]> Git Repo - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
efi/libstub: Optimize for size instead of speed
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <[email protected]>
8  *    Alexander Graf <[email protected]>
9  *    Kevin Wolf <[email protected]>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <[email protected]>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77
78 #include "book3s.h"
79
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
91
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL  (~(u64)0)
94
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114         .set = param_set_int,
115         .get = param_get_int,
116 };
117
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132         return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137
138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
139
140 /*
141  * RWMR values for POWER8.  These control the rate at which PURR
142  * and SPURR count and should be set according to the number of
143  * online threads in the vcore being run.
144  */
145 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
147 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
149 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
150 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
153
154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
155         RWMR_RPA_P8_1THREAD,
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_2THREAD,
158         RWMR_RPA_P8_3THREAD,
159         RWMR_RPA_P8_4THREAD,
160         RWMR_RPA_P8_5THREAD,
161         RWMR_RPA_P8_6THREAD,
162         RWMR_RPA_P8_7THREAD,
163         RWMR_RPA_P8_8THREAD,
164 };
165
166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167                 int *ip)
168 {
169         int i = *ip;
170         struct kvm_vcpu *vcpu;
171
172         while (++i < MAX_SMT_THREADS) {
173                 vcpu = READ_ONCE(vc->runnable_threads[i]);
174                 if (vcpu) {
175                         *ip = i;
176                         return vcpu;
177                 }
178         }
179         return NULL;
180 }
181
182 /* Used to traverse the list of runnable threads for a given vcore */
183 #define for_each_runnable_thread(i, vcpu, vc) \
184         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
185
186 static bool kvmppc_ipi_thread(int cpu)
187 {
188         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
189
190         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
191         if (kvmhv_on_pseries())
192                 return false;
193
194         /* On POWER9 we can use msgsnd to IPI any cpu */
195         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
196                 msg |= get_hard_smp_processor_id(cpu);
197                 smp_mb();
198                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199                 return true;
200         }
201
202         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
203         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
204                 preempt_disable();
205                 if (cpu_first_thread_sibling(cpu) ==
206                     cpu_first_thread_sibling(smp_processor_id())) {
207                         msg |= cpu_thread_in_core(cpu);
208                         smp_mb();
209                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
210                         preempt_enable();
211                         return true;
212                 }
213                 preempt_enable();
214         }
215
216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
217         if (cpu >= 0 && cpu < nr_cpu_ids) {
218                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
219                         xics_wake_cpu(cpu);
220                         return true;
221                 }
222                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
223                 return true;
224         }
225 #endif
226
227         return false;
228 }
229
230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
231 {
232         int cpu;
233         struct swait_queue_head *wqp;
234
235         wqp = kvm_arch_vcpu_wq(vcpu);
236         if (swq_has_sleeper(wqp)) {
237                 swake_up_one(wqp);
238                 ++vcpu->stat.halt_wakeup;
239         }
240
241         cpu = READ_ONCE(vcpu->arch.thread_cpu);
242         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
243                 return;
244
245         /* CPU points to the first thread of the core */
246         cpu = vcpu->cpu;
247         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248                 smp_send_reschedule(cpu);
249 }
250
251 /*
252  * We use the vcpu_load/put functions to measure stolen time.
253  * Stolen time is counted as time when either the vcpu is able to
254  * run as part of a virtual core, but the task running the vcore
255  * is preempted or sleeping, or when the vcpu needs something done
256  * in the kernel by the task running the vcpu, but that task is
257  * preempted or sleeping.  Those two things have to be counted
258  * separately, since one of the vcpu tasks will take on the job
259  * of running the core, and the other vcpu tasks in the vcore will
260  * sleep waiting for it to do that, but that sleep shouldn't count
261  * as stolen time.
262  *
263  * Hence we accumulate stolen time when the vcpu can run as part of
264  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265  * needs its task to do other things in the kernel (for example,
266  * service a page fault) in busy_stolen.  We don't accumulate
267  * stolen time for a vcore when it is inactive, or for a vcpu
268  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
269  * a misnomer; it means that the vcpu task is not executing in
270  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271  * the kernel.  We don't have any way of dividing up that time
272  * between time that the vcpu is genuinely stopped, time that
273  * the task is actively working on behalf of the vcpu, and time
274  * that the task is preempted, so we don't count any of it as
275  * stolen.
276  *
277  * Updates to busy_stolen are protected by arch.tbacct_lock;
278  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279  * lock.  The stolen times are measured in units of timebase ticks.
280  * (Note that the != TB_NIL checks below are purely defensive;
281  * they should never fail.)
282  */
283
284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285 {
286         unsigned long flags;
287
288         spin_lock_irqsave(&vc->stoltb_lock, flags);
289         vc->preempt_tb = mftb();
290         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
291 }
292
293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294 {
295         unsigned long flags;
296
297         spin_lock_irqsave(&vc->stoltb_lock, flags);
298         if (vc->preempt_tb != TB_NIL) {
299                 vc->stolen_tb += mftb() - vc->preempt_tb;
300                 vc->preempt_tb = TB_NIL;
301         }
302         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
303 }
304
305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306 {
307         struct kvmppc_vcore *vc = vcpu->arch.vcore;
308         unsigned long flags;
309
310         /*
311          * We can test vc->runner without taking the vcore lock,
312          * because only this task ever sets vc->runner to this
313          * vcpu, and once it is set to this vcpu, only this task
314          * ever sets it to NULL.
315          */
316         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317                 kvmppc_core_end_stolen(vc);
318
319         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321             vcpu->arch.busy_preempt != TB_NIL) {
322                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323                 vcpu->arch.busy_preempt = TB_NIL;
324         }
325         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
326 }
327
328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329 {
330         struct kvmppc_vcore *vc = vcpu->arch.vcore;
331         unsigned long flags;
332
333         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334                 kvmppc_core_start_stolen(vc);
335
336         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338                 vcpu->arch.busy_preempt = mftb();
339         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
340 }
341
342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343 {
344         vcpu->arch.pvr = pvr;
345 }
346
347 /* Dummy value used in computing PCR value below */
348 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
349
350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351 {
352         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353         struct kvmppc_vcore *vc = vcpu->arch.vcore;
354
355         /* We can (emulate) our own architecture version and anything older */
356         if (cpu_has_feature(CPU_FTR_ARCH_300))
357                 host_pcr_bit = PCR_ARCH_300;
358         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
359                 host_pcr_bit = PCR_ARCH_207;
360         else if (cpu_has_feature(CPU_FTR_ARCH_206))
361                 host_pcr_bit = PCR_ARCH_206;
362         else
363                 host_pcr_bit = PCR_ARCH_205;
364
365         /* Determine lowest PCR bit needed to run guest in given PVR level */
366         guest_pcr_bit = host_pcr_bit;
367         if (arch_compat) {
368                 switch (arch_compat) {
369                 case PVR_ARCH_205:
370                         guest_pcr_bit = PCR_ARCH_205;
371                         break;
372                 case PVR_ARCH_206:
373                 case PVR_ARCH_206p:
374                         guest_pcr_bit = PCR_ARCH_206;
375                         break;
376                 case PVR_ARCH_207:
377                         guest_pcr_bit = PCR_ARCH_207;
378                         break;
379                 case PVR_ARCH_300:
380                         guest_pcr_bit = PCR_ARCH_300;
381                         break;
382                 default:
383                         return -EINVAL;
384                 }
385         }
386
387         /* Check requested PCR bits don't exceed our capabilities */
388         if (guest_pcr_bit > host_pcr_bit)
389                 return -EINVAL;
390
391         spin_lock(&vc->lock);
392         vc->arch_compat = arch_compat;
393         /*
394          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
395          * Also set all reserved PCR bits
396          */
397         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
398         spin_unlock(&vc->lock);
399
400         return 0;
401 }
402
403 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
404 {
405         int r;
406
407         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
408         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
409                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
410         for (r = 0; r < 16; ++r)
411                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
412                        r, kvmppc_get_gpr(vcpu, r),
413                        r+16, kvmppc_get_gpr(vcpu, r+16));
414         pr_err("ctr = %.16lx  lr  = %.16lx\n",
415                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
416         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
417                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
418         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
419                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
420         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
421                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
422         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
423                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
424         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
425         pr_err("fault dar = %.16lx dsisr = %.8x\n",
426                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
427         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
428         for (r = 0; r < vcpu->arch.slb_max; ++r)
429                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
430                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
431         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
432                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
433                vcpu->arch.last_inst);
434 }
435
436 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
437 {
438         return kvm_get_vcpu_by_id(kvm, id);
439 }
440
441 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
442 {
443         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
444         vpa->yield_count = cpu_to_be32(1);
445 }
446
447 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
448                    unsigned long addr, unsigned long len)
449 {
450         /* check address is cacheline aligned */
451         if (addr & (L1_CACHE_BYTES - 1))
452                 return -EINVAL;
453         spin_lock(&vcpu->arch.vpa_update_lock);
454         if (v->next_gpa != addr || v->len != len) {
455                 v->next_gpa = addr;
456                 v->len = addr ? len : 0;
457                 v->update_pending = 1;
458         }
459         spin_unlock(&vcpu->arch.vpa_update_lock);
460         return 0;
461 }
462
463 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
464 struct reg_vpa {
465         u32 dummy;
466         union {
467                 __be16 hword;
468                 __be32 word;
469         } length;
470 };
471
472 static int vpa_is_registered(struct kvmppc_vpa *vpap)
473 {
474         if (vpap->update_pending)
475                 return vpap->next_gpa != 0;
476         return vpap->pinned_addr != NULL;
477 }
478
479 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
480                                        unsigned long flags,
481                                        unsigned long vcpuid, unsigned long vpa)
482 {
483         struct kvm *kvm = vcpu->kvm;
484         unsigned long len, nb;
485         void *va;
486         struct kvm_vcpu *tvcpu;
487         int err;
488         int subfunc;
489         struct kvmppc_vpa *vpap;
490
491         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
492         if (!tvcpu)
493                 return H_PARAMETER;
494
495         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
496         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
497             subfunc == H_VPA_REG_SLB) {
498                 /* Registering new area - address must be cache-line aligned */
499                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
500                         return H_PARAMETER;
501
502                 /* convert logical addr to kernel addr and read length */
503                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
504                 if (va == NULL)
505                         return H_PARAMETER;
506                 if (subfunc == H_VPA_REG_VPA)
507                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
508                 else
509                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
510                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
511
512                 /* Check length */
513                 if (len > nb || len < sizeof(struct reg_vpa))
514                         return H_PARAMETER;
515         } else {
516                 vpa = 0;
517                 len = 0;
518         }
519
520         err = H_PARAMETER;
521         vpap = NULL;
522         spin_lock(&tvcpu->arch.vpa_update_lock);
523
524         switch (subfunc) {
525         case H_VPA_REG_VPA:             /* register VPA */
526                 /*
527                  * The size of our lppaca is 1kB because of the way we align
528                  * it for the guest to avoid crossing a 4kB boundary. We only
529                  * use 640 bytes of the structure though, so we should accept
530                  * clients that set a size of 640.
531                  */
532                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
533                 if (len < sizeof(struct lppaca))
534                         break;
535                 vpap = &tvcpu->arch.vpa;
536                 err = 0;
537                 break;
538
539         case H_VPA_REG_DTL:             /* register DTL */
540                 if (len < sizeof(struct dtl_entry))
541                         break;
542                 len -= len % sizeof(struct dtl_entry);
543
544                 /* Check that they have previously registered a VPA */
545                 err = H_RESOURCE;
546                 if (!vpa_is_registered(&tvcpu->arch.vpa))
547                         break;
548
549                 vpap = &tvcpu->arch.dtl;
550                 err = 0;
551                 break;
552
553         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
554                 /* Check that they have previously registered a VPA */
555                 err = H_RESOURCE;
556                 if (!vpa_is_registered(&tvcpu->arch.vpa))
557                         break;
558
559                 vpap = &tvcpu->arch.slb_shadow;
560                 err = 0;
561                 break;
562
563         case H_VPA_DEREG_VPA:           /* deregister VPA */
564                 /* Check they don't still have a DTL or SLB buf registered */
565                 err = H_RESOURCE;
566                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
567                     vpa_is_registered(&tvcpu->arch.slb_shadow))
568                         break;
569
570                 vpap = &tvcpu->arch.vpa;
571                 err = 0;
572                 break;
573
574         case H_VPA_DEREG_DTL:           /* deregister DTL */
575                 vpap = &tvcpu->arch.dtl;
576                 err = 0;
577                 break;
578
579         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
580                 vpap = &tvcpu->arch.slb_shadow;
581                 err = 0;
582                 break;
583         }
584
585         if (vpap) {
586                 vpap->next_gpa = vpa;
587                 vpap->len = len;
588                 vpap->update_pending = 1;
589         }
590
591         spin_unlock(&tvcpu->arch.vpa_update_lock);
592
593         return err;
594 }
595
596 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
597 {
598         struct kvm *kvm = vcpu->kvm;
599         void *va;
600         unsigned long nb;
601         unsigned long gpa;
602
603         /*
604          * We need to pin the page pointed to by vpap->next_gpa,
605          * but we can't call kvmppc_pin_guest_page under the lock
606          * as it does get_user_pages() and down_read().  So we
607          * have to drop the lock, pin the page, then get the lock
608          * again and check that a new area didn't get registered
609          * in the meantime.
610          */
611         for (;;) {
612                 gpa = vpap->next_gpa;
613                 spin_unlock(&vcpu->arch.vpa_update_lock);
614                 va = NULL;
615                 nb = 0;
616                 if (gpa)
617                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
618                 spin_lock(&vcpu->arch.vpa_update_lock);
619                 if (gpa == vpap->next_gpa)
620                         break;
621                 /* sigh... unpin that one and try again */
622                 if (va)
623                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
624         }
625
626         vpap->update_pending = 0;
627         if (va && nb < vpap->len) {
628                 /*
629                  * If it's now too short, it must be that userspace
630                  * has changed the mappings underlying guest memory,
631                  * so unregister the region.
632                  */
633                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
634                 va = NULL;
635         }
636         if (vpap->pinned_addr)
637                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
638                                         vpap->dirty);
639         vpap->gpa = gpa;
640         vpap->pinned_addr = va;
641         vpap->dirty = false;
642         if (va)
643                 vpap->pinned_end = va + vpap->len;
644 }
645
646 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
647 {
648         if (!(vcpu->arch.vpa.update_pending ||
649               vcpu->arch.slb_shadow.update_pending ||
650               vcpu->arch.dtl.update_pending))
651                 return;
652
653         spin_lock(&vcpu->arch.vpa_update_lock);
654         if (vcpu->arch.vpa.update_pending) {
655                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
656                 if (vcpu->arch.vpa.pinned_addr)
657                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
658         }
659         if (vcpu->arch.dtl.update_pending) {
660                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
661                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
662                 vcpu->arch.dtl_index = 0;
663         }
664         if (vcpu->arch.slb_shadow.update_pending)
665                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
666         spin_unlock(&vcpu->arch.vpa_update_lock);
667 }
668
669 /*
670  * Return the accumulated stolen time for the vcore up until `now'.
671  * The caller should hold the vcore lock.
672  */
673 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
674 {
675         u64 p;
676         unsigned long flags;
677
678         spin_lock_irqsave(&vc->stoltb_lock, flags);
679         p = vc->stolen_tb;
680         if (vc->vcore_state != VCORE_INACTIVE &&
681             vc->preempt_tb != TB_NIL)
682                 p += now - vc->preempt_tb;
683         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
684         return p;
685 }
686
687 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
688                                     struct kvmppc_vcore *vc)
689 {
690         struct dtl_entry *dt;
691         struct lppaca *vpa;
692         unsigned long stolen;
693         unsigned long core_stolen;
694         u64 now;
695         unsigned long flags;
696
697         dt = vcpu->arch.dtl_ptr;
698         vpa = vcpu->arch.vpa.pinned_addr;
699         now = mftb();
700         core_stolen = vcore_stolen_time(vc, now);
701         stolen = core_stolen - vcpu->arch.stolen_logged;
702         vcpu->arch.stolen_logged = core_stolen;
703         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
704         stolen += vcpu->arch.busy_stolen;
705         vcpu->arch.busy_stolen = 0;
706         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
707         if (!dt || !vpa)
708                 return;
709         memset(dt, 0, sizeof(struct dtl_entry));
710         dt->dispatch_reason = 7;
711         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
712         dt->timebase = cpu_to_be64(now + vc->tb_offset);
713         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
714         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
715         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
716         ++dt;
717         if (dt == vcpu->arch.dtl.pinned_end)
718                 dt = vcpu->arch.dtl.pinned_addr;
719         vcpu->arch.dtl_ptr = dt;
720         /* order writing *dt vs. writing vpa->dtl_idx */
721         smp_wmb();
722         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
723         vcpu->arch.dtl.dirty = true;
724 }
725
726 /* See if there is a doorbell interrupt pending for a vcpu */
727 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
728 {
729         int thr;
730         struct kvmppc_vcore *vc;
731
732         if (vcpu->arch.doorbell_request)
733                 return true;
734         /*
735          * Ensure that the read of vcore->dpdes comes after the read
736          * of vcpu->doorbell_request.  This barrier matches the
737          * smp_wmb() in kvmppc_guest_entry_inject().
738          */
739         smp_rmb();
740         vc = vcpu->arch.vcore;
741         thr = vcpu->vcpu_id - vc->first_vcpuid;
742         return !!(vc->dpdes & (1 << thr));
743 }
744
745 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
746 {
747         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
748                 return true;
749         if ((!vcpu->arch.vcore->arch_compat) &&
750             cpu_has_feature(CPU_FTR_ARCH_207S))
751                 return true;
752         return false;
753 }
754
755 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
756                              unsigned long resource, unsigned long value1,
757                              unsigned long value2)
758 {
759         switch (resource) {
760         case H_SET_MODE_RESOURCE_SET_CIABR:
761                 if (!kvmppc_power8_compatible(vcpu))
762                         return H_P2;
763                 if (value2)
764                         return H_P4;
765                 if (mflags)
766                         return H_UNSUPPORTED_FLAG_START;
767                 /* Guests can't breakpoint the hypervisor */
768                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
769                         return H_P3;
770                 vcpu->arch.ciabr  = value1;
771                 return H_SUCCESS;
772         case H_SET_MODE_RESOURCE_SET_DAWR:
773                 if (!kvmppc_power8_compatible(vcpu))
774                         return H_P2;
775                 if (!ppc_breakpoint_available())
776                         return H_P2;
777                 if (mflags)
778                         return H_UNSUPPORTED_FLAG_START;
779                 if (value2 & DABRX_HYP)
780                         return H_P4;
781                 vcpu->arch.dawr  = value1;
782                 vcpu->arch.dawrx = value2;
783                 return H_SUCCESS;
784         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
785                 /* KVM does not support mflags=2 (AIL=2) */
786                 if (mflags != 0 && mflags != 3)
787                         return H_UNSUPPORTED_FLAG_START;
788                 return H_TOO_HARD;
789         default:
790                 return H_TOO_HARD;
791         }
792 }
793
794 /* Copy guest memory in place - must reside within a single memslot */
795 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
796                                   unsigned long len)
797 {
798         struct kvm_memory_slot *to_memslot = NULL;
799         struct kvm_memory_slot *from_memslot = NULL;
800         unsigned long to_addr, from_addr;
801         int r;
802
803         /* Get HPA for from address */
804         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
805         if (!from_memslot)
806                 return -EFAULT;
807         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
808                              << PAGE_SHIFT))
809                 return -EINVAL;
810         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
811         if (kvm_is_error_hva(from_addr))
812                 return -EFAULT;
813         from_addr |= (from & (PAGE_SIZE - 1));
814
815         /* Get HPA for to address */
816         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
817         if (!to_memslot)
818                 return -EFAULT;
819         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
820                            << PAGE_SHIFT))
821                 return -EINVAL;
822         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
823         if (kvm_is_error_hva(to_addr))
824                 return -EFAULT;
825         to_addr |= (to & (PAGE_SIZE - 1));
826
827         /* Perform copy */
828         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
829                              len);
830         if (r)
831                 return -EFAULT;
832         mark_page_dirty(kvm, to >> PAGE_SHIFT);
833         return 0;
834 }
835
836 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
837                                unsigned long dest, unsigned long src)
838 {
839         u64 pg_sz = SZ_4K;              /* 4K page size */
840         u64 pg_mask = SZ_4K - 1;
841         int ret;
842
843         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
844         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
845                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
846                 return H_PARAMETER;
847
848         /* dest (and src if copy_page flag set) must be page aligned */
849         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
850                 return H_PARAMETER;
851
852         /* zero and/or copy the page as determined by the flags */
853         if (flags & H_COPY_PAGE) {
854                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
855                 if (ret < 0)
856                         return H_PARAMETER;
857         } else if (flags & H_ZERO_PAGE) {
858                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
859                 if (ret < 0)
860                         return H_PARAMETER;
861         }
862
863         /* We can ignore the remaining flags */
864
865         return H_SUCCESS;
866 }
867
868 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
869 {
870         struct kvmppc_vcore *vcore = target->arch.vcore;
871
872         /*
873          * We expect to have been called by the real mode handler
874          * (kvmppc_rm_h_confer()) which would have directly returned
875          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
876          * have useful work to do and should not confer) so we don't
877          * recheck that here.
