2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
38 #include "radeon_reg.h"
40 #include "radeon_trace.h"
44 * Fences mark an event in the GPUs pipeline and are used
45 * for GPU/CPU synchronization. When the fence is written,
46 * it is expected that all buffers associated with that fence
47 * are no longer in use by the associated ring on the GPU and
48 * that the the relevant GPU caches have been flushed. Whether
49 * we use a scratch register or memory location depends on the asic
50 * and whether writeback is enabled.
54 * radeon_fence_write - write a fence value
56 * @rdev: radeon_device pointer
57 * @seq: sequence number to write
58 * @ring: ring index the fence is associated with
60 * Writes a fence value to memory or a scratch register (all asics).
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
67 *drv->cpu_addr = cpu_to_le32(seq);
70 WREG32(drv->scratch_reg, seq);
75 * radeon_fence_read - read a fence value
77 * @rdev: radeon_device pointer
78 * @ring: ring index the fence is associated with
80 * Reads a fence value from memory or a scratch register (all asics).
81 * Returns the value of the fence read from memory or register.
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
90 seq = le32_to_cpu(*drv->cpu_addr);
92 seq = lower_32_bits(atomic64_read(&drv->last_seq));
95 seq = RREG32(drv->scratch_reg);
101 * radeon_fence_schedule_check - schedule lockup check
103 * @rdev: radeon_device pointer
104 * @ring: ring index we should work with
106 * Queues a delayed work item to check for lockups.
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
111 * Do not reset the timer here with mod_delayed_work,
112 * this can livelock in an interaction with TTM delayed destroy.
114 queue_delayed_work(system_power_efficient_wq,
115 &rdev->fence_drv[ring].lockup_work,
116 RADEON_FENCE_JIFFIES_TIMEOUT);
120 * radeon_fence_emit - emit a fence on the requested ring
122 * @rdev: radeon_device pointer
123 * @fence: radeon fence object
124 * @ring: ring index the fence is associated with
126 * Emits a fence command on the requested ring (all asics).
127 * Returns 0 on success, -ENOMEM on failure.
129 int radeon_fence_emit(struct radeon_device *rdev,
130 struct radeon_fence **fence,
135 /* we are protected by the ring emission mutex */
136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 if ((*fence) == NULL) {
140 (*fence)->rdev = rdev;
141 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
142 (*fence)->ring = ring;
143 (*fence)->is_vm_update = false;
144 fence_init(&(*fence)->base, &radeon_fence_ops,
145 &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
146 radeon_fence_ring_emit(rdev, ring, *fence);
147 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
148 radeon_fence_schedule_check(rdev, ring);
153 * radeon_fence_check_signaled - callback from fence_queue
155 * this function is called with fence_queue lock held, which is also used
156 * for the fence locking itself, so unlocked variants are used for
157 * fence_signal, and remove_wait_queue.
159 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
161 struct radeon_fence *fence;
164 fence = container_of(wait, struct radeon_fence, fence_wake);
167 * We cannot use radeon_fence_process here because we're already
168 * in the waitqueue, in a call from wake_up_all.
170 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
171 if (seq >= fence->seq) {
172 int ret = fence_signal_locked(&fence->base);
175 FENCE_TRACE(&fence->base, "signaled from irq context\n");
177 FENCE_TRACE(&fence->base, "was already signaled\n");
179 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181 fence_put(&fence->base);
183 FENCE_TRACE(&fence->base, "pending\n");
188 * radeon_fence_activity - check for fence activity
190 * @rdev: radeon_device pointer
191 * @ring: ring index the fence is associated with
193 * Checks the current fence value and calculates the last
194 * signalled fence value. Returns true if activity occured
195 * on the ring, and the fence_queue should be waken up.
197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
199 uint64_t seq, last_seq, last_emitted;
200 unsigned count_loop = 0;
203 /* Note there is a scenario here for an infinite loop but it's
204 * very unlikely to happen. For it to happen, the current polling
205 * process need to be interrupted by another process and another
206 * process needs to update the last_seq btw the atomic read and
207 * xchg of the current process.
