1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/phy/phy.h>
32 #include <linux/pm_runtime.h>
34 #define DRIVER_NAME "xilinx_can"
36 /* CAN registers set */
38 XCAN_SRR_OFFSET = 0x00, /* Software reset */
39 XCAN_MSR_OFFSET = 0x04, /* Mode select */
40 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
41 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
42 XCAN_ECR_OFFSET = 0x10, /* Error counter */
43 XCAN_ESR_OFFSET = 0x14, /* Error status */
44 XCAN_SR_OFFSET = 0x18, /* Status */
45 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
46 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
47 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
49 /* not on CAN FD cores */
50 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
51 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
52 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
54 /* only on CAN FD cores */
55 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
58 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
59 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
60 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
61 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
62 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
63 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
64 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
65 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
66 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
69 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
70 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
71 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
72 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
73 #define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
75 #define XCAN_CANFD_FRAME_SIZE 0x48
76 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
77 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
79 XCAN_CANFD_FRAME_SIZE * (n))
80 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
81 XCAN_CANFD_FRAME_SIZE * (n))
83 /* the single TX mailbox used by this driver on CAN FD HW */
84 #define XCAN_TX_MAILBOX_IDX 0
86 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
87 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
88 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
89 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
90 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
91 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
92 #define XCAN_BRPR_TDCO_MASK GENMASK(12, 8) /* TDCO */
93 #define XCAN_2_BRPR_TDCO_MASK GENMASK(13, 8) /* TDCO for CANFD 2.0 */
94 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
95 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
96 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
97 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
98 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
99 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
100 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
101 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
102 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
103 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
104 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
105 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
106 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
107 #define XCAN_SR_TDCV_MASK GENMASK(22, 16) /* TDCV Value */
108 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
109 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
110 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
111 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
112 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
113 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
114 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
115 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
116 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
117 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
118 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
119 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
120 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
121 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
122 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
123 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
124 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
125 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
126 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
127 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
128 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
129 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
130 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
131 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
132 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
133 #define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
134 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
135 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
136 #define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
137 #define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
138 #define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
140 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
141 #define XCAN_BRPR_TDC_ENABLE BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
142 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
143 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
144 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
145 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
146 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
147 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
148 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
149 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
151 /* CAN frame length constants */
152 #define XCAN_FRAME_MAX_DATA_LEN 8
153 #define XCANFD_DW_BYTES 4
154 #define XCAN_TIMEOUT (1 * HZ)
156 /* TX-FIFO-empty interrupt available */
157 #define XCAN_FLAG_TXFEMP 0x0001
158 /* RX Match Not Finished interrupt available */
159 #define XCAN_FLAG_RXMNF 0x0002
160 /* Extended acceptance filters with control at 0xE0 */
161 #define XCAN_FLAG_EXT_FILTERS 0x0004
162 /* TX mailboxes instead of TX FIFO */
163 #define XCAN_FLAG_TX_MAILBOXES 0x0008
164 /* RX FIFO with each buffer in separate registers at 0x1100
165 * instead of the regular FIFO at 0x50
167 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010
168 #define XCAN_FLAG_CANFD_2 0x0020
177 struct xcan_devtype_data {
178 enum xcan_ip_type cantype;
180 const struct can_bittiming_const *bittiming_const;
181 const char *bus_clk_name;
182 unsigned int btr_ts2_shift;
183 unsigned int btr_sjw_shift;
187 * struct xcan_priv - This definition define CAN driver instance
188 * @can: CAN private data structure.
189 * @tx_lock: Lock for synchronizing TX interrupt handling
190 * @tx_head: Tx CAN packets ready to send on the queue
191 * @tx_tail: Tx CAN packets successfully sended on the queue
192 * @tx_max: Maximum number packets the driver can send
193 * @napi: NAPI structure
194 * @read_reg: For reading data from CAN registers
195 * @write_reg: For writing data to CAN registers
196 * @dev: Network device data structure
197 * @reg_base: Ioremapped address to registers
198 * @irq_flags: For request_irq()
199 * @bus_clk: Pointer to struct clk
200 * @can_clk: Pointer to struct clk
201 * @devtype: Device type specific constants
202 * @transceiver: Optional pointer to associated CAN transceiver
206 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
207 unsigned int tx_head;
208 unsigned int tx_tail;
210 struct napi_struct napi;
211 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
212 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
215 void __iomem *reg_base;
216 unsigned long irq_flags;
219 struct xcan_devtype_data devtype;
220 struct phy *transceiver;
223 /* CAN Bittiming constants as per Xilinx CAN specs */
224 static const struct can_bittiming_const xcan_bittiming_const = {
236 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
237 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
249 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
250 static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
262 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
263 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
275 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
276 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
288 /* Transmission Delay Compensation constants for CANFD 1.0 */
289 static const struct can_tdc_const xcan_tdc_const_canfd = {
291 .tdcv_max = 0, /* Manual mode not supported. */
294 .tdcf_min = 0, /* Filter window not supported */
298 /* Transmission Delay Compensation constants for CANFD 2.0 */
299 static const struct can_tdc_const xcan_tdc_const_canfd2 = {
301 .tdcv_max = 0, /* Manual mode not supported. */
304 .tdcf_min = 0, /* Filter window not supported */
309 * xcan_write_reg_le - Write a value to the device register little endian
310 * @priv: Driver private data structure
311 * @reg: Register offset
312 * @val: Value to write at the Register offset
314 * Write data to the paricular CAN register
316 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
319 iowrite32(val, priv->reg_base + reg);
323 * xcan_read_reg_le - Read a value from the device register little endian
324 * @priv: Driver private data structure
325 * @reg: Register offset
327 * Read data from the particular CAN register
328 * Return: value read from the CAN register
330 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
332 return ioread32(priv->reg_base + reg);
336 * xcan_write_reg_be - Write a value to the device register big endian
337 * @priv: Driver private data structure
338 * @reg: Register offset
339 * @val: Value to write at the Register offset
341 * Write data to the paricular CAN register
343 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
346 iowrite32be(val, priv->reg_base + reg);
350 * xcan_read_reg_be - Read a value from the device register big endian
351 * @priv: Driver private data structure
352 * @reg: Register offset
354 * Read data from the particular CAN register
355 * Return: value read from the CAN register
357 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
359 return ioread32be(priv->reg_base + reg);
363 * xcan_rx_int_mask - Get the mask for the receive interrupt
364 * @priv: Driver private data structure
366 * Return: The receive interrupt mask used by the driver on this HW
368 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
370 /* RXNEMP is better suited for our use case as it cannot be cleared
371 * while the FIFO is non-empty, but CAN FD HW does not have it
373 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
374 return XCAN_IXR_RXOK_MASK;
376 return XCAN_IXR_RXNEMP_MASK;
380 * set_reset_mode - Resets the CAN device mode
381 * @ndev: Pointer to net_device structure
383 * This is the driver reset mode routine.The driver
384 * enters into configuration mode.