878          */
879
880         spin_lock(&vcore->lock);
881         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
882             vcore->vcore_state != VCORE_INACTIVE &&
883             vcore->runner)
884                 target = vcore->runner;
885         spin_unlock(&vcore->lock);
886
887         return kvm_vcpu_yield_to(target);
888 }
889
890 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
891 {
892         int yield_count = 0;
893         struct lppaca *lppaca;
894
895         spin_lock(&vcpu->arch.vpa_update_lock);
896         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
897         if (lppaca)
898                 yield_count = be32_to_cpu(lppaca->yield_count);
899         spin_unlock(&vcpu->arch.vpa_update_lock);
900         return yield_count;
901 }
902
903 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
904 {
905         unsigned long req = kvmppc_get_gpr(vcpu, 3);
906         unsigned long target, ret = H_SUCCESS;
907         int yield_count;
908         struct kvm_vcpu *tvcpu;
909         int idx, rc;
910
911         if (req <= MAX_HCALL_OPCODE &&
912             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
913                 return RESUME_HOST;
914
915         switch (req) {
916         case H_CEDE:
917                 break;
918         case H_PROD:
919                 target = kvmppc_get_gpr(vcpu, 4);
920                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
921                 if (!tvcpu) {
922                         ret = H_PARAMETER;
923                         break;
924                 }
925                 tvcpu->arch.prodded = 1;
926                 smp_mb();
927                 if (tvcpu->arch.ceded)
928                         kvmppc_fast_vcpu_kick_hv(tvcpu);
929                 break;
930         case H_CONFER:
931                 target = kvmppc_get_gpr(vcpu, 4);
932                 if (target == -1)
933                         break;
934                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
935                 if (!tvcpu) {
936                         ret = H_PARAMETER;
937                         break;
938                 }
939                 yield_count = kvmppc_get_gpr(vcpu, 5);
940                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
941                         break;
942                 kvm_arch_vcpu_yield_to(tvcpu);
943                 break;
944         case H_REGISTER_VPA:
945                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
946                                         kvmppc_get_gpr(vcpu, 5),
947                                         kvmppc_get_gpr(vcpu, 6));
948                 break;
949         case H_RTAS:
950                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
951                         return RESUME_HOST;
952
953                 idx = srcu_read_lock(&vcpu->kvm->srcu);
954                 rc = kvmppc_rtas_hcall(vcpu);
955                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
956
957                 if (rc == -ENOENT)
958                         return RESUME_HOST;
959                 else if (rc == 0)
960                         break;
961
962                 /* Send the error out to userspace via KVM_RUN */
963                 return rc;
964         case H_LOGICAL_CI_LOAD:
965                 ret = kvmppc_h_logical_ci_load(vcpu);
966                 if (ret == H_TOO_HARD)
967                         return RESUME_HOST;
968                 break;
969         case H_LOGICAL_CI_STORE:
970                 ret = kvmppc_h_logical_ci_store(vcpu);
971                 if (ret == H_TOO_HARD)
972                         return RESUME_HOST;
973                 break;
974         case H_SET_MODE:
975                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
976                                         kvmppc_get_gpr(vcpu, 5),
977                                         kvmppc_get_gpr(vcpu, 6),
978                                         kvmppc_get_gpr(vcpu, 7));
979                 if (ret == H_TOO_HARD)
980                         return RESUME_HOST;
981                 break;
982         case H_XIRR:
983         case H_CPPR:
984         case H_EOI:
985         case H_IPI:
986         case H_IPOLL:
987         case H_XIRR_X:
988                 if (kvmppc_xics_enabled(vcpu)) {
989                         if (xics_on_xive()) {
990                                 ret = H_NOT_AVAILABLE;
991                                 return RESUME_GUEST;
992                         }
993                         ret = kvmppc_xics_hcall(vcpu, req);
994                         break;
995                 }
996                 return RESUME_HOST;
997         case H_SET_DABR:
998                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
999                 break;
1000         case H_SET_XDABR:
1001                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1002                                                 kvmppc_get_gpr(vcpu, 5));
1003                 break;
1004 #ifdef CONFIG_SPAPR_TCE_IOMMU
1005         case H_GET_TCE:
1006                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1007                                                 kvmppc_get_gpr(vcpu, 5));
1008                 if (ret == H_TOO_HARD)
1009                         return RESUME_HOST;
1010                 break;
1011         case H_PUT_TCE:
1012                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1013                                                 kvmppc_get_gpr(vcpu, 5),
1014                                                 kvmppc_get_gpr(vcpu, 6));
1015                 if (ret == H_TOO_HARD)
1016                         return RESUME_HOST;
1017                 break;
1018         case H_PUT_TCE_INDIRECT:
1019                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1020                                                 kvmppc_get_gpr(vcpu, 5),
1021                                                 kvmppc_get_gpr(vcpu, 6),
1022                                                 kvmppc_get_gpr(vcpu, 7));
1023                 if (ret == H_TOO_HARD)
1024                         return RESUME_HOST;
1025                 break;
1026         case H_STUFF_TCE:
1027                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1028                                                 kvmppc_get_gpr(vcpu, 5),
1029                                                 kvmppc_get_gpr(vcpu, 6),
1030                                                 kvmppc_get_gpr(vcpu, 7));
1031                 if (ret == H_TOO_HARD)
1032                         return RESUME_HOST;
1033                 break;
1034 #endif
1035         case H_RANDOM:
1036                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1037                         ret = H_HARDWARE;
1038                 break;
1039
1040         case H_SET_PARTITION_TABLE:
1041                 ret = H_FUNCTION;
1042                 if (nesting_enabled(vcpu->kvm))
1043                         ret = kvmhv_set_partition_table(vcpu);
1044                 break;
1045         case H_ENTER_NESTED:
1046                 ret = H_FUNCTION;
1047                 if (!nesting_enabled(vcpu->kvm))
1048                         break;
1049                 ret = kvmhv_enter_nested_guest(vcpu);
1050                 if (ret == H_INTERRUPT) {
1051                         kvmppc_set_gpr(vcpu, 3, 0);
1052                         vcpu->arch.hcall_needed = 0;
1053                         return -EINTR;
1054                 } else if (ret == H_TOO_HARD) {
1055                         kvmppc_set_gpr(vcpu, 3, 0);
1056                         vcpu->arch.hcall_needed = 0;
1057                         return RESUME_HOST;
1058                 }
1059                 break;
1060         case H_TLB_INVALIDATE:
1061                 ret = H_FUNCTION;
1062                 if (nesting_enabled(vcpu->kvm))
1063                         ret = kvmhv_do_nested_tlbie(vcpu);
1064                 break;
1065         case H_COPY_TOFROM_GUEST:
1066                 ret = H_FUNCTION;
1067                 if (nesting_enabled(vcpu->kvm))
1068                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1069                 break;
1070         case H_PAGE_INIT:
1071                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1072                                          kvmppc_get_gpr(vcpu, 5),
1073                                          kvmppc_get_gpr(vcpu, 6));
1074                 break;
1075         case H_SVM_PAGE_IN:
1076                 ret = H_UNSUPPORTED;
1077                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1078                         ret = kvmppc_h_svm_page_in(vcpu->kvm,
1079                                                    kvmppc_get_gpr(vcpu, 4),
1080                                                    kvmppc_get_gpr(vcpu, 5),
1081                                                    kvmppc_get_gpr(vcpu, 6));
1082                 break;
1083         case H_SVM_PAGE_OUT:
1084                 ret = H_UNSUPPORTED;
1085                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1086                         ret = kvmppc_h_svm_page_out(vcpu->kvm,
1087                                                     kvmppc_get_gpr(vcpu, 4),
1088                                                     kvmppc_get_gpr(vcpu, 5),
1089                                                     kvmppc_get_gpr(vcpu, 6));
1090                 break;
1091         case H_SVM_INIT_START:
1092                 ret = H_UNSUPPORTED;
1093                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1094                         ret = kvmppc_h_svm_init_start(vcpu->kvm);
1095                 break;
1096         case H_SVM_INIT_DONE:
1097                 ret = H_UNSUPPORTED;
1098                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1099                         ret = kvmppc_h_svm_init_done(vcpu->kvm);
1100                 break;
1101         case H_SVM_INIT_ABORT:
1102                 ret = H_UNSUPPORTED;
1103                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1104                         ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1105                 break;
1106
1107         default:
1108                 return RESUME_HOST;
1109         }
1110         kvmppc_set_gpr(vcpu, 3, ret);
1111         vcpu->arch.hcall_needed = 0;
1112         return RESUME_GUEST;
1113 }
1114
1115 /*
1116  * Handle H_CEDE in the nested virtualization case where we haven't
1117  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1118  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1119  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1120  */
1121 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1122 {
1123         vcpu->arch.shregs.msr |= MSR_EE;
1124         vcpu->arch.ceded = 1;
1125         smp_mb();
1126         if (vcpu->arch.prodded) {
1127                 vcpu->arch.prodded = 0;
1128                 smp_mb();
1129                 vcpu->arch.ceded = 0;
1130         }
1131 }
1132
1133 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1134 {
1135         switch (cmd) {
1136         case H_CEDE:
1137         case H_PROD:
1138         case H_CONFER:
1139         case H_REGISTER_VPA:
1140         case H_SET_MODE:
1141         case H_LOGICAL_CI_LOAD:
1142         case H_LOGICAL_CI_STORE:
1143 #ifdef CONFIG_KVM_XICS
1144         case H_XIRR:
1145         case H_CPPR:
1146         case H_EOI:
1147         case H_IPI:
1148         case H_IPOLL:
1149         case H_XIRR_X:
1150 #endif
1151         case H_PAGE_INIT:
1152                 return 1;
1153         }
1154
1155         /* See if it's in the real-mode table */
1156         return kvmppc_hcall_impl_hv_realmode(cmd);
1157 }
1158
1159 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1160                                         struct kvm_vcpu *vcpu)
1161 {
1162         u32 last_inst;
1163
1164         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1165                                         EMULATE_DONE) {
1166                 /*
1167                  * Fetch failed, so return to guest and
1168                  * try executing it again.
1169                  */
1170                 return RESUME_GUEST;
1171         }
1172
1173         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1174                 run->exit_reason = KVM_EXIT_DEBUG;
1175                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1176                 return RESUME_HOST;
1177         } else {
1178                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1179                 return RESUME_GUEST;
1180         }
1181 }
1182
1183 static void do_nothing(void *x)
1184 {
1185 }
1186
1187 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1188 {
1189         int thr, cpu, pcpu, nthreads;
1190         struct kvm_vcpu *v;
1191         unsigned long dpdes;
1192
1193         nthreads = vcpu->kvm->arch.emul_smt_mode;
1194         dpdes = 0;
1195         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1196         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1197                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1198                 if (!v)
1199                         continue;
1200                 /*
1201                  * If the vcpu is currently running on a physical cpu thread,
1202                  * interrupt it in order to pull it out of the guest briefly,
1203                  * which will update its vcore->dpdes value.
1204                  */
1205                 pcpu = READ_ONCE(v->cpu);
1206                 if (pcpu >= 0)
1207                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1208                 if (kvmppc_doorbell_pending(v))
1209                         dpdes |= 1 << thr;
1210         }
1211         return dpdes;
1212 }
1213
1214 /*
1215  * On POWER9, emulate doorbell-related instructions in order to
1216  * give the guest the illusion of running on a multi-threaded core.
1217  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1218  * and mfspr DPDES.
1219  */
1220 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1221 {
1222         u32 inst, rb, thr;
1223         unsigned long arg;
1224         struct kvm *kvm = vcpu->kvm;
1225         struct kvm_vcpu *tvcpu;
1226
1227         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1228                 return RESUME_GUEST;
1229         if (get_op(inst) != 31)
1230                 return EMULATE_FAIL;
1231         rb = get_rb(inst);
1232         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1233         switch (get_xop(inst)) {
1234         case OP_31_XOP_MSGSNDP:
1235                 arg = kvmppc_get_gpr(vcpu, rb);
1236                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1237                         break;
1238                 arg &= 0x3f;
1239                 if (arg >= kvm->arch.emul_smt_mode)
1240                         break;
1241                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1242                 if (!tvcpu)
1243                         break;
1244                 if (!tvcpu->arch.doorbell_request) {
1245                         tvcpu->arch.doorbell_request = 1;
1246                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1247                 }
1248                 break;
1249         case OP_31_XOP_MSGCLRP:
1250                 arg = kvmppc_get_gpr(vcpu, rb);
1251                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1252                         break;
1253                 vcpu->arch.vcore->dpdes = 0;
1254                 vcpu->arch.doorbell_request = 0;
1255                 break;
1256         case OP_31_XOP_MFSPR:
1257                 switch (get_sprn(inst)) {
1258                 case SPRN_TIR:
1259                         arg = thr;
1260                         break;
1261                 case SPRN_DPDES:
1262                         arg = kvmppc_read_dpdes(vcpu);
1263                         break;
1264                 default:
1265                         return EMULATE_FAIL;
1266                 }
1267                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1268                 break;
1269         default:
1270                 return EMULATE_FAIL;
1271         }
1272         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1273         return RESUME_GUEST;
1274 }
1275
1276 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1277                                  struct task_struct *tsk)
1278 {
1279         int r = RESUME_HOST;
1280
1281         vcpu->stat.sum_exits++;
1282
1283         /*
1284          * This can happen if an interrupt occurs in the last stages
1285          * of guest entry or the first stages of guest exit (i.e. after
1286          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1287          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1288          * That can happen due to a bug, or due to a machine check
1289          * occurring at just the wrong time.
1290          */
1291         if (vcpu->arch.shregs.msr & MSR_HV) {
1292                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1293                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1294                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1295                         vcpu->arch.shregs.msr);
1296                 kvmppc_dump_regs(vcpu);
1297                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1298                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1299                 return RESUME_HOST;
1300         }
1301         run->exit_reason = KVM_EXIT_UNKNOWN;
1302         run->ready_for_interrupt_injection = 1;
1303         switch (vcpu->arch.trap) {
1304         /* We're good on these - the host merely wanted to get our attention */
1305         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1306                 vcpu->stat.dec_exits++;
1307                 r = RESUME_GUEST;
1308                 break;
1309         case BOOK3S_INTERRUPT_EXTERNAL:
1310         case BOOK3S_INTERRUPT_H_DOORBELL:
1311         case BOOK3S_INTERRUPT_H_VIRT:
1312                 vcpu->stat.ext_intr_exits++;
1313                 r = RESUME_GUEST;
1314                 break;
1315         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1316         case BOOK3S_INTERRUPT_HMI:
1317         case BOOK3S_INTERRUPT_PERFMON:
1318         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1319                 r = RESUME_GUEST;
1320                 break;
1321         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1322                 /* Print the MCE event to host console. */
1323                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1324
1325                 /*
1326                  * If the guest can do FWNMI, exit to userspace so it can
1327                  * deliver a FWNMI to the guest.
1328                  * Otherwise we synthesize a machine check for the guest
1329                  * so that it knows that the machine check occurred.
1330                  */
1331                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1332                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1333                         kvmppc_core_queue_machine_check(vcpu, flags);
1334                         r = RESUME_GUEST;
1335                         break;
1336                 }
1337
1338                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1339                 run->exit_reason = KVM_EXIT_NMI;
1340                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1341                 /* Clear out the old NMI status from run->flags */
1342                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1343                 /* Now set the NMI status */
1344                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1345                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1346                 else
1347                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1348
1349                 r = RESUME_HOST;
1350                 break;
1351         case BOOK3S_INTERRUPT_PROGRAM:
1352         {
1353                 ulong flags;
1354                 /*
1355                  * Normally program interrupts are delivered directly
1356                  * to the guest by the hardware, but we can get here
1357                  * as a result of a hypervisor emulation interrupt
1358                  * (e40) getting turned into a 700 by BML RTAS.
1359                  */
1360                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1361                 kvmppc_core_queue_program(vcpu, flags);
1362                 r = RESUME_GUEST;
1363                 break;
1364         }
1365         case BOOK3S_INTERRUPT_SYSCALL:
1366         {
1367                 /* hcall - punt to userspace */
1368                 int i;
1369
1370                 /* hypercall with MSR_PR has already been handled in rmode,
1371                  * and never reaches here.
1372                  */
1373
1374                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1375                 for (i = 0; i < 9; ++i)
1376                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1377                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1378                 vcpu->arch.hcall_needed = 1;
1379                 r = RESUME_HOST;
1380                 break;
1381         }
1382         /*
1383          * We get these next two if the guest accesses a page which it thinks
1384          * it has mapped but which is not actually present, either because
1385          * it is for an emulated I/O device or because the corresonding
1386          * host page has been paged out.  Any other HDSI/HISI interrupts
1387          * have been handled already.
1388          */
1389         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1390                 r = RESUME_PAGE_FAULT;
1391                 break;
1392         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1393                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1394                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1395                         DSISR_SRR1_MATCH_64S;
1396                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1397                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1398                 r = RESUME_PAGE_FAULT;
1399                 break;
1400         /*
1401          * This occurs if the guest executes an illegal instruction.
1402          * If the guest debug is disabled, generate a program interrupt
1403          * to the guest. If guest debug is enabled, we need to check
1404          * whether the instruction is a software breakpoint instruction.
1405          * Accordingly return to Guest or Host.
1406          */
1407         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1408                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1409                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1410                                 swab32(vcpu->arch.emul_inst) :
1411                                 vcpu->arch.emul_inst;
1412                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1413                         r = kvmppc_emulate_debug_inst(run, vcpu);
1414                 } else {
1415                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1416                         r = RESUME_GUEST;
1417                 }
1418                 break;
1419         /*
1420          * This occurs if the guest (kernel or userspace), does something that
1421          * is prohibited by HFSCR.
1422          * On POWER9, this could be a doorbell instruction that we need
1423          * to emulate.
1424          * Otherwise, we just generate a program interrupt to the guest.
1425          */
1426         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1427                 r = EMULATE_FAIL;
1428                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1429                     cpu_has_feature(CPU_FTR_ARCH_300))
1430                         r = kvmppc_emulate_doorbell_instr(vcpu);
1431                 if (r == EMULATE_FAIL) {
1432                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1433                         r = RESUME_GUEST;
1434                 }
1435                 break;
1436
1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1439                 /*
1440                  * This occurs for various TM-related instructions that
1441                  * we need to emulate on POWER9 DD2.2.  We have already
1442                  * handled the cases where the guest was in real-suspend
1443                  * mode and was transitioning to transactional state.
1444                  */
1445                 r = kvmhv_p9_tm_emulation(vcpu);
1446                 break;
1447 #endif
1448
1449         case BOOK3S_INTERRUPT_HV_RM_HARD:
1450                 r = RESUME_PASSTHROUGH;
1451                 break;
1452         default:
1453                 kvmppc_dump_regs(vcpu);
1454                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1455                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1456                         vcpu->arch.shregs.msr);
1457                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1458                 r = RESUME_HOST;
1459                 break;
1460         }
1461
1462         return r;
1463 }
1464
1465 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1466 {
1467         int r;
1468         int srcu_idx;
1469
1470         vcpu->stat.sum_exits++;
1471
1472         /*
1473          * This can happen if an interrupt occurs in the last stages
1474          * of guest entry or the first stages of guest exit (i.e. after
1475          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1476          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1477          * That can happen due to a bug, or due to a machine check
1478          * occurring at just the wrong time.
1479          */
1480         if (vcpu->arch.shregs.msr & MSR_HV) {
1481                 pr_emerg("KVM trap in HV mode while nested!\n");
1482                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1483                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1484                          vcpu->arch.shregs.msr);
1485                 kvmppc_dump_regs(vcpu);
1486                 return RESUME_HOST;
1487         }
1488         switch (vcpu->arch.trap) {
1489         /* We're good on these - the host merely wanted to get our attention */
1490         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1491                 vcpu->stat.dec_exits++;
1492                 r = RESUME_GUEST;
1493                 break;
1494         case BOOK3S_INTERRUPT_EXTERNAL:
1495                 vcpu->stat.ext_intr_exits++;
1496                 r = RESUME_HOST;
1497                 break;
1498         case BOOK3S_INTERRUPT_H_DOORBELL:
1499         case BOOK3S_INTERRUPT_H_VIRT:
1500                 vcpu->stat.ext_intr_exits++;
1501                 r = RESUME_GUEST;
1502                 break;
1503         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1504         case BOOK3S_INTERRUPT_HMI:
1505         case BOOK3S_INTERRUPT_PERFMON:
1506         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1507                 r = RESUME_GUEST;
1508                 break;
1509         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1510                 /* Pass the machine check to the L1 guest */
1511                 r = RESUME_HOST;
1512                 /* Print the MCE event to host console. */
1513                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1514                 break;
1515         /*
1516          * We get these next two if the guest accesses a page which it thinks
1517          * it has mapped but which is not actually present, either because
1518          * it is for an emulated I/O device or because the corresonding
1519          * host page has been paged out.
1520          */
1521         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1522                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1523                 r = kvmhv_nested_page_fault(run, vcpu);
1524                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1525                 break;
1526         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1527                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1528                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1529                                          DSISR_SRR1_MATCH_64S;
1530                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1531                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1532                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1533                 r = kvmhv_nested_page_fault(run, vcpu);
1534                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1535                 break;
1536
1537 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1538         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1539                 /*
1540                  * This occurs for various TM-related instructions that
1541                  * we need to emulate on POWER9 DD2.2.  We have already
1542                  * handled the cases where the guest was in real-suspend
1543                  * mode and was transitioning to transactional state.