209 * More over for this to go in infinite loop there need to be
210 * continuously new fence signaled ie radeon_fence_read needs
211 * to return a different value each time for both the currently
212 * polling process and the other process that xchg the last_seq
213 * btw atomic read and xchg of the current process. And the
214 * value the other process set as last seq must be higher than
215 * the seq value we just read. Which means that current process
216 * need to be interrupted after radeon_fence_read and before
219 * To be even more safe we count the number of time we loop and
220 * we bail after 10 loop just accepting the fact that we might
221 * have temporarly set the last_seq not to the true real last
222 * seq but to an older one.
224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
226 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 seq = radeon_fence_read(rdev, ring);
228 seq |= last_seq & 0xffffffff00000000LL;
229 if (seq < last_seq) {
231 seq |= last_emitted & 0xffffffff00000000LL;
234 if (seq <= last_seq || seq > last_emitted) {
237 /* If we loop over we don't want to return without
238 * checking if a fence is signaled as it means that the
239 * seq we just read is different from the previous on.
243 if ((count_loop++) > 10) {
244 /* We looped over too many time leave with the
245 * fact that we might have set an older fence
246 * seq then the current real last seq as signaled
251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
253 if (seq < last_emitted)
254 radeon_fence_schedule_check(rdev, ring);
260 * radeon_fence_check_lockup - check for hardware lockup
262 * @work: delayed work item
264 * Checks for fence activity and if there is none probe
265 * the hardware if a lockup occured.
267 static void radeon_fence_check_lockup(struct work_struct *work)
269 struct radeon_fence_driver *fence_drv;
270 struct radeon_device *rdev;
273 fence_drv = container_of(work, struct radeon_fence_driver,
275 rdev = fence_drv->rdev;
276 ring = fence_drv - &rdev->fence_drv[0];
278 if (!down_read_trylock(&rdev->exclusive_lock)) {
279 /* just reschedule the check if a reset is going on */
280 radeon_fence_schedule_check(rdev, ring);
284 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
285 unsigned long irqflags;
287 fence_drv->delayed_irq = false;
288 spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 radeon_irq_set(rdev);
290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
293 if (radeon_fence_activity(rdev, ring))
294 wake_up_all(&rdev->fence_queue);
296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
298 /* good news we believe it's a lockup */
299 dev_warn(rdev->dev, "GPU lockup (current fence id "
300 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301 (uint64_t)atomic64_read(&fence_drv->last_seq),
302 fence_drv->sync_seq[ring], ring);
304 /* remember that we need an reset */
305 rdev->needs_reset = true;
306 wake_up_all(&rdev->fence_queue);
308 up_read(&rdev->exclusive_lock);
312 * radeon_fence_process - process a fence
314 * @rdev: radeon_device pointer
315 * @ring: ring index the fence is associated with
317 * Checks the current fence value and wakes the fence queue
318 * if the sequence number has increased (all asics).
320 void radeon_fence_process(struct radeon_device *rdev, int ring)
322 if (radeon_fence_activity(rdev, ring))
323 wake_up_all(&rdev->fence_queue);
327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
329 * @rdev: radeon device pointer
330 * @seq: sequence number
331 * @ring: ring index the fence is associated with
333 * Check if the last signaled fence sequnce number is >= the requested
334 * sequence number (all asics).
335 * Returns true if the fence has signaled (current fence value
336 * is >= requested value) or false if it has not (current fence
337 * value is < the requested value. Helper function for
338 * radeon_fence_signaled().