386 * Return: 0 on success and failure value on error
388 static int set_reset_mode(struct net_device *ndev)
390 struct xcan_priv *priv = netdev_priv(ndev);
391 unsigned long timeout;
393 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
395 timeout = jiffies + XCAN_TIMEOUT;
396 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
397 if (time_after(jiffies, timeout)) {
398 netdev_warn(ndev, "timed out for config mode\n");
401 usleep_range(500, 10000);
404 /* reset clears FIFOs */
412 * xcan_set_bittiming - CAN set bit timing routine
413 * @ndev: Pointer to net_device structure
415 * This is the driver set bittiming routine.
416 * Return: 0 on success and failure value on error
418 static int xcan_set_bittiming(struct net_device *ndev)
420 struct xcan_priv *priv = netdev_priv(ndev);
421 struct can_bittiming *bt = &priv->can.bittiming;
422 struct can_bittiming *dbt = &priv->can.data_bittiming;
426 /* Check whether Xilinx CAN is in configuration mode.
427 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
429 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
431 if (!is_config_mode) {
433 "BUG! Cannot set bittiming - CAN is not in config mode\n");
437 /* Setting Baud Rate prescaler value in BRPR Register */
438 btr0 = (bt->brp - 1);
440 /* Setting Time Segment 1 in BTR Register */
441 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
443 /* Setting Time Segment 2 in BTR Register */
444 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
446 /* Setting Synchronous jump width in BTR Register */
447 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
449 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
450 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
452 if (priv->devtype.cantype == XAXI_CANFD ||
453 priv->devtype.cantype == XAXI_CANFD_2_0) {
454 /* Setting Baud Rate prescaler value in F_BRPR Register */
456 if (can_tdc_is_enabled(&priv->can)) {
457 if (priv->devtype.cantype == XAXI_CANFD)
458 btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
459 XCAN_BRPR_TDC_ENABLE;
461 btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
462 XCAN_BRPR_TDC_ENABLE;
465 /* Setting Time Segment 1 in BTR Register */
466 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
468 /* Setting Time Segment 2 in BTR Register */
469 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
471 /* Setting Synchronous jump width in BTR Register */
472 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
474 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
475 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
478 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
479 priv->read_reg(priv, XCAN_BRPR_OFFSET),
480 priv->read_reg(priv, XCAN_BTR_OFFSET));
486 * xcan_chip_start - This the drivers start routine
487 * @ndev: Pointer to net_device structure
489 * This is the drivers start routine.
490 * Based on the State of the CAN device it puts
491 * the CAN device into a proper mode.
493 * Return: 0 on success and failure value on error
495 static int xcan_chip_start(struct net_device *ndev)
497 struct xcan_priv *priv = netdev_priv(ndev);
502 /* Check if it is in reset mode */
503 err = set_reset_mode(ndev);
507 err = xcan_set_bittiming(ndev);
513 * We enable the ERROR interrupt even with
514 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
515 * dedicated interrupt for a state change to
516 * ERROR_WARNING/ERROR_PASSIVE.
518 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
519 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
520 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
521 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
523 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
524 ier |= XCAN_IXR_RXMNF_MASK;
526 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
528 /* Check whether it is loopback mode or normal mode */
529 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
530 reg_msr = XCAN_MSR_LBACK_MASK;
534 /* enable the first extended filter, if any, as cores with extended
535 * filtering default to non-receipt if all filters are disabled
537 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
538 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
540 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
541 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
543 netdev_dbg(ndev, "status:#x%08x\n",
544 priv->read_reg(priv, XCAN_SR_OFFSET));
546 priv->can.state = CAN_STATE_ERROR_ACTIVE;
551 * xcan_do_set_mode - This sets the mode of the driver
552 * @ndev: Pointer to net_device structure
553 * @mode: Tells the mode of the driver
555 * This check the drivers state and calls the corresponding modes to set.
