]> Git Repo - linux.git/blob - arch/arm/mm/mmu.c
efi/libstub: Optimize for size instead of speed
[linux.git] / arch / arm / mm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
32
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53
54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
55
56 #define CPOLICY_UNCACHED        0
57 #define CPOLICY_BUFFERED        1
58 #define CPOLICY_WRITETHROUGH    2
59 #define CPOLICY_WRITEBACK       3
60 #define CPOLICY_WRITEALLOC      4
61
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
66
67 EXPORT_SYMBOL(pgprot_user);
68 EXPORT_SYMBOL(pgprot_kernel);
69
70 struct cachepolicy {
71         const char      policy[16];
72         unsigned int    cr_mask;
73         pmdval_t        pmd;
74         pteval_t        pte;
75 };
76
77 unsigned long kimage_voffset __ro_after_init;
78
79 static struct cachepolicy cache_policies[] __initdata = {
80         {
81                 .policy         = "uncached",
82                 .cr_mask        = CR_W|CR_C,
83                 .pmd            = PMD_SECT_UNCACHED,
84                 .pte            = L_PTE_MT_UNCACHED,
85         }, {
86                 .policy         = "buffered",
87                 .cr_mask        = CR_C,
88                 .pmd            = PMD_SECT_BUFFERED,
89                 .pte            = L_PTE_MT_BUFFERABLE,
90         }, {
91                 .policy         = "writethrough",
92                 .cr_mask        = 0,
93                 .pmd            = PMD_SECT_WT,
94                 .pte            = L_PTE_MT_WRITETHROUGH,
95         }, {
96                 .policy         = "writeback",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WB,
99                 .pte            = L_PTE_MT_WRITEBACK,
100         }, {
101                 .policy         = "writealloc",
102                 .cr_mask        = 0,
103                 .pmd            = PMD_SECT_WBWA,
104                 .pte            = L_PTE_MT_WRITEALLOC,
105         }
106 };
107
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120         int i;
121
122         initial_pmd_value = pmd;
123
124         pmd &= PMD_SECT_CACHE_MASK;
125
126         for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127                 if (cache_policies[i].pmd == pmd) {
128                         cachepolicy = i;
129                         break;
130                 }
131
132         if (i == ARRAY_SIZE(cache_policies))
133                 pr_err("ERROR: could not find cache policy\n");
134 }
135
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143         int i, selected = -1;
144
145         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146                 int len = strlen(cache_policies[i].policy);
147
148                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
149                         selected = i;
150                         break;
151                 }
152         }
153
154         if (selected == -1)
155                 pr_err("ERROR: unknown or unsupported cache policy\n");
156
157         /*
158          * This restriction is partly to do with the way we boot; it is
159          * unpredictable to have memory mapped using two different sets of
160          * memory attributes (shared, type, and cache attribs).  We can not
161          * change these attributes once the initial assembly has setup the
162          * page tables.
