave(&cc->zone->lock, flags);
1854 freelist = &area->free_list[MIGRATE_MOVABLE];
1855 list_for_each_entry(freepage, freelist, lru) {
1856 unsigned long free_pfn;
1858 if (nr_scanned++ >= limit) {
1859 move_freelist_tail(freelist, freepage);
1863 free_pfn = page_to_pfn(freepage);
1864 if (free_pfn < high_pfn) {
1866 * Avoid if skipped recently. Ideally it would
1867 * move to the tail but even safe iteration of
1868 * the list assumes an entry is deleted, not
1871 if (get_pageblock_skip(freepage))
1874 /* Reorder to so a future search skips recent pages */
1875 move_freelist_tail(freelist, freepage);
1877 update_fast_start_pfn(cc, free_pfn);
1878 pfn = pageblock_start_pfn(free_pfn);
1879 if (pfn < cc->zone->zone_start_pfn)
1880 pfn = cc->zone->zone_start_pfn;
1881 cc->fast_search_fail = 0;
1886 spin_unlock_irqrestore(&cc->zone->lock, flags);
1889 cc->total_migrate_scanned += nr_scanned;
1892 * If fast scanning failed then use a cached entry for a page block
1893 * that had free pages as the basis for starting a linear scan.
1896 cc->fast_search_fail++;
1897 pfn = reinit_migrate_pfn(cc);
1903 * Isolate all pages that can be migrated from the first suitable block,
1904 * starting at the block pointed to by the migrate scanner pfn within
1907 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1909 unsigned long block_start_pfn;
1910 unsigned long block_end_pfn;
1911 unsigned long low_pfn;
1913 const isolate_mode_t isolate_mode =
1914 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1915 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1916 bool fast_find_block;
1919 * Start at where we last stopped, or beginning of the zone as
1920 * initialized by compact_zone(). The first failure will use
1921 * the lowest PFN as the starting point for linear scanning.
1923 low_pfn = fast_find_migrateblock(cc);
1924 block_start_pfn = pageblock_start_pfn(low_pfn);
1925 if (block_start_pfn < cc->zone->zone_start_pfn)
1926 block_start_pfn = cc->zone->zone_start_pfn;
1929 * fast_find_migrateblock marks a pageblock skipped so to avoid
1930 * the isolation_suitable check below, check whether the fast
1931 * search was successful.
1933 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1935 /* Only scan within a pageblock boundary */
1936 block_end_pfn = pageblock_end_pfn(low_pfn);
1939 * Iterate over whole pageblocks until we find the first suitable.
1940 * Do not cross the free scanner.
1942 for (; block_end_pfn <= cc->free_pfn;
1943 fast_find_block = false,
1944 cc->migrate_pfn = low_pfn = block_end_pfn,
1945 block_start_pfn = block_end_pfn,
1946 block_end_pfn += pageblock_nr_pages) {
1949 * This can potentially iterate a massively long zone with
1950 * many pageblocks unsuitable, so periodically check if we
1953 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1956 page = pageblock_pfn_to_page(block_start_pfn,
1957 block_end_pfn, cc->zone);
1962 * If isolation recently failed, do not retry. Only check the
1963 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1964 * to be visited multiple times. Assume skip was checked
1965 * before making it "skip" so other compaction instances do
1966 * not scan the same block.
1968 if (pageblock_aligned(low_pfn) &&
1969 !fast_find_block && !isolation_suitable(cc, page))
1973 * For async direct compaction, only scan the pageblocks of the
1974 * same migratetype without huge pages. Async direct compaction
1975 * is optimistic to see if the minimum amount of work satisfies
1976 * the allocation. The cached PFN is updated as it's possible
1977 * that all remaining blocks between source and target are
1978 * unsuitable and the compaction scanners fail to meet.
1980 if (!suitable_migration_source(cc, page)) {
1981 update_cached_migrate(cc, block_end_pfn);
1985 /* Perform the isolation */
1986 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1988 return ISOLATE_ABORT;
1991 * Either we isolated something and proceed with migration. Or
1992 * we failed and compact_zone should decide if we should
1998 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2002 * order == -1 is expected when compacting via
2003 * /proc/sys/vm/compact_memory
2005 static inline bool is_via_compact_memory(int order)
2011 * Determine whether kswapd is (or recently was!) running on this node.
