]> Git Repo - linux.git/blob - arch/s390/kernel/crash_dump.c
Merge tag 'staging-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux.git] / arch / s390 / kernel / crash_dump.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <[email protected]>
7  */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <linux/uio.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 #include <asm/maccess.h>
25 #include <asm/fpu.h>
26
27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
30
31 static struct memblock_region oldmem_region;
32
33 static struct memblock_type oldmem_type = {
34         .cnt = 1,
35         .max = 1,
36         .total_size = 0,
37         .regions = &oldmem_region,
38         .name = "oldmem",
39 };
40
41 struct save_area {
42         struct list_head list;
43         u64 psw[2];
44         u64 ctrs[16];
45         u64 gprs[16];
46         u32 acrs[16];
47         u64 fprs[16];
48         u32 fpc;
49         u32 prefix;
50         u32 todpreg;
51         u64 timer;
52         u64 todcmp;
53         u64 vxrs_low[16];
54         __vector128 vxrs_high[16];
55 };
56
57 static LIST_HEAD(dump_save_areas);
58
59 /*
60  * Allocate a save area
61  */
62 struct save_area * __init save_area_alloc(bool is_boot_cpu)
63 {
64         struct save_area *sa;
65
66         sa = memblock_alloc(sizeof(*sa), 8);
67         if (!sa)
68                 return NULL;
69
70         if (is_boot_cpu)
71                 list_add(&sa->list, &dump_save_areas);
72         else
73                 list_add_tail(&sa->list, &dump_save_areas);
74         return sa;
75 }
76
77 /*
78  * Return the address of the save area for the boot CPU
79  */
80 struct save_area * __init save_area_boot_cpu(void)
81 {
82         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
83 }
84
85 /*
86  * Copy CPU registers into the save area
87  */
88 void __init save_area_add_regs(struct save_area *sa, void *regs)
89 {
90         struct lowcore *lc;
91
92         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
93         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
94         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
95         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
96         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
97         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
98         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
99         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
100         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
101         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
102         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
103 }
104
105 /*
106  * Copy vector registers into the save area
107  */
108 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
109 {
110         int i;
111
112         /* Copy lower halves of vector registers 0-15 */
113         for (i = 0; i < 16; i++)
114                 sa->vxrs_low[i] = vxrs[i].low;
115         /* Copy vector registers 16-31 */
116         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
117 }
118
119 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
120 {
121         size_t len, copied, res = 0;
122
123         while (count) {
124                 if (!oldmem_data.start && src < sclp.hsa_size) {
125                         /* Copy from zfcp/nvme dump HSA area */
126                         len = min(count, sclp.hsa_size - src);
127                         copied = memcpy_hsa_iter(iter, src, len);
128                 } else {
129                         /* Check for swapped kdump oldmem areas */
130                         if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
131                                 src -= oldmem_data.start;
132                                 len = min(count, oldmem_data.size - src);
133                         } else if (oldmem_data.start && src < oldmem_data.size) {
134                                 len = min(count, oldmem_data.size - src);
135                                 src += oldmem_data.start;
136                         } else {
137                                 len = count;
138                         }
139                         copied = memcpy_real_iter(iter, src, len);
140                 }
141                 count -= copied;
142                 src += copied;
143                 res += copied;
144                 if (copied < len)
145                         break;
146         }
147         return res;
148 }
149
150 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
151 {
152         struct iov_iter iter;
153         struct kvec kvec;
154
155         kvec.iov_base = dst;
156         kvec.iov_len = count;
157         iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
158         if (copy_oldmem_iter(&iter, src, count) < count)
159                 return -EFAULT;
160         return 0;
161 }
162
163 /*
164  * Copy one page from "oldmem"
165  */
166 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
167                          unsigned long offset)
168 {
169         unsigned long src;
170
171         src = pfn_to_phys(pfn) + offset;
172         return copy_oldmem_iter(iter, src, csize);
173 }
174
175 /*
176  * Remap "oldmem" for kdump
177  *
178  * For the kdump reserved memory this functions performs a swap operation:
179  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
180  */
181 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
182                                         unsigned long from, unsigned long pfn,
183                                         unsigned long size, pgprot_t prot)
184 {
185         unsigned long size_old;
186         int rc;
187
188         if (pfn < oldmem_data.size >> PAGE_SHIFT) {
189                 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
190                 rc = remap_pfn_range(vma, from,
191                                      pfn + (oldmem_data.start >> PAGE_SHIFT),
192                                      size_old, prot);
193                 if (rc || size == size_old)
194                         return rc;
195                 size -= size_old;
196                 from += size_old;
197                 pfn += size_old >> PAGE_SHIFT;
198         }
199         return remap_pfn_range(vma, from, pfn, size, prot);
200 }
201
202 /*
203  * Remap "oldmem" for zfcp/nvme dump
204  *
205  * We only map available memory above HSA size. Memory below HSA size
206  * is read on demand using the copy_oldmem_page() function.