163          */
164         if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165                 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166                         cache_policies[cachepolicy].policy);
167                 return 0;
168         }
169
170         if (selected != cachepolicy) {
171                 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172                 cachepolicy = selected;
173                 flush_cache_all();
174                 set_cr(cr);
175         }
176         return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179
180 static int __init early_nocache(char *__unused)
181 {
182         char *p = "buffered";
183         pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184         early_cachepolicy(p);
185         return 0;
186 }
187 early_param("nocache", early_nocache);
188
189 static int __init early_nowrite(char *__unused)
190 {
191         char *p = "uncached";
192         pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193         early_cachepolicy(p);
194         return 0;
195 }
196 early_param("nowb", early_nowrite);
197
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201         if (memcmp(p, "on", 2) == 0)
202                 ecc_mask = PMD_PROTECTION;
203         else if (memcmp(p, "off", 3) == 0)
204                 ecc_mask = 0;
205         return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209
210 #else /* ifdef CONFIG_CPU_CP15 */
211
212 static int __init early_cachepolicy(char *p)
213 {
214         pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 }
216 early_param("cachepolicy", early_cachepolicy);
217
218 static int __init noalign_setup(char *__unused)
219 {
220         pr_warn("noalign kernel parameter not supported without cp15\n");
221 }
222 __setup("noalign", noalign_setup);
223
224 #endif /* ifdef CONFIG_CPU_CP15 / else */
225
226 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227 #define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
228 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
229
230 static struct mem_type mem_types[] __ro_after_init = {
231         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
232                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
233                                   L_PTE_SHARED,
234                 .prot_l1        = PMD_TYPE_TABLE,
235                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
236                 .domain         = DOMAIN_IO,
237         },
238         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240                 .prot_l1        = PMD_TYPE_TABLE,
241                 .prot_sect      = PROT_SECT_DEVICE,
242                 .domain         = DOMAIN_IO,
243         },
244         [MT_DEVICE_CACHED] = {    /* ioremap_cache */
245                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246                 .prot_l1        = PMD_TYPE_TABLE,
247                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
248                 .domain         = DOMAIN_IO,
249         },
250         [MT_DEVICE_WC] = {      /* ioremap_wc */
251                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252                 .prot_l1        = PMD_TYPE_TABLE,
253                 .prot_sect      = PROT_SECT_DEVICE,
254                 .domain         = DOMAIN_IO,
255         },
256         [MT_UNCACHED] = {
257                 .prot_pte       = PROT_PTE_DEVICE,
258                 .prot_l1        = PMD_TYPE_TABLE,
259                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
260                 .domain         = DOMAIN_IO,
261         },
262         [MT_CACHECLEAN] = {
263                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264                 .domain    = DOMAIN_KERNEL,
265         },
266 #ifndef CONFIG_ARM_LPAE
267         [MT_MINICLEAN] = {
268                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269                 .domain    = DOMAIN_KERNEL,
270         },
271 #endif
272         [MT_LOW_VECTORS] = {
273                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274                                 L_PTE_RDONLY,
275                 .prot_l1   = PMD_TYPE_TABLE,
276                 .domain    = DOMAIN_VECTORS,
277         },
278         [MT_HIGH_VECTORS] = {
279                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280                                 L_PTE_USER | L_PTE_RDONLY,
281                 .prot_l1   = PMD_TYPE_TABLE,
282                 .domain    = DOMAIN_VECTORS,
283         },
284         [MT_MEMORY_RWX] = {
285                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286                 .prot_l1   = PMD_TYPE_TABLE,
287                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288                 .domain    = DOMAIN_KERNEL,
289         },
290         [MT_MEMORY_RW] = {
291                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292                              L_PTE_XN,
293                 .prot_l1   = PMD_TYPE_TABLE,
294                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295                 .domain    = DOMAIN_KERNEL,
296         },
297         [MT_ROM] = {
298                 .prot_sect = PMD_TYPE_SECT,
299                 .domain    = DOMAIN_KERNEL,
300         },
301         [MT_MEMORY_RWX_NONCACHED] = {
302                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303                                 L_PTE_MT_BUFFERABLE,
304                 .prot_l1   = PMD_TYPE_TABLE,
305                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306                 .domain    = DOMAIN_KERNEL,
307         },
308         [MT_MEMORY_RW_DTCM] = {
309                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310                                 L_PTE_XN,
311                 .prot_l1   = PMD_TYPE_TABLE,