2013 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2016 static bool kswapd_is_running(pg_data_t *pgdat)
2020 pgdat_kswapd_lock(pgdat);
2021 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2022 pgdat_kswapd_unlock(pgdat);
2028 * A zone's fragmentation score is the external fragmentation wrt to the
2029 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2031 static unsigned int fragmentation_score_zone(struct zone *zone)
2033 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2037 * A weighted zone's fragmentation score is the external fragmentation
2038 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2039 * returns a value in the range [0, 100].
2041 * The scaling factor ensures that proactive compaction focuses on larger
2042 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2043 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2044 * and thus never exceeds the high threshold for proactive compaction.
2046 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2048 unsigned long score;
2050 score = zone->present_pages * fragmentation_score_zone(zone);
2051 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2055 * The per-node proactive (background) compaction process is started by its
2056 * corresponding kcompactd thread when the node's fragmentation score
2057 * exceeds the high threshold. The compaction process remains active till
2058 * the node's score falls below the low threshold, or one of the back-off
2059 * conditions is met.
2061 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2063 unsigned int score = 0;
2066 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2069 zone = &pgdat->node_zones[zoneid];
2070 if (!populated_zone(zone))
2072 score += fragmentation_score_zone_weighted(zone);
2078 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2080 unsigned int wmark_low;
2083 * Cap the low watermark to avoid excessive compaction
2084 * activity in case a user sets the proactiveness tunable
2085 * close to 100 (maximum).
2087 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2088 return low ? wmark_low : min(wmark_low + 10, 100U);
2091 static bool should_proactive_compact_node(pg_data_t *pgdat)
2095 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2098 wmark_high = fragmentation_score_wmark(pgdat, false);
2099 return fragmentation_score_node(pgdat) > wmark_high;
2102 static enum compact_result __compact_finished(struct compact_control *cc)
2105 const int migratetype = cc->migratetype;
2108 /* Compaction run completes if the migrate and free scanner meet */
2109 if (compact_scanners_met(cc)) {
2110 /* Let the next compaction start anew. */
2111 reset_cached_positions(cc->zone);
2114 * Mark that the PG_migrate_skip information should be cleared
2115 * by kswapd when it goes to sleep. kcompactd does not set the
2116 * flag itself as the decision to be clear should be directly
2117 * based on an allocation request.
2119 if (cc->direct_compaction)
2120 cc->zone->compact_blockskip_flush = true;
2123 return COMPACT_COMPLETE;
2125 return COMPACT_PARTIAL_SKIPPED;
2128 if (cc->proactive_compaction) {
2129 int score, wmark_low;
2132 pgdat = cc->zone->zone_pgdat;
2133 if (kswapd_is_running(pgdat))
2134 return COMPACT_PARTIAL_SKIPPED;
2136 score = fragmentation_score_zone(cc->zone);
2137 wmark_low = fragmentation_score_wmark(pgdat, true);
2139 if (score > wmark_low)
2140 ret = COMPACT_CONTINUE;
2142 ret = COMPACT_SUCCESS;
2147 if (is_via_compact_memory(cc->order))
2148 return COMPACT_CONTINUE;
2151 * Always finish scanning a pageblock to reduce the possibility of
2152 * fallbacks in the future. This is particularly important when
2153 * migration source is unmovable/reclaimable but it's not worth
2156 if (!pageblock_aligned(cc->migrate_pfn))
2157 return COMPACT_CONTINUE;
2159 /* Direct compactor: Is a suitable page free? */
2160 ret = COMPACT_NO_SUITABLE_PAGE;
2161 for (order = cc->order; order <= MAX_ORDER; order++) {
2162 struct free_area *area = &cc->zone->free_area[order];
2165 /* Job done if page is free of the right migratetype */
2166 if (!free_area_empty(area, migratetype))
2167 return COMPACT_SUCCESS;
2170 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2171 if (migratetype == MIGRATE_MOVABLE &&
2172 !free_area_empty(area, MIGRATE_CMA))
2173 return COMPACT_SUCCESS;
2176 * Job done if allocation would steal freepages from
2177 * other migratetype buddy lists.