557 * Return: 0 on success and failure value on error
559 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
565 ret = xcan_chip_start(ndev);
567 netdev_err(ndev, "xcan_chip_start failed!\n");
570 netif_wake_queue(ndev);
581 * xcan_write_frame - Write a frame to HW
582 * @ndev: Pointer to net_device structure
583 * @skb: sk_buff pointer that contains data to be Txed
584 * @frame_offset: Register offset to write the frame to
586 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
589 u32 id, dlc, data[2] = {0, 0};
590 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
591 u32 ramoff, dwindex = 0, i;
592 struct xcan_priv *priv = netdev_priv(ndev);
594 /* Watch carefully on the bit sequence */
595 if (cf->can_id & CAN_EFF_FLAG) {
596 /* Extended CAN ID format */
597 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
599 id |= (((cf->can_id & CAN_EFF_MASK) >>
600 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
601 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
603 /* The substibute remote TX request bit should be "1"
604 * for extended frames as in the Xilinx CAN datasheet
606 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
608 if (cf->can_id & CAN_RTR_FLAG)
609 /* Extended frames remote TX request */
610 id |= XCAN_IDR_RTR_MASK;
612 /* Standard CAN ID format */
613 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
616 if (cf->can_id & CAN_RTR_FLAG)
617 /* Standard frames remote TX request */
618 id |= XCAN_IDR_SRR_MASK;
621 dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
622 if (can_is_canfd_skb(skb)) {
623 if (cf->flags & CANFD_BRS)
624 dlc |= XCAN_DLCR_BRS_MASK;
625 dlc |= XCAN_DLCR_EDL_MASK;
628 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
629 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
630 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
632 can_put_echo_skb(skb, ndev, 0, 0);
636 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
637 /* If the CAN frame is RTR frame this write triggers transmission
640 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
641 if (priv->devtype.cantype == XAXI_CANFD ||
642 priv->devtype.cantype == XAXI_CANFD_2_0) {
643 for (i = 0; i < cf->len; i += 4) {
644 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
645 (dwindex * XCANFD_DW_BYTES);
646 priv->write_reg(priv, ramoff,
647 be32_to_cpup((__be32 *)(cf->data + i)));
652 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
654 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
656 if (!(cf->can_id & CAN_RTR_FLAG)) {
657 priv->write_reg(priv,
658 XCAN_FRAME_DW1_OFFSET(frame_offset),
660 /* If the CAN frame is Standard/Extended frame this
661 * write triggers transmission (not on CAN FD)
663 priv->write_reg(priv,
664 XCAN_FRAME_DW2_OFFSET(frame_offset),
671 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
672 * @skb: sk_buff pointer that contains data to be Txed
673 * @ndev: Pointer to net_device structure
675 * Return: 0 on success, -ENOSPC if FIFO is full.
677 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
679 struct xcan_priv *priv = netdev_priv(ndev);
682 /* Check if the TX buffer is full */
683 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
687 spin_lock_irqsave(&priv->tx_lock, flags);
689 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
691 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
692 if (priv->tx_max > 1)
693 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
695 /* Check if the TX buffer is full */
696 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
697 netif_stop_queue(ndev);
699 spin_unlock_irqrestore(&priv->tx_lock, flags);
705 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
706 * @skb: sk_buff pointer that contains data to be Txed
707 * @ndev: Pointer to net_device structure
709 * Return: 0 on success, -ENOSPC if there is no space
711 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
713 struct xcan_priv *priv = netdev_priv(ndev);
716 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
717 BIT(XCAN_TX_MAILBOX_IDX)))
720 spin_lock_irqsave(&priv->tx_lock, flags);
722 xcan_write_frame(ndev, skb,
723 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
725 /* Mark buffer as ready for transmit */
726 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
728 netif_stop_queue(ndev);
730 spin_unlock_irqrestore(&priv->tx_lock, flags);
736 * xcan_start_xmit - Starts the transmission
737 * @skb: sk_buff pointer that contains data to be Txed
738 * @ndev: Pointer to net_device structure
740 * This function is invoked from upper layers to initiate transmission.
742 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
744 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
746 struct xcan_priv *priv = netdev_priv(ndev);
749 if (can_dev_dropped_skb(ndev, skb))
752 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
753 ret = xcan_start_xmit_mailbox(skb, ndev);
755 ret = xcan_start_xmit_fifo(skb, ndev);
758 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
759 netif_stop_queue(ndev);
760 return NETDEV_TX_BUSY;
767 * xcan_rx - Is called from CAN isr to complete the received
769 * @ndev: Pointer to net_device structure
770 * @frame_base: Register offset to the frame to be read
772 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
773 * does minimal processing and invokes "netif_receive_skb" to complete further
775 * Return: 1 on success and 0 on failure.
777 static int xcan_rx(struct net_device *ndev, int frame_base)
779 struct xcan_priv *priv = netdev_priv(ndev);
780 struct net_device_stats *stats = &ndev->stats;
781 struct can_frame *cf;
783 u32 id_xcan, dlc, data[2] = {0, 0};
785 skb = alloc_can_skb(ndev, &cf);
786 if (unlikely(!skb)) {
791 /* Read a frame from Xilinx zynq CANPS */
792 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
793 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
796 /* Change Xilinx CAN data length format to socketCAN data format */
797 cf->len = can_cc_dlc2len(dlc);
799 /* Change Xilinx CAN ID format to socketCAN ID format */
800 if (id_xcan & XCAN_IDR_IDE_MASK) {
801 /* The received frame is an Extended format frame */
802 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
803 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
805 cf->can_id |= CAN_EFF_FLAG;
806 if (id_xcan & XCAN_IDR_RTR_MASK)
807 cf->can_id |= CAN_RTR_FLAG;
809 /* The received frame is a standard format frame */
810 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
812 if (id_xcan & XCAN_IDR_SRR_MASK)
813 cf->can_id |= CAN_RTR_FLAG;
816 /* DW1/DW2 must always be read to remove message from RXFIFO */
817 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
818 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
820 if (!(cf->can_id & CAN_RTR_FLAG)) {
821 /* Change Xilinx CAN data format to socketCAN data format */
823 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
825 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
827 stats->rx_bytes += cf->len;
831 netif_receive_skb(skb);
837 * xcanfd_rx - Is called from CAN isr to complete the received
839 * @ndev: Pointer to net_device structure
840 * @frame_base: Register offset to the frame to be read
842 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
843 * does minimal processing and invokes "netif_receive_skb" to complete further
845 * Return: 1 on success and 0 on failure.