312                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
313                 .domain    = DOMAIN_KERNEL,
314         },
315         [MT_MEMORY_RWX_ITCM] = {
316                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317                 .prot_l1   = PMD_TYPE_TABLE,
318                 .domain    = DOMAIN_KERNEL,
319         },
320         [MT_MEMORY_RW_SO] = {
321                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322                                 L_PTE_MT_UNCACHED | L_PTE_XN,
323                 .prot_l1   = PMD_TYPE_TABLE,
324                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
325                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
326                 .domain    = DOMAIN_KERNEL,
327         },
328         [MT_MEMORY_DMA_READY] = {
329                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
330                                 L_PTE_XN,
331                 .prot_l1   = PMD_TYPE_TABLE,
332                 .domain    = DOMAIN_KERNEL,
333         },
334 };
335
336 const struct mem_type *get_mem_type(unsigned int type)
337 {
338         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
339 }
340 EXPORT_SYMBOL(get_mem_type);
341
342 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
343
344 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
345         __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
346
347 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
348 {
349         return &bm_pte[pte_index(addr)];
350 }
351
352 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
353 {
354         return pte_offset_kernel(dir, addr);
355 }
356
357 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
358 {
359         pgd_t *pgd = pgd_offset_k(addr);
360         pud_t *pud = pud_offset(pgd, addr);
361         pmd_t *pmd = pmd_offset(pud, addr);
362
363         return pmd;
364 }
365
366 void __init early_fixmap_init(void)
367 {
368         pmd_t *pmd;
369
370         /*
371          * The early fixmap range spans multiple pmds, for which
372          * we are not prepared:
373          */
374         BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
375                      != FIXADDR_TOP >> PMD_SHIFT);
376
377         pmd = fixmap_pmd(FIXADDR_TOP);
378         pmd_populate_kernel(&init_mm, pmd, bm_pte);
379
380         pte_offset_fixmap = pte_offset_early_fixmap;
381 }
382
383 /*
384  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
385  * As a result, this can only be called with preemption disabled, as under
386  * stop_machine().
387  */
388 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
389 {
390         unsigned long vaddr = __fix_to_virt(idx);
391         pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
392
393         /* Make sure fixmap region does not exceed available allocation. */
394         BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
395                      FIXADDR_END);
396         BUG_ON(idx >= __end_of_fixed_addresses);
397
398         /* we only support device mappings until pgprot_kernel has been set */
399         if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
400                     pgprot_val(pgprot_kernel) == 0))
401                 return;
402
403         if (pgprot_val(prot))
404                 set_pte_at(NULL, vaddr, pte,
405                         pfn_pte(phys >> PAGE_SHIFT, prot));
406         else
407                 pte_clear(NULL, vaddr, pte);
408         local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
409 }
410
411 /*
412  * Adjust the PMD section entries according to the CPU in use.
413  */
414 static void __init build_mem_type_table(void)
415 {
416         struct cachepolicy *cp;
417         unsigned int cr = get_cr();
418         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
419         int cpu_arch = cpu_architecture();
420         int i;
421
422         if (cpu_arch < CPU_ARCH_ARMv6) {
423 #if defined(CONFIG_CPU_DCACHE_DISABLE)
424                 if (cachepolicy > CPOLICY_BUFFERED)
425                         cachepolicy = CPOLICY_BUFFERED;
426 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
427                 if (cachepolicy > CPOLICY_WRITETHROUGH)
428                         cachepolicy = CPOLICY_WRITETHROUGH;
429 #endif
430         }
431         if (cpu_arch < CPU_ARCH_ARMv5) {
432                 if (cachepolicy >= CPOLICY_WRITEALLOC)
433                         cachepolicy = CPOLICY_WRITEBACK;
434                 ecc_mask = 0;
435         }
436
437         if (is_smp()) {
438                 if (cachepolicy != CPOLICY_WRITEALLOC) {
439                         pr_warn("Forcing write-allocate cache policy for SMP\n");
440                         cachepolicy = CPOLICY_WRITEALLOC;
441                 }
442                 if (!(initial_pmd_value & PMD_SECT_S)) {
443                         pr_warn("Forcing shared mappings for SMP\n");
444                         initial_pmd_value |= PMD_SECT_S;
445                 }
446         }
447
448         /*
449          * Strip out features not present on earlier architectures.
450          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
451          * without extended page tables don't have the 'Shared' bit.
452          */
453         if (cpu_arch < CPU_ARCH_ARMv5)
454                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
455                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
456         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
457                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
458                         mem_types[i].prot_sect &= ~PMD_SECT_S;
459
460         /*
461          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
462          * "update-able on write" bit on ARM610).  However, Xscale and
463          * Xscale3 require this bit to be cleared.