2179 if (find_suitable_fallback(area, order, migratetype,
2180 true, &can_steal) != -1)
2182 * Movable pages are OK in any pageblock. If we are
2183 * stealing for a non-movable allocation, make sure
2184 * we finish compacting the current pageblock first
2185 * (which is assured by the above migrate_pfn align
2186 * check) so it is as free as possible and we won't
2187 * have to steal another one soon.
2189 return COMPACT_SUCCESS;
2193 if (cc->contended || fatal_signal_pending(current))
2194 ret = COMPACT_CONTENDED;
2199 static enum compact_result compact_finished(struct compact_control *cc)
2203 ret = __compact_finished(cc);
2204 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2205 if (ret == COMPACT_NO_SUITABLE_PAGE)
2206 ret = COMPACT_CONTINUE;
2211 static bool __compaction_suitable(struct zone *zone, int order,
2212 int highest_zoneidx,
2213 unsigned long wmark_target)
2215 unsigned long watermark;
2217 * Watermarks for order-0 must be met for compaction to be able to
2218 * isolate free pages for migration targets. This means that the
2219 * watermark and alloc_flags have to match, or be more pessimistic than
2220 * the check in __isolate_free_page(). We don't use the direct
2221 * compactor's alloc_flags, as they are not relevant for freepage
2222 * isolation. We however do use the direct compactor's highest_zoneidx
2223 * to skip over zones where lowmem reserves would prevent allocation
2224 * even if compaction succeeds.
2225 * For costly orders, we require low watermark instead of min for
2226 * compaction to proceed to increase its chances.
2227 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2228 * suitable migration targets
2230 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2231 low_wmark_pages(zone) : min_wmark_pages(zone);
2232 watermark += compact_gap(order);
2233 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2234 ALLOC_CMA, wmark_target);
2238 * compaction_suitable: Is this suitable to run compaction on this zone now?
2240 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2242 enum compact_result compact_result;
2245 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2246 zone_page_state(zone, NR_FREE_PAGES));
2248 * fragmentation index determines if allocation failures are due to
2249 * low memory or external fragmentation
2251 * index of -1000 would imply allocations might succeed depending on
2252 * watermarks, but we already failed the high-order watermark check
2253 * index towards 0 implies failure is due to lack of memory
2254 * index towards 1000 implies failure is due to fragmentation
2256 * Only compact if a failure would be due to fragmentation. Also
2257 * ignore fragindex for non-costly orders where the alternative to
2258 * a successful reclaim/compaction is OOM. Fragindex and the
2259 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2260 * excessive compaction for costly orders, but it should not be at the
2261 * expense of system stability.
2264 compact_result = COMPACT_CONTINUE;
2265 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2266 int fragindex = fragmentation_index(zone, order);
2268 if (fragindex >= 0 &&
2269 fragindex <= sysctl_extfrag_threshold) {
2271 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2275 compact_result = COMPACT_SKIPPED;
2278 trace_mm_compaction_suitable(zone, order, compact_result);
2283 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2290 * Make sure at least one zone would pass __compaction_suitable if we continue
2291 * retrying the reclaim.
2293 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2294 ac->highest_zoneidx, ac->nodemask) {
2295 unsigned long available;
2298 * Do not consider all the reclaimable memory because we do not
2299 * want to trash just for a single high order allocation which
2300 * is even not guaranteed to appear even if __compaction_suitable
2301 * is happy about the watermark check.
2303 available = zone_reclaimable_pages(zone) / order;
2304 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2305 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2313 static enum compact_result
2314 compact_zone(struct compact_control *cc, struct capture_control *capc)
2316 enum compact_result ret;
2317 unsigned long start_pfn = cc->zone->zone_start_pfn;
2318 unsigned long end_pfn = zone_end_pfn(cc->zone);
2319 unsigned long last_migrated_pfn;
2320 const bool sync = cc->mode != MIGRATE_ASYNC;
2322 unsigned int nr_succeeded = 0;
2325 * These counters track activities during zone compaction. Initialize
2326 * them before compacting a new zone.