847 static int xcanfd_rx(struct net_device *ndev, int frame_base)
849 struct xcan_priv *priv = netdev_priv(ndev);
850 struct net_device_stats *stats = &ndev->stats;
851 struct canfd_frame *cf;
853 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
855 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
856 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
857 if (dlc & XCAN_DLCR_EDL_MASK)
858 skb = alloc_canfd_skb(ndev, &cf);
860 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
862 if (unlikely(!skb)) {
867 /* Change Xilinx CANFD data length format to socketCAN data
870 if (dlc & XCAN_DLCR_EDL_MASK)
871 cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
872 XCAN_DLCR_DLC_SHIFT);
874 cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
875 XCAN_DLCR_DLC_SHIFT);
877 /* Change Xilinx CAN ID format to socketCAN ID format */
878 if (id_xcan & XCAN_IDR_IDE_MASK) {
879 /* The received frame is an Extended format frame */
880 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
881 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
883 cf->can_id |= CAN_EFF_FLAG;
884 if (id_xcan & XCAN_IDR_RTR_MASK)
885 cf->can_id |= CAN_RTR_FLAG;
887 /* The received frame is a standard format frame */
888 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
890 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
892 cf->can_id |= CAN_RTR_FLAG;
895 /* Check the frame received is FD or not*/
896 if (dlc & XCAN_DLCR_EDL_MASK) {
897 for (i = 0; i < cf->len; i += 4) {
898 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
899 (dwindex * XCANFD_DW_BYTES);
900 data[0] = priv->read_reg(priv, dw_offset);
901 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
905 for (i = 0; i < cf->len; i += 4) {
906 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
907 data[0] = priv->read_reg(priv, dw_offset + i);
908 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
912 if (!(cf->can_id & CAN_RTR_FLAG))
913 stats->rx_bytes += cf->len;
916 netif_receive_skb(skb);
922 * xcan_current_error_state - Get current error state from HW
923 * @ndev: Pointer to net_device structure
925 * Checks the current CAN error state from the HW. Note that this
926 * only checks for ERROR_PASSIVE and ERROR_WARNING.
929 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
932 static enum can_state xcan_current_error_state(struct net_device *ndev)
934 struct xcan_priv *priv = netdev_priv(ndev);
935 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
937 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
938 return CAN_STATE_ERROR_PASSIVE;
939 else if (status & XCAN_SR_ERRWRN_MASK)
940 return CAN_STATE_ERROR_WARNING;
942 return CAN_STATE_ERROR_ACTIVE;
946 * xcan_set_error_state - Set new CAN error state
947 * @ndev: Pointer to net_device structure
948 * @new_state: The new CAN state to be set
949 * @cf: Error frame to be populated or NULL
951 * Set new CAN error state for the device, updating statistics and
952 * populating the error frame if given.
954 static void xcan_set_error_state(struct net_device *ndev,
955 enum can_state new_state,
956 struct can_frame *cf)
958 struct xcan_priv *priv = netdev_priv(ndev);
959 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
960 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
961 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
962 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
963 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
965 /* non-ERROR states are handled elsewhere */
966 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
969 can_change_state(ndev, cf, tx_state, rx_state);
972 cf->can_id |= CAN_ERR_CNT;
979 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
980 * @ndev: Pointer to net_device structure
982 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
983 * the performed RX/TX has caused it to drop to a lesser state and set
984 * the interface state accordingly.
986 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
988 struct xcan_priv *priv = netdev_priv(ndev);
989 enum can_state old_state = priv->can.state;
990 enum can_state new_state;
992 /* changing error state due to successful frame RX/TX can only
993 * occur from these states
995 if (old_state != CAN_STATE_ERROR_WARNING &&
996 old_state != CAN_STATE_ERROR_PASSIVE)
999 new_state = xcan_current_error_state(ndev);
1001 if (new_state != old_state) {
1002 struct sk_buff *skb;
1003 struct can_frame *cf;
1005 skb = alloc_can_err_skb(ndev, &cf);
1007 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1015 * xcan_err_interrupt - error frame Isr
1016 * @ndev: net_device pointer
1017 * @isr: interrupt status register value
1019 * This is the CAN error interrupt and it will
1020 * check the type of error and forward the error
1021 * frame to upper layers.