464          */
465         if (cpu_is_xscale_family()) {
466                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
467                         mem_types[i].prot_sect &= ~PMD_BIT4;
468                         mem_types[i].prot_l1 &= ~PMD_BIT4;
469                 }
470         } else if (cpu_arch < CPU_ARCH_ARMv6) {
471                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
472                         if (mem_types[i].prot_l1)
473                                 mem_types[i].prot_l1 |= PMD_BIT4;
474                         if (mem_types[i].prot_sect)
475                                 mem_types[i].prot_sect |= PMD_BIT4;
476                 }
477         }
478
479         /*
480          * Mark the device areas according to the CPU/architecture.
481          */
482         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
483                 if (!cpu_is_xsc3()) {
484                         /*
485                          * Mark device regions on ARMv6+ as execute-never
486                          * to prevent speculative instruction fetches.
487                          */
488                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
489                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
490                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
491                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
492
493                         /* Also setup NX memory mapping */
494                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
495                 }
496                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
497                         /*
498                          * For ARMv7 with TEX remapping,
499                          * - shared device is SXCB=1100
500                          * - nonshared device is SXCB=0100
501                          * - write combine device mem is SXCB=0001
502                          * (Uncached Normal memory)
503                          */
504                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
505                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
506                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
507                 } else if (cpu_is_xsc3()) {
508                         /*
509                          * For Xscale3,
510                          * - shared device is TEXCB=00101
511                          * - nonshared device is TEXCB=01000
512                          * - write combine device mem is TEXCB=00100
513                          * (Inner/Outer Uncacheable in xsc3 parlance)
514                          */
515                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
516                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
517                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
518                 } else {
519                         /*
520                          * For ARMv6 and ARMv7 without TEX remapping,
521                          * - shared device is TEXCB=00001
522                          * - nonshared device is TEXCB=01000
523                          * - write combine device mem is TEXCB=00100
524                          * (Uncached Normal in ARMv6 parlance).
525                          */
526                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
527                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
528                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
529                 }
530         } else {
531                 /*
532                  * On others, write combining is "Uncached/Buffered"
533                  */
534                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
535         }
536
537         /*
538          * Now deal with the memory-type mappings
539          */
540         cp = &cache_policies[cachepolicy];
541         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
542
543 #ifndef CONFIG_ARM_LPAE
544         /*
545          * We don't use domains on ARMv6 (since this causes problems with
546          * v6/v7 kernels), so we must use a separate memory type for user
547          * r/o, kernel r/w to map the vectors page.
548          */
549         if (cpu_arch == CPU_ARCH_ARMv6)
550                 vecs_pgprot |= L_PTE_MT_VECTORS;
551
552         /*
553          * Check is it with support for the PXN bit
554          * in the Short-descriptor translation table format descriptors.
555          */
556         if (cpu_arch == CPU_ARCH_ARMv7 &&
557                 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
558                 user_pmd_table |= PMD_PXNTABLE;
559         }
560 #endif
561
562         /*
563          * ARMv6 and above have extended page tables.
564          */
565         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
566 #ifndef CONFIG_ARM_LPAE
567                 /*
568                  * Mark cache clean areas and XIP ROM read only
569                  * from SVC mode and no access from userspace.
570                  */
571                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
572                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
573                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
574 #endif
575
576                 /*
577                  * If the initial page tables were created with the S bit
578                  * set, then we need to do the same here for the same
579                  * reasons given in early_cachepolicy().
580                  */
581                 if (initial_pmd_value & PMD_SECT_S) {
582                         user_pgprot |= L_PTE_SHARED;
583                         kern_pgprot |= L_PTE_SHARED;
584                         vecs_pgprot |= L_PTE_SHARED;
585                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
586                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
587                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
588                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
589                         mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
590                         mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
591                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
592                         mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
593                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
594                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
595                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
596                 }
597         }
598
599         /*
600          * Non-cacheable Normal - intended for memory areas that must
601          * not cause dirty cache line writebacks when used
602          */
603         if (cpu_arch >= CPU_ARCH_ARMv6) {
604                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
605                         /* Non-cacheable Normal is XCB = 001 */
606                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
607                                 PMD_SECT_BUFFERED;
608                 } else {
609                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
610                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
611                                 PMD_SECT_TEX(1);
612                 }
613         } else {
614                 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
615         }
616
617 #ifdef CONFIG_ARM_LPAE
618         /*
619          * Do not generate access flag faults for the kernel mappings.