2328 cc->total_migrate_scanned = 0;
2329 cc->total_free_scanned = 0;
2330 cc->nr_migratepages = 0;
2331 cc->nr_freepages = 0;
2332 INIT_LIST_HEAD(&cc->freepages);
2333 INIT_LIST_HEAD(&cc->migratepages);
2335 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2337 if (!is_via_compact_memory(cc->order)) {
2338 unsigned long watermark;
2340 /* Allocation can already succeed, nothing to do */
2341 watermark = wmark_pages(cc->zone,
2342 cc->alloc_flags & ALLOC_WMARK_MASK);
2343 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2344 cc->highest_zoneidx, cc->alloc_flags))
2345 return COMPACT_SUCCESS;
2347 /* Compaction is likely to fail */
2348 if (!compaction_suitable(cc->zone, cc->order,
2349 cc->highest_zoneidx))
2350 return COMPACT_SKIPPED;
2354 * Clear pageblock skip if there were failures recently and compaction
2355 * is about to be retried after being deferred.
2357 if (compaction_restarting(cc->zone, cc->order))
2358 __reset_isolation_suitable(cc->zone);
2361 * Setup to move all movable pages to the end of the zone. Used cached
2362 * information on where the scanners should start (unless we explicitly
2363 * want to compact the whole zone), but check that it is initialised
2364 * by ensuring the values are within zone boundaries.
2366 cc->fast_start_pfn = 0;
2367 if (cc->whole_zone) {
2368 cc->migrate_pfn = start_pfn;
2369 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2371 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2372 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2373 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2374 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2375 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2377 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2378 cc->migrate_pfn = start_pfn;
2379 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2380 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2383 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2384 cc->whole_zone = true;
2387 last_migrated_pfn = 0;
2390 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2391 * the basis that some migrations will fail in ASYNC mode. However,
2392 * if the cached PFNs match and pageblocks are skipped due to having
2393 * no isolation candidates, then the sync state does not matter.
2394 * Until a pageblock with isolation candidates is found, keep the
2395 * cached PFNs in sync to avoid revisiting the same blocks.
2397 update_cached = !sync &&
2398 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2400 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2402 /* lru_add_drain_all could be expensive with involving other CPUs */
2405 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2407 unsigned long iteration_start_pfn = cc->migrate_pfn;
2410 * Avoid multiple rescans of the same pageblock which can
2411 * happen if a page cannot be isolated (dirty/writeback in
2412 * async mode) or if the migrated pages are being allocated
2413 * before the pageblock is cleared. The first rescan will
2414 * capture the entire pageblock for migration. If it fails,
2415 * it'll be marked skip and scanning will proceed as normal.
2417 cc->finish_pageblock = false;
2418 if (pageblock_start_pfn(last_migrated_pfn) ==
2419 pageblock_start_pfn(iteration_start_pfn)) {
2420 cc->finish_pageblock = true;
2424 switch (isolate_migratepages(cc)) {
2426 ret = COMPACT_CONTENDED;
2427 putback_movable_pages(&cc->migratepages);
2428 cc->nr_migratepages = 0;
2431 if (update_cached) {
2432 cc->zone->compact_cached_migrate_pfn[1] =
2433 cc->zone->compact_cached_migrate_pfn[0];
2437 * We haven't isolated and migrated anything, but
2438 * there might still be unflushed migrations from
2439 * previous cc->order aligned block.
2442 case ISOLATE_SUCCESS:
2443 update_cached = false;
2444 last_migrated_pfn = iteration_start_pfn;
2447 err = migrate_pages(&cc->migratepages, compaction_alloc,
2448 compaction_free, (unsigned long)cc, cc->mode,
2449 MR_COMPACTION, &nr_succeeded);
2451 trace_mm_compaction_migratepages(cc, nr_succeeded);
2453 /* All pages were either migrated or will be released */
2454 cc->nr_migratepages = 0;
2456 putback_movable_pages(&cc->migratepages);
2458 * migrate_pages() may return -ENOMEM when scanners meet
2459 * and we want compact_finished() to detect it
2461 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2462 ret = COMPACT_CONTENDED;
2466 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2467 * within the current order-aligned block and
2468 * fast_find_migrateblock may be used then scan the
2469 * remainder of the pageblock. This will mark the
2470 * pageblock "skip" to avoid rescanning in the near
2471 * future. This will isolate more pages than necessary
2472 * for the request but avoid loops due to
2473 * fast_find_migrateblock revisiting blocks that were
2474 * recently partially scanned.