340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341 u64 seq, unsigned ring)
343 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
346 /* poll new last sequence at least once */
347 radeon_fence_process(rdev, ring);
348 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
354 static bool radeon_fence_is_signaled(struct fence *f)
356 struct radeon_fence *fence = to_radeon_fence(f);
357 struct radeon_device *rdev = fence->rdev;
358 unsigned ring = fence->ring;
359 u64 seq = fence->seq;
361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
365 if (down_read_trylock(&rdev->exclusive_lock)) {
366 radeon_fence_process(rdev, ring);
367 up_read(&rdev->exclusive_lock);
369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
377 * radeon_fence_enable_signaling - enable signalling on fence
380 * This function is called with fence_queue lock held, and adds a callback
381 * to fence_queue that checks if this fence is signaled, and if so it
382 * signals the fence and removes itself.
384 static bool radeon_fence_enable_signaling(struct fence *f)
386 struct radeon_fence *fence = to_radeon_fence(f);
387 struct radeon_device *rdev = fence->rdev;
389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
392 if (down_read_trylock(&rdev->exclusive_lock)) {
393 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
395 if (radeon_fence_activity(rdev, fence->ring))
396 wake_up_all_locked(&rdev->fence_queue);
398 /* did fence get signaled after we enabled the sw irq? */
399 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401 up_read(&rdev->exclusive_lock);
405 up_read(&rdev->exclusive_lock);
407 /* we're probably in a lockup, lets not fiddle too much */
408 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409 rdev->fence_drv[fence->ring].delayed_irq = true;
410 radeon_fence_schedule_check(rdev, fence->ring);
413 fence->fence_wake.flags = 0;
414 fence->fence_wake.private = NULL;
415 fence->fence_wake.func = radeon_fence_check_signaled;
416 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
419 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
424 * radeon_fence_signaled - check if a fence has signaled
426 * @fence: radeon fence object
428 * Check if the requested fence has signaled (all asics).
429 * Returns true if the fence has signaled or false if it has not.
431 bool radeon_fence_signaled(struct radeon_fence *fence)
436 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
439 ret = fence_signal(&fence->base);
441 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
448 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
450 * @rdev: radeon device pointer
451 * @seq: sequence numbers
453 * Check if the last signaled fence sequnce number is >= the requested
454 * sequence number (all asics).
455 * Returns true if any has signaled (current value is >= requested value)
456 * or false if it has not. Helper function for radeon_fence_wait_seq.
458 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
462 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
463 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
470 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
472 * @rdev: radeon device pointer
473 * @target_seq: sequence number(s) we want to wait for
474 * @intr: use interruptable sleep
475 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
477 * Wait for the requested sequence number(s) to be written by any ring
478 * (all asics). Sequnce number array is indexed by ring id.
479 * @intr selects whether to use interruptable (true) or non-interruptable
480 * (false) sleep when waiting for the sequence number. Helper function
481 * for radeon_fence_wait_*().
482 * Returns remaining time if the sequence number has passed, 0 when
483 * the wait timeout, or an error for all other cases.
484 * -EDEADLK is returned when a GPU lockup has been detected.
486 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
487 u64 *target_seq, bool intr,
493 if (radeon_fence_any_seq_signaled(rdev, target_seq))
496 /* enable IRQs and tracing */
497 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
501 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
502 radeon_irq_kms_sw_irq_get(rdev, i);
506 r = wait_event_interruptible_timeout(rdev->fence_queue, (
507 radeon_fence_any_seq_signaled(rdev, target_seq)
508 || rdev->needs_reset), timeout);
510 r = wait_event_timeout(rdev->fence_queue, (
511 radeon_fence_any_seq_signaled(rdev, target_seq)
512 || rdev->needs_reset), timeout);
515 if (rdev->needs_reset)
518 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
522 radeon_irq_kms_sw_irq_put(rdev, i);
523 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
530 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
532 * @fence: radeon fence object
533 * @intr: use interruptible sleep
535 * Wait for the requested fence to signal (all asics).
536 * @intr selects whether to use interruptable (true) or non-interruptable
537 * (false) sleep when waiting for the fence.
538 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
539 * Returns remaining time if the sequence number has passed, 0 when
540 * the wait timeout, or an error for all other cases.