620          */
621         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
622                 mem_types[i].prot_pte |= PTE_EXT_AF;
623                 if (mem_types[i].prot_sect)
624                         mem_types[i].prot_sect |= PMD_SECT_AF;
625         }
626         kern_pgprot |= PTE_EXT_AF;
627         vecs_pgprot |= PTE_EXT_AF;
628
629         /*
630          * Set PXN for user mappings
631          */
632         user_pgprot |= PTE_EXT_PXN;
633 #endif
634
635         for (i = 0; i < 16; i++) {
636                 pteval_t v = pgprot_val(protection_map[i]);
637                 protection_map[i] = __pgprot(v | user_pgprot);
638         }
639
640         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
641         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
642
643         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
644         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
645                                  L_PTE_DIRTY | kern_pgprot);
646
647         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
648         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
649         mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
650         mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
651         mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
652         mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
653         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
654         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
655         mem_types[MT_ROM].prot_sect |= cp->pmd;
656
657         switch (cp->pmd) {
658         case PMD_SECT_WT:
659                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
660                 break;
661         case PMD_SECT_WB:
662         case PMD_SECT_WBWA:
663                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
664                 break;
665         }
666         pr_info("Memory policy: %sData cache %s\n",
667                 ecc_mask ? "ECC enabled, " : "", cp->policy);
668
669         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
670                 struct mem_type *t = &mem_types[i];
671                 if (t->prot_l1)
672                         t->prot_l1 |= PMD_DOMAIN(t->domain);
673                 if (t->prot_sect)
674                         t->prot_sect |= PMD_DOMAIN(t->domain);
675         }
676 }
677
678 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
679 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
680                               unsigned long size, pgprot_t vma_prot)
681 {
682         if (!pfn_valid(pfn))
683                 return pgprot_noncached(vma_prot);
684         else if (file->f_flags & O_SYNC)
685                 return pgprot_writecombine(vma_prot);
686         return vma_prot;
687 }
688 EXPORT_SYMBOL(phys_mem_access_prot);
689 #endif
690
691 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
692
693 static void __init *early_alloc(unsigned long sz)
694 {
695         void *ptr = memblock_alloc(sz, sz);
696
697         if (!ptr)
698                 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
699                       __func__, sz, sz);
700
701         return ptr;
702 }
703
704 static void *__init late_alloc(unsigned long sz)
705 {
706         void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
707
708         if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
709                 BUG();
710         return ptr;
711 }
712
713 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
714                                 unsigned long prot,
715                                 void *(*alloc)(unsigned long sz))
716 {
717         if (pmd_none(*pmd)) {
718                 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
719                 __pmd_populate(pmd, __pa(pte), prot);
720         }
721         BUG_ON(pmd_bad(*pmd));
722         return pte_offset_kernel(pmd, addr);
723 }
724
725 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
726                                       unsigned long prot)
727 {
728         return arm_pte_alloc(pmd, addr, prot, early_alloc);
729 }
730
731 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
732                                   unsigned long end, unsigned long pfn,
733                                   const struct mem_type *type,
734                                   void *(*alloc)(unsigned long sz),
735                                   bool ng)
736 {
737         pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
738         do {
739                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
740                             ng ? PTE_EXT_NG : 0);
741                 pfn++;
742         } while (pte++, addr += PAGE_SIZE, addr != end);
743 }
744
745 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
746                         unsigned long end, phys_addr_t phys,
747                         const struct mem_type *type, bool ng)
748 {
749         pmd_t *p = pmd;
750
751 #ifndef CONFIG_ARM_LPAE
752         /*
753          * In classic MMU format, puds and pmds are folded in to
754          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
755          * group of L1 entries making up one logical pointer to
756          * an L2 table (2MB), where as PMDs refer to the individual
757          * L1 entries (1MB). Hence increment to get the correct
758          * offset for odd 1MB sections.