2476 if (!pageblock_aligned(cc->migrate_pfn) &&
2477 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2478 (cc->mode < MIGRATE_SYNC)) {
2479 cc->finish_pageblock = true;
2482 * Draining pcplists does not help THP if
2483 * any page failed to migrate. Even after
2484 * drain, the pageblock will not be free.
2486 if (cc->order == COMPACTION_HPAGE_ORDER)
2487 last_migrated_pfn = 0;
2493 /* Stop if a page has been captured */
2494 if (capc && capc->page) {
2495 ret = COMPACT_SUCCESS;
2501 * Has the migration scanner moved away from the previous
2502 * cc->order aligned block where we migrated from? If yes,
2503 * flush the pages that were freed, so that they can merge and
2504 * compact_finished() can detect immediately if allocation
2507 if (cc->order > 0 && last_migrated_pfn) {
2508 unsigned long current_block_start =
2509 block_start_pfn(cc->migrate_pfn, cc->order);
2511 if (last_migrated_pfn < current_block_start) {
2512 lru_add_drain_cpu_zone(cc->zone);
2513 /* No more flushing until we migrate again */
2514 last_migrated_pfn = 0;
2521 * Release free pages and update where the free scanner should restart,
2522 * so we don't leave any returned pages behind in the next attempt.
2524 if (cc->nr_freepages > 0) {
2525 unsigned long free_pfn = release_freepages(&cc->freepages);
2527 cc->nr_freepages = 0;
2528 VM_BUG_ON(free_pfn == 0);
2529 /* The cached pfn is always the first in a pageblock */
2530 free_pfn = pageblock_start_pfn(free_pfn);
2532 * Only go back, not forward. The cached pfn might have been
2533 * already reset to zone end in compact_finished()
2535 if (free_pfn > cc->zone->compact_cached_free_pfn)
2536 cc->zone->compact_cached_free_pfn = free_pfn;
2539 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2540 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2542 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2544 VM_BUG_ON(!list_empty(&cc->freepages));
2545 VM_BUG_ON(!list_empty(&cc->migratepages));
2550 static enum compact_result compact_zone_order(struct zone *zone, int order,
2551 gfp_t gfp_mask, enum compact_priority prio,
2552 unsigned int alloc_flags, int highest_zoneidx,
2553 struct page **capture)
2555 enum compact_result ret;
2556 struct compact_control cc = {
2558 .search_order = order,
2559 .gfp_mask = gfp_mask,
2561 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2562 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2563 .alloc_flags = alloc_flags,
2564 .highest_zoneidx = highest_zoneidx,
2565 .direct_compaction = true,
2566 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2567 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2568 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2570 struct capture_control capc = {
2576 * Make sure the structs are really initialized before we expose the
2577 * capture control, in case we are interrupted and the interrupt handler
2581 WRITE_ONCE(current->capture_control, &capc);
2583 ret = compact_zone(&cc, &capc);
2586 * Make sure we hide capture control first before we read the captured
2587 * page pointer, otherwise an interrupt could free and capture a page
2588 * and we would leak it.
2590 WRITE_ONCE(current->capture_control, NULL);
2591 *capture = READ_ONCE(capc.page);
2593 * Technically, it is also possible that compaction is skipped but
2594 * the page is still captured out of luck(IRQ came and freed the page).
2595 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2596 * the COMPACT[STALL|FAIL] when compaction is skipped.
2599 ret = COMPACT_SUCCESS;
2605 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2606 * @gfp_mask: The GFP mask of the current allocation
2607 * @order: The order of the current allocation
2608 * @alloc_flags: The allocation flags of the current allocation
2609 * @ac: The context of current allocation
2610 * @prio: Determines how hard direct compaction should try to succeed
2611 * @capture: Pointer to free page created by compaction will be stored here
2613 * This is the main entry point for direct page compaction.