1544                  */
1545                 r = kvmhv_p9_tm_emulation(vcpu);
1546                 break;
1547 #endif
1548
1549         case BOOK3S_INTERRUPT_HV_RM_HARD:
1550                 vcpu->arch.trap = 0;
1551                 r = RESUME_GUEST;
1552                 if (!xics_on_xive())
1553                         kvmppc_xics_rm_complete(vcpu, 0);
1554                 break;
1555         default:
1556                 r = RESUME_HOST;
1557                 break;
1558         }
1559
1560         return r;
1561 }
1562
1563 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1564                                             struct kvm_sregs *sregs)
1565 {
1566         int i;
1567
1568         memset(sregs, 0, sizeof(struct kvm_sregs));
1569         sregs->pvr = vcpu->arch.pvr;
1570         for (i = 0; i < vcpu->arch.slb_max; i++) {
1571                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1572                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1579                                             struct kvm_sregs *sregs)
1580 {
1581         int i, j;
1582
1583         /* Only accept the same PVR as the host's, since we can't spoof it */
1584         if (sregs->pvr != vcpu->arch.pvr)
1585                 return -EINVAL;
1586
1587         j = 0;
1588         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1589                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1590                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1591                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1592                         ++j;
1593                 }
1594         }
1595         vcpu->arch.slb_max = j;
1596
1597         return 0;
1598 }
1599
1600 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1601                 bool preserve_top32)
1602 {
1603         struct kvm *kvm = vcpu->kvm;
1604         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1605         u64 mask;
1606
1607         spin_lock(&vc->lock);
1608         /*
1609          * If ILE (interrupt little-endian) has changed, update the
1610          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1611          */
1612         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1613                 struct kvm_vcpu *vcpu;
1614                 int i;
1615
1616                 kvm_for_each_vcpu(i, vcpu, kvm) {
1617                         if (vcpu->arch.vcore != vc)
1618                                 continue;
1619                         if (new_lpcr & LPCR_ILE)
1620                                 vcpu->arch.intr_msr |= MSR_LE;
1621                         else
1622                                 vcpu->arch.intr_msr &= ~MSR_LE;
1623                 }
1624         }
1625
1626         /*
1627          * Userspace can only modify DPFD (default prefetch depth),
1628          * ILE (interrupt little-endian) and TC (translation control).
1629          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1630          */
1631         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1632         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1633                 mask |= LPCR_AIL;
1634         /*
1635          * On POWER9, allow userspace to enable large decrementer for the
1636          * guest, whether or not the host has it enabled.
1637          */
1638         if (cpu_has_feature(CPU_FTR_ARCH_300))
1639                 mask |= LPCR_LD;
1640
1641         /* Broken 32-bit version of LPCR must not clear top bits */
1642         if (preserve_top32)
1643                 mask &= 0xFFFFFFFF;
1644         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1645         spin_unlock(&vc->lock);
1646 }
1647
1648 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1649                                  union kvmppc_one_reg *val)
1650 {
1651         int r = 0;
1652         long int i;
1653
1654         switch (id) {
1655         case KVM_REG_PPC_DEBUG_INST:
1656                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1657                 break;
1658         case KVM_REG_PPC_HIOR:
1659                 *val = get_reg_val(id, 0);
1660                 break;
1661         case KVM_REG_PPC_DABR:
1662                 *val = get_reg_val(id, vcpu->arch.dabr);
1663                 break;
1664         case KVM_REG_PPC_DABRX:
1665                 *val = get_reg_val(id, vcpu->arch.dabrx);
1666                 break;
1667         case KVM_REG_PPC_DSCR:
1668                 *val = get_reg_val(id, vcpu->arch.dscr);
1669                 break;
1670         case KVM_REG_PPC_PURR:
1671                 *val = get_reg_val(id, vcpu->arch.purr);
1672                 break;
1673         case KVM_REG_PPC_SPURR:
1674                 *val = get_reg_val(id, vcpu->arch.spurr);
1675                 break;
1676         case KVM_REG_PPC_AMR:
1677                 *val = get_reg_val(id, vcpu->arch.amr);
1678                 break;
1679         case KVM_REG_PPC_UAMOR:
1680                 *val = get_reg_val(id, vcpu->arch.uamor);
1681                 break;
1682         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1683                 i = id - KVM_REG_PPC_MMCR0;
1684                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1685                 break;
1686         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1687                 i = id - KVM_REG_PPC_PMC1;
1688                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1689                 break;
1690         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1691                 i = id - KVM_REG_PPC_SPMC1;
1692                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1693                 break;
1694         case KVM_REG_PPC_SIAR:
1695                 *val = get_reg_val(id, vcpu->arch.siar);
1696                 break;
1697         case KVM_REG_PPC_SDAR:
1698                 *val = get_reg_val(id, vcpu->arch.sdar);
1699                 break;
1700         case KVM_REG_PPC_SIER:
1701                 *val = get_reg_val(id, vcpu->arch.sier);
1702                 break;
1703         case KVM_REG_PPC_IAMR:
1704                 *val = get_reg_val(id, vcpu->arch.iamr);
1705                 break;
1706         case KVM_REG_PPC_PSPB:
1707                 *val = get_reg_val(id, vcpu->arch.pspb);
1708                 break;
1709         case KVM_REG_PPC_DPDES:
1710                 /*
1711                  * On POWER9, where we are emulating msgsndp etc.,
1712                  * we return 1 bit for each vcpu, which can come from
1713                  * either vcore->dpdes or doorbell_request.
1714                  * On POWER8, doorbell_request is 0.
1715                  */
1716                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1717                                    vcpu->arch.doorbell_request);
1718                 break;
1719         case KVM_REG_PPC_VTB:
1720                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1721                 break;
1722         case KVM_REG_PPC_DAWR:
1723                 *val = get_reg_val(id, vcpu->arch.dawr);
1724                 break;
1725         case KVM_REG_PPC_DAWRX:
1726                 *val = get_reg_val(id, vcpu->arch.dawrx);
1727                 break;
1728         case KVM_REG_PPC_CIABR:
1729                 *val = get_reg_val(id, vcpu->arch.ciabr);
1730                 break;
1731         case KVM_REG_PPC_CSIGR:
1732                 *val = get_reg_val(id, vcpu->arch.csigr);
1733                 break;
1734         case KVM_REG_PPC_TACR:
1735                 *val = get_reg_val(id, vcpu->arch.tacr);
1736                 break;
1737         case KVM_REG_PPC_TCSCR:
1738                 *val = get_reg_val(id, vcpu->arch.tcscr);
1739                 break;
1740         case KVM_REG_PPC_PID:
1741                 *val = get_reg_val(id, vcpu->arch.pid);
1742                 break;
1743         case KVM_REG_PPC_ACOP:
1744                 *val = get_reg_val(id, vcpu->arch.acop);
1745                 break;
1746         case KVM_REG_PPC_WORT:
1747                 *val = get_reg_val(id, vcpu->arch.wort);
1748                 break;
1749         case KVM_REG_PPC_TIDR:
1750                 *val = get_reg_val(id, vcpu->arch.tid);
1751                 break;
1752         case KVM_REG_PPC_PSSCR:
1753                 *val = get_reg_val(id, vcpu->arch.psscr);
1754                 break;
1755         case KVM_REG_PPC_VPA_ADDR:
1756                 spin_lock(&vcpu->arch.vpa_update_lock);
1757                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1758                 spin_unlock(&vcpu->arch.vpa_update_lock);
1759                 break;
1760         case KVM_REG_PPC_VPA_SLB:
1761                 spin_lock(&vcpu->arch.vpa_update_lock);
1762                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1763                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1764                 spin_unlock(&vcpu->arch.vpa_update_lock);
1765                 break;
1766         case KVM_REG_PPC_VPA_DTL:
1767                 spin_lock(&vcpu->arch.vpa_update_lock);
1768                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1769                 val->vpaval.length = vcpu->arch.dtl.len;
1770                 spin_unlock(&vcpu->arch.vpa_update_lock);
1771                 break;
1772         case KVM_REG_PPC_TB_OFFSET:
1773                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1774                 break;
1775         case KVM_REG_PPC_LPCR:
1776         case KVM_REG_PPC_LPCR_64:
1777                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1778                 break;
1779         case KVM_REG_PPC_PPR:
1780                 *val = get_reg_val(id, vcpu->arch.ppr);
1781                 break;
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1783         case KVM_REG_PPC_TFHAR:
1784                 *val = get_reg_val(id, vcpu->arch.tfhar);
1785                 break;
1786         case KVM_REG_PPC_TFIAR:
1787                 *val = get_reg_val(id, vcpu->arch.tfiar);
1788                 break;
1789         case KVM_REG_PPC_TEXASR:
1790                 *val = get_reg_val(id, vcpu->arch.texasr);
1791                 break;
1792         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1793                 i = id - KVM_REG_PPC_TM_GPR0;
1794                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1795                 break;
1796         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1797         {
1798                 int j;
1799                 i = id - KVM_REG_PPC_TM_VSR0;
1800                 if (i < 32)
1801                         for (j = 0; j < TS_FPRWIDTH; j++)
1802                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1803                 else {
1804                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1805                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1806                         else
1807                                 r = -ENXIO;
1808                 }
1809                 break;
1810         }
1811         case KVM_REG_PPC_TM_CR:
1812                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1813                 break;
1814         case KVM_REG_PPC_TM_XER:
1815                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1816                 break;
1817         case KVM_REG_PPC_TM_LR:
1818                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1819                 break;
1820         case KVM_REG_PPC_TM_CTR:
1821                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1822                 break;
1823         case KVM_REG_PPC_TM_FPSCR:
1824                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1825                 break;
1826         case KVM_REG_PPC_TM_AMR:
1827                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1828                 break;
1829         case KVM_REG_PPC_TM_PPR:
1830                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1831                 break;
1832         case KVM_REG_PPC_TM_VRSAVE:
1833                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1834                 break;
1835         case KVM_REG_PPC_TM_VSCR:
1836                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1837                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1838                 else
1839                         r = -ENXIO;
1840                 break;
1841         case KVM_REG_PPC_TM_DSCR:
1842                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1843                 break;
1844         case KVM_REG_PPC_TM_TAR:
1845                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1846                 break;
1847 #endif
1848         case KVM_REG_PPC_ARCH_COMPAT:
1849                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1850                 break;
1851         case KVM_REG_PPC_DEC_EXPIRY:
1852                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1853                                    vcpu->arch.vcore->tb_offset);
1854                 break;
1855         case KVM_REG_PPC_ONLINE:
1856                 *val = get_reg_val(id, vcpu->arch.online);
1857                 break;
1858         case KVM_REG_PPC_PTCR:
1859                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1860                 break;
1861         default:
1862                 r = -EINVAL;
1863                 break;
1864         }
1865
1866         return r;
1867 }
1868
1869 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1870                                  union kvmppc_one_reg *val)
1871 {
1872         int r = 0;
1873         long int i;
1874         unsigned long addr, len;
1875
1876         switch (id) {
1877         case KVM_REG_PPC_HIOR:
1878                 /* Only allow this to be set to zero */
1879                 if (set_reg_val(id, *val))
1880                         r = -EINVAL;
1881                 break;
1882         case KVM_REG_PPC_DABR:
1883                 vcpu->arch.dabr = set_reg_val(id, *val);
1884                 break;
1885         case KVM_REG_PPC_DABRX:
1886                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1887                 break;
1888         case KVM_REG_PPC_DSCR:
1889                 vcpu->arch.dscr = set_reg_val(id, *val);
1890                 break;
1891         case KVM_REG_PPC_PURR:
1892                 vcpu->arch.purr = set_reg_val(id, *val);
1893                 break;
1894         case KVM_REG_PPC_SPURR:
1895                 vcpu->arch.spurr = set_reg_val(id, *val);
1896                 break;
1897         case KVM_REG_PPC_AMR:
1898                 vcpu->arch.amr = set_reg_val(id, *val);
1899                 break;
1900         case KVM_REG_PPC_UAMOR:
1901                 vcpu->arch.uamor = set_reg_val(id, *val);
1902                 break;
1903         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1904                 i = id - KVM_REG_PPC_MMCR0;
1905                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1906                 break;
1907         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1908                 i = id - KVM_REG_PPC_PMC1;
1909                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1910                 break;
1911         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1912                 i = id - KVM_REG_PPC_SPMC1;
1913                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1914                 break;
1915         case KVM_REG_PPC_SIAR:
1916                 vcpu->arch.siar = set_reg_val(id, *val);
1917                 break;
1918         case KVM_REG_PPC_SDAR:
1919                 vcpu->arch.sdar = set_reg_val(id, *val);
1920                 break;
1921         case KVM_REG_PPC_SIER:
1922                 vcpu->arch.sier = set_reg_val(id, *val);
1923                 break;
1924         case KVM_REG_PPC_IAMR:
1925                 vcpu->arch.iamr = set_reg_val(id, *val);
1926                 break;
1927         case KVM_REG_PPC_PSPB:
1928                 vcpu->arch.pspb = set_reg_val(id, *val);
1929                 break;
1930         case KVM_REG_PPC_DPDES:
1931                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1932                 break;
1933         case KVM_REG_PPC_VTB:
1934                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1935                 break;
1936         case KVM_REG_PPC_DAWR:
1937                 vcpu->arch.dawr = set_reg_val(id, *val);
1938                 break;
1939         case KVM_REG_PPC_DAWRX:
1940                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1941                 break;
1942         case KVM_REG_PPC_CIABR:
1943                 vcpu->arch.ciabr = set_reg_val(id, *val);
1944                 /* Don't allow setting breakpoints in hypervisor code */
1945                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1946                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1947                 break;
1948         case KVM_REG_PPC_CSIGR:
1949                 vcpu->arch.csigr = set_reg_val(id, *val);
1950                 break;
1951         case KVM_REG_PPC_TACR:
1952                 vcpu->arch.tacr = set_reg_val(id, *val);
1953                 break;
1954         case KVM_REG_PPC_TCSCR:
1955                 vcpu->arch.tcscr = set_reg_val(id, *val);
1956                 break;
1957         case KVM_REG_PPC_PID:
1958                 vcpu->arch.pid = set_reg_val(id, *val);
1959                 break;
1960         case KVM_REG_PPC_ACOP:
1961                 vcpu->arch.acop = set_reg_val(id, *val);
1962                 break;
1963         case KVM_REG_PPC_WORT:
1964                 vcpu->arch.wort = set_reg_val(id, *val);
1965                 break;
1966         case KVM_REG_PPC_TIDR:
1967                 vcpu->arch.tid = set_reg_val(id, *val);
1968                 break;
1969         case KVM_REG_PPC_PSSCR:
1970                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1971                 break;
1972         case KVM_REG_PPC_VPA_ADDR:
1973                 addr = set_reg_val(id, *val);
1974                 r = -EINVAL;
1975                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1976                               vcpu->arch.dtl.next_gpa))
1977                         break;
1978                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1979                 break;
1980         case KVM_REG_PPC_VPA_SLB:
1981                 addr = val->vpaval.addr;
1982                 len = val->vpaval.length;
1983                 r = -EINVAL;
1984                 if (addr && !vcpu->arch.vpa.next_gpa)
1985                         break;
1986                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1987                 break;
1988         case KVM_REG_PPC_VPA_DTL:
1989                 addr = val->vpaval.addr;
1990                 len = val->vpaval.length;
1991                 r = -EINVAL;
1992                 if (addr && (len < sizeof(struct dtl_entry) ||
1993                              !vcpu->arch.vpa.next_gpa))
1994                         break;
1995                 len -= len % sizeof(struct dtl_entry);
1996                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1997                 break;
1998         case KVM_REG_PPC_TB_OFFSET:
1999                 /* round up to multiple of 2^24 */
2000                 vcpu->arch.vcore->tb_offset =
2001                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2002                 break;
2003         case KVM_REG_PPC_LPCR:
2004                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2005                 break;
2006         case KVM_REG_PPC_LPCR_64:
2007                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2008                 break;
2009         case KVM_REG_PPC_PPR:
2010                 vcpu->arch.ppr = set_reg_val(id, *val);
2011                 break;
2012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2013         case KVM_REG_PPC_TFHAR:
2014                 vcpu->arch.tfhar = set_reg_val(id, *val);
2015                 break;
2016         case KVM_REG_PPC_TFIAR:
2017                 vcpu->arch.tfiar = set_reg_val(id, *val);
2018                 break;
2019         case KVM_REG_PPC_TEXASR:
2020                 vcpu->arch.texasr = set_reg_val(id, *val);
2021                 break;
2022         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2023                 i = id - KVM_REG_PPC_TM_GPR0;
2024                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2025                 break;
2026         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2027         {
2028                 int j;
2029                 i = id - KVM_REG_PPC_TM_VSR0;
2030                 if (i < 32)
2031                         for (j = 0; j < TS_FPRWIDTH; j++)
2032                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2033                 else
2034                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2035                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2036                         else
2037                                 r = -ENXIO;
2038                 break;
2039         }
2040         case KVM_REG_PPC_TM_CR:
2041                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2042                 break;
2043         case KVM_REG_PPC_TM_XER:
2044                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2045                 break;
2046         case KVM_REG_PPC_TM_LR:
2047                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2048                 break;
2049         case KVM_REG_PPC_TM_CTR:
2050                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2051                 break;
2052         case KVM_REG_PPC_TM_FPSCR:
2053                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2054                 break;
2055         case KVM_REG_PPC_TM_AMR:
2056                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2057                 break;
2058         case KVM_REG_PPC_TM_PPR:
2059                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2060                 break;
2061         case KVM_REG_PPC_TM_VRSAVE:
2062                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2063                 break;
2064         case KVM_REG_PPC_TM_VSCR:
2065                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2066                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2067                 else
2068                         r = - ENXIO;
2069                 break;
2070         case KVM_REG_PPC_TM_DSCR:
2071                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2072                 break;
2073         case KVM_REG_PPC_TM_TAR:
2074                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2075                 break;
2076 #endif
2077         case KVM_REG_PPC_ARCH_COMPAT:
2078                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2079                 break;
2080         case KVM_REG_PPC_DEC_EXPIRY:
2081                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2082                         vcpu->arch.vcore->tb_offset;
2083                 break;
2084         case KVM_REG_PPC_ONLINE:
2085                 i = set_reg_val(id, *val);
2086                 if (i && !vcpu->arch.online)
2087                         atomic_inc(&vcpu->arch.vcore->online_count);
2088                 else if (!i && vcpu->arch.online)
2089                         atomic_dec(&vcpu->arch.vcore->online_count);
2090                 vcpu->arch.online = i;
2091                 break;
2092         case KVM_REG_PPC_PTCR:
2093                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2094                 break;
2095         default:
2096                 r = -EINVAL;
2097                 break;
2098         }
2099
2100         return r;
2101 }
2102
2103 /*
2104  * On POWER9, threads are independent and can be in different partitions.
2105  * Therefore we consider each thread to be a subcore.
2106  * There is a restriction that all threads have to be in the same
2107  * MMU mode (radix or HPT), unfortunately, but since we only support
2108  * HPT guests on a HPT host so far, that isn't an impediment yet.