759          * (See arch/arm/include/asm/pgtable-2level.h)
760          */
761         if (addr & SECTION_SIZE)
762                 pmd++;
763 #endif
764         do {
765                 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
766                 phys += SECTION_SIZE;
767         } while (pmd++, addr += SECTION_SIZE, addr != end);
768
769         flush_pmd_entry(p);
770 }
771
772 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
773                                       unsigned long end, phys_addr_t phys,
774                                       const struct mem_type *type,
775                                       void *(*alloc)(unsigned long sz), bool ng)
776 {
777         pmd_t *pmd = pmd_offset(pud, addr);
778         unsigned long next;
779
780         do {
781                 /*
782                  * With LPAE, we must loop over to map
783                  * all the pmds for the given range.
784                  */
785                 next = pmd_addr_end(addr, end);
786
787                 /*
788                  * Try a section mapping - addr, next and phys must all be
789                  * aligned to a section boundary.
790                  */
791                 if (type->prot_sect &&
792                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
793                         __map_init_section(pmd, addr, next, phys, type, ng);
794                 } else {
795                         alloc_init_pte(pmd, addr, next,
796                                        __phys_to_pfn(phys), type, alloc, ng);
797                 }
798
799                 phys += next - addr;
800
801         } while (pmd++, addr = next, addr != end);
802 }
803
804 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
805                                   unsigned long end, phys_addr_t phys,
806                                   const struct mem_type *type,
807                                   void *(*alloc)(unsigned long sz), bool ng)
808 {
809         pud_t *pud = pud_offset(pgd, addr);
810         unsigned long next;
811
812         do {
813                 next = pud_addr_end(addr, end);
814                 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
815                 phys += next - addr;
816         } while (pud++, addr = next, addr != end);
817 }
818
819 #ifndef CONFIG_ARM_LPAE
820 static void __init create_36bit_mapping(struct mm_struct *mm,
821                                         struct map_desc *md,
822                                         const struct mem_type *type,
823                                         bool ng)
824 {
825         unsigned long addr, length, end;
826         phys_addr_t phys;
827         pgd_t *pgd;
828
829         addr = md->virtual;
830         phys = __pfn_to_phys(md->pfn);
831         length = PAGE_ALIGN(md->length);
832
833         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
834                 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
835                        (long long)__pfn_to_phys((u64)md->pfn), addr);
836                 return;
837         }
838
839         /* N.B. ARMv6 supersections are only defined to work with domain 0.
840          *      Since domain assignments can in fact be arbitrary, the
841          *      'domain == 0' check below is required to insure that ARMv6
842          *      supersections are only allocated for domain 0 regardless
843          *      of the actual domain assignments in use.
844          */
845         if (type->domain) {
846                 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
847                        (long long)__pfn_to_phys((u64)md->pfn), addr);
848                 return;
849         }
850
851         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
852                 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
853                        (long long)__pfn_to_phys((u64)md->pfn), addr);
854                 return;
855         }
856
857         /*
858          * Shift bits [35:32] of address into bits [23:20] of PMD
859          * (See ARMv6 spec).