1023 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1025 struct xcan_priv *priv = netdev_priv(ndev);
1026 struct net_device_stats *stats = &ndev->stats;
1027 struct can_frame cf = { };
1030 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1031 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1033 if (isr & XCAN_IXR_BSOFF_MASK) {
1034 priv->can.state = CAN_STATE_BUS_OFF;
1035 priv->can.can_stats.bus_off++;
1036 /* Leave device in Config Mode in bus-off state */
1037 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1039 cf.can_id |= CAN_ERR_BUSOFF;
1041 enum can_state new_state = xcan_current_error_state(ndev);
1043 if (new_state != priv->can.state)
1044 xcan_set_error_state(ndev, new_state, &cf);
1047 /* Check for Arbitration lost interrupt */
1048 if (isr & XCAN_IXR_ARBLST_MASK) {
1049 priv->can.can_stats.arbitration_lost++;
1050 cf.can_id |= CAN_ERR_LOSTARB;
1051 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1054 /* Check for RX FIFO Overflow interrupt */
1055 if (isr & XCAN_IXR_RXOFLW_MASK) {
1056 stats->rx_over_errors++;
1058 cf.can_id |= CAN_ERR_CRTL;
1059 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1062 /* Check for RX Match Not Finished interrupt */
1063 if (isr & XCAN_IXR_RXMNF_MASK) {
1064 stats->rx_dropped++;
1066 netdev_err(ndev, "RX match not finished, frame discarded\n");
1067 cf.can_id |= CAN_ERR_CRTL;
1068 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1071 /* Check for error interrupt */
1072 if (isr & XCAN_IXR_ERROR_MASK) {
1073 bool berr_reporting = false;
1075 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1076 berr_reporting = true;
1077 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1080 /* Check for Ack error interrupt */
1081 if (err_status & XCAN_ESR_ACKER_MASK) {
1083 if (berr_reporting) {
1084 cf.can_id |= CAN_ERR_ACK;
1085 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1089 /* Check for Bit error interrupt */
1090 if (err_status & XCAN_ESR_BERR_MASK) {
1092 if (berr_reporting) {
1093 cf.can_id |= CAN_ERR_PROT;
1094 cf.data[2] = CAN_ERR_PROT_BIT;
1098 /* Check for Stuff error interrupt */
1099 if (err_status & XCAN_ESR_STER_MASK) {
1101 if (berr_reporting) {
1102 cf.can_id |= CAN_ERR_PROT;
1103 cf.data[2] = CAN_ERR_PROT_STUFF;
1107 /* Check for Form error interrupt */
1108 if (err_status & XCAN_ESR_FMER_MASK) {
1110 if (berr_reporting) {
1111 cf.can_id |= CAN_ERR_PROT;
1112 cf.data[2] = CAN_ERR_PROT_FORM;
1116 /* Check for CRC error interrupt */
1117 if (err_status & XCAN_ESR_CRCER_MASK) {
1119 if (berr_reporting) {
1120 cf.can_id |= CAN_ERR_PROT;
1121 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1124 priv->can.can_stats.bus_error++;
1128 struct can_frame *skb_cf;
1129 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1132 skb_cf->can_id |= cf.can_id;
1133 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1138 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1139 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1143 * xcan_state_interrupt - It will check the state of the CAN device
1144 * @ndev: net_device pointer
1145 * @isr: interrupt status register value
1147 * This will checks the state of the CAN device
1148 * and puts the device into appropriate state.
1150 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1152 struct xcan_priv *priv = netdev_priv(ndev);
1154 /* Check for Sleep interrupt if set put CAN device in sleep state */
1155 if (isr & XCAN_IXR_SLP_MASK)
1156 priv->can.state = CAN_STATE_SLEEPING;
1158 /* Check for Wake up interrupt if set put CAN device in Active state */
1159 if (isr & XCAN_IXR_WKUP_MASK)
1160 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1165 * @priv: Driver private data structure
1167 * Return: Register offset of the next frame in RX FIFO.
1169 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1173 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1176 /* clear RXOK before the is-empty check so that any newly
1177 * received frame will reassert it without a race
1179 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1181 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1183 /* check if RX FIFO is empty */
1184 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1185 mask = XCAN_2_FSR_FL_MASK;
1187 mask = XCAN_FSR_FL_MASK;
1192 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1194 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1197 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1200 /* check if RX FIFO is empty */
1201 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1202 XCAN_IXR_RXNEMP_MASK))
1205 /* frames are read from a static offset */
1206 offset = XCAN_RXFIFO_OFFSET;
1213 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1214 * @napi: napi structure pointer
1215 * @quota: Max number of rx packets to be processed.
1217 * This is the poll routine for rx part.
1218 * It will process the packets maximux quota value.
1220 * Return: number of packets received
1222 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1224 struct net_device *ndev = napi->dev;
1225 struct xcan_priv *priv = netdev_priv(ndev);
1230 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1231 (work_done < quota)) {
1232 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1233 work_done += xcanfd_rx(ndev, frame_offset);
1235 work_done += xcan_rx(ndev, frame_offset);
1237 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1238 /* increment read index */
1239 priv->write_reg(priv, XCAN_FSR_OFFSET,
1242 /* clear rx-not-empty (will actually clear only if
1245 priv->write_reg(priv, XCAN_ICR_OFFSET,
1246 XCAN_IXR_RXNEMP_MASK);
1250 xcan_update_error_state_after_rxtx(ndev);
1252 if (work_done < quota) {
1253 if (napi_complete_done(napi, work_done)) {
1254 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1255 ier |= xcan_rx_int_mask(priv);
1256 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1263 * xcan_tx_interrupt - Tx Done Isr
1264 * @ndev: net_device pointer
1265 * @isr: Interrupt status register value
1267 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1269 struct xcan_priv *priv = netdev_priv(ndev);
1270 struct net_device_stats *stats = &ndev->stats;
1271 unsigned int frames_in_fifo;
1272 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1273 unsigned long flags;
1276 /* Synchronize with xmit as we need to know the exact number
1277 * of frames in the FIFO to stay in sync due to the TXFEMP
1279 * This also prevents a race between netif_wake_queue() and
1280 * netif_stop_queue().