207  */
208 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
209                                            unsigned long from,
210                                            unsigned long pfn,
211                                            unsigned long size, pgprot_t prot)
212 {
213         unsigned long hsa_end = sclp.hsa_size;
214         unsigned long size_hsa;
215
216         if (pfn < hsa_end >> PAGE_SHIFT) {
217                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
218                 if (size == size_hsa)
219                         return 0;
220                 size -= size_hsa;
221                 from += size_hsa;
222                 pfn += size_hsa >> PAGE_SHIFT;
223         }
224         return remap_pfn_range(vma, from, pfn, size, prot);
225 }
226
227 /*
228  * Remap "oldmem" for kdump or zfcp/nvme dump
229  */
230 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
231                            unsigned long pfn, unsigned long size, pgprot_t prot)
232 {
233         if (oldmem_data.start)
234                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
235         else
236                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
237                                                        prot);
238 }
239
240 static const char *nt_name(Elf64_Word type)
241 {
242         const char *name = "LINUX";
243
244         if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
245                 name = KEXEC_CORE_NOTE_NAME;
246         return name;
247 }
248
249 /*
250  * Initialize ELF note
251  */
252 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
253                           const char *name)
254 {
255         Elf64_Nhdr *note;
256         u64 len;
257
258         note = (Elf64_Nhdr *)buf;
259         note->n_namesz = strlen(name) + 1;
260         note->n_descsz = d_len;
261         note->n_type = type;
262         len = sizeof(Elf64_Nhdr);
263
264         memcpy(buf + len, name, note->n_namesz);
265         len = roundup(len + note->n_namesz, 4);
266
267         memcpy(buf + len, desc, note->n_descsz);
268         len = roundup(len + note->n_descsz, 4);
269
270         return PTR_ADD(buf, len);
271 }
272
273 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
274 {
275         return nt_init_name(buf, type, desc, d_len, nt_name(type));
276 }
277
278 /*
279  * Calculate the size of ELF note
280  */
281 static size_t nt_size_name(int d_len, const char *name)
282 {
283         size_t size;
284
285         size = sizeof(Elf64_Nhdr);
286         size += roundup(strlen(name) + 1, 4);
287         size += roundup(d_len, 4);
288
289         return size;
290 }
291
292 static inline size_t nt_size(Elf64_Word type, int d_len)
293 {
294         return nt_size_name(d_len, nt_name(type));
295 }
296
297 /*
298  * Fill ELF notes for one CPU with save area registers
299  */
300 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
301 {
302         struct elf_prstatus nt_prstatus;
303         elf_fpregset_t nt_fpregset;
304
305         /* Prepare prstatus note */
306         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
307         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
308         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
309         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
310         nt_prstatus.common.pr_pid = cpu;
311         /* Prepare fpregset (floating point) note */
312         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
313         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
314         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
315         /* Create ELF notes for the CPU */
316         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
317         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
318         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
319         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
320         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
321         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
322         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
323         if (cpu_has_vx()) {
324                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
325                               &sa->vxrs_high, sizeof(sa->vxrs_high));
326                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
327                               &sa->vxrs_low, sizeof(sa->vxrs_low));
328         }
329         return ptr;
330 }
331
332 /*
333  * Calculate size of ELF notes per cpu
334  */
335 static size_t get_cpu_elf_notes_size(void)
336 {
337         struct save_area *sa = NULL;
338         size_t size;
339
340         size =  nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
341         size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
342         size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
343         size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
344         size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
345         size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
346         size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
347         if (cpu_has_vx()) {
348                 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
349                 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
350         }
351
352         return size;
353 }
354