860          */
861         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
862
863         pgd = pgd_offset(mm, addr);
864         end = addr + length;
865         do {
866                 pud_t *pud = pud_offset(pgd, addr);
867                 pmd_t *pmd = pmd_offset(pud, addr);
868                 int i;
869
870                 for (i = 0; i < 16; i++)
871                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
872                                        (ng ? PMD_SECT_nG : 0));
873
874                 addr += SUPERSECTION_SIZE;
875                 phys += SUPERSECTION_SIZE;
876                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
877         } while (addr != end);
878 }
879 #endif  /* !CONFIG_ARM_LPAE */
880
881 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
882                                     void *(*alloc)(unsigned long sz),
883                                     bool ng)
884 {
885         unsigned long addr, length, end;
886         phys_addr_t phys;
887         const struct mem_type *type;
888         pgd_t *pgd;
889
890         type = &mem_types[md->type];
891
892 #ifndef CONFIG_ARM_LPAE
893         /*
894          * Catch 36-bit addresses
895          */
896         if (md->pfn >= 0x100000) {
897                 create_36bit_mapping(mm, md, type, ng);
898                 return;
899         }
900 #endif
901
902         addr = md->virtual & PAGE_MASK;
903         phys = __pfn_to_phys(md->pfn);
904         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
905
906         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
907                 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
908                         (long long)__pfn_to_phys(md->pfn), addr);
909                 return;
910         }
911
912         pgd = pgd_offset(mm, addr);
913         end = addr + length;
914         do {
915                 unsigned long next = pgd_addr_end(addr, end);
916
917                 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
918
919                 phys += next - addr;
920                 addr = next;
921         } while (pgd++, addr != end);
922 }
923
924 /*
925  * Create the page directory entries and any necessary
926  * page tables for the mapping specified by `md'.  We
927  * are able to cope here with varying sizes and address
928  * offsets, and we take full advantage of sections and
929  * supersections.
930  */
931 static void __init create_mapping(struct map_desc *md)
932 {
933         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
934                 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
935                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
936                 return;
937         }
938
939         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
940             md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
941             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
942                 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
943                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
944         }
945
946         __create_mapping(&init_mm, md, early_alloc, false);
947 }
948
949 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
950                                 bool ng)
951 {
952 #ifdef CONFIG_ARM_LPAE
953         pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
954         if (WARN_ON(!pud))
955                 return;
956         pmd_alloc(mm, pud, 0);
957 #endif
958         __create_mapping(mm, md, late_alloc, ng);
959 }
960
961 /*
962  * Create the architecture specific mappings
963  */
964 void __init iotable_init(struct map_desc *io_desc, int nr)
965 {
966         struct map_desc *md;
967         struct vm_struct *vm;
968         struct static_vm *svm;
969
970         if (!nr)
971                 return;
972
973         svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
974         if (!svm)
975                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
976                       __func__, sizeof(*svm) * nr, __alignof__(*svm));
977
978         for (md = io_desc; nr; md++, nr--) {
979                 create_mapping(md);
980
981                 vm = &svm->vm;
982                 vm->addr = (void *)(md->virtual & PAGE_MASK);
983                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
984                 vm->phys_addr = __pfn_to_phys(md->pfn);
985                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
986                 vm->flags |= VM_ARM_MTYPE(md->type);
987                 vm->caller = iotable_init;
988                 add_static_vm_early(svm++);
989         }
990 }
991
992 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
993                                   void *caller)
994 {
995         struct vm_struct *vm;
996         struct static_vm *svm;
997
998         svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
999         if (!svm)
1000                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1001                       __func__, sizeof(*svm), __alignof__(*svm));
1002
1003         vm = &svm->vm;
1004         vm->addr = (void *)addr;
1005         vm->size = size;
1006         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1007         vm->caller = caller;
1008         add_static_vm_early(svm);
1009 }
1010
1011 #ifndef CONFIG_ARM_LPAE
1012
1013 /*
1014  * The Linux PMD is made of two consecutive section entries covering 2MB
1015  * (see definition in include/asm/pgtable-2level.h).  However a call to
1016  * create_mapping() may optimize static mappings by using individual
1017  * 1MB section mappings.  This leaves the actual PMD potentially half
1018  * initialized if the top or bottom section entry isn't used, leaving it
1019  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1020  * the virtual space left free by that unused section entry.
1021  *
1022  * Let's avoid the issue by inserting dummy vm entries covering the unused
1023  * PMD halves once the static mappings are in place.
1024  */
1025
1026 static void __init pmd_empty_section_gap(unsigned long addr)
1027 {
1028         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1029 }
1030
1031 static void __init fill_pmd_gaps(void)
1032 {
1033         struct static_vm *svm;
1034         struct vm_struct *vm;
1035         unsigned long addr, next = 0;
1036         pmd_t *pmd;
1037
1038         list_for_each_entry(svm, &static_vmlist, list) {
1039                 vm = &svm->vm;
1040                 addr = (unsigned long)vm->addr;
1041                 if (addr < next)
1042                         continue;
1043
1044                 /*
1045                  * Check if this vm starts on an odd section boundary.