2109  */
2110 static int threads_per_vcore(struct kvm *kvm)
2111 {
2112         if (kvm->arch.threads_indep)
2113                 return 1;
2114         return threads_per_subcore;
2115 }
2116
2117 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2118 {
2119         struct kvmppc_vcore *vcore;
2120
2121         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2122
2123         if (vcore == NULL)
2124                 return NULL;
2125
2126         spin_lock_init(&vcore->lock);
2127         spin_lock_init(&vcore->stoltb_lock);
2128         init_swait_queue_head(&vcore->wq);
2129         vcore->preempt_tb = TB_NIL;
2130         vcore->lpcr = kvm->arch.lpcr;
2131         vcore->first_vcpuid = id;
2132         vcore->kvm = kvm;
2133         INIT_LIST_HEAD(&vcore->preempt_list);
2134
2135         return vcore;
2136 }
2137
2138 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2139 static struct debugfs_timings_element {
2140         const char *name;
2141         size_t offset;
2142 } timings[] = {
2143         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2144         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2145         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2146         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2147         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2148 };
2149
2150 #define N_TIMINGS       (ARRAY_SIZE(timings))
2151
2152 struct debugfs_timings_state {
2153         struct kvm_vcpu *vcpu;
2154         unsigned int    buflen;
2155         char            buf[N_TIMINGS * 100];
2156 };
2157
2158 static int debugfs_timings_open(struct inode *inode, struct file *file)
2159 {
2160         struct kvm_vcpu *vcpu = inode->i_private;
2161         struct debugfs_timings_state *p;
2162
2163         p = kzalloc(sizeof(*p), GFP_KERNEL);
2164         if (!p)
2165                 return -ENOMEM;
2166
2167         kvm_get_kvm(vcpu->kvm);
2168         p->vcpu = vcpu;
2169         file->private_data = p;
2170
2171         return nonseekable_open(inode, file);
2172 }
2173
2174 static int debugfs_timings_release(struct inode *inode, struct file *file)
2175 {
2176         struct debugfs_timings_state *p = file->private_data;
2177
2178         kvm_put_kvm(p->vcpu->kvm);
2179         kfree(p);
2180         return 0;
2181 }
2182
2183 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2184                                     size_t len, loff_t *ppos)
2185 {
2186         struct debugfs_timings_state *p = file->private_data;
2187         struct kvm_vcpu *vcpu = p->vcpu;
2188         char *s, *buf_end;
2189         struct kvmhv_tb_accumulator tb;
2190         u64 count;
2191         loff_t pos;
2192         ssize_t n;
2193         int i, loops;
2194         bool ok;
2195
2196         if (!p->buflen) {
2197                 s = p->buf;
2198                 buf_end = s + sizeof(p->buf);
2199                 for (i = 0; i < N_TIMINGS; ++i) {
2200                         struct kvmhv_tb_accumulator *acc;
2201
2202                         acc = (struct kvmhv_tb_accumulator *)
2203                                 ((unsigned long)vcpu + timings[i].offset);
2204                         ok = false;
2205                         for (loops = 0; loops < 1000; ++loops) {
2206                                 count = acc->seqcount;
2207                                 if (!(count & 1)) {
2208                                         smp_rmb();
2209                                         tb = *acc;
2210                                         smp_rmb();
2211                                         if (count == acc->seqcount) {
2212                                                 ok = true;
2213                                                 break;
2214                                         }
2215                                 }
2216                                 udelay(1);
2217                         }
2218                         if (!ok)
2219                                 snprintf(s, buf_end - s, "%s: stuck\n",
2220                                         timings[i].name);
2221                         else
2222                                 snprintf(s, buf_end - s,
2223                                         "%s: %llu %llu %llu %llu\n",
2224                                         timings[i].name, count / 2,
2225                                         tb_to_ns(tb.tb_total),
2226                                         tb_to_ns(tb.tb_min),
2227                                         tb_to_ns(tb.tb_max));
2228                         s += strlen(s);
2229                 }
2230                 p->buflen = s - p->buf;
2231         }
2232
2233         pos = *ppos;
2234         if (pos >= p->buflen)
2235                 return 0;
2236         if (len > p->buflen - pos)
2237                 len = p->buflen - pos;
2238         n = copy_to_user(buf, p->buf + pos, len);
2239         if (n) {
2240                 if (n == len)
2241                         return -EFAULT;
2242                 len -= n;
2243         }
2244         *ppos = pos + len;
2245         return len;
2246 }
2247
2248 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2249                                      size_t len, loff_t *ppos)
2250 {
2251         return -EACCES;
2252 }
2253
2254 static const struct file_operations debugfs_timings_ops = {
2255         .owner   = THIS_MODULE,
2256         .open    = debugfs_timings_open,
2257         .release = debugfs_timings_release,
2258         .read    = debugfs_timings_read,
2259         .write   = debugfs_timings_write,
2260         .llseek  = generic_file_llseek,
2261 };
2262
2263 /* Create a debugfs directory for the vcpu */
2264 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2265 {
2266         char buf[16];
2267         struct kvm *kvm = vcpu->kvm;
2268
2269         snprintf(buf, sizeof(buf), "vcpu%u", id);
2270         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2271         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2272                             &debugfs_timings_ops);
2273 }
2274
2275 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2276 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2277 {
2278 }
2279 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2280
2281 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2282 {
2283         int err;
2284         int core;
2285         struct kvmppc_vcore *vcore;
2286         struct kvm *kvm;
2287         unsigned int id;
2288
2289         kvm = vcpu->kvm;
2290         id = vcpu->vcpu_id;
2291
2292         vcpu->arch.shared = &vcpu->arch.shregs;
2293 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2294         /*
2295          * The shared struct is never shared on HV,
2296          * so we can always use host endianness
2297          */
2298 #ifdef __BIG_ENDIAN__
2299         vcpu->arch.shared_big_endian = true;
2300 #else
2301         vcpu->arch.shared_big_endian = false;
2302 #endif
2303 #endif
2304         vcpu->arch.mmcr[0] = MMCR0_FC;
2305         vcpu->arch.ctrl = CTRL_RUNLATCH;
2306         /* default to host PVR, since we can't spoof it */
2307         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2308         spin_lock_init(&vcpu->arch.vpa_update_lock);
2309         spin_lock_init(&vcpu->arch.tbacct_lock);
2310         vcpu->arch.busy_preempt = TB_NIL;
2311         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2312
2313         /*
2314          * Set the default HFSCR for the guest from the host value.
2315          * This value is only used on POWER9.
2316          * On POWER9, we want to virtualize the doorbell facility, so we
2317          * don't set the HFSCR_MSGP bit, and that causes those instructions
2318          * to trap and then we emulate them.
2319          */
2320         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2321                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2322         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2323                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2324                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2325                         vcpu->arch.hfscr |= HFSCR_TM;
2326         }
2327         if (cpu_has_feature(CPU_FTR_TM_COMP))
2328                 vcpu->arch.hfscr |= HFSCR_TM;
2329
2330         kvmppc_mmu_book3s_hv_init(vcpu);
2331
2332         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2333
2334         init_waitqueue_head(&vcpu->arch.cpu_run);
2335
2336         mutex_lock(&kvm->lock);
2337         vcore = NULL;
2338         err = -EINVAL;
2339         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2340                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2341                         pr_devel("KVM: VCPU ID too high\n");
2342                         core = KVM_MAX_VCORES;
2343                 } else {
2344                         BUG_ON(kvm->arch.smt_mode != 1);
2345                         core = kvmppc_pack_vcpu_id(kvm, id);
2346                 }
2347         } else {
2348                 core = id / kvm->arch.smt_mode;
2349         }
2350         if (core < KVM_MAX_VCORES) {
2351                 vcore = kvm->arch.vcores[core];
2352                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2353                         pr_devel("KVM: collision on id %u", id);
2354                         vcore = NULL;
2355                 } else if (!vcore) {
2356                         /*
2357                          * Take mmu_setup_lock for mutual exclusion
2358                          * with kvmppc_update_lpcr().
2359                          */
2360                         err = -ENOMEM;
2361                         vcore = kvmppc_vcore_create(kvm,
2362                                         id & ~(kvm->arch.smt_mode - 1));
2363                         mutex_lock(&kvm->arch.mmu_setup_lock);
2364                         kvm->arch.vcores[core] = vcore;
2365                         kvm->arch.online_vcores++;
2366                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2367                 }
2368         }
2369         mutex_unlock(&kvm->lock);
2370
2371         if (!vcore)
2372                 return err;
2373
2374         spin_lock(&vcore->lock);
2375         ++vcore->num_threads;
2376         spin_unlock(&vcore->lock);
2377         vcpu->arch.vcore = vcore;
2378         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2379         vcpu->arch.thread_cpu = -1;
2380         vcpu->arch.prev_cpu = -1;
2381
2382         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2383         kvmppc_sanity_check(vcpu);
2384
2385         debugfs_vcpu_init(vcpu, id);
2386
2387         return 0;
2388 }
2389
2390 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2391                               unsigned long flags)
2392 {
2393         int err;
2394         int esmt = 0;
2395
2396         if (flags)
2397                 return -EINVAL;
2398         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2399                 return -EINVAL;
2400         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2401                 /*
2402                  * On POWER8 (or POWER7), the threading mode is "strict",
2403                  * so we pack smt_mode vcpus per vcore.
2404                  */
2405                 if (smt_mode > threads_per_subcore)
2406                         return -EINVAL;
2407         } else {
2408                 /*
2409                  * On POWER9, the threading mode is "loose",
2410                  * so each vcpu gets its own vcore.
2411                  */
2412                 esmt = smt_mode;
2413                 smt_mode = 1;
2414         }
2415         mutex_lock(&kvm->lock);
2416         err = -EBUSY;
2417         if (!kvm->arch.online_vcores) {
2418                 kvm->arch.smt_mode = smt_mode;
2419                 kvm->arch.emul_smt_mode = esmt;
2420                 err = 0;
2421         }
2422         mutex_unlock(&kvm->lock);
2423
2424         return err;
2425 }
2426
2427 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2428 {
2429         if (vpa->pinned_addr)
2430                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2431                                         vpa->dirty);
2432 }
2433
2434 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2435 {
2436         spin_lock(&vcpu->arch.vpa_update_lock);
2437         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2438         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2439         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2440         spin_unlock(&vcpu->arch.vpa_update_lock);
2441 }
2442
2443 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2444 {
2445         /* Indicate we want to get back into the guest */
2446         return 1;
2447 }
2448
2449 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2450 {
2451         unsigned long dec_nsec, now;
2452
2453         now = get_tb();
2454         if (now > vcpu->arch.dec_expires) {
2455                 /* decrementer has already gone negative */
2456                 kvmppc_core_queue_dec(vcpu);
2457                 kvmppc_core_prepare_to_enter(vcpu);
2458                 return;
2459         }
2460         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2461         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2462         vcpu->arch.timer_running = 1;
2463 }
2464
2465 extern int __kvmppc_vcore_entry(void);
2466
2467 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2468                                    struct kvm_vcpu *vcpu)
2469 {
2470         u64 now;
2471
2472         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2473                 return;
2474         spin_lock_irq(&vcpu->arch.tbacct_lock);
2475         now = mftb();
2476         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2477                 vcpu->arch.stolen_logged;
2478         vcpu->arch.busy_preempt = now;
2479         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2480         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2481         --vc->n_runnable;
2482         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2483 }
2484
2485 static int kvmppc_grab_hwthread(int cpu)
2486 {
2487         struct paca_struct *tpaca;
2488         long timeout = 10000;
2489
2490         tpaca = paca_ptrs[cpu];
2491
2492         /* Ensure the thread won't go into the kernel if it wakes */
2493         tpaca->kvm_hstate.kvm_vcpu = NULL;
2494         tpaca->kvm_hstate.kvm_vcore = NULL;
2495         tpaca->kvm_hstate.napping = 0;
2496         smp_wmb();
2497         tpaca->kvm_hstate.hwthread_req = 1;
2498
2499         /*
2500          * If the thread is already executing in the kernel (e.g. handling
2501          * a stray interrupt), wait for it to get back to nap mode.
2502          * The smp_mb() is to ensure that our setting of hwthread_req
2503          * is visible before we look at hwthread_state, so if this
2504          * races with the code at system_reset_pSeries and the thread
2505          * misses our setting of hwthread_req, we are sure to see its
2506          * setting of hwthread_state, and vice versa.
2507          */
2508         smp_mb();
2509         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2510                 if (--timeout <= 0) {
2511                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2512                         return -EBUSY;
2513                 }
2514                 udelay(1);
2515         }
2516         return 0;
2517 }
2518
2519 static void kvmppc_release_hwthread(int cpu)
2520 {
2521         struct paca_struct *tpaca;
2522
2523         tpaca = paca_ptrs[cpu];
2524         tpaca->kvm_hstate.hwthread_req = 0;
2525         tpaca->kvm_hstate.kvm_vcpu = NULL;
2526         tpaca->kvm_hstate.kvm_vcore = NULL;
2527         tpaca->kvm_hstate.kvm_split_mode = NULL;
2528 }
2529
2530 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2531 {
2532         struct kvm_nested_guest *nested = vcpu->arch.nested;
2533         cpumask_t *cpu_in_guest;
2534         int i;
2535
2536         cpu = cpu_first_thread_sibling(cpu);
2537         if (nested) {
2538                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2539                 cpu_in_guest = &nested->cpu_in_guest;
2540         } else {
2541                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2542                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2543         }
2544         /*
2545          * Make sure setting of bit in need_tlb_flush precedes
2546          * testing of cpu_in_guest bits.  The matching barrier on
2547          * the other side is the first smp_mb() in kvmppc_run_core().
2548          */
2549         smp_mb();
2550         for (i = 0; i < threads_per_core; ++i)
2551                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2552                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2553 }
2554
2555 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2556 {
2557         struct kvm_nested_guest *nested = vcpu->arch.nested;
2558         struct kvm *kvm = vcpu->kvm;
2559         int prev_cpu;
2560
2561         if (!cpu_has_feature(CPU_FTR_HVMODE))
2562                 return;
2563
2564         if (nested)
2565                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2566         else
2567                 prev_cpu = vcpu->arch.prev_cpu;
2568
2569         /*
2570          * With radix, the guest can do TLB invalidations itself,
2571          * and it could choose to use the local form (tlbiel) if
2572          * it is invalidating a translation that has only ever been
2573          * used on one vcpu.  However, that doesn't mean it has
2574          * only ever been used on one physical cpu, since vcpus
2575          * can move around between pcpus.  To cope with this, when
2576          * a vcpu moves from one pcpu to another, we need to tell
2577          * any vcpus running on the same core as this vcpu previously
2578          * ran to flush the TLB.  The TLB is shared between threads,
2579          * so we use a single bit in .need_tlb_flush for all 4 threads.
2580          */
2581         if (prev_cpu != pcpu) {
2582                 if (prev_cpu >= 0 &&
2583                     cpu_first_thread_sibling(prev_cpu) !=
2584                     cpu_first_thread_sibling(pcpu))
2585                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2586                 if (nested)
2587                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2588                 else
2589                         vcpu->arch.prev_cpu = pcpu;
2590         }
2591 }
2592
2593 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2594 {
2595         int cpu;
2596         struct paca_struct *tpaca;
2597         struct kvm *kvm = vc->kvm;
2598
2599         cpu = vc->pcpu;
2600         if (vcpu) {
2601                 if (vcpu->arch.timer_running) {
2602                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2603                         vcpu->arch.timer_running = 0;
2604                 }
2605                 cpu += vcpu->arch.ptid;
2606                 vcpu->cpu = vc->pcpu;
2607                 vcpu->arch.thread_cpu = cpu;
2608                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2609         }
2610         tpaca = paca_ptrs[cpu];
2611         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2612         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2613         tpaca->kvm_hstate.fake_suspend = 0;
2614         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2615         smp_wmb();
2616         tpaca->kvm_hstate.kvm_vcore = vc;
2617         if (cpu != smp_processor_id())
2618                 kvmppc_ipi_thread(cpu);
2619 }
2620
2621 static void kvmppc_wait_for_nap(int n_threads)
2622 {
2623         int cpu = smp_processor_id();
2624         int i, loops;
2625
2626         if (n_threads <= 1)
2627                 return;
2628         for (loops = 0; loops < 1000000; ++loops) {
2629                 /*
2630                  * Check if all threads are finished.
2631                  * We set the vcore pointer when starting a thread
2632                  * and the thread clears it when finished, so we look
2633                  * for any threads that still have a non-NULL vcore ptr.
2634                  */
2635                 for (i = 1; i < n_threads; ++i)
2636                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2637                                 break;
2638                 if (i == n_threads) {
2639                         HMT_medium();
2640                         return;
2641                 }
2642                 HMT_low();
2643         }
2644         HMT_medium();
2645         for (i = 1; i < n_threads; ++i)
2646                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2647                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2648 }
2649
2650 /*
2651  * Check that we are on thread 0 and that any other threads in
2652  * this core are off-line.  Then grab the threads so they can't
2653  * enter the kernel.
2654  */
2655 static int on_primary_thread(void)
2656 {
2657         int cpu = smp_processor_id();
2658         int thr;
2659
2660         /* Are we on a primary subcore? */
2661         if (cpu_thread_in_subcore(cpu))
2662                 return 0;
2663
2664         thr = 0;
2665         while (++thr < threads_per_subcore)
2666                 if (cpu_online(cpu + thr))
2667                         return 0;
2668
2669         /* Grab all hw threads so they can't go into the kernel */
2670         for (thr = 1; thr < threads_per_subcore; ++thr) {
2671                 if (kvmppc_grab_hwthread(cpu + thr)) {
2672                         /* Couldn't grab one; let the others go */
2673                         do {
2674                                 kvmppc_release_hwthread(cpu + thr);
2675                         } while (--thr > 0);
2676                         return 0;
2677                 }
2678         }
2679         return 1;
2680 }
2681
2682 /*
2683  * A list of virtual cores for each physical CPU.
2684  * These are vcores that could run but their runner VCPU tasks are
2685  * (or may be) preempted.
2686  */
2687 struct preempted_vcore_list {
2688         struct list_head        list;
2689         spinlock_t              lock;
2690 };
2691
2692 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2693
2694 static void init_vcore_lists(void)
2695 {
2696         int cpu;
2697
2698         for_each_possible_cpu(cpu) {
2699                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2700                 spin_lock_init(&lp->lock);
2701                 INIT_LIST_HEAD(&lp->list);
2702         }
2703 }
2704
2705 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2706 {
2707         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2708
2709         vc->vcore_state = VCORE_PREEMPT;
2710         vc->pcpu = smp_processor_id();
2711         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2712                 spin_lock(&lp->lock);
2713                 list_add_tail(&vc->preempt_list, &lp->list);
2714                 spin_unlock(&lp->lock);
2715         }
2716
2717         /* Start accumulating stolen time */
2718         kvmppc_core_start_stolen(vc);
2719 }
2720
2721 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2722 {
2723         struct preempted_vcore_list *lp;
2724
2725         kvmppc_core_end_stolen(vc);
2726         if (!list_empty(&vc->preempt_list)) {
2727                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2728                 spin_lock(&lp->lock);
2729                 list_del_init(&vc->preempt_list);
2730                 spin_unlock(&lp->lock);
2731         }
2732         vc->vcore_state = VCORE_INACTIVE;
2733 }
2734
2735 /*
2736  * This stores information about the virtual cores currently
2737  * assigned to a physical core.
2738  */
2739 struct core_info {
2740         int             n_subcores;
2741         int             max_subcore_threads;
2742         int             total_threads;
2743         int             subcore_threads[MAX_SUBCORES];
2744         struct kvmppc_vcore *vc[MAX_SUBCORES];
2745 };
2746
2747 /*
2748  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2749  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2750  */
2751 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2752
2753 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2754 {
2755         memset(cip, 0, sizeof(*cip));
2756         cip->n_subcores = 1;
2757         cip->max_subcore_threads = vc->num_threads;
2758         cip->total_threads = vc->num_threads;
2759         cip->subcore_threads[0] = vc->num_threads;
2760         cip->vc[0] = vc;
2761 }
2762
2763 static bool subcore_config_ok(int n_subcores, int n_threads)
2764 {
2765         /*
2766          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2767          * split-core mode, with one thread per subcore.
2768          */
2769         if (cpu_has_feature(CPU_FTR_ARCH_300))
2770                 return n_subcores <= 4 && n_threads == 1;
2771
2772         /* On POWER8, can only dynamically split if unsplit to begin with */
2773         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2774                 return false;
2775         if (n_subcores > MAX_SUBCORES)
2776                 return false;
2777         if (n_subcores > 1) {
2778                 if (!(dynamic_mt_modes & 2))
2779                         n_subcores = 4;
2780                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2781                         return false;
2782         }
2783
2784         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2785 }
2786
2787 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2788 {
2789         vc->entry_exit_map = 0;
2790         vc->in_guest = 0;
2791         vc->napping_threads = 0;
2792         vc->conferring_threads = 0;
2793         vc->tb_offset_applied = 0;
2794 }
2795
2796 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2797 {
2798         int n_threads = vc->num_threads;
2799         int sub;
2800
2801         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2802                 return false;
2803
2804         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2805         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2806                 return false;
2807
2808         /* Some POWER9 chips require all threads to be in the same MMU mode */
2809         if (no_mixing_hpt_and_radix &&
2810             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2811                 return false;
2812
2813         if (n_threads < cip->max_subcore_threads)
2814                 n_threads = cip->max_subcore_threads;
2815         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2816                 return false;
2817         cip->max_subcore_threads = n_threads;
2818
2819         sub = cip->n_subcores;
2820         ++cip->n_subcores;
2821         cip->total_threads += vc->num_threads;
2822         cip->subcore_threads[sub] = vc->num_threads;
2823         cip->vc[sub] = vc;
2824         init_vcore_to_run(vc);
2825         list_del_init(&vc->preempt_list);
2826
2827         return true;
2828 }
2829
2830 /*
2831  * Work out whether it is possible to piggyback the execution of
2832  * vcore *pvc onto the execution of the other vcores described in *cip.
2833  */
2834 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2835                           int target_threads)
2836 {
2837         if (cip->total_threads + pvc->num_threads > target_threads)
2838                 return false;
2839
2840         return can_dynamic_split(pvc, cip);
2841 }
2842
2843 static void prepare_threads(struct kvmppc_vcore *vc)
2844 {
2845         int i;
2846         struct kvm_vcpu *vcpu;
2847
2848         for_each_runnable_thread(i, vcpu, vc) {
2849                 if (signal_pending(vcpu->arch.run_task))
2850                         vcpu->arch.ret = -EINTR;
2851                 else if (vcpu->arch.vpa.update_pending ||
2852                          vcpu->arch.slb_shadow.update_pending ||
2853                          vcpu->arch.dtl.update_pending)
2854                         vcpu->arch.ret = RESUME_GUEST;
2855                 else
2856                         continue;
2857                 kvmppc_remove_runnable(vc, vcpu);
2858                 wake_up(&vcpu->arch.cpu_run);
2859         }
2860 }
2861
2862 static void collect_piggybacks(struct core_info *cip, int target_threads)
2863 {
2864         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2865         struct kvmppc_vcore *pvc, *vcnext;
2866
2867         spin_lock(&lp->lock);
2868         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2869                 if (!spin_trylock(&pvc->lock))
2870                         continue;
2871                 prepare_threads(pvc);
2872                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2873                         list_del_init(&pvc->preempt_list);
2874                         if (pvc->runner == NULL) {
2875                                 pvc->vcore_state = VCORE_INACTIVE;
2876                                 kvmppc_core_end_stolen(pvc);
2877                         }
2878                         spin_unlock(&pvc->lock);
2879                         continue;
2880                 }
2881                 if (!can_piggyback(pvc, cip, target_threads)) {
2882                         spin_unlock(&pvc->lock);
2883                         continue;
2884                 }
2885                 kvmppc_core_end_stolen(pvc);
2886                 pvc->vcore_state = VCORE_PIGGYBACK;
2887                 if (cip->total_threads >= target_threads)
2888                         break;
2889         }
2890         spin_unlock(&lp->lock);
2891 }
2892
2893 static bool recheck_signals_and_mmu(struct core_info *cip)
2894 {
2895         int sub, i;
2896         struct kvm_vcpu *vcpu;
2897         struct kvmppc_vcore *vc;
2898
2899         for (sub = 0; sub < cip->n_subcores; ++sub) {
2900                 vc = cip->vc[sub];
2901                 if (!vc->kvm->arch.mmu_ready)
2902                         return true;
2903                 for_each_runnable_thread(i, vcpu, vc)
2904                         if (signal_pending(vcpu->arch.run_task))
2905                                 return true;
2906         }
2907         return false;
2908 }
2909
2910 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2911 {
2912         int still_running = 0, i;
2913         u64 now;
2914         long ret;
2915         struct kvm_vcpu *vcpu;
2916
2917         spin_lock(&vc->lock);
2918         now = get_tb();
2919         for_each_runnable_thread(i, vcpu, vc) {
2920                 /*
2921                  * It's safe to unlock the vcore in the loop here, because
2922                  * for_each_runnable_thread() is safe against removal of
2923                  * the vcpu, and the vcore state is VCORE_EXITING here,
2924                  * so any vcpus becoming runnable will have their arch.trap
2925                  * set to zero and can't actually run in the guest.