2615 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2616 unsigned int alloc_flags, const struct alloc_context *ac,
2617 enum compact_priority prio, struct page **capture)
2619 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2622 enum compact_result rc = COMPACT_SKIPPED;
2625 * Check if the GFP flags allow compaction - GFP_NOIO is really
2626 * tricky context because the migration might require IO
2628 if (!may_perform_io)
2629 return COMPACT_SKIPPED;
2631 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2633 /* Compact each zone in the list */
2634 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2635 ac->highest_zoneidx, ac->nodemask) {
2636 enum compact_result status;
2638 if (prio > MIN_COMPACT_PRIORITY
2639 && compaction_deferred(zone, order)) {
2640 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2644 status = compact_zone_order(zone, order, gfp_mask, prio,
2645 alloc_flags, ac->highest_zoneidx, capture);
2646 rc = max(status, rc);
2648 /* The allocation should succeed, stop compacting */
2649 if (status == COMPACT_SUCCESS) {
2651 * We think the allocation will succeed in this zone,
2652 * but it is not certain, hence the false. The caller
2653 * will repeat this with true if allocation indeed
2654 * succeeds in this zone.
2656 compaction_defer_reset(zone, order, false);
2661 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2662 status == COMPACT_PARTIAL_SKIPPED))
2664 * We think that allocation won't succeed in this zone
2665 * so we defer compaction there. If it ends up
2666 * succeeding after all, it will be reset.
2668 defer_compaction(zone, order);
2671 * We might have stopped compacting due to need_resched() in
2672 * async compaction, or due to a fatal signal detected. In that
2673 * case do not try further zones
2675 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2676 || fatal_signal_pending(current))
2684 * Compact all zones within a node till each zone's fragmentation score
2685 * reaches within proactive compaction thresholds (as determined by the
2686 * proactiveness tunable).
2688 * It is possible that the function returns before reaching score targets
2689 * due to various back-off conditions, such as, contention on per-node or
2692 static void proactive_compact_node(pg_data_t *pgdat)
2696 struct compact_control cc = {
2698 .mode = MIGRATE_SYNC_LIGHT,
2699 .ignore_skip_hint = true,
2701 .gfp_mask = GFP_KERNEL,
2702 .proactive_compaction = true,
2705 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2706 zone = &pgdat->node_zones[zoneid];
2707 if (!populated_zone(zone))
2712 compact_zone(&cc, NULL);
2714 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2715 cc.total_migrate_scanned);
2716 count_compact_events(KCOMPACTD_FREE_SCANNED,
2717 cc.total_free_scanned);
2721 /* Compact all zones within a node */
2722 static void compact_node(int nid)
2724 pg_data_t *pgdat = NODE_DATA(nid);
2727 struct compact_control cc = {
2729 .mode = MIGRATE_SYNC,
2730 .ignore_skip_hint = true,
2732 .gfp_mask = GFP_KERNEL,
2736 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2738 zone = &pgdat->node_zones[zoneid];
2739 if (!populated_zone(zone))
2744 compact_zone(&cc, NULL);
2748 /* Compact all nodes in the system */
2749 static void compact_nodes(void)
2753 /* Flush pending updates to the LRU lists */
2754 lru_add_drain_all();
2756 for_each_online_node(nid)
2760 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2761 void *buffer, size_t *length, loff_t *ppos)
2765 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2769 if (write && sysctl_compaction_proactiveness) {
2770 for_each_online_node(nid) {
2771 pg_data_t *pgdat = NODE_DATA(nid);
2773 if (pgdat->proactive_compact_trigger)
2776 pgdat->proactive_compact_trigger = true;
2777 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2778 pgdat->nr_zones - 1);
2779 wake_up_interruptible(&pgdat->kcompactd_wait);
2787 * This is the entry point for compacting all nodes via
2788 * /proc/sys/vm/compact_memory
2790 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2791 void *buffer, size_t *length, loff_t *ppos)
2795 ret = proc_dointvec(table, write, buffer, length, ppos);
2799 if (sysctl_compact_memory != 1)
2808 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2809 static ssize_t compact_store(struct device *dev,
2810 struct device_attribute *attr,
2811 const char *buf, size_t count)
2815 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2816 /* Flush pending updates to the LRU lists */
2817 lru_add_drain_all();
2824 static DEVICE_ATTR_WO(compact);
2826 int compaction_register_node(struct node *node)
2828 return device_create_file(&node->dev, &dev_attr_compact);
2831 void compaction_unregister_node(struct node *node)
2833 return device_remove_file(&node->dev, &dev_attr_compact);
2835 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2837 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2839 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2840 pgdat->proactive_compact_trigger;
2843 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2847 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2849 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2850 zone = &pgdat->node_zones[zoneid];
2852 if (!populated_zone(zone))
2855 /* Allocation can already succeed, check other zones */
2856 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2857 min_wmark_pages(zone),
2858 highest_zoneidx, 0))
2861 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2869 static void kcompactd_do_work(pg_data_t *pgdat)
2872 * With no special task, compact all zones so that a page of requested
2873 * order is allocatable.