1282 spin_lock_irqsave(&priv->tx_lock, flags);
1284 frames_in_fifo = priv->tx_head - priv->tx_tail;
1286 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1287 /* clear TXOK anyway to avoid getting back here */
1288 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1289 spin_unlock_irqrestore(&priv->tx_lock, flags);
1293 /* Check if 2 frames were sent (TXOK only means that at least 1
1296 if (frames_in_fifo > 1) {
1297 WARN_ON(frames_in_fifo > priv->tx_max);
1299 /* Synchronize TXOK and isr so that after the loop:
1300 * (1) isr variable is up-to-date at least up to TXOK clear
1301 * time. This avoids us clearing a TXOK of a second frame
1302 * but not noticing that the FIFO is now empty and thus
1303 * marking only a single frame as sent.
1304 * (2) No TXOK is left. Having one could mean leaving a
1305 * stray TXOK as we might process the associated frame
1306 * via TXFEMP handling as we read TXFEMP *after* TXOK
1307 * clear to satisfy (1).
1309 while ((isr & XCAN_IXR_TXOK_MASK) &&
1310 !WARN_ON(++retries == 100)) {
1311 priv->write_reg(priv, XCAN_ICR_OFFSET,
1312 XCAN_IXR_TXOK_MASK);
1313 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1316 if (isr & XCAN_IXR_TXFEMP_MASK) {
1317 /* nothing in FIFO anymore */
1318 frames_sent = frames_in_fifo;
1321 /* single frame in fifo, just clear TXOK */
1322 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1325 while (frames_sent--) {
1326 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1327 priv->tx_max, NULL);
1329 stats->tx_packets++;
1332 netif_wake_queue(ndev);
1334 spin_unlock_irqrestore(&priv->tx_lock, flags);
1336 xcan_update_error_state_after_rxtx(ndev);
1340 * xcan_interrupt - CAN Isr
1342 * @dev_id: device id pointer
1344 * This is the xilinx CAN Isr. It checks for the type of interrupt
1345 * and invokes the corresponding ISR.
1348 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1350 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1352 struct net_device *ndev = (struct net_device *)dev_id;
1353 struct xcan_priv *priv = netdev_priv(ndev);
1356 u32 rx_int_mask = xcan_rx_int_mask(priv);
1358 /* Get the interrupt status from Xilinx CAN */
1359 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1363 /* Check for the type of interrupt and Processing it */
1364 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1365 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1366 XCAN_IXR_WKUP_MASK));
1367 xcan_state_interrupt(ndev, isr);
1370 /* Check for Tx interrupt and Processing it */
1371 if (isr & XCAN_IXR_TXOK_MASK)
1372 xcan_tx_interrupt(ndev, isr);
1374 /* Check for the type of error interrupt and Processing it */
1375 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1376 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1377 XCAN_IXR_RXMNF_MASK);
1379 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1380 xcan_err_interrupt(ndev, isr);
1383 /* Check for the type of receive interrupt and Processing it */
1384 if (isr & rx_int_mask) {
1385 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1386 ier &= ~rx_int_mask;
1387 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1388 napi_schedule(&priv->napi);
1394 * xcan_chip_stop - Driver stop routine
1395 * @ndev: Pointer to net_device structure
1397 * This is the drivers stop routine. It will disable the
1398 * interrupts and put the device into configuration mode.
1400 static void xcan_chip_stop(struct net_device *ndev)
1402 struct xcan_priv *priv = netdev_priv(ndev);
1405 /* Disable interrupts and leave the can in configuration mode */
1406 ret = set_reset_mode(ndev);
1408 netdev_dbg(ndev, "set_reset_mode() Failed\n");
1410 priv->can.state = CAN_STATE_STOPPED;
1414 * xcan_open - Driver open routine
1415 * @ndev: Pointer to net_device structure
1417 * This is the driver open routine.
1418 * Return: 0 on success and failure value on error
1420 static int xcan_open(struct net_device *ndev)
1422 struct xcan_priv *priv = netdev_priv(ndev);
1425 ret = phy_power_on(priv->transceiver);
1429 ret = pm_runtime_get_sync(priv->dev);
1431 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1436 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1439 netdev_err(ndev, "irq allocation for CAN failed\n");
1443 /* Set chip into reset mode */
1444 ret = set_reset_mode(ndev);
1446 netdev_err(ndev, "mode resetting failed!\n");
1451 ret = open_candev(ndev);
1455 ret = xcan_chip_start(ndev);
1457 netdev_err(ndev, "xcan_chip_start failed!\n");
1461 napi_enable(&priv->napi);
1462 netif_start_queue(ndev);
1469 free_irq(ndev->irq, ndev);
1471 pm_runtime_put(priv->dev);
1472 phy_power_off(priv->transceiver);
1478 * xcan_close - Driver close routine
1479 * @ndev: Pointer to net_device structure
1483 static int xcan_close(struct net_device *ndev)
1485 struct xcan_priv *priv = netdev_priv(ndev);
1487 netif_stop_queue(ndev);
1488 napi_disable(&priv->napi);
1489 xcan_chip_stop(ndev);
1490 free_irq(ndev->irq, ndev);
1493 pm_runtime_put(priv->dev);
1494 phy_power_off(priv->transceiver);
1500 * xcan_get_berr_counter - error counter routine
1501 * @ndev: Pointer to net_device structure
1502 * @bec: Pointer to can_berr_counter structure
1504 * This is the driver error counter routine.