542 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
544 uint64_t seq[RADEON_NUM_RINGS] = {};
549 * This function should not be called on !radeon fences.
550 * If this is the case, it would mean this function can
551 * also be called on radeon fences belonging to another card.
552 * exclusive_lock is not held in that case.
554 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
555 return fence_wait(&fence->base, intr);
557 seq[fence->ring] = fence->seq;
558 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
563 r_sig = fence_signal(&fence->base);
565 FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
570 * radeon_fence_wait - wait for a fence to signal
572 * @fence: radeon fence object
573 * @intr: use interruptible sleep
575 * Wait for the requested fence to signal (all asics).
576 * @intr selects whether to use interruptable (true) or non-interruptable
577 * (false) sleep when waiting for the fence.
578 * Returns 0 if the fence has passed, error for all other cases.
580 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
582 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
591 * radeon_fence_wait_any - wait for a fence to signal on any ring
593 * @rdev: radeon device pointer
594 * @fences: radeon fence object(s)
595 * @intr: use interruptable sleep
597 * Wait for any requested fence to signal (all asics). Fence
598 * array is indexed by ring id. @intr selects whether to use
599 * interruptable (true) or non-interruptable (false) sleep when
600 * waiting for the fences. Used by the suballocator.
601 * Returns 0 if any fence has passed, error for all other cases.
603 int radeon_fence_wait_any(struct radeon_device *rdev,
604 struct radeon_fence **fences,
607 uint64_t seq[RADEON_NUM_RINGS];
608 unsigned i, num_rings = 0;
611 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
618 seq[i] = fences[i]->seq;
622 /* nothing to wait for ? */
626 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
634 * radeon_fence_wait_next - wait for the next fence to signal
636 * @rdev: radeon device pointer
637 * @ring: ring index the fence is associated with
639 * Wait for the next fence on the requested ring to signal (all asics).
640 * Returns 0 if the next fence has passed, error for all other cases.
641 * Caller must hold ring lock.
643 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
645 uint64_t seq[RADEON_NUM_RINGS] = {};
648 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
649 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
650 /* nothing to wait for, last_seq is
651 already the last emited fence */
654 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
661 * radeon_fence_wait_empty - wait for all fences to signal
663 * @rdev: radeon device pointer
664 * @ring: ring index the fence is associated with
666 * Wait for all fences on the requested ring to signal (all asics).
667 * Returns 0 if the fences have passed, error for all other cases.
668 * Caller must hold ring lock.
670 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
672 uint64_t seq[RADEON_NUM_RINGS] = {};
675 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
679 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
684 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
691 * radeon_fence_ref - take a ref on a fence
693 * @fence: radeon fence object
695 * Take a reference on a fence (all asics).
698 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
700 fence_get(&fence->base);
705 * radeon_fence_unref - remove a ref on a fence
707 * @fence: radeon fence object
709 * Remove a reference on a fence (all asics).
711 void radeon_fence_unref(struct radeon_fence **fence)
713 struct radeon_fence *tmp = *fence;
717 fence_put(&tmp->base);
722 * radeon_fence_count_emitted - get the count of emitted fences
724 * @rdev: radeon device pointer
725 * @ring: ring index the fence is associated with
727 * Get the number of fences emitted on the requested ring (all asics).
728 * Returns the number of emitted fences on the ring. Used by the
729 * dynpm code to ring track activity.
731 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
735 /* We are not protected by ring lock when reading the last sequence
736 * but it's ok to report slightly wrong fence count here.
738 radeon_fence_process(rdev, ring);
739 emitted = rdev->fence_drv[ring].sync_seq[ring]
740 - atomic64_read(&rdev->fence_drv[ring].last_seq);
741 /* to avoid 32bits warp around */
742 if (emitted > 0x10000000) {
743 emitted = 0x10000000;
745 return (unsigned)emitted;
749 * radeon_fence_need_sync - do we need a semaphore
751 * @fence: radeon fence object
752 * @dst_ring: which ring to check against
754 * Check if the fence needs to be synced against another ring
755 * (all asics). If so, we need to emit a semaphore.