355 /*
356  * Initialize prpsinfo note (new kernel)
357  */
358 static void *nt_prpsinfo(void *ptr)
359 {
360         struct elf_prpsinfo prpsinfo;
361
362         memset(&prpsinfo, 0, sizeof(prpsinfo));
363         prpsinfo.pr_sname = 'R';
364         strcpy(prpsinfo.pr_fname, "vmlinux");
365         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
366 }
367
368 /*
369  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
370  */
371 static void *get_vmcoreinfo_old(unsigned long *size)
372 {
373         char nt_name[11], *vmcoreinfo;
374         unsigned long addr;
375         Elf64_Nhdr note;
376
377         if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
378                 return NULL;
379         memset(nt_name, 0, sizeof(nt_name));
380         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
381                 return NULL;
382         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
383                                sizeof(nt_name) - 1))
384                 return NULL;
385         if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
386                 return NULL;
387         vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
388         if (!vmcoreinfo)
389                 return NULL;
390         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
391                 kfree(vmcoreinfo);
392                 return NULL;
393         }
394         *size = note.n_descsz;
395         return vmcoreinfo;
396 }
397
398 /*
399  * Initialize vmcoreinfo note (new kernel)
400  */
401 static void *nt_vmcoreinfo(void *ptr)
402 {
403         const char *name = VMCOREINFO_NOTE_NAME;
404         unsigned long size;
405         void *vmcoreinfo;
406
407         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
408         if (vmcoreinfo)
409                 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
410
411         vmcoreinfo = get_vmcoreinfo_old(&size);
412         if (!vmcoreinfo)
413                 return ptr;
414         ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
415         kfree(vmcoreinfo);
416         return ptr;
417 }
418
419 static size_t nt_vmcoreinfo_size(void)
420 {
421         const char *name = VMCOREINFO_NOTE_NAME;
422         unsigned long size;
423         void *vmcoreinfo;
424
425         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
426         if (vmcoreinfo)
427                 return nt_size_name(size, name);
428
429         vmcoreinfo = get_vmcoreinfo_old(&size);
430         if (!vmcoreinfo)
431                 return 0;
432
433         kfree(vmcoreinfo);
434         return nt_size_name(size, name);
435 }
436
437 /*
438  * Initialize final note (needed for /proc/vmcore code)
439  */
440 static void *nt_final(void *ptr)
441 {
442         Elf64_Nhdr *note;
443
444         note = (Elf64_Nhdr *) ptr;
445         note->n_namesz = 0;
446         note->n_descsz = 0;
447         note->n_type = 0;
448         return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
449 }
450
451 /*
452  * Initialize ELF header (new kernel)
453  */
454 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
455 {
456         memset(ehdr, 0, sizeof(*ehdr));
457         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
458         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
459         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
460         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
461         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
462         ehdr->e_type = ET_CORE;
463         ehdr->e_machine = EM_S390;
464         ehdr->e_version = EV_CURRENT;
465         ehdr->e_phoff = sizeof(Elf64_Ehdr);
466         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
467         ehdr->e_phentsize = sizeof(Elf64_Phdr);
468         /*
469          * Number of memory chunk PT_LOAD program headers plus one kernel
470          * image PT_LOAD program header plus one PT_NOTE program header.
471          */
472         ehdr->e_phnum = mem_chunk_cnt + 1 + 1;
473         return ehdr + 1;
474 }
475
476 /*
477  * Return CPU count for ELF header (new kernel)
478  */
479 static int get_cpu_cnt(void)
480 {
481         struct save_area *sa;
482         int cpus = 0;
483
484         list_for_each_entry(sa, &dump_save_areas, list)
485                 if (sa->prefix != 0)
486                         cpus++;
487         return cpus;
488 }
489
490 /*
491  * Return memory chunk count for ELF header (new kernel)
492  */
493 static int get_mem_chunk_cnt(void)
494 {
495         int cnt = 0;
496         u64 idx;
497
498         for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
499                 cnt++;
500         return cnt;
501 }
502
503 /*
504  * Initialize ELF loads (new kernel)
505  */
506 static void loads_init(Elf64_Phdr *phdr)
507 {
508         unsigned long old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
509         phys_addr_t start, end;
510         u64 idx;
511
512         for_each_physmem_range(idx, &oldmem_type, &start, &end) {
513                 phdr->p_type = PT_LOAD;
514                 phdr->p_vaddr = old_identity_base + start;
515                 phdr->p_offset = start;
516                 phdr->p_paddr = start;
517                 phdr->p_filesz = end - start;
518                 phdr->p_memsz = end - start;
519                 phdr->p_flags = PF_R | PF_W | PF_X;
520                 phdr->p_align = PAGE_SIZE;