2926                  */
2927                 spin_unlock(&vc->lock);
2928                 /* cancel pending dec exception if dec is positive */
2929                 if (now < vcpu->arch.dec_expires &&
2930                     kvmppc_core_pending_dec(vcpu))
2931                         kvmppc_core_dequeue_dec(vcpu);
2932
2933                 trace_kvm_guest_exit(vcpu);
2934
2935                 ret = RESUME_GUEST;
2936                 if (vcpu->arch.trap)
2937                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2938                                                     vcpu->arch.run_task);
2939
2940                 vcpu->arch.ret = ret;
2941                 vcpu->arch.trap = 0;
2942
2943                 spin_lock(&vc->lock);
2944                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2945                         if (vcpu->arch.pending_exceptions)
2946                                 kvmppc_core_prepare_to_enter(vcpu);
2947                         if (vcpu->arch.ceded)
2948                                 kvmppc_set_timer(vcpu);
2949                         else
2950                                 ++still_running;
2951                 } else {
2952                         kvmppc_remove_runnable(vc, vcpu);
2953                         wake_up(&vcpu->arch.cpu_run);
2954                 }
2955         }
2956         if (!is_master) {
2957                 if (still_running > 0) {
2958                         kvmppc_vcore_preempt(vc);
2959                 } else if (vc->runner) {
2960                         vc->vcore_state = VCORE_PREEMPT;
2961                         kvmppc_core_start_stolen(vc);
2962                 } else {
2963                         vc->vcore_state = VCORE_INACTIVE;
2964                 }
2965                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2966                         /* make sure there's a candidate runner awake */
2967                         i = -1;
2968                         vcpu = next_runnable_thread(vc, &i);
2969                         wake_up(&vcpu->arch.cpu_run);
2970                 }
2971         }
2972         spin_unlock(&vc->lock);
2973 }
2974
2975 /*
2976  * Clear core from the list of active host cores as we are about to
2977  * enter the guest. Only do this if it is the primary thread of the
2978  * core (not if a subcore) that is entering the guest.
2979  */
2980 static inline int kvmppc_clear_host_core(unsigned int cpu)
2981 {
2982         int core;
2983
2984         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2985                 return 0;
2986         /*
2987          * Memory barrier can be omitted here as we will do a smp_wmb()
2988          * later in kvmppc_start_thread and we need ensure that state is
2989          * visible to other CPUs only after we enter guest.
2990          */
2991         core = cpu >> threads_shift;
2992         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2993         return 0;
2994 }
2995
2996 /*
2997  * Advertise this core as an active host core since we exited the guest
2998  * Only need to do this if it is the primary thread of the core that is
2999  * exiting.
3000  */
3001 static inline int kvmppc_set_host_core(unsigned int cpu)
3002 {
3003         int core;
3004
3005         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3006                 return 0;
3007
3008         /*
3009          * Memory barrier can be omitted here because we do a spin_unlock
3010          * immediately after this which provides the memory barrier.
3011          */
3012         core = cpu >> threads_shift;
3013         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3014         return 0;
3015 }
3016
3017 static void set_irq_happened(int trap)
3018 {
3019         switch (trap) {
3020         case BOOK3S_INTERRUPT_EXTERNAL:
3021                 local_paca->irq_happened |= PACA_IRQ_EE;
3022                 break;
3023         case BOOK3S_INTERRUPT_H_DOORBELL:
3024                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3025                 break;
3026         case BOOK3S_INTERRUPT_HMI:
3027                 local_paca->irq_happened |= PACA_IRQ_HMI;
3028                 break;
3029         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3030                 replay_system_reset();
3031                 break;
3032         }
3033 }
3034
3035 /*
3036  * Run a set of guest threads on a physical core.
3037  * Called with vc->lock held.
3038  */
3039 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3040 {
3041         struct kvm_vcpu *vcpu;
3042         int i;
3043         int srcu_idx;
3044         struct core_info core_info;
3045         struct kvmppc_vcore *pvc;
3046         struct kvm_split_mode split_info, *sip;
3047         int split, subcore_size, active;
3048         int sub;
3049         bool thr0_done;
3050         unsigned long cmd_bit, stat_bit;
3051         int pcpu, thr;
3052         int target_threads;
3053         int controlled_threads;
3054         int trap;
3055         bool is_power8;
3056         bool hpt_on_radix;
3057
3058         /*
3059          * Remove from the list any threads that have a signal pending
3060          * or need a VPA update done
3061          */
3062         prepare_threads(vc);
3063
3064         /* if the runner is no longer runnable, let the caller pick a new one */
3065         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3066                 return;
3067
3068         /*
3069          * Initialize *vc.
3070          */
3071         init_vcore_to_run(vc);
3072         vc->preempt_tb = TB_NIL;
3073
3074         /*
3075          * Number of threads that we will be controlling: the same as
3076          * the number of threads per subcore, except on POWER9,
3077          * where it's 1 because the threads are (mostly) independent.
3078          */
3079         controlled_threads = threads_per_vcore(vc->kvm);
3080
3081         /*
3082          * Make sure we are running on primary threads, and that secondary
3083          * threads are offline.  Also check if the number of threads in this
3084          * guest are greater than the current system threads per guest.
3085          * On POWER9, we need to be not in independent-threads mode if
3086          * this is a HPT guest on a radix host machine where the
3087          * CPU threads may not be in different MMU modes.
3088          */
3089         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3090                 !kvm_is_radix(vc->kvm);
3091         if (((controlled_threads > 1) &&
3092              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3093             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3094                 for_each_runnable_thread(i, vcpu, vc) {
3095                         vcpu->arch.ret = -EBUSY;
3096                         kvmppc_remove_runnable(vc, vcpu);
3097                         wake_up(&vcpu->arch.cpu_run);
3098                 }
3099                 goto out;
3100         }
3101
3102         /*
3103          * See if we could run any other vcores on the physical core
3104          * along with this one.
3105          */
3106         init_core_info(&core_info, vc);
3107         pcpu = smp_processor_id();
3108         target_threads = controlled_threads;
3109         if (target_smt_mode && target_smt_mode < target_threads)
3110                 target_threads = target_smt_mode;
3111         if (vc->num_threads < target_threads)
3112                 collect_piggybacks(&core_info, target_threads);
3113
3114         /*
3115          * On radix, arrange for TLB flushing if necessary.
3116          * This has to be done before disabling interrupts since
3117          * it uses smp_call_function().
3118          */
3119         pcpu = smp_processor_id();
3120         if (kvm_is_radix(vc->kvm)) {
3121                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3122                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3123                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3124         }
3125
3126         /*
3127          * Hard-disable interrupts, and check resched flag and signals.
3128          * If we need to reschedule or deliver a signal, clean up
3129          * and return without going into the guest(s).
3130          * If the mmu_ready flag has been cleared, don't go into the
3131          * guest because that means a HPT resize operation is in progress.
3132          */
3133         local_irq_disable();
3134         hard_irq_disable();
3135         if (lazy_irq_pending() || need_resched() ||
3136             recheck_signals_and_mmu(&core_info)) {
3137                 local_irq_enable();
3138                 vc->vcore_state = VCORE_INACTIVE;
3139                 /* Unlock all except the primary vcore */
3140                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3141                         pvc = core_info.vc[sub];
3142                         /* Put back on to the preempted vcores list */
3143                         kvmppc_vcore_preempt(pvc);
3144                         spin_unlock(&pvc->lock);
3145                 }
3146                 for (i = 0; i < controlled_threads; ++i)
3147                         kvmppc_release_hwthread(pcpu + i);
3148                 return;
3149         }
3150
3151         kvmppc_clear_host_core(pcpu);
3152
3153         /* Decide on micro-threading (split-core) mode */
3154         subcore_size = threads_per_subcore;
3155         cmd_bit = stat_bit = 0;
3156         split = core_info.n_subcores;
3157         sip = NULL;
3158         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3159                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3160
3161         if (split > 1 || hpt_on_radix) {
3162                 sip = &split_info;
3163                 memset(&split_info, 0, sizeof(split_info));
3164                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3165                         split_info.vc[sub] = core_info.vc[sub];
3166
3167                 if (is_power8) {
3168                         if (split == 2 && (dynamic_mt_modes & 2)) {
3169                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3170                                 stat_bit = HID0_POWER8_2LPARMODE;
3171                         } else {
3172                                 split = 4;
3173                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3174                                 stat_bit = HID0_POWER8_4LPARMODE;
3175                         }
3176                         subcore_size = MAX_SMT_THREADS / split;
3177                         split_info.rpr = mfspr(SPRN_RPR);
3178                         split_info.pmmar = mfspr(SPRN_PMMAR);
3179                         split_info.ldbar = mfspr(SPRN_LDBAR);
3180                         split_info.subcore_size = subcore_size;
3181                 } else {
3182                         split_info.subcore_size = 1;
3183                         if (hpt_on_radix) {
3184                                 /* Use the split_info for LPCR/LPIDR changes */
3185                                 split_info.lpcr_req = vc->lpcr;
3186                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3187                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3188                                 split_info.do_set = 1;
3189                         }
3190                 }
3191
3192                 /* order writes to split_info before kvm_split_mode pointer */
3193                 smp_wmb();
3194         }
3195
3196         for (thr = 0; thr < controlled_threads; ++thr) {
3197                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3198
3199                 paca->kvm_hstate.tid = thr;
3200                 paca->kvm_hstate.napping = 0;
3201                 paca->kvm_hstate.kvm_split_mode = sip;
3202         }
3203
3204         /* Initiate micro-threading (split-core) on POWER8 if required */
3205         if (cmd_bit) {
3206                 unsigned long hid0 = mfspr(SPRN_HID0);
3207
3208                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3209                 mb();
3210                 mtspr(SPRN_HID0, hid0);
3211                 isync();
3212                 for (;;) {
3213                         hid0 = mfspr(SPRN_HID0);
3214                         if (hid0 & stat_bit)
3215                                 break;
3216                         cpu_relax();
3217                 }
3218         }
3219
3220         /*
3221          * On POWER8, set RWMR register.
3222          * Since it only affects PURR and SPURR, it doesn't affect
3223          * the host, so we don't save/restore the host value.
3224          */
3225         if (is_power8) {
3226                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3227                 int n_online = atomic_read(&vc->online_count);
3228
3229                 /*
3230                  * Use the 8-thread value if we're doing split-core
3231                  * or if the vcore's online count looks bogus.
3232                  */
3233                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3234                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3235                         rwmr_val = p8_rwmr_values[n_online];
3236                 mtspr(SPRN_RWMR, rwmr_val);
3237         }
3238
3239         /* Start all the threads */
3240         active = 0;
3241         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3242                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3243                 thr0_done = false;
3244                 active |= 1 << thr;
3245                 pvc = core_info.vc[sub];
3246                 pvc->pcpu = pcpu + thr;
3247                 for_each_runnable_thread(i, vcpu, pvc) {
3248                         kvmppc_start_thread(vcpu, pvc);
3249                         kvmppc_create_dtl_entry(vcpu, pvc);
3250                         trace_kvm_guest_enter(vcpu);
3251                         if (!vcpu->arch.ptid)
3252                                 thr0_done = true;
3253                         active |= 1 << (thr + vcpu->arch.ptid);
3254                 }
3255                 /*
3256                  * We need to start the first thread of each subcore
3257                  * even if it doesn't have a vcpu.
3258                  */
3259                 if (!thr0_done)
3260                         kvmppc_start_thread(NULL, pvc);
3261         }
3262
3263         /*
3264          * Ensure that split_info.do_nap is set after setting
3265          * the vcore pointer in the PACA of the secondaries.
3266          */
3267         smp_mb();
3268
3269         /*
3270          * When doing micro-threading, poke the inactive threads as well.
3271          * This gets them to the nap instruction after kvm_do_nap,
3272          * which reduces the time taken to unsplit later.
3273          * For POWER9 HPT guest on radix host, we need all the secondary
3274          * threads woken up so they can do the LPCR/LPIDR change.
3275          */
3276         if (cmd_bit || hpt_on_radix) {
3277                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3278                 for (thr = 1; thr < threads_per_subcore; ++thr)
3279                         if (!(active & (1 << thr)))
3280                                 kvmppc_ipi_thread(pcpu + thr);
3281         }
3282
3283         vc->vcore_state = VCORE_RUNNING;
3284         preempt_disable();
3285
3286         trace_kvmppc_run_core(vc, 0);
3287
3288         for (sub = 0; sub < core_info.n_subcores; ++sub)
3289                 spin_unlock(&core_info.vc[sub]->lock);
3290
3291         guest_enter_irqoff();
3292
3293         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3294
3295         this_cpu_disable_ftrace();
3296
3297         /*
3298          * Interrupts will be enabled once we get into the guest,
3299          * so tell lockdep that we're about to enable interrupts.
3300          */
3301         trace_hardirqs_on();
3302
3303         trap = __kvmppc_vcore_entry();
3304
3305         trace_hardirqs_off();
3306
3307         this_cpu_enable_ftrace();
3308
3309         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3310
3311         set_irq_happened(trap);
3312
3313         spin_lock(&vc->lock);
3314         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3315         vc->vcore_state = VCORE_EXITING;
3316
3317         /* wait for secondary threads to finish writing their state to memory */
3318         kvmppc_wait_for_nap(controlled_threads);
3319
3320         /* Return to whole-core mode if we split the core earlier */
3321         if (cmd_bit) {
3322                 unsigned long hid0 = mfspr(SPRN_HID0);
3323                 unsigned long loops = 0;
3324
3325                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3326                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3327                 mb();
3328                 mtspr(SPRN_HID0, hid0);
3329                 isync();
3330                 for (;;) {
3331                         hid0 = mfspr(SPRN_HID0);
3332                         if (!(hid0 & stat_bit))
3333                                 break;
3334                         cpu_relax();
3335                         ++loops;
3336                 }
3337         } else if (hpt_on_radix) {
3338                 /* Wait for all threads to have seen final sync */
3339                 for (thr = 1; thr < controlled_threads; ++thr) {
3340                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3341
3342                         while (paca->kvm_hstate.kvm_split_mode) {
3343                                 HMT_low();
3344                                 barrier();
3345                         }
3346                         HMT_medium();
3347                 }
3348         }
3349         split_info.do_nap = 0;
3350
3351         kvmppc_set_host_core(pcpu);
3352
3353         local_irq_enable();
3354         guest_exit();
3355
3356         /* Let secondaries go back to the offline loop */
3357         for (i = 0; i < controlled_threads; ++i) {
3358                 kvmppc_release_hwthread(pcpu + i);
3359                 if (sip && sip->napped[i])
3360                         kvmppc_ipi_thread(pcpu + i);
3361                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3362         }
3363
3364         spin_unlock(&vc->lock);
3365
3366         /* make sure updates to secondary vcpu structs are visible now */
3367         smp_mb();
3368
3369         preempt_enable();
3370
3371         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3372                 pvc = core_info.vc[sub];
3373                 post_guest_process(pvc, pvc == vc);
3374         }
3375
3376         spin_lock(&vc->lock);
3377
3378  out:
3379         vc->vcore_state = VCORE_INACTIVE;
3380         trace_kvmppc_run_core(vc, 1);
3381 }
3382
3383 /*
3384  * Load up hypervisor-mode registers on P9.
3385  */
3386 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3387                                      unsigned long lpcr)
3388 {
3389         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3390         s64 hdec;
3391         u64 tb, purr, spurr;
3392         int trap;
3393         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3394         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3395         unsigned long host_dawr = mfspr(SPRN_DAWR);
3396         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3397         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3398         unsigned long host_pidr = mfspr(SPRN_PID);
3399
3400         hdec = time_limit - mftb();
3401         if (hdec < 0)
3402                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3403         mtspr(SPRN_HDEC, hdec);
3404
3405         if (vc->tb_offset) {
3406                 u64 new_tb = mftb() + vc->tb_offset;
3407                 mtspr(SPRN_TBU40, new_tb);
3408                 tb = mftb();
3409                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3410                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3411                 vc->tb_offset_applied = vc->tb_offset;
3412         }
3413
3414         if (vc->pcr)
3415                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3416         mtspr(SPRN_DPDES, vc->dpdes);
3417         mtspr(SPRN_VTB, vc->vtb);
3418
3419         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3420         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3421         mtspr(SPRN_PURR, vcpu->arch.purr);
3422         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3423
3424         if (dawr_enabled()) {
3425                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3426                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3427         }
3428         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3429         mtspr(SPRN_IC, vcpu->arch.ic);
3430         mtspr(SPRN_PID, vcpu->arch.pid);
3431
3432         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3433               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3434
3435         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3436
3437         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3438         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3439         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3440         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3441
3442         mtspr(SPRN_AMOR, ~0UL);
3443
3444         mtspr(SPRN_LPCR, lpcr);
3445         isync();
3446
3447         kvmppc_xive_push_vcpu(vcpu);
3448
3449         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3450         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3451
3452         trap = __kvmhv_vcpu_entry_p9(vcpu);
3453
3454         /* Advance host PURR/SPURR by the amount used by guest */
3455         purr = mfspr(SPRN_PURR);
3456         spurr = mfspr(SPRN_SPURR);
3457         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3458               purr - vcpu->arch.purr);
3459         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3460               spurr - vcpu->arch.spurr);
3461         vcpu->arch.purr = purr;
3462         vcpu->arch.spurr = spurr;
3463
3464         vcpu->arch.ic = mfspr(SPRN_IC);
3465         vcpu->arch.pid = mfspr(SPRN_PID);
3466         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3467
3468         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3469         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3470         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3471         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3472
3473         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3474         mtspr(SPRN_PSSCR, host_psscr |
3475               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3476         mtspr(SPRN_HFSCR, host_hfscr);
3477         mtspr(SPRN_CIABR, host_ciabr);
3478         mtspr(SPRN_DAWR, host_dawr);
3479         mtspr(SPRN_DAWRX, host_dawrx);
3480         mtspr(SPRN_PID, host_pidr);
3481
3482         /*
3483          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3484          * case we interrupted the guest between a tlbie and a ptesync.
3485          */
3486         asm volatile("eieio; tlbsync; ptesync");
3487
3488         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3489         isync();
3490
3491         vc->dpdes = mfspr(SPRN_DPDES);
3492         vc->vtb = mfspr(SPRN_VTB);
3493         mtspr(SPRN_DPDES, 0);
3494         if (vc->pcr)
3495                 mtspr(SPRN_PCR, PCR_MASK);
3496
3497         if (vc->tb_offset_applied) {
3498                 u64 new_tb = mftb() - vc->tb_offset_applied;
3499                 mtspr(SPRN_TBU40, new_tb);
3500                 tb = mftb();
3501                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3502                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3503                 vc->tb_offset_applied = 0;
3504         }
3505
3506         mtspr(SPRN_HDEC, 0x7fffffff);
3507         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3508
3509         return trap;
3510 }
3511
3512 /*
3513  * Virtual-mode guest entry for POWER9 and later when the host and
3514  * guest are both using the radix MMU.  The LPIDR has already been set.