756 * Returns true if we need to sync with another ring, false if
759 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
761 struct radeon_fence_driver *fdrv;
767 if (fence->ring == dst_ring) {
771 /* we are protected by the ring mutex */
772 fdrv = &fence->rdev->fence_drv[dst_ring];
773 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
781 * radeon_fence_note_sync - record the sync point
783 * @fence: radeon fence object
784 * @dst_ring: which ring to check against
786 * Note the sequence number at which point the fence will
787 * be synced with the requested ring (all asics).
789 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
791 struct radeon_fence_driver *dst, *src;
798 if (fence->ring == dst_ring) {
802 /* we are protected by the ring mutex */
803 src = &fence->rdev->fence_drv[fence->ring];
804 dst = &fence->rdev->fence_drv[dst_ring];
805 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
809 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
814 * radeon_fence_driver_start_ring - make the fence driver
815 * ready for use on the requested ring.
817 * @rdev: radeon device pointer
818 * @ring: ring index to start the fence driver on
820 * Make the fence driver ready for processing (all asics).
821 * Not all asics have all rings, so each asic will only
822 * start the fence driver on the rings it has.
823 * Returns 0 for success, errors for failure.
825 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
830 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
831 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
832 rdev->fence_drv[ring].scratch_reg = 0;
833 if (ring != R600_RING_TYPE_UVD_INDEX) {
834 index = R600_WB_EVENT_OFFSET + ring * 4;
835 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
836 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
840 /* put fence directly behind firmware */
841 index = ALIGN(rdev->uvd_fw->size, 8);
842 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
843 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
847 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
849 dev_err(rdev->dev, "fence failed to get scratch register\n");
852 index = RADEON_WB_SCRATCH_OFFSET +
853 rdev->fence_drv[ring].scratch_reg -
854 rdev->scratch.reg_base;
855 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
856 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
858 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
859 rdev->fence_drv[ring].initialized = true;
860 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
861 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
866 * radeon_fence_driver_init_ring - init the fence driver
867 * for the requested ring.
869 * @rdev: radeon device pointer
870 * @ring: ring index to start the fence driver on
872 * Init the fence driver for the requested ring (all asics).
873 * Helper function for radeon_fence_driver_init().
875 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
879 rdev->fence_drv[ring].scratch_reg = -1;
880 rdev->fence_drv[ring].cpu_addr = NULL;
881 rdev->fence_drv[ring].gpu_addr = 0;
882 for (i = 0; i < RADEON_NUM_RINGS; ++i)
883 rdev->fence_drv[ring].sync_seq[i] = 0;
884 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
885 rdev->fence_drv[ring].initialized = false;
886 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
887 radeon_fence_check_lockup);
888 rdev->fence_drv[ring].rdev = rdev;
892 * radeon_fence_driver_init - init the fence driver
893 * for all possible rings.
895 * @rdev: radeon device pointer
897 * Init the fence driver for all possible rings (all asics).
898 * Not all asics have all rings, so each asic will only
899 * start the fence driver on the rings it has using
900 * radeon_fence_driver_start_ring().
901 * Returns 0 for success.
903 int radeon_fence_driver_init(struct radeon_device *rdev)
907 init_waitqueue_head(&rdev->fence_queue);
908 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
909 radeon_fence_driver_init_ring(rdev, ring);
911 if (radeon_debugfs_fence_init(rdev)) {
912 dev_err(rdev->dev, "fence debugfs file creation failed\n");
918 * radeon_fence_driver_fini - tear down the fence driver
919 * for all possible rings.
921 * @rdev: radeon device pointer
923 * Tear down the fence driver for all possible rings (all asics).