521                 phdr++;
522         }
523 }
524
525 /*
526  * Prepare PT_LOAD type program header for kernel image region
527  */
528 static void text_init(Elf64_Phdr *phdr)
529 {
530         unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
531         unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
532         unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
533
534         phdr->p_type = PT_LOAD;
535         phdr->p_vaddr = start;
536         phdr->p_filesz = end - start;
537         phdr->p_memsz = end - start;
538         phdr->p_offset = start_phys;
539         phdr->p_paddr = start_phys;
540         phdr->p_flags = PF_R | PF_W | PF_X;
541         phdr->p_align = PAGE_SIZE;
542 }
543
544 /*
545  * Initialize notes (new kernel)
546  */
547 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
548 {
549         struct save_area *sa;
550         void *ptr_start = ptr;
551         int cpu;
552
553         ptr = nt_prpsinfo(ptr);
554
555         cpu = 1;
556         list_for_each_entry(sa, &dump_save_areas, list)
557                 if (sa->prefix != 0)
558                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
559         ptr = nt_vmcoreinfo(ptr);
560         ptr = nt_final(ptr);
561         memset(phdr, 0, sizeof(*phdr));
562         phdr->p_type = PT_NOTE;
563         phdr->p_offset = notes_offset;
564         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
565         phdr->p_memsz = phdr->p_filesz;
566         return ptr;
567 }
568
569 static size_t get_elfcorehdr_size(int mem_chunk_cnt)
570 {
571         size_t size;
572
573         size = sizeof(Elf64_Ehdr);
574         /* PT_NOTES */
575         size += sizeof(Elf64_Phdr);
576         /* nt_prpsinfo */
577         size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
578         /* regsets */
579         size += get_cpu_cnt() * get_cpu_elf_notes_size();
580         /* nt_vmcoreinfo */
581         size += nt_vmcoreinfo_size();
582         /* nt_final */
583         size += sizeof(Elf64_Nhdr);
584         /* PT_LOAD type program header for kernel text region */
585         size += sizeof(Elf64_Phdr);
586         /* PT_LOADS */
587         size += mem_chunk_cnt * sizeof(Elf64_Phdr);
588
589         return size;
590 }
591
592 /*
593  * Create ELF core header (new kernel)
594  */
595 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
596 {
597         Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
598         size_t alloc_size;
599         int mem_chunk_cnt;
600         void *ptr, *hdr;
601         u64 hdr_off;
602
603         /* If we are not in kdump or zfcp/nvme dump mode return */
604         if (!oldmem_data.start && !is_ipl_type_dump())
605                 return 0;
606         /* If we cannot get HSA size for zfcp/nvme dump return error */
607         if (is_ipl_type_dump() && !sclp.hsa_size)
608                 return -ENODEV;
609
610         /* For kdump, exclude previous crashkernel memory */
611         if (oldmem_data.start) {
612                 oldmem_region.base = oldmem_data.start;
613                 oldmem_region.size = oldmem_data.size;
614                 oldmem_type.total_size = oldmem_data.size;
615         }
616
617         mem_chunk_cnt = get_mem_chunk_cnt();
618
619         alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
620
621         hdr = kzalloc(alloc_size, GFP_KERNEL);
622
623         /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
624          * a dump with this crash kernel will fail. Panic now to allow other
625          * dump mechanisms to take over.
626          */
627         if (!hdr)
628                 panic("s390 kdump allocating elfcorehdr failed");
629
630         /* Init elf header */
631         ptr = ehdr_init(hdr, mem_chunk_cnt);
632         /* Init program headers */
633         phdr_notes = ptr;
634         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
635         phdr_text = ptr;
636         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
637         phdr_loads = ptr;
638         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
639         /* Init notes */
640         hdr_off = PTR_DIFF(ptr, hdr);
641         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
642         /* Init kernel text program header */
643         text_init(phdr_text);
644         /* Init loads */
645         loads_init(phdr_loads);
646         /* Finalize program headers */
647         hdr_off = PTR_DIFF(ptr, hdr);
648         *addr = (unsigned long long) hdr;
649         *size = (unsigned long long) hdr_off;
650         BUG_ON(elfcorehdr_size > alloc_size);
651         return 0;
652 }
653
654 /*
655  * Free ELF core header (new kernel)
656  */
657 void elfcorehdr_free(unsigned long long addr)
658 {
659         kfree((void *)(unsigned long)addr);
660 }
661
662 /*
663  * Read from ELF header
664  */
665 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
666 {
667         void *src = (void *)(unsigned long)*ppos;
668
669         memcpy(buf, src, count);
670         *ppos += count;
671         return count;
672 }
673
674 /*
675  * Read from ELF notes data
676  */
677 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
678 {
679         void *src = (void *)(unsigned long)*ppos;
680
681         memcpy(buf, src, count);
682         *ppos += count;
683         return count;
684 }
This page took 0.069993 seconds and 4 git commands to generate.