3515  */
3516 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3517                          unsigned long lpcr)
3518 {
3519         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3520         unsigned long host_dscr = mfspr(SPRN_DSCR);
3521         unsigned long host_tidr = mfspr(SPRN_TIDR);
3522         unsigned long host_iamr = mfspr(SPRN_IAMR);
3523         unsigned long host_amr = mfspr(SPRN_AMR);
3524         s64 dec;
3525         u64 tb;
3526         int trap, save_pmu;
3527
3528         dec = mfspr(SPRN_DEC);
3529         tb = mftb();
3530         if (dec < 512)
3531                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3532         local_paca->kvm_hstate.dec_expires = dec + tb;
3533         if (local_paca->kvm_hstate.dec_expires < time_limit)
3534                 time_limit = local_paca->kvm_hstate.dec_expires;
3535
3536         vcpu->arch.ceded = 0;
3537
3538         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3539
3540         kvmppc_subcore_enter_guest();
3541
3542         vc->entry_exit_map = 1;
3543         vc->in_guest = 1;
3544
3545         if (vcpu->arch.vpa.pinned_addr) {
3546                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3547                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3548                 lp->yield_count = cpu_to_be32(yield_count);
3549                 vcpu->arch.vpa.dirty = 1;
3550         }
3551
3552         if (cpu_has_feature(CPU_FTR_TM) ||
3553             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3554                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3555
3556         kvmhv_load_guest_pmu(vcpu);
3557
3558         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3559         load_fp_state(&vcpu->arch.fp);
3560 #ifdef CONFIG_ALTIVEC
3561         load_vr_state(&vcpu->arch.vr);
3562 #endif
3563         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3564
3565         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3566         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3567         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3568         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3569         mtspr(SPRN_TAR, vcpu->arch.tar);
3570         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3571         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3572         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3573         mtspr(SPRN_WORT, vcpu->arch.wort);
3574         mtspr(SPRN_TIDR, vcpu->arch.tid);
3575         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3576         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3577         mtspr(SPRN_AMR, vcpu->arch.amr);
3578         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3579
3580         if (!(vcpu->arch.ctrl & 1))
3581                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3582
3583         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3584
3585         if (kvmhv_on_pseries()) {
3586                 /*
3587                  * We need to save and restore the guest visible part of the
3588                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3589                  * doesn't do this for us. Note only required if pseries since
3590                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3591                  */
3592                 unsigned long host_psscr;
3593                 /* call our hypervisor to load up HV regs and go */
3594                 struct hv_guest_state hvregs;
3595
3596                 host_psscr = mfspr(SPRN_PSSCR_PR);
3597                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3598                 kvmhv_save_hv_regs(vcpu, &hvregs);
3599                 hvregs.lpcr = lpcr;
3600                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3601                 hvregs.version = HV_GUEST_STATE_VERSION;
3602                 if (vcpu->arch.nested) {
3603                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3604                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3605                 } else {
3606                         hvregs.lpid = vcpu->kvm->arch.lpid;
3607                         hvregs.vcpu_token = vcpu->vcpu_id;
3608                 }
3609                 hvregs.hdec_expiry = time_limit;
3610                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3611                                           __pa(&vcpu->arch.regs));
3612                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3613                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3614                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3615                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3616                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3617                 mtspr(SPRN_PSSCR_PR, host_psscr);
3618
3619                 /* H_CEDE has to be handled now, not later */
3620                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3621                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3622                         kvmppc_nested_cede(vcpu);
3623                         kvmppc_set_gpr(vcpu, 3, 0);
3624                         trap = 0;
3625                 }
3626         } else {
3627                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3628         }
3629
3630         vcpu->arch.slb_max = 0;
3631         dec = mfspr(SPRN_DEC);
3632         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633                 dec = (s32) dec;
3634         tb = mftb();
3635         vcpu->arch.dec_expires = dec + tb;
3636         vcpu->cpu = -1;
3637         vcpu->arch.thread_cpu = -1;
3638         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639
3640         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643         vcpu->arch.tar = mfspr(SPRN_TAR);
3644         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647         vcpu->arch.wort = mfspr(SPRN_WORT);
3648         vcpu->arch.tid = mfspr(SPRN_TIDR);
3649         vcpu->arch.amr = mfspr(SPRN_AMR);
3650         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652
3653         mtspr(SPRN_PSPB, 0);
3654         mtspr(SPRN_WORT, 0);
3655         mtspr(SPRN_UAMOR, 0);
3656         mtspr(SPRN_DSCR, host_dscr);
3657         mtspr(SPRN_TIDR, host_tidr);
3658         mtspr(SPRN_IAMR, host_iamr);
3659         mtspr(SPRN_PSPB, 0);
3660
3661         if (host_amr != vcpu->arch.amr)
3662                 mtspr(SPRN_AMR, host_amr);
3663
3664         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665         store_fp_state(&vcpu->arch.fp);
3666 #ifdef CONFIG_ALTIVEC
3667         store_vr_state(&vcpu->arch.vr);
3668 #endif
3669         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3670
3671         if (cpu_has_feature(CPU_FTR_TM) ||
3672             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674
3675         save_pmu = 1;
3676         if (vcpu->arch.vpa.pinned_addr) {
3677                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679                 lp->yield_count = cpu_to_be32(yield_count);
3680                 vcpu->arch.vpa.dirty = 1;
3681                 save_pmu = lp->pmcregs_in_use;
3682         }
3683         /* Must save pmu if this guest is capable of running nested guests */
3684         save_pmu |= nesting_enabled(vcpu->kvm);
3685
3686         kvmhv_save_guest_pmu(vcpu, save_pmu);
3687
3688         vc->entry_exit_map = 0x101;
3689         vc->in_guest = 0;
3690
3691         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3692         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3693
3694         kvmhv_load_host_pmu();
3695
3696         kvmppc_subcore_exit_guest();
3697
3698         return trap;
3699 }
3700
3701 /*
3702  * Wait for some other vcpu thread to execute us, and
3703  * wake us up when we need to handle something in the host.
3704  */
3705 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706                                  struct kvm_vcpu *vcpu, int wait_state)
3707 {
3708         DEFINE_WAIT(wait);
3709
3710         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3711         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712                 spin_unlock(&vc->lock);
3713                 schedule();
3714                 spin_lock(&vc->lock);
3715         }
3716         finish_wait(&vcpu->arch.cpu_run, &wait);
3717 }
3718
3719 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720 {
3721         if (!halt_poll_ns_grow)
3722                 return;
3723
3724         vc->halt_poll_ns *= halt_poll_ns_grow;
3725         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3726                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3727 }
3728
3729 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730 {
3731         if (halt_poll_ns_shrink == 0)
3732                 vc->halt_poll_ns = 0;
3733         else
3734                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3735 }
3736
3737 #ifdef CONFIG_KVM_XICS
3738 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739 {
3740         if (!xics_on_xive())
3741                 return false;
3742         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3743                 vcpu->arch.xive_saved_state.cppr;
3744 }
3745 #else
3746 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747 {
3748         return false;
3749 }
3750 #endif /* CONFIG_KVM_XICS */
3751
3752 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753 {
3754         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3755             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3756                 return true;
3757
3758         return false;
3759 }
3760
3761 /*
3762  * Check to see if any of the runnable vcpus on the vcore have pending
3763  * exceptions or are no longer ceded
3764  */
3765 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766 {
3767         struct kvm_vcpu *vcpu;
3768         int i;
3769
3770         for_each_runnable_thread(i, vcpu, vc) {
3771                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3772                         return 1;
3773         }
3774
3775         return 0;
3776 }
3777
3778 /*
3779  * All the vcpus in this vcore are idle, so wait for a decrementer
3780  * or external interrupt to one of the vcpus.  vc->lock is held.
3781  */
3782 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783 {
3784         ktime_t cur, start_poll, start_wait;
3785         int do_sleep = 1;
3786         u64 block_ns;
3787         DECLARE_SWAITQUEUE(wait);
3788
3789         /* Poll for pending exceptions and ceded state */
3790         cur = start_poll = ktime_get();
3791         if (vc->halt_poll_ns) {
3792                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3793                 ++vc->runner->stat.halt_attempted_poll;
3794
3795                 vc->vcore_state = VCORE_POLLING;
3796                 spin_unlock(&vc->lock);
3797
3798                 do {
3799                         if (kvmppc_vcore_check_block(vc)) {
3800                                 do_sleep = 0;
3801                                 break;
3802                         }
3803                         cur = ktime_get();
3804                 } while (single_task_running() && ktime_before(cur, stop));
3805
3806                 spin_lock(&vc->lock);
3807                 vc->vcore_state = VCORE_INACTIVE;
3808
3809                 if (!do_sleep) {
3810                         ++vc->runner->stat.halt_successful_poll;
3811                         goto out;
3812                 }
3813         }
3814
3815         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3816
3817         if (kvmppc_vcore_check_block(vc)) {
3818                 finish_swait(&vc->wq, &wait);
3819                 do_sleep = 0;
3820                 /* If we polled, count this as a successful poll */
3821                 if (vc->halt_poll_ns)
3822                         ++vc->runner->stat.halt_successful_poll;
3823                 goto out;
3824         }
3825
3826         start_wait = ktime_get();
3827
3828         vc->vcore_state = VCORE_SLEEPING;
3829         trace_kvmppc_vcore_blocked(vc, 0);
3830         spin_unlock(&vc->lock);
3831         schedule();
3832         finish_swait(&vc->wq, &wait);
3833         spin_lock(&vc->lock);
3834         vc->vcore_state = VCORE_INACTIVE;
3835         trace_kvmppc_vcore_blocked(vc, 1);
3836         ++vc->runner->stat.halt_successful_wait;
3837
3838         cur = ktime_get();
3839
3840 out:
3841         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3842
3843         /* Attribute wait time */
3844         if (do_sleep) {
3845                 vc->runner->stat.halt_wait_ns +=
3846                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3847                 /* Attribute failed poll time */
3848                 if (vc->halt_poll_ns)
3849                         vc->runner->stat.halt_poll_fail_ns +=
3850                                 ktime_to_ns(start_wait) -
3851                                 ktime_to_ns(start_poll);
3852         } else {
3853                 /* Attribute successful poll time */
3854                 if (vc->halt_poll_ns)
3855                         vc->runner->stat.halt_poll_success_ns +=
3856                                 ktime_to_ns(cur) -
3857                                 ktime_to_ns(start_poll);
3858         }
3859
3860         /* Adjust poll time */
3861         if (halt_poll_ns) {
3862                 if (block_ns <= vc->halt_poll_ns)
3863                         ;
3864                 /* We slept and blocked for longer than the max halt time */
3865                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3866                         shrink_halt_poll_ns(vc);
3867                 /* We slept and our poll time is too small */
3868                 else if (vc->halt_poll_ns < halt_poll_ns &&
3869                                 block_ns < halt_poll_ns)
3870                         grow_halt_poll_ns(vc);
3871                 if (vc->halt_poll_ns > halt_poll_ns)
3872                         vc->halt_poll_ns = halt_poll_ns;
3873         } else
3874                 vc->halt_poll_ns = 0;
3875
3876         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3877 }
3878
3879 /*
3880  * This never fails for a radix guest, as none of the operations it does
3881  * for a radix guest can fail or have a way to report failure.
3882  * kvmhv_run_single_vcpu() relies on this fact.
3883  */
3884 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3885 {
3886         int r = 0;
3887         struct kvm *kvm = vcpu->kvm;
3888
3889         mutex_lock(&kvm->arch.mmu_setup_lock);
3890         if (!kvm->arch.mmu_ready) {
3891                 if (!kvm_is_radix(kvm))
3892                         r = kvmppc_hv_setup_htab_rma(vcpu);
3893                 if (!r) {
3894                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3895                                 kvmppc_setup_partition_table(kvm);
3896                         kvm->arch.mmu_ready = 1;
3897                 }
3898         }
3899         mutex_unlock(&kvm->arch.mmu_setup_lock);
3900         return r;
3901 }
3902
3903 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3904 {
3905         int n_ceded, i, r;
3906         struct kvmppc_vcore *vc;
3907         struct kvm_vcpu *v;
3908
3909         trace_kvmppc_run_vcpu_enter(vcpu);
3910
3911         kvm_run->exit_reason = 0;
3912         vcpu->arch.ret = RESUME_GUEST;
3913         vcpu->arch.trap = 0;
3914         kvmppc_update_vpas(vcpu);
3915
3916         /*
3917          * Synchronize with other threads in this virtual core
3918          */
3919         vc = vcpu->arch.vcore;
3920         spin_lock(&vc->lock);
3921         vcpu->arch.ceded = 0;
3922         vcpu->arch.run_task = current;
3923         vcpu->arch.kvm_run = kvm_run;
3924         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3925         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3926         vcpu->arch.busy_preempt = TB_NIL;
3927         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3928         ++vc->n_runnable;
3929
3930         /*
3931          * This happens the first time this is called for a vcpu.
3932          * If the vcore is already running, we may be able to start
3933          * this thread straight away and have it join in.
3934          */
3935         if (!signal_pending(current)) {
3936                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3937                      vc->vcore_state == VCORE_RUNNING) &&
3938                            !VCORE_IS_EXITING(vc)) {
3939                         kvmppc_create_dtl_entry(vcpu, vc);
3940                         kvmppc_start_thread(vcpu, vc);
3941                         trace_kvm_guest_enter(vcpu);
3942                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3943                         swake_up_one(&vc->wq);
3944                 }
3945
3946         }
3947
3948         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3949                !signal_pending(current)) {
3950                 /* See if the MMU is ready to go */
3951                 if (!vcpu->kvm->arch.mmu_ready) {
3952                         spin_unlock(&vc->lock);
3953                         r = kvmhv_setup_mmu(vcpu);
3954                         spin_lock(&vc->lock);
3955                         if (r) {
3956                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3957                                 kvm_run->fail_entry.
3958                                         hardware_entry_failure_reason = 0;
3959                                 vcpu->arch.ret = r;
3960                                 break;
3961                         }
3962                 }
3963
3964                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3965                         kvmppc_vcore_end_preempt(vc);
3966
3967                 if (vc->vcore_state != VCORE_INACTIVE) {
3968                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3969                         continue;
3970                 }
3971                 for_each_runnable_thread(i, v, vc) {
3972                         kvmppc_core_prepare_to_enter(v);
3973                         if (signal_pending(v->arch.run_task)) {
3974                                 kvmppc_remove_runnable(vc, v);
3975                                 v->stat.signal_exits++;
3976                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3977                                 v->arch.ret = -EINTR;
3978                                 wake_up(&v->arch.cpu_run);
3979                         }
3980                 }
3981                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3982                         break;
3983                 n_ceded = 0;
3984                 for_each_runnable_thread(i, v, vc) {
3985                         if (!kvmppc_vcpu_woken(v))
3986                                 n_ceded += v->arch.ceded;
3987                         else
3988                                 v->arch.ceded = 0;
3989                 }
3990                 vc->runner = vcpu;
3991                 if (n_ceded == vc->n_runnable) {
3992                         kvmppc_vcore_blocked(vc);
3993                 } else if (need_resched()) {
3994                         kvmppc_vcore_preempt(vc);
3995                         /* Let something else run */
3996                         cond_resched_lock(&vc->lock);
3997                         if (vc->vcore_state == VCORE_PREEMPT)
3998                                 kvmppc_vcore_end_preempt(vc);
3999                 } else {
4000                         kvmppc_run_core(vc);
4001                 }
4002                 vc->runner = NULL;
4003         }
4004
4005         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4006                (vc->vcore_state == VCORE_RUNNING ||
4007                 vc->vcore_state == VCORE_EXITING ||
4008                 vc->vcore_state == VCORE_PIGGYBACK))
4009                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4010
4011         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4012                 kvmppc_vcore_end_preempt(vc);
4013
4014         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4015                 kvmppc_remove_runnable(vc, vcpu);
4016                 vcpu->stat.signal_exits++;
4017                 kvm_run->exit_reason = KVM_EXIT_INTR;
4018                 vcpu->arch.ret = -EINTR;
4019         }
4020
4021         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4022                 /* Wake up some vcpu to run the core */
4023                 i = -1;
4024                 v = next_runnable_thread(vc, &i);
4025                 wake_up(&v->arch.cpu_run);
4026         }
4027
4028         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4029         spin_unlock(&vc->lock);
4030         return vcpu->arch.ret;
4031 }
4032
4033 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4034                           struct kvm_vcpu *vcpu, u64 time_limit,
4035                           unsigned long lpcr)
4036 {
4037         int trap, r, pcpu;
4038         int srcu_idx, lpid;
4039         struct kvmppc_vcore *vc;
4040         struct kvm *kvm = vcpu->kvm;
4041         struct kvm_nested_guest *nested = vcpu->arch.nested;
4042
4043         trace_kvmppc_run_vcpu_enter(vcpu);
4044
4045         kvm_run->exit_reason = 0;
4046         vcpu->arch.ret = RESUME_GUEST;
4047         vcpu->arch.trap = 0;
4048
4049         vc = vcpu->arch.vcore;
4050         vcpu->arch.ceded = 0;
4051         vcpu->arch.run_task = current;
4052         vcpu->arch.kvm_run = kvm_run;
4053         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4054         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4055         vcpu->arch.busy_preempt = TB_NIL;
4056         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4057         vc->runnable_threads[0] = vcpu;
4058         vc->n_runnable = 1;
4059         vc->runner = vcpu;
4060
4061         /* See if the MMU is ready to go */
4062         if (!kvm->arch.mmu_ready)
4063                 kvmhv_setup_mmu(vcpu);
4064
4065         if (need_resched())
4066                 cond_resched();
4067
4068         kvmppc_update_vpas(vcpu);
4069
4070         init_vcore_to_run(vc);
4071         vc->preempt_tb = TB_NIL;
4072
4073         preempt_disable();
4074         pcpu = smp_processor_id();
4075         vc->pcpu = pcpu;
4076         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4077
4078         local_irq_disable();
4079         hard_irq_disable();
4080         if (signal_pending(current))
4081                 goto sigpend;
4082         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4083                 goto out;
4084
4085         if (!nested) {
4086                 kvmppc_core_prepare_to_enter(vcpu);
4087                 if (vcpu->arch.doorbell_request) {
4088                         vc->dpdes = 1;
4089                         smp_wmb();
4090                         vcpu->arch.doorbell_request = 0;
4091                 }
4092                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4093                              &vcpu->arch.pending_exceptions))
4094                         lpcr |= LPCR_MER;
4095         } else if (vcpu->arch.pending_exceptions ||
4096                    vcpu->arch.doorbell_request ||
4097                    xive_interrupt_pending(vcpu)) {
4098                 vcpu->arch.ret = RESUME_HOST;
4099                 goto out;
4100         }
4101
4102         kvmppc_clear_host_core(pcpu);
4103
4104         local_paca->kvm_hstate.tid = 0;
4105         local_paca->kvm_hstate.napping = 0;
4106         local_paca->kvm_hstate.kvm_split_mode = NULL;
4107         kvmppc_start_thread(vcpu, vc);
4108         kvmppc_create_dtl_entry(vcpu, vc);
4109         trace_kvm_guest_enter(vcpu);
4110
4111         vc->vcore_state = VCORE_RUNNING;
4112         trace_kvmppc_run_core(vc, 0);
4113
4114         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4115                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4116                 mtspr(SPRN_LPID, lpid);
4117                 isync();
4118                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4119         }
4120
4121         guest_enter_irqoff();
4122
4123         srcu_idx = srcu_read_lock(&kvm->srcu);
4124
4125         this_cpu_disable_ftrace();
4126
4127         /* Tell lockdep that we're about to enable interrupts */
4128         trace_hardirqs_on();
4129
4130         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4131         vcpu->arch.trap = trap;
4132
4133         trace_hardirqs_off();
4134
4135         this_cpu_enable_ftrace();
4136
4137         srcu_read_unlock(&kvm->srcu, srcu_idx);
4138
4139         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4140                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4141                 isync();
4142         }
4143
4144         set_irq_happened(trap);
4145
4146         kvmppc_set_host_core(pcpu);
4147
4148         local_irq_enable();
4149         guest_exit();
4150
4151         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4152
4153         preempt_enable();
4154
4155         /*
4156          * cancel pending decrementer exception if DEC is now positive, or if
4157          * entering a nested guest in which case the decrementer is now owned
4158          * by L2 and the L1 decrementer is provided in hdec_expires
4159          */
4160         if (kvmppc_core_pending_dec(vcpu) &&
4161                         ((get_tb() < vcpu->arch.dec_expires) ||
4162                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4163                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4164                 kvmppc_core_dequeue_dec(vcpu);
4165
4166         trace_kvm_guest_exit(vcpu);
4167         r = RESUME_GUEST;
4168         if (trap) {
4169                 if (!nested)
4170                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4171                 else
4172                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4173         }
4174         vcpu->arch.ret = r;
4175
4176         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4177             !kvmppc_vcpu_woken(vcpu)) {
4178                 kvmppc_set_timer(vcpu);
4179                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4180                         if (signal_pending(current)) {
4181                                 vcpu->stat.signal_exits++;
4182                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4183                                 vcpu->arch.ret = -EINTR;
4184                                 break;
4185                         }
4186                         spin_lock(&vc->lock);
4187                         kvmppc_vcore_blocked(vc);
4188                         spin_unlock(&vc->lock);
4189                 }
4190         }
4191         vcpu->arch.ceded = 0;
4192
4193         vc->vcore_state = VCORE_INACTIVE;
4194         trace_kvmppc_run_core(vc, 1);
4195
4196  done:
4197         kvmppc_remove_runnable(vc, vcpu);
4198         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4199
4200         return vcpu->arch.ret;
4201
4202  sigpend:
4203         vcpu->stat.signal_exits++;
4204         kvm_run->exit_reason = KVM_EXIT_INTR;
4205         vcpu->arch.ret = -EINTR;
4206  out:
4207         local_irq_enable();
4208         preempt_enable();
4209         goto done;
4210 }
4211
4212 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4213 {
4214         int r;
4215         int srcu_idx;
4216         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4217         unsigned long user_tar = 0;
4218         unsigned int user_vrsave;
4219         struct kvm *kvm;
4220
4221         if (!vcpu->arch.sane) {
4222                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4223                 return -EINVAL;
4224         }
4225
4226         /*
4227          * Don't allow entry with a suspended transaction, because
4228          * the guest entry/exit code will lose it.
4229          * If the guest has TM enabled, save away their TM-related SPRs
4230          * (they will get restored by the TM unavailable interrupt).
4231          */
4232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4233         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4234             (current->thread.regs->msr & MSR_TM)) {
4235                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4236                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4237                         run->fail_entry.hardware_entry_failure_reason = 0;
4238                         return -EINVAL;
4239                 }
4240                 /* Enable TM so we can read the TM SPRs */
4241                 mtmsr(mfmsr() | MSR_TM);
4242                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4243                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4244                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4245                 current->thread.regs->msr &= ~MSR_TM;
4246         }
4247 #endif
4248
4249         /*
4250          * Force online to 1 for the sake of old userspace which doesn't
4251          * set it.