1505 * Return: 0 on success and failure value on error
1507 static int xcan_get_berr_counter(const struct net_device *ndev,
1508 struct can_berr_counter *bec)
1510 struct xcan_priv *priv = netdev_priv(ndev);
1513 ret = pm_runtime_get_sync(priv->dev);
1515 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1517 pm_runtime_put(priv->dev);
1521 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1522 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1523 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1525 pm_runtime_put(priv->dev);
1531 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1532 * @ndev: Pointer to net_device structure
1533 * @tdcv: Pointer to TDCV value
1535 * Return: 0 on success
1537 static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1539 struct xcan_priv *priv = netdev_priv(ndev);
1541 *tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1546 static const struct net_device_ops xcan_netdev_ops = {
1547 .ndo_open = xcan_open,
1548 .ndo_stop = xcan_close,
1549 .ndo_start_xmit = xcan_start_xmit,
1550 .ndo_change_mtu = can_change_mtu,
1553 static const struct ethtool_ops xcan_ethtool_ops = {
1554 .get_ts_info = ethtool_op_get_ts_info,
1558 * xcan_suspend - Suspend method for the driver
1559 * @dev: Address of the device structure
1561 * Put the driver into low power mode.
1562 * Return: 0 on success and failure value on error
1564 static int __maybe_unused xcan_suspend(struct device *dev)
1566 struct net_device *ndev = dev_get_drvdata(dev);
1568 if (netif_running(ndev)) {
1569 netif_stop_queue(ndev);
1570 netif_device_detach(ndev);
1571 xcan_chip_stop(ndev);
1574 return pm_runtime_force_suspend(dev);
1578 * xcan_resume - Resume from suspend
1579 * @dev: Address of the device structure
1581 * Resume operation after suspend.
1582 * Return: 0 on success and failure value on error
1584 static int __maybe_unused xcan_resume(struct device *dev)
1586 struct net_device *ndev = dev_get_drvdata(dev);
1589 ret = pm_runtime_force_resume(dev);
1591 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1595 if (netif_running(ndev)) {
1596 ret = xcan_chip_start(ndev);
1598 dev_err(dev, "xcan_chip_start failed on resume\n");
1602 netif_device_attach(ndev);
1603 netif_start_queue(ndev);
1610 * xcan_runtime_suspend - Runtime suspend method for the driver
1611 * @dev: Address of the device structure
1613 * Put the driver into low power mode.
1616 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1618 struct net_device *ndev = dev_get_drvdata(dev);
1619 struct xcan_priv *priv = netdev_priv(ndev);
1621 clk_disable_unprepare(priv->bus_clk);
1622 clk_disable_unprepare(priv->can_clk);
1628 * xcan_runtime_resume - Runtime resume from suspend
1629 * @dev: Address of the device structure
1631 * Resume operation after suspend.
1632 * Return: 0 on success and failure value on error
1634 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1636 struct net_device *ndev = dev_get_drvdata(dev);
1637 struct xcan_priv *priv = netdev_priv(ndev);
1640 ret = clk_prepare_enable(priv->bus_clk);
1642 dev_err(dev, "Cannot enable clock.\n");
1645 ret = clk_prepare_enable(priv->can_clk);
1647 dev_err(dev, "Cannot enable clock.\n");
1648 clk_disable_unprepare(priv->bus_clk);
1655 static const struct dev_pm_ops xcan_dev_pm_ops = {
1656 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1657 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1660 static const struct xcan_devtype_data xcan_zynq_data = {
1661 .cantype = XZYNQ_CANPS,
1662 .flags = XCAN_FLAG_TXFEMP,
1663 .bittiming_const = &xcan_bittiming_const,
1664 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1665 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1666 .bus_clk_name = "pclk",
1669 static const struct xcan_devtype_data xcan_axi_data = {
1670 .cantype = XAXI_CAN,
1671 .bittiming_const = &xcan_bittiming_const,
1672 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1673 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1674 .bus_clk_name = "s_axi_aclk",
1677 static const struct xcan_devtype_data xcan_canfd_data = {
1678 .cantype = XAXI_CANFD,
1679 .flags = XCAN_FLAG_EXT_FILTERS |
1681 XCAN_FLAG_TX_MAILBOXES |
1682 XCAN_FLAG_RX_FIFO_MULTI,
1683 .bittiming_const = &xcan_bittiming_const_canfd,
1684 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1685 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1686 .bus_clk_name = "s_axi_aclk",
1689 static const struct xcan_devtype_data xcan_canfd2_data = {
1690 .cantype = XAXI_CANFD_2_0,
1691 .flags = XCAN_FLAG_EXT_FILTERS |
1693 XCAN_FLAG_TX_MAILBOXES |
1695 XCAN_FLAG_RX_FIFO_MULTI,
1696 .bittiming_const = &xcan_bittiming_const_canfd2,
1697 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1698 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1699 .bus_clk_name = "s_axi_aclk",
1702 /* Match table for OF platform binding */
1703 static const struct of_device_id xcan_of_match[] = {
1704 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1705 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1706 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1707 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1708 { /* end of list */ },
1710 MODULE_DEVICE_TABLE(of, xcan_of_match);
1713 * xcan_probe - Platform registration call
1714 * @pdev: Handle to the platform device structure
1716 * This function does all the memory allocation and registration for the CAN
1719 * Return: 0 on success and failure value on error
1721 static int xcan_probe(struct platform_device *pdev)
1723 struct net_device *ndev;
1724 struct xcan_priv *priv;
1725 struct phy *transceiver;
1726 const struct of_device_id *of_id;
1727 const struct xcan_devtype_data *devtype = &xcan_axi_data;
1731 u32 hw_tx_max = 0, hw_rx_max = 0;
1732 const char *hw_tx_max_property;
1734 /* Get the virtual base address for the device */
1735 addr = devm_platform_ioremap_resource(pdev, 0);
1737 ret = PTR_ERR(addr);
1741 of_id = of_match_device(xcan_of_match, &pdev->dev);
1742 if (of_id && of_id->data)
1743 devtype = of_id->data;
1745 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746 "tx-mailbox-count" : "tx-fifo-depth";
1748 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1751 dev_err(&pdev->dev, "missing %s property\n",
1752 hw_tx_max_property);
1756 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1760 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1766 * There is no way to directly figure out how many frames have been
1767 * sent when the TXOK interrupt is processed. If TXFEMP
1768 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769 * to determine if 1 or 2 frames have been sent.