2877 struct compact_control cc = {
2878 .order = pgdat->kcompactd_max_order,
2879 .search_order = pgdat->kcompactd_max_order,
2880 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2881 .mode = MIGRATE_SYNC_LIGHT,
2882 .ignore_skip_hint = false,
2883 .gfp_mask = GFP_KERNEL,
2885 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2886 cc.highest_zoneidx);
2887 count_compact_event(KCOMPACTD_WAKE);
2889 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2892 zone = &pgdat->node_zones[zoneid];
2893 if (!populated_zone(zone))
2896 if (compaction_deferred(zone, cc.order))
2899 /* Allocation can already succeed, nothing to do */
2900 if (zone_watermark_ok(zone, cc.order,
2901 min_wmark_pages(zone), zoneid, 0))
2904 if (!compaction_suitable(zone, cc.order, zoneid))
2907 if (kthread_should_stop())
2911 status = compact_zone(&cc, NULL);
2913 if (status == COMPACT_SUCCESS) {
2914 compaction_defer_reset(zone, cc.order, false);
2915 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2917 * Buddy pages may become stranded on pcps that could
2918 * otherwise coalesce on the zone's free area for
2919 * order >= cc.order. This is ratelimited by the
2920 * upcoming deferral.
2922 drain_all_pages(zone);
2925 * We use sync migration mode here, so we defer like
2926 * sync direct compaction does.
2928 defer_compaction(zone, cc.order);
2931 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2932 cc.total_migrate_scanned);
2933 count_compact_events(KCOMPACTD_FREE_SCANNED,
2934 cc.total_free_scanned);
2938 * Regardless of success, we are done until woken up next. But remember
2939 * the requested order/highest_zoneidx in case it was higher/tighter
2940 * than our current ones
2942 if (pgdat->kcompactd_max_order <= cc.order)
2943 pgdat->kcompactd_max_order = 0;
2944 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2945 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2948 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2953 if (pgdat->kcompactd_max_order < order)
2954 pgdat->kcompactd_max_order = order;
2956 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2957 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2960 * Pairs with implicit barrier in wait_event_freezable()
2961 * such that wakeups are not missed.
2963 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2966 if (!kcompactd_node_suitable(pgdat))
2969 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2971 wake_up_interruptible(&pgdat->kcompactd_wait);
2975 * The background compaction daemon, started as a kernel thread
2976 * from the init process.
2978 static int kcompactd(void *p)
2980 pg_data_t *pgdat = (pg_data_t *)p;
2981 struct task_struct *tsk = current;
2982 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2983 long timeout = default_timeout;
2985 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2987 if (!cpumask_empty(cpumask))
2988 set_cpus_allowed_ptr(tsk, cpumask);
2992 pgdat->kcompactd_max_order = 0;
2993 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2995 while (!kthread_should_stop()) {
2996 unsigned long pflags;
2999 * Avoid the unnecessary wakeup for proactive compaction
3000 * when it is disabled.