4252          */
4253         if (!vcpu->arch.online) {
4254                 atomic_inc(&vcpu->arch.vcore->online_count);
4255                 vcpu->arch.online = 1;
4256         }
4257
4258         kvmppc_core_prepare_to_enter(vcpu);
4259
4260         /* No need to go into the guest when all we'll do is come back out */
4261         if (signal_pending(current)) {
4262                 run->exit_reason = KVM_EXIT_INTR;
4263                 return -EINTR;
4264         }
4265
4266         kvm = vcpu->kvm;
4267         atomic_inc(&kvm->arch.vcpus_running);
4268         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4269         smp_mb();
4270
4271         flush_all_to_thread(current);
4272
4273         /* Save userspace EBB and other register values */
4274         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4275                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4276                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4277                 ebb_regs[2] = mfspr(SPRN_BESCR);
4278                 user_tar = mfspr(SPRN_TAR);
4279         }
4280         user_vrsave = mfspr(SPRN_VRSAVE);
4281
4282         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4283         vcpu->arch.pgdir = kvm->mm->pgd;
4284         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4285
4286         do {
4287                 /*
4288                  * The early POWER9 chips that can't mix radix and HPT threads
4289                  * on the same core also need the workaround for the problem
4290                  * where the TLB would prefetch entries in the guest exit path
4291                  * for radix guests using the guest PIDR value and LPID 0.
4292                  * The workaround is in the old path (kvmppc_run_vcpu())
4293                  * but not the new path (kvmhv_run_single_vcpu()).
4294                  */
4295                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4296                     !no_mixing_hpt_and_radix)
4297                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4298                                                   vcpu->arch.vcore->lpcr);
4299                 else
4300                         r = kvmppc_run_vcpu(run, vcpu);
4301
4302                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4303                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4304                         trace_kvm_hcall_enter(vcpu);
4305                         r = kvmppc_pseries_do_hcall(vcpu);
4306                         trace_kvm_hcall_exit(vcpu, r);
4307                         kvmppc_core_prepare_to_enter(vcpu);
4308                 } else if (r == RESUME_PAGE_FAULT) {
4309                         srcu_idx = srcu_read_lock(&kvm->srcu);
4310                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4311                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4312                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4313                 } else if (r == RESUME_PASSTHROUGH) {
4314                         if (WARN_ON(xics_on_xive()))
4315                                 r = H_SUCCESS;
4316                         else
4317                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4318                 }
4319         } while (is_kvmppc_resume_guest(r));
4320
4321         /* Restore userspace EBB and other register values */
4322         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4323                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4324                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4325                 mtspr(SPRN_BESCR, ebb_regs[2]);
4326                 mtspr(SPRN_TAR, user_tar);
4327                 mtspr(SPRN_FSCR, current->thread.fscr);
4328         }
4329         mtspr(SPRN_VRSAVE, user_vrsave);
4330
4331         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4332         atomic_dec(&kvm->arch.vcpus_running);
4333         return r;
4334 }
4335
4336 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4337                                      int shift, int sllp)
4338 {
4339         (*sps)->page_shift = shift;
4340         (*sps)->slb_enc = sllp;
4341         (*sps)->enc[0].page_shift = shift;
4342         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4343         /*
4344          * Add 16MB MPSS support (may get filtered out by userspace)
4345          */
4346         if (shift != 24) {
4347                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4348                 if (penc != -1) {
4349                         (*sps)->enc[1].page_shift = 24;
4350                         (*sps)->enc[1].pte_enc = penc;
4351                 }
4352         }
4353         (*sps)++;
4354 }
4355
4356 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4357                                          struct kvm_ppc_smmu_info *info)
4358 {
4359         struct kvm_ppc_one_seg_page_size *sps;
4360
4361         /*
4362          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4363          * POWER7 doesn't support keys for instruction accesses,
4364          * POWER8 and POWER9 do.
4365          */
4366         info->data_keys = 32;
4367         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4368
4369         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4370         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4371         info->slb_size = 32;
4372
4373         /* We only support these sizes for now, and no muti-size segments */
4374         sps = &info->sps[0];
4375         kvmppc_add_seg_page_size(&sps, 12, 0);
4376         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4377         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4378
4379         /* If running as a nested hypervisor, we don't support HPT guests */
4380         if (kvmhv_on_pseries())
4381                 info->flags |= KVM_PPC_NO_HASH;
4382
4383         return 0;
4384 }
4385
4386 /*
4387  * Get (and clear) the dirty memory log for a memory slot.
4388  */
4389 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4390                                          struct kvm_dirty_log *log)
4391 {
4392         struct kvm_memslots *slots;
4393         struct kvm_memory_slot *memslot;
4394         int i, r;
4395         unsigned long n;
4396         unsigned long *buf, *p;
4397         struct kvm_vcpu *vcpu;
4398
4399         mutex_lock(&kvm->slots_lock);
4400
4401         r = -EINVAL;
4402         if (log->slot >= KVM_USER_MEM_SLOTS)
4403                 goto out;
4404
4405         slots = kvm_memslots(kvm);
4406         memslot = id_to_memslot(slots, log->slot);
4407         r = -ENOENT;
4408         if (!memslot || !memslot->dirty_bitmap)
4409                 goto out;
4410
4411         /*
4412          * Use second half of bitmap area because both HPT and radix
4413          * accumulate bits in the first half.
4414          */
4415         n = kvm_dirty_bitmap_bytes(memslot);
4416         buf = memslot->dirty_bitmap + n / sizeof(long);
4417         memset(buf, 0, n);
4418
4419         if (kvm_is_radix(kvm))
4420                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4421         else
4422                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4423         if (r)
4424                 goto out;
4425
4426         /*
4427          * We accumulate dirty bits in the first half of the
4428          * memslot's dirty_bitmap area, for when pages are paged
4429          * out or modified by the host directly.  Pick up these
4430          * bits and add them to the map.
4431          */
4432         p = memslot->dirty_bitmap;
4433         for (i = 0; i < n / sizeof(long); ++i)
4434                 buf[i] |= xchg(&p[i], 0);
4435
4436         /* Harvest dirty bits from VPA and DTL updates */
4437         /* Note: we never modify the SLB shadow buffer areas */
4438         kvm_for_each_vcpu(i, vcpu, kvm) {
4439                 spin_lock(&vcpu->arch.vpa_update_lock);
4440                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4441                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4442                 spin_unlock(&vcpu->arch.vpa_update_lock);
4443         }
4444
4445         r = -EFAULT;
4446         if (copy_to_user(log->dirty_bitmap, buf, n))
4447                 goto out;
4448
4449         r = 0;
4450 out:
4451         mutex_unlock(&kvm->slots_lock);
4452         return r;
4453 }
4454
4455 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4456 {
4457         vfree(slot->arch.rmap);
4458         slot->arch.rmap = NULL;
4459 }
4460
4461 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4462                                         struct kvm_memory_slot *slot,
4463                                         const struct kvm_userspace_memory_region *mem,
4464                                         enum kvm_mr_change change)
4465 {
4466         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4467
4468         if (change == KVM_MR_CREATE) {
4469                 slot->arch.rmap = vzalloc(array_size(npages,
4470                                           sizeof(*slot->arch.rmap)));
4471                 if (!slot->arch.rmap)
4472                         return -ENOMEM;
4473         }
4474
4475         return 0;
4476 }
4477
4478 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4479                                 const struct kvm_userspace_memory_region *mem,
4480                                 const struct kvm_memory_slot *old,
4481                                 const struct kvm_memory_slot *new,
4482                                 enum kvm_mr_change change)
4483 {
4484         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4485
4486         /*
4487          * If we are making a new memslot, it might make
4488          * some address that was previously cached as emulated
4489          * MMIO be no longer emulated MMIO, so invalidate
4490          * all the caches of emulated MMIO translations.
4491          */
4492         if (npages)
4493                 atomic64_inc(&kvm->arch.mmio_update);
4494
4495         /*
4496          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4497          * have already called kvm_arch_flush_shadow_memslot() to
4498          * flush shadow mappings.  For KVM_MR_CREATE we have no
4499          * previous mappings.  So the only case to handle is
4500          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4501          * has been changed.
4502          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4503          * to get rid of any THP PTEs in the partition-scoped page tables
4504          * so we can track dirtiness at the page level; we flush when
4505          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4506          * using THP PTEs.
4507          */
4508         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4509             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4510                 kvmppc_radix_flush_memslot(kvm, old);
4511         /*
4512          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4513          */
4514         if (!kvm->arch.secure_guest)
4515                 return;
4516
4517         switch (change) {
4518         case KVM_MR_CREATE:
4519                 if (kvmppc_uvmem_slot_init(kvm, new))
4520                         return;
4521                 uv_register_mem_slot(kvm->arch.lpid,
4522                                      new->base_gfn << PAGE_SHIFT,
4523                                      new->npages * PAGE_SIZE,
4524                                      0, new->id);
4525                 break;
4526         case KVM_MR_DELETE:
4527                 uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4528                 kvmppc_uvmem_slot_free(kvm, old);
4529                 break;
4530         default:
4531                 /* TODO: Handle KVM_MR_MOVE */
4532                 break;
4533         }
4534 }
4535
4536 /*
4537  * Update LPCR values in kvm->arch and in vcores.
4538  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4539  * of kvm->arch.lpcr update).
4540  */
4541 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4542 {
4543         long int i;
4544         u32 cores_done = 0;
4545
4546         if ((kvm->arch.lpcr & mask) == lpcr)
4547                 return;
4548
4549         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4550
4551         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4552                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4553                 if (!vc)
4554                         continue;
4555                 spin_lock(&vc->lock);
4556                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4557                 spin_unlock(&vc->lock);
4558                 if (++cores_done >= kvm->arch.online_vcores)
4559                         break;
4560         }
4561 }
4562
4563 void kvmppc_setup_partition_table(struct kvm *kvm)
4564 {
4565         unsigned long dw0, dw1;
4566
4567         if (!kvm_is_radix(kvm)) {
4568                 /* PS field - page size for VRMA */
4569                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4570                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4571                 /* HTABSIZE and HTABORG fields */
4572                 dw0 |= kvm->arch.sdr1;
4573
4574                 /* Second dword as set by userspace */
4575                 dw1 = kvm->arch.process_table;
4576         } else {
4577                 dw0 = PATB_HR | radix__get_tree_size() |
4578                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4579                 dw1 = PATB_GR | kvm->arch.process_table;
4580         }
4581         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4582 }
4583
4584 /*
4585  * Set up HPT (hashed page table) and RMA (real-mode area).
4586  * Must be called with kvm->arch.mmu_setup_lock held.
4587  */
4588 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4589 {
4590         int err = 0;
4591         struct kvm *kvm = vcpu->kvm;
4592         unsigned long hva;
4593         struct kvm_memory_slot *memslot;
4594         struct vm_area_struct *vma;
4595         unsigned long lpcr = 0, senc;
4596         unsigned long psize, porder;
4597         int srcu_idx;
4598
4599         /* Allocate hashed page table (if not done already) and reset it */
4600         if (!kvm->arch.hpt.virt) {
4601                 int order = KVM_DEFAULT_HPT_ORDER;
4602                 struct kvm_hpt_info info;
4603
4604                 err = kvmppc_allocate_hpt(&info, order);
4605                 /* If we get here, it means userspace didn't specify a
4606                  * size explicitly.  So, try successively smaller
4607                  * sizes if the default failed. */
4608                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4609                         err  = kvmppc_allocate_hpt(&info, order);
4610
4611                 if (err < 0) {
4612                         pr_err("KVM: Couldn't alloc HPT\n");
4613                         goto out;
4614                 }
4615
4616                 kvmppc_set_hpt(kvm, &info);
4617         }
4618
4619         /* Look up the memslot for guest physical address 0 */
4620         srcu_idx = srcu_read_lock(&kvm->srcu);
4621         memslot = gfn_to_memslot(kvm, 0);
4622
4623         /* We must have some memory at 0 by now */
4624         err = -EINVAL;
4625         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4626                 goto out_srcu;
4627
4628         /* Look up the VMA for the start of this memory slot */
4629         hva = memslot->userspace_addr;
4630         down_read(&kvm->mm->mmap_sem);
4631         vma = find_vma(kvm->mm, hva);
4632         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4633                 goto up_out;
4634
4635         psize = vma_kernel_pagesize(vma);
4636
4637         up_read(&kvm->mm->mmap_sem);
4638
4639         /* We can handle 4k, 64k or 16M pages in the VRMA */
4640         if (psize >= 0x1000000)
4641                 psize = 0x1000000;
4642         else if (psize >= 0x10000)
4643                 psize = 0x10000;
4644         else
4645                 psize = 0x1000;
4646         porder = __ilog2(psize);
4647
4648         senc = slb_pgsize_encoding(psize);
4649         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4650                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4651         /* Create HPTEs in the hash page table for the VRMA */
4652         kvmppc_map_vrma(vcpu, memslot, porder);
4653
4654         /* Update VRMASD field in the LPCR */
4655         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4656                 /* the -4 is to account for senc values starting at 0x10 */
4657                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4658                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4659         }
4660
4661         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4662         smp_wmb();
4663         err = 0;
4664  out_srcu:
4665         srcu_read_unlock(&kvm->srcu, srcu_idx);
4666  out:
4667         return err;
4668
4669  up_out:
4670         up_read(&kvm->mm->mmap_sem);
4671         goto out_srcu;
4672 }
4673
4674 /*
4675  * Must be called with kvm->arch.mmu_setup_lock held and
4676  * mmu_ready = 0 and no vcpus running.
4677  */
4678 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4679 {
4680         if (nesting_enabled(kvm))
4681                 kvmhv_release_all_nested(kvm);
4682         kvmppc_rmap_reset(kvm);
4683         kvm->arch.process_table = 0;
4684         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4685         spin_lock(&kvm->mmu_lock);
4686         kvm->arch.radix = 0;
4687         spin_unlock(&kvm->mmu_lock);
4688         kvmppc_free_radix(kvm);
4689         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4690                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4691         return 0;
4692 }
4693
4694 /*
4695  * Must be called with kvm->arch.mmu_setup_lock held and
4696  * mmu_ready = 0 and no vcpus running.
4697  */
4698 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4699 {
4700         int err;
4701
4702         err = kvmppc_init_vm_radix(kvm);
4703         if (err)
4704                 return err;
4705         kvmppc_rmap_reset(kvm);
4706         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4707         spin_lock(&kvm->mmu_lock);
4708         kvm->arch.radix = 1;
4709         spin_unlock(&kvm->mmu_lock);
4710         kvmppc_free_hpt(&kvm->arch.hpt);
4711         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4712                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4713         return 0;
4714 }
4715
4716 #ifdef CONFIG_KVM_XICS
4717 /*
4718  * Allocate a per-core structure for managing state about which cores are
4719  * running in the host versus the guest and for exchanging data between
4720  * real mode KVM and CPU running in the host.
4721  * This is only done for the first VM.
4722  * The allocated structure stays even if all VMs have stopped.
4723  * It is only freed when the kvm-hv module is unloaded.
4724  * It's OK for this routine to fail, we just don't support host
4725  * core operations like redirecting H_IPI wakeups.
4726  */
4727 void kvmppc_alloc_host_rm_ops(void)
4728 {
4729         struct kvmppc_host_rm_ops *ops;
4730         unsigned long l_ops;
4731         int cpu, core;
4732         int size;
4733
4734         /* Not the first time here ? */
4735         if (kvmppc_host_rm_ops_hv != NULL)
4736                 return;
4737
4738         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4739         if (!ops)
4740                 return;
4741
4742         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4743         ops->rm_core = kzalloc(size, GFP_KERNEL);
4744
4745         if (!ops->rm_core) {
4746                 kfree(ops);
4747                 return;
4748         }
4749
4750         cpus_read_lock();
4751
4752         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4753                 if (!cpu_online(cpu))
4754                         continue;
4755
4756                 core = cpu >> threads_shift;
4757                 ops->rm_core[core].rm_state.in_host = 1;
4758         }
4759
4760         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4761
4762         /*
4763          * Make the contents of the kvmppc_host_rm_ops structure visible
4764          * to other CPUs before we assign it to the global variable.
4765          * Do an atomic assignment (no locks used here), but if someone
4766          * beats us to it, just free our copy and return.
4767          */
4768         smp_wmb();
4769         l_ops = (unsigned long) ops;
4770
4771         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4772                 cpus_read_unlock();
4773                 kfree(ops->rm_core);
4774                 kfree(ops);
4775                 return;
4776         }
4777
4778         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4779                                              "ppc/kvm_book3s:prepare",
4780                                              kvmppc_set_host_core,
4781                                              kvmppc_clear_host_core);
4782         cpus_read_unlock();
4783 }
4784
4785 void kvmppc_free_host_rm_ops(void)
4786 {
4787         if (kvmppc_host_rm_ops_hv) {
4788                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4789                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4790                 kfree(kvmppc_host_rm_ops_hv);
4791                 kvmppc_host_rm_ops_hv = NULL;
4792         }
4793 }
4794 #endif
4795
4796 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4797 {
4798         unsigned long lpcr, lpid;
4799         char buf[32];
4800         int ret;
4801
4802         mutex_init(&kvm->arch.uvmem_lock);
4803         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4804         mutex_init(&kvm->arch.mmu_setup_lock);
4805
4806         /* Allocate the guest's logical partition ID */
4807
4808         lpid = kvmppc_alloc_lpid();
4809         if ((long)lpid < 0)
4810                 return -ENOMEM;
4811         kvm->arch.lpid = lpid;
4812
4813         kvmppc_alloc_host_rm_ops();
4814
4815         kvmhv_vm_nested_init(kvm);
4816
4817         /*
4818          * Since we don't flush the TLB when tearing down a VM,
4819          * and this lpid might have previously been used,
4820          * make sure we flush on each core before running the new VM.
4821          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4822          * does this flush for us.
4823          */
4824         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4825                 cpumask_setall(&kvm->arch.need_tlb_flush);
4826
4827         /* Start out with the default set of hcalls enabled */
4828         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4829                sizeof(kvm->arch.enabled_hcalls));
4830
4831         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4832                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4833
4834         /* Init LPCR for virtual RMA mode */
4835         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4836                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4837                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4838                 lpcr &= LPCR_PECE | LPCR_LPES;
4839         } else {
4840                 lpcr = 0;
4841         }
4842         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4843                 LPCR_VPM0 | LPCR_VPM1;
4844         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4845                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4846         /* On POWER8 turn on online bit to enable PURR/SPURR */
4847         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4848                 lpcr |= LPCR_ONL;
4849         /*
4850          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4851          * Set HVICE bit to enable hypervisor virtualization interrupts.
4852          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4853          * be unnecessary but better safe than sorry in case we re-enable
4854          * EE in HV mode with this LPCR still set)
4855          */
4856         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4857                 lpcr &= ~LPCR_VPM0;
4858                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4859
4860                 /*
4861                  * If xive is enabled, we route 0x500 interrupts directly
4862                  * to the guest.
4863                  */
4864                 if (xics_on_xive())
4865                         lpcr |= LPCR_LPES;
4866         }
4867
4868         /*
4869          * If the host uses radix, the guest starts out as radix.
4870          */
4871         if (radix_enabled()) {
4872                 kvm->arch.radix = 1;
4873                 kvm->arch.mmu_ready = 1;
4874                 lpcr &= ~LPCR_VPM1;
4875                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4876                 ret = kvmppc_init_vm_radix(kvm);
4877                 if (ret) {
4878                         kvmppc_free_lpid(kvm->arch.lpid);
4879                         return ret;
4880                 }
4881                 kvmppc_setup_partition_table(kvm);
4882         }
4883
4884         kvm->arch.lpcr = lpcr;
4885
4886         /* Initialization for future HPT resizes */
4887         kvm->arch.resize_hpt = NULL;
4888
4889         /*
4890          * Work out how many sets the TLB has, for the use of
4891          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4892          */
4893         if (radix_enabled())
4894                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4895         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4896                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4897         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4898                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4899         else
4900                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4901
4902         /*
4903          * Track that we now have a HV mode VM active. This blocks secondary
4904          * CPU threads from coming online.
4905          * On POWER9, we only need to do this if the "indep_threads_mode"
4906          * module parameter has been set to N.
4907          */
4908         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4909                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4910                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4911                         kvm->arch.threads_indep = true;
4912                 } else {
4913                         kvm->arch.threads_indep = indep_threads_mode;
4914                 }
4915         }
4916         if (!kvm->arch.threads_indep)
4917                 kvm_hv_vm_activated();
4918
4919         /*
4920          * Initialize smt_mode depending on processor.
4921          * POWER8 and earlier have to use "strict" threading, where
4922          * all vCPUs in a vcore have to run on the same (sub)core,
4923          * whereas on POWER9 the threads can each run a different
4924          * guest.