1770 * Theoretically we should be able to use TXFWMEMP to determine up
1771 * to 3 frames, but it seems that after putting a second frame in the
1772 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775 * completely synchronized with the rest of the bits?
1777 * With TX mailboxes:
1779 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780 * we submit frames one at a time.
1782 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783 (devtype->flags & XCAN_FLAG_TXFEMP))
1784 tx_max = min(hw_tx_max, 2U);
1790 /* Create a CAN device instance */
1791 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1795 priv = netdev_priv(ndev);
1796 priv->dev = &pdev->dev;
1797 priv->can.bittiming_const = devtype->bittiming_const;
1798 priv->can.do_set_mode = xcan_do_set_mode;
1799 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801 CAN_CTRLMODE_BERR_REPORTING;
1803 if (devtype->cantype == XAXI_CANFD) {
1804 priv->can.data_bittiming_const =
1805 &xcan_data_bittiming_const_canfd;
1806 priv->can.tdc_const = &xcan_tdc_const_canfd;
1809 if (devtype->cantype == XAXI_CANFD_2_0) {
1810 priv->can.data_bittiming_const =
1811 &xcan_data_bittiming_const_canfd2;
1812 priv->can.tdc_const = &xcan_tdc_const_canfd2;
1815 if (devtype->cantype == XAXI_CANFD ||
1816 devtype->cantype == XAXI_CANFD_2_0) {
1817 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1818 CAN_CTRLMODE_TDC_AUTO;
1819 priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1822 priv->reg_base = addr;
1823 priv->tx_max = tx_max;
1824 priv->devtype = *devtype;
1825 spin_lock_init(&priv->tx_lock);
1827 /* Get IRQ for the device */
1828 ret = platform_get_irq(pdev, 0);
1834 ndev->flags |= IFF_ECHO; /* We support local echo */
1836 platform_set_drvdata(pdev, ndev);
1837 SET_NETDEV_DEV(ndev, &pdev->dev);
1838 ndev->netdev_ops = &xcan_netdev_ops;
1839 ndev->ethtool_ops = &xcan_ethtool_ops;
1841 /* Getting the CAN can_clk info */
1842 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1843 if (IS_ERR(priv->can_clk)) {
1844 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1845 "device clock not found\n");
1849 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1850 if (IS_ERR(priv->bus_clk)) {
1851 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1852 "bus clock not found\n");
1856 transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1857 if (IS_ERR(transceiver)) {
1858 ret = PTR_ERR(transceiver);
1859 dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1862 priv->transceiver = transceiver;
1864 priv->write_reg = xcan_write_reg_le;
1865 priv->read_reg = xcan_read_reg_le;
1867 pm_runtime_enable(&pdev->dev);
1868 ret = pm_runtime_get_sync(&pdev->dev);
1870 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1872 goto err_disableclks;
1875 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1876 priv->write_reg = xcan_write_reg_be;
1877 priv->read_reg = xcan_read_reg_be;
1880 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1882 netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1884 ret = register_candev(ndev);
1886 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1887 goto err_disableclks;
1890 of_can_transceiver(ndev);
1891 pm_runtime_put(&pdev->dev);
1893 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1894 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1895 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1898 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1899 priv->reg_base, ndev->irq, priv->can.clock.freq,
1900 hw_tx_max, priv->tx_max);
1905 pm_runtime_put(priv->dev);
1906 pm_runtime_disable(&pdev->dev);
1914 * xcan_remove - Unregister the device after releasing the resources
1915 * @pdev: Handle to the platform device structure
1917 * This function frees all the resources allocated to the device.
1920 static void xcan_remove(struct platform_device *pdev)
1922 struct net_device *ndev = platform_get_drvdata(pdev);
1924 unregister_candev(ndev);
1925 pm_runtime_disable(&pdev->dev);
1929 static struct platform_driver xcan_driver = {
1930 .probe = xcan_probe,
1931 .remove_new = xcan_remove,
1933 .name = DRIVER_NAME,
1934 .pm = &xcan_dev_pm_ops,
1935 .of_match_table = xcan_of_match,
1939 module_platform_driver(xcan_driver);
1941 MODULE_LICENSE("GPL");
1942 MODULE_AUTHOR("Xilinx Inc");
1943 MODULE_DESCRIPTION("Xilinx CAN interface");