925 void radeon_fence_driver_fini(struct radeon_device *rdev)
929 mutex_lock(&rdev->ring_lock);
930 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
931 if (!rdev->fence_drv[ring].initialized)
933 r = radeon_fence_wait_empty(rdev, ring);
935 /* no need to trigger GPU reset as we are unloading */
936 radeon_fence_driver_force_completion(rdev, ring);
938 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
939 wake_up_all(&rdev->fence_queue);
940 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
941 rdev->fence_drv[ring].initialized = false;
943 mutex_unlock(&rdev->ring_lock);
947 * radeon_fence_driver_force_completion - force all fence waiter to complete
949 * @rdev: radeon device pointer
950 * @ring: the ring to complete
952 * In case of GPU reset failure make sure no process keep waiting on fence
953 * that will never complete.
955 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
957 if (rdev->fence_drv[ring].initialized) {
958 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
959 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
967 #if defined(CONFIG_DEBUG_FS)
968 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
970 struct drm_info_node *node = (struct drm_info_node *)m->private;
971 struct drm_device *dev = node->minor->dev;
972 struct radeon_device *rdev = dev->dev_private;
975 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
976 if (!rdev->fence_drv[i].initialized)
979 radeon_fence_process(rdev, i);
981 seq_printf(m, "--- ring %d ---\n", i);
982 seq_printf(m, "Last signaled fence 0x%016llx\n",
983 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
984 seq_printf(m, "Last emitted 0x%016llx\n",
985 rdev->fence_drv[i].sync_seq[i]);
987 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
988 if (i != j && rdev->fence_drv[j].initialized)
989 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
990 j, rdev->fence_drv[i].sync_seq[j]);
997 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
999 * Manually trigger a gpu reset at the next fence wait.
1001 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1003 struct drm_info_node *node = (struct drm_info_node *) m->private;
1004 struct drm_device *dev = node->minor->dev;
1005 struct radeon_device *rdev = dev->dev_private;
1007 down_read(&rdev->exclusive_lock);
1008 seq_printf(m, "%d\n", rdev->needs_reset);
1009 rdev->needs_reset = true;
1010 wake_up_all(&rdev->fence_queue);
1011 up_read(&rdev->exclusive_lock);
1016 static struct drm_info_list radeon_debugfs_fence_list[] = {
1017 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1018 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1022 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1024 #if defined(CONFIG_DEBUG_FS)
1025 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1031 static const char *radeon_fence_get_driver_name(struct fence *fence)
1036 static const char *radeon_fence_get_timeline_name(struct fence *f)
1038 struct radeon_fence *fence = to_radeon_fence(f);
1039 switch (fence->ring) {
1040 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1041 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1042 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1043 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1044 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1045 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1046 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1047 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1048 default: WARN_ON_ONCE(1); return "radeon.unk";
1052 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1054 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1057 struct radeon_wait_cb {
1058 struct fence_cb base;
1059 struct task_struct *task;
1063 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1065 struct radeon_wait_cb *wait =
1066 container_of(cb, struct radeon_wait_cb, base);
1068 wake_up_process(wait->task);
1071 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1074 struct radeon_fence *fence = to_radeon_fence(f);
1075 struct radeon_device *rdev = fence->rdev;
1076 struct radeon_wait_cb cb;
1080 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1085 set_current_state(TASK_INTERRUPTIBLE);
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1090 * radeon_test_signaled must be called after
1091 * set_current_state to prevent a race with wake_up_process
1093 if (radeon_test_signaled(fence))
1096 if (rdev->needs_reset) {
1101 t = schedule_timeout(t);
1103 if (t > 0 && intr && signal_pending(current))
1107 __set_current_state(TASK_RUNNING);
1108 fence_remove_callback(f, &cb.base);
1113 const struct fence_ops radeon_fence_ops = {
1114 .get_driver_name = radeon_fence_get_driver_name,
1115 .get_timeline_name = radeon_fence_get_timeline_name,
1116 .enable_signaling = radeon_fence_enable_signaling,
1117 .signaled = radeon_fence_is_signaled,
1118 .wait = radeon_fence_default_wait,