4925          */
4926         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4927                 kvm->arch.smt_mode = threads_per_subcore;
4928         else
4929                 kvm->arch.smt_mode = 1;
4930         kvm->arch.emul_smt_mode = 1;
4931
4932         /*
4933          * Create a debugfs directory for the VM
4934          */
4935         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4936         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4937         kvmppc_mmu_debugfs_init(kvm);
4938         if (radix_enabled())
4939                 kvmhv_radix_debugfs_init(kvm);
4940
4941         return 0;
4942 }
4943
4944 static void kvmppc_free_vcores(struct kvm *kvm)
4945 {
4946         long int i;
4947
4948         for (i = 0; i < KVM_MAX_VCORES; ++i)
4949                 kfree(kvm->arch.vcores[i]);
4950         kvm->arch.online_vcores = 0;
4951 }
4952
4953 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4954 {
4955         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4956
4957         if (!kvm->arch.threads_indep)
4958                 kvm_hv_vm_deactivated();
4959
4960         kvmppc_free_vcores(kvm);
4961
4962
4963         if (kvm_is_radix(kvm))
4964                 kvmppc_free_radix(kvm);
4965         else
4966                 kvmppc_free_hpt(&kvm->arch.hpt);
4967
4968         /* Perform global invalidation and return lpid to the pool */
4969         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4970                 if (nesting_enabled(kvm))
4971                         kvmhv_release_all_nested(kvm);
4972                 kvm->arch.process_table = 0;
4973                 if (kvm->arch.secure_guest)
4974                         uv_svm_terminate(kvm->arch.lpid);
4975                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4976         }
4977
4978         kvmppc_free_lpid(kvm->arch.lpid);
4979
4980         kvmppc_free_pimap(kvm);
4981 }
4982
4983 /* We don't need to emulate any privileged instructions or dcbz */
4984 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4985                                      unsigned int inst, int *advance)
4986 {
4987         return EMULATE_FAIL;
4988 }
4989
4990 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4991                                         ulong spr_val)
4992 {
4993         return EMULATE_FAIL;
4994 }
4995
4996 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4997                                         ulong *spr_val)
4998 {
4999         return EMULATE_FAIL;
5000 }
5001
5002 static int kvmppc_core_check_processor_compat_hv(void)
5003 {
5004         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5005             cpu_has_feature(CPU_FTR_ARCH_206))
5006                 return 0;
5007
5008         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5009         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5010                 return 0;
5011
5012         return -EIO;
5013 }
5014
5015 #ifdef CONFIG_KVM_XICS
5016
5017 void kvmppc_free_pimap(struct kvm *kvm)
5018 {
5019         kfree(kvm->arch.pimap);
5020 }
5021
5022 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5023 {
5024         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5025 }
5026
5027 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5028 {
5029         struct irq_desc *desc;
5030         struct kvmppc_irq_map *irq_map;
5031         struct kvmppc_passthru_irqmap *pimap;
5032         struct irq_chip *chip;
5033         int i, rc = 0;
5034
5035         if (!kvm_irq_bypass)
5036                 return 1;
5037
5038         desc = irq_to_desc(host_irq);
5039         if (!desc)
5040                 return -EIO;
5041
5042         mutex_lock(&kvm->lock);
5043
5044         pimap = kvm->arch.pimap;
5045         if (pimap == NULL) {
5046                 /* First call, allocate structure to hold IRQ map */
5047                 pimap = kvmppc_alloc_pimap();
5048                 if (pimap == NULL) {
5049                         mutex_unlock(&kvm->lock);
5050                         return -ENOMEM;
5051                 }
5052                 kvm->arch.pimap = pimap;
5053         }
5054
5055         /*
5056          * For now, we only support interrupts for which the EOI operation
5057          * is an OPAL call followed by a write to XIRR, since that's
5058          * what our real-mode EOI code does, or a XIVE interrupt
5059          */
5060         chip = irq_data_get_irq_chip(&desc->irq_data);
5061         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5062                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5063                         host_irq, guest_gsi);
5064                 mutex_unlock(&kvm->lock);
5065                 return -ENOENT;
5066         }
5067
5068         /*
5069          * See if we already have an entry for this guest IRQ number.
5070          * If it's mapped to a hardware IRQ number, that's an error,
5071          * otherwise re-use this entry.
5072          */
5073         for (i = 0; i < pimap->n_mapped; i++) {
5074                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5075                         if (pimap->mapped[i].r_hwirq) {
5076                                 mutex_unlock(&kvm->lock);
5077                                 return -EINVAL;
5078                         }
5079                         break;
5080                 }
5081         }
5082
5083         if (i == KVMPPC_PIRQ_MAPPED) {
5084                 mutex_unlock(&kvm->lock);
5085                 return -EAGAIN;         /* table is full */
5086         }
5087
5088         irq_map = &pimap->mapped[i];
5089
5090         irq_map->v_hwirq = guest_gsi;
5091         irq_map->desc = desc;
5092
5093         /*
5094          * Order the above two stores before the next to serialize with
5095          * the KVM real mode handler.
5096          */
5097         smp_wmb();
5098         irq_map->r_hwirq = desc->irq_data.hwirq;
5099
5100         if (i == pimap->n_mapped)
5101                 pimap->n_mapped++;
5102
5103         if (xics_on_xive())
5104                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5105         else
5106                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5107         if (rc)
5108                 irq_map->r_hwirq = 0;
5109
5110         mutex_unlock(&kvm->lock);
5111
5112         return 0;
5113 }
5114
5115 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5116 {
5117         struct irq_desc *desc;
5118         struct kvmppc_passthru_irqmap *pimap;
5119         int i, rc = 0;
5120
5121         if (!kvm_irq_bypass)
5122                 return 0;
5123
5124         desc = irq_to_desc(host_irq);
5125         if (!desc)
5126                 return -EIO;
5127
5128         mutex_lock(&kvm->lock);
5129         if (!kvm->arch.pimap)
5130                 goto unlock;
5131
5132         pimap = kvm->arch.pimap;
5133
5134         for (i = 0; i < pimap->n_mapped; i++) {
5135                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5136                         break;
5137         }
5138
5139         if (i == pimap->n_mapped) {
5140                 mutex_unlock(&kvm->lock);
5141                 return -ENODEV;
5142         }
5143
5144         if (xics_on_xive())
5145                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5146         else
5147                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5148
5149         /* invalidate the entry (what do do on error from the above ?) */
5150         pimap->mapped[i].r_hwirq = 0;
5151
5152         /*
5153          * We don't free this structure even when the count goes to
5154          * zero. The structure is freed when we destroy the VM.
5155          */
5156  unlock:
5157         mutex_unlock(&kvm->lock);
5158         return rc;
5159 }
5160
5161 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5162                                              struct irq_bypass_producer *prod)
5163 {
5164         int ret = 0;
5165         struct kvm_kernel_irqfd *irqfd =
5166                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5167
5168         irqfd->producer = prod;
5169
5170         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5171         if (ret)
5172                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5173                         prod->irq, irqfd->gsi, ret);
5174
5175         return ret;
5176 }
5177
5178 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5179                                               struct irq_bypass_producer *prod)
5180 {
5181         int ret;
5182         struct kvm_kernel_irqfd *irqfd =
5183                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5184
5185         irqfd->producer = NULL;
5186
5187         /*
5188          * When producer of consumer is unregistered, we change back to
5189          * default external interrupt handling mode - KVM real mode
5190          * will switch back to host.
5191          */
5192         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5193         if (ret)
5194                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5195                         prod->irq, irqfd->gsi, ret);
5196 }
5197 #endif
5198
5199 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5200                                  unsigned int ioctl, unsigned long arg)
5201 {
5202         struct kvm *kvm __maybe_unused = filp->private_data;
5203         void __user *argp = (void __user *)arg;
5204         long r;
5205
5206         switch (ioctl) {
5207
5208         case KVM_PPC_ALLOCATE_HTAB: {
5209                 u32 htab_order;
5210
5211                 r = -EFAULT;
5212                 if (get_user(htab_order, (u32 __user *)argp))
5213                         break;
5214                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5215                 if (r)
5216                         break;
5217                 r = 0;
5218                 break;
5219         }
5220
5221         case KVM_PPC_GET_HTAB_FD: {
5222                 struct kvm_get_htab_fd ghf;
5223
5224                 r = -EFAULT;
5225                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5226                         break;
5227                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5228                 break;
5229         }
5230
5231         case KVM_PPC_RESIZE_HPT_PREPARE: {
5232                 struct kvm_ppc_resize_hpt rhpt;
5233
5234                 r = -EFAULT;
5235                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5236                         break;
5237
5238                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5239                 break;
5240         }
5241
5242         case KVM_PPC_RESIZE_HPT_COMMIT: {
5243                 struct kvm_ppc_resize_hpt rhpt;
5244
5245                 r = -EFAULT;
5246                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5247                         break;
5248
5249                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5250                 break;
5251         }
5252
5253         default:
5254                 r = -ENOTTY;
5255         }
5256
5257         return r;
5258 }
5259
5260 /*
5261  * List of hcall numbers to enable by default.
5262  * For compatibility with old userspace, we enable by default
5263  * all hcalls that were implemented before the hcall-enabling
5264  * facility was added.  Note this list should not include H_RTAS.
5265  */
5266 static unsigned int default_hcall_list[] = {
5267         H_REMOVE,
5268         H_ENTER,
5269         H_READ,
5270         H_PROTECT,
5271         H_BULK_REMOVE,
5272         H_GET_TCE,
5273         H_PUT_TCE,
5274         H_SET_DABR,
5275         H_SET_XDABR,
5276         H_CEDE,
5277         H_PROD,
5278         H_CONFER,
5279         H_REGISTER_VPA,
5280 #ifdef CONFIG_KVM_XICS
5281         H_EOI,
5282         H_CPPR,
5283         H_IPI,
5284         H_IPOLL,
5285         H_XIRR,
5286         H_XIRR_X,
5287 #endif
5288         0
5289 };
5290
5291 static void init_default_hcalls(void)
5292 {
5293         int i;
5294         unsigned int hcall;
5295
5296         for (i = 0; default_hcall_list[i]; ++i) {
5297                 hcall = default_hcall_list[i];
5298                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5299                 __set_bit(hcall / 4, default_enabled_hcalls);
5300         }
5301 }
5302
5303 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5304 {
5305         unsigned long lpcr;
5306         int radix;
5307         int err;
5308
5309         /* If not on a POWER9, reject it */
5310         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5311                 return -ENODEV;
5312
5313         /* If any unknown flags set, reject it */
5314         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5315                 return -EINVAL;
5316
5317         /* GR (guest radix) bit in process_table field must match */
5318         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5319         if (!!(cfg->process_table & PATB_GR) != radix)
5320                 return -EINVAL;
5321
5322         /* Process table size field must be reasonable, i.e. <= 24 */
5323         if ((cfg->process_table & PRTS_MASK) > 24)
5324                 return -EINVAL;
5325
5326         /* We can change a guest to/from radix now, if the host is radix */
5327         if (radix && !radix_enabled())
5328                 return -EINVAL;
5329
5330         /* If we're a nested hypervisor, we currently only support radix */
5331         if (kvmhv_on_pseries() && !radix)
5332                 return -EINVAL;
5333
5334         mutex_lock(&kvm->arch.mmu_setup_lock);
5335         if (radix != kvm_is_radix(kvm)) {
5336                 if (kvm->arch.mmu_ready) {
5337                         kvm->arch.mmu_ready = 0;
5338                         /* order mmu_ready vs. vcpus_running */
5339                         smp_mb();
5340                         if (atomic_read(&kvm->arch.vcpus_running)) {
5341                                 kvm->arch.mmu_ready = 1;
5342                                 err = -EBUSY;
5343                                 goto out_unlock;
5344                         }
5345                 }
5346                 if (radix)
5347                         err = kvmppc_switch_mmu_to_radix(kvm);
5348                 else
5349                         err = kvmppc_switch_mmu_to_hpt(kvm);
5350                 if (err)
5351                         goto out_unlock;
5352         }
5353
5354         kvm->arch.process_table = cfg->process_table;
5355         kvmppc_setup_partition_table(kvm);
5356
5357         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5358         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5359         err = 0;
5360
5361  out_unlock:
5362         mutex_unlock(&kvm->arch.mmu_setup_lock);
5363         return err;
5364 }
5365
5366 static int kvmhv_enable_nested(struct kvm *kvm)
5367 {
5368         if (!nested)
5369                 return -EPERM;
5370         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5371                 return -ENODEV;
5372
5373         /* kvm == NULL means the caller is testing if the capability exists */
5374         if (kvm)
5375                 kvm->arch.nested_enable = true;
5376         return 0;
5377 }
5378
5379 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5380                                  int size)
5381 {
5382         int rc = -EINVAL;
5383
5384         if (kvmhv_vcpu_is_radix(vcpu)) {
5385                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5386
5387                 if (rc > 0)
5388                         rc = -EINVAL;
5389         }
5390
5391         /* For now quadrants are the only way to access nested guest memory */
5392         if (rc && vcpu->arch.nested)
5393                 rc = -EAGAIN;
5394
5395         return rc;
5396 }
5397
5398 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5399                                 int size)
5400 {
5401         int rc = -EINVAL;
5402
5403         if (kvmhv_vcpu_is_radix(vcpu)) {
5404                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5405
5406                 if (rc > 0)
5407                         rc = -EINVAL;
5408         }
5409
5410         /* For now quadrants are the only way to access nested guest memory */
5411         if (rc && vcpu->arch.nested)
5412                 rc = -EAGAIN;
5413
5414         return rc;
5415 }
5416
5417 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5418 {
5419         unpin_vpa(kvm, vpa);
5420         vpa->gpa = 0;
5421         vpa->pinned_addr = NULL;
5422         vpa->dirty = false;
5423         vpa->update_pending = 0;
5424 }
5425
5426 /*
5427  * Enable a guest to become a secure VM, or test whether
5428  * that could be enabled.
5429  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5430  * tested (kvm == NULL) or enabled (kvm != NULL).
5431  */
5432 static int kvmhv_enable_svm(struct kvm *kvm)
5433 {
5434         if (!kvmppc_uvmem_available())
5435                 return -EINVAL;
5436         if (kvm)
5437                 kvm->arch.svm_enabled = 1;
5438         return 0;
5439 }
5440
5441 /*
5442  *  IOCTL handler to turn off secure mode of guest
5443  *
5444  * - Release all device pages
5445  * - Issue ucall to terminate the guest on the UV side
5446  * - Unpin the VPA pages.
5447  * - Reinit the partition scoped page tables
5448  */
5449 static int kvmhv_svm_off(struct kvm *kvm)
5450 {
5451         struct kvm_vcpu *vcpu;
5452         int mmu_was_ready;
5453         int srcu_idx;
5454         int ret = 0;
5455         int i;
5456
5457         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5458                 return ret;
5459
5460         mutex_lock(&kvm->arch.mmu_setup_lock);
5461         mmu_was_ready = kvm->arch.mmu_ready;
5462         if (kvm->arch.mmu_ready) {
5463                 kvm->arch.mmu_ready = 0;
5464                 /* order mmu_ready vs. vcpus_running */
5465                 smp_mb();
5466                 if (atomic_read(&kvm->arch.vcpus_running)) {
5467                         kvm->arch.mmu_ready = 1;
5468                         ret = -EBUSY;
5469                         goto out;
5470                 }
5471         }
5472
5473         srcu_idx = srcu_read_lock(&kvm->srcu);
5474         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5475                 struct kvm_memory_slot *memslot;
5476                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5477
5478                 if (!slots)
5479                         continue;
5480
5481                 kvm_for_each_memslot(memslot, slots) {
5482                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5483                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5484                 }
5485         }
5486         srcu_read_unlock(&kvm->srcu, srcu_idx);
5487
5488         ret = uv_svm_terminate(kvm->arch.lpid);
5489         if (ret != U_SUCCESS) {
5490                 ret = -EINVAL;
5491                 goto out;
5492         }
5493
5494         /*
5495          * When secure guest is reset, all the guest pages are sent
5496          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5497          * chance to run and unpin their VPA pages. Unpinning of all
5498          * VPA pages is done here explicitly so that VPA pages
5499          * can be migrated to the secure side.
5500          *
5501          * This is required to for the secure SMP guest to reboot
5502          * correctly.
5503          */
5504         kvm_for_each_vcpu(i, vcpu, kvm) {
5505                 spin_lock(&vcpu->arch.vpa_update_lock);
5506                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5507                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5508                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5509                 spin_unlock(&vcpu->arch.vpa_update_lock);
5510         }
5511
5512         kvmppc_setup_partition_table(kvm);
5513         kvm->arch.secure_guest = 0;
5514         kvm->arch.mmu_ready = mmu_was_ready;
5515 out:
5516         mutex_unlock(&kvm->arch.mmu_setup_lock);
5517         return ret;
5518 }
5519
5520 static struct kvmppc_ops kvm_ops_hv = {
5521         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5522         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5523         .get_one_reg = kvmppc_get_one_reg_hv,
5524         .set_one_reg = kvmppc_set_one_reg_hv,
5525         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5526         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5527         .inject_interrupt = kvmppc_inject_interrupt_hv,
5528         .set_msr     = kvmppc_set_msr_hv,
5529         .vcpu_run    = kvmppc_vcpu_run_hv,
5530         .vcpu_create = kvmppc_core_vcpu_create_hv,
5531         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5532         .check_requests = kvmppc_core_check_requests_hv,
5533         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5534         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5535         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5536         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5537         .unmap_hva_range = kvm_unmap_hva_range_hv,
5538         .age_hva  = kvm_age_hva_hv,
5539         .test_age_hva = kvm_test_age_hva_hv,
5540         .set_spte_hva = kvm_set_spte_hva_hv,
5541         .free_memslot = kvmppc_core_free_memslot_hv,
5542         .init_vm =  kvmppc_core_init_vm_hv,
5543         .destroy_vm = kvmppc_core_destroy_vm_hv,
5544         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5545         .emulate_op = kvmppc_core_emulate_op_hv,
5546         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5547         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5548         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5549         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5550         .hcall_implemented = kvmppc_hcall_impl_hv,
5551 #ifdef CONFIG_KVM_XICS
5552         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5553         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5554 #endif
5555         .configure_mmu = kvmhv_configure_mmu,
5556         .get_rmmu_info = kvmhv_get_rmmu_info,
5557         .set_smt_mode = kvmhv_set_smt_mode,
5558         .enable_nested = kvmhv_enable_nested,
5559         .load_from_eaddr = kvmhv_load_from_eaddr,
5560         .store_to_eaddr = kvmhv_store_to_eaddr,
5561         .enable_svm = kvmhv_enable_svm,
5562         .svm_off = kvmhv_svm_off,
5563 };
5564
5565 static int kvm_init_subcore_bitmap(void)
5566 {
5567         int i, j;
5568         int nr_cores = cpu_nr_cores();
5569         struct sibling_subcore_state *sibling_subcore_state;
5570
5571         for (i = 0; i < nr_cores; i++) {
5572                 int first_cpu = i * threads_per_core;
5573                 int node = cpu_to_node(first_cpu);
5574
5575                 /* Ignore if it is already allocated. */
5576                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5577                         continue;
5578
5579                 sibling_subcore_state =
5580                         kzalloc_node(sizeof(struct sibling_subcore_state),
5581                                                         GFP_KERNEL, node);
5582                 if (!sibling_subcore_state)
5583                         return -ENOMEM;
5584
5585
5586                 for (j = 0; j < threads_per_core; j++) {
5587                         int cpu = first_cpu + j;
5588
5589                         paca_ptrs[cpu]->sibling_subcore_state =
5590                                                 sibling_subcore_state;
5591                 }
5592         }
5593         return 0;
5594 }
5595
5596 static int kvmppc_radix_possible(void)
5597 {
5598         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5599 }
5600
5601 static int kvmppc_book3s_init_hv(void)
5602 {
5603         int r;
5604
5605         if (!tlbie_capable) {
5606                 pr_err("KVM-HV: Host does not support TLBIE\n");
5607                 return -ENODEV;
5608         }
5609
5610         /*
5611          * FIXME!! Do we need to check on all cpus ?
5612          */
5613         r = kvmppc_core_check_processor_compat_hv();
5614         if (r < 0)
5615                 return -ENODEV;
5616
5617         r = kvmhv_nested_init();
5618         if (r)
5619                 return r;
5620
5621         r = kvm_init_subcore_bitmap();
5622         if (r)
5623                 return r;
5624
5625         /*
5626          * We need a way of accessing the XICS interrupt controller,
5627          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5628          * indirectly, via OPAL.
5629          */
5630 #ifdef CONFIG_SMP
5631         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5632             !local_paca->kvm_hstate.xics_phys) {
5633                 struct device_node *np;
5634
5635                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5636                 if (!np) {
5637                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5638                         return -ENODEV;
5639                 }
5640                 /* presence of intc confirmed - node can be dropped again */
5641                 of_node_put(np);
5642         }
5643 #endif
5644
5645         kvm_ops_hv.owner = THIS_MODULE;
5646         kvmppc_hv_ops = &kvm_ops_hv;
5647
5648         init_default_hcalls();
5649
5650         init_vcore_lists();
5651
5652         r = kvmppc_mmu_hv_init();
5653         if (r)
5654                 return r;
5655
5656         if (kvmppc_radix_possible())
5657                 r = kvmppc_radix_init();
5658
5659         /*
5660          * POWER9 chips before version 2.02 can't have some threads in
5661          * HPT mode and some in radix mode on the same core.
5662          */
5663         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5664                 unsigned int pvr = mfspr(SPRN_PVR);
5665                 if ((pvr >> 16) == PVR_POWER9 &&
5666                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5667                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5668                         no_mixing_hpt_and_radix = true;
5669         }
5670
5671         r = kvmppc_uvmem_init();
5672         if (r < 0)
5673                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5674
5675         return r;
5676 }
5677
5678 static void kvmppc_book3s_exit_hv(void)
5679 {
5680         kvmppc_uvmem_free();
5681         kvmppc_free_host_rm_ops();
5682         if (kvmppc_radix_possible())
5683                 kvmppc_radix_exit();
5684         kvmppc_hv_ops = NULL;
5685         kvmhv_nested_exit();
5686 }
5687
5688 module_init(kvmppc_book3s_init_hv);
5689 module_exit(kvmppc_book3s_exit_hv);
5690 MODULE_LICENSE("GPL");
5691 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5692 MODULE_ALIAS("devname:kvm");
This page took 0.366137 seconds and 4 git commands to generate.