3002 if (!sysctl_compaction_proactiveness)
3003 timeout = MAX_SCHEDULE_TIMEOUT;
3004 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3005 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3006 kcompactd_work_requested(pgdat), timeout) &&
3007 !pgdat->proactive_compact_trigger) {
3009 psi_memstall_enter(&pflags);
3010 kcompactd_do_work(pgdat);
3011 psi_memstall_leave(&pflags);
3013 * Reset the timeout value. The defer timeout from
3014 * proactive compaction is lost here but that is fine
3015 * as the condition of the zone changing substantionally
3016 * then carrying on with the previous defer interval is
3019 timeout = default_timeout;
3024 * Start the proactive work with default timeout. Based
3025 * on the fragmentation score, this timeout is updated.
3027 timeout = default_timeout;
3028 if (should_proactive_compact_node(pgdat)) {
3029 unsigned int prev_score, score;
3031 prev_score = fragmentation_score_node(pgdat);
3032 proactive_compact_node(pgdat);
3033 score = fragmentation_score_node(pgdat);
3035 * Defer proactive compaction if the fragmentation
3036 * score did not go down i.e. no progress made.
3038 if (unlikely(score >= prev_score))
3040 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3042 if (unlikely(pgdat->proactive_compact_trigger))
3043 pgdat->proactive_compact_trigger = false;
3050 * This kcompactd start function will be called by init and node-hot-add.
3051 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3053 void kcompactd_run(int nid)
3055 pg_data_t *pgdat = NODE_DATA(nid);
3057 if (pgdat->kcompactd)
3060 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3061 if (IS_ERR(pgdat->kcompactd)) {
3062 pr_err("Failed to start kcompactd on node %d\n", nid);
3063 pgdat->kcompactd = NULL;
3068 * Called by memory hotplug when all memory in a node is offlined. Caller must
3069 * be holding mem_hotplug_begin/done().
3071 void kcompactd_stop(int nid)
3073 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3076 kthread_stop(kcompactd);
3077 NODE_DATA(nid)->kcompactd = NULL;
3082 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3083 * not required for correctness. So if the last cpu in a node goes
3084 * away, we get changed to run anywhere: as the first one comes back,
3085 * restore their cpu bindings.
3087 static int kcompactd_cpu_online(unsigned int cpu)
3091 for_each_node_state(nid, N_MEMORY) {
3092 pg_data_t *pgdat = NODE_DATA(nid);
3093 const struct cpumask *mask;
3095 mask = cpumask_of_node(pgdat->node_id);
3097 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3098 /* One of our CPUs online: restore mask */
3099 if (pgdat->kcompactd)
3100 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3105 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3106 int write, void *buffer, size_t *lenp, loff_t *ppos)
3110 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3111 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3113 old = *(int *)table->data;
3114 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3117 if (old != *(int *)table->data)
3118 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3119 table->procname, current->comm,
3120 task_pid_nr(current));
3124 static struct ctl_table vm_compaction[] = {
3126 .procname = "compact_memory",
3127 .data = &sysctl_compact_memory,
3128 .maxlen = sizeof(int),
3130 .proc_handler = sysctl_compaction_handler,
3133 .procname = "compaction_proactiveness",
3134 .data = &sysctl_compaction_proactiveness,
3135 .maxlen = sizeof(sysctl_compaction_proactiveness),
3137 .proc_handler = compaction_proactiveness_sysctl_handler,
3138 .extra1 = SYSCTL_ZERO,
3139 .extra2 = SYSCTL_ONE_HUNDRED,
3142 .procname = "extfrag_threshold",
3143 .data = &sysctl_extfrag_threshold,
3144 .maxlen = sizeof(int),
3146 .proc_handler = proc_dointvec_minmax,
3147 .extra1 = SYSCTL_ZERO,
3148 .extra2 = SYSCTL_ONE_THOUSAND,
3151 .procname = "compact_unevictable_allowed",
3152 .data = &sysctl_compact_unevictable_allowed,
3153 .maxlen = sizeof(int),
3155 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3156 .extra1 = SYSCTL_ZERO,
3157 .extra2 = SYSCTL_ONE,
3162 static int __init kcompactd_init(void)
3167 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3168 "mm/compaction:online",
3169 kcompactd_cpu_online, NULL);
3171 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3175 for_each_node_state(nid, N_MEMORY)
3177 register_sysctl_init("vm", vm_compaction);
3180 subsys_initcall(kcompactd_init)
3182 #endif /* CONFIG_COMPACTION */