1046                  * If so and the first section entry for this PMD is free
1047                  * then we block the corresponding virtual address.
1048                  */
1049                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1050                         pmd = pmd_off_k(addr);
1051                         if (pmd_none(*pmd))
1052                                 pmd_empty_section_gap(addr & PMD_MASK);
1053                 }
1054
1055                 /*
1056                  * Then check if this vm ends on an odd section boundary.
1057                  * If so and the second section entry for this PMD is empty
1058                  * then we block the corresponding virtual address.
1059                  */
1060                 addr += vm->size;
1061                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1062                         pmd = pmd_off_k(addr) + 1;
1063                         if (pmd_none(*pmd))
1064                                 pmd_empty_section_gap(addr);
1065                 }
1066
1067                 /* no need to look at any vm entry until we hit the next PMD */
1068                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1069         }
1070 }
1071
1072 #else
1073 #define fill_pmd_gaps() do { } while (0)
1074 #endif
1075
1076 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1077 static void __init pci_reserve_io(void)
1078 {
1079         struct static_vm *svm;
1080
1081         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1082         if (svm)
1083                 return;
1084
1085         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1086 }
1087 #else
1088 #define pci_reserve_io() do { } while (0)
1089 #endif
1090
1091 #ifdef CONFIG_DEBUG_LL
1092 void __init debug_ll_io_init(void)
1093 {
1094         struct map_desc map;
1095
1096         debug_ll_addr(&map.pfn, &map.virtual);
1097         if (!map.pfn || !map.virtual)
1098                 return;
1099         map.pfn = __phys_to_pfn(map.pfn);
1100         map.virtual &= PAGE_MASK;
1101         map.length = PAGE_SIZE;
1102         map.type = MT_DEVICE;
1103         iotable_init(&map, 1);
1104 }
1105 #endif
1106
1107 static void * __initdata vmalloc_min =
1108         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1109
1110 /*
1111  * vmalloc=size forces the vmalloc area to be exactly 'size'
1112  * bytes. This can be used to increase (or decrease) the vmalloc
1113  * area - the default is 240m.
1114  */
1115 static int __init early_vmalloc(char *arg)
1116 {
1117         unsigned long vmalloc_reserve = memparse(arg, NULL);
1118
1119         if (vmalloc_reserve < SZ_16M) {
1120                 vmalloc_reserve = SZ_16M;
1121                 pr_warn("vmalloc area too small, limiting to %luMB\n",
1122                         vmalloc_reserve >> 20);
1123         }
1124
1125         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1126                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1127                 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1128                         vmalloc_reserve >> 20);
1129         }
1130
1131         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1132         return 0;
1133 }
1134 early_param("vmalloc", early_vmalloc);
1135
1136 phys_addr_t arm_lowmem_limit __initdata = 0;
1137
1138 void __init adjust_lowmem_bounds(void)
1139 {
1140         phys_addr_t memblock_limit = 0;
1141         u64 vmalloc_limit;
1142         struct memblock_region *reg;
1143         phys_addr_t lowmem_limit = 0;
1144
1145         /*
1146          * Let's use our own (unoptimized) equivalent of __pa() that is
1147          * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1148          * The result is used as the upper bound on physical memory address
1149          * and may itself be outside the valid range for which phys_addr_t
1150          * and therefore __pa() is defined.
1151          */
1152         vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1153
1154         /*
1155          * The first usable region must be PMD aligned. Mark its start
1156          * as MEMBLOCK_NOMAP if it isn't
1157          */
1158         for_each_memblock(memory, reg) {
1159                 if (!memblock_is_nomap(reg)) {
1160                         if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1161                                 phys_addr_t len;
1162
1163                                 len = round_up(reg->base, PMD_SIZE) - reg->base;
1164                                 memblock_mark_nomap(reg->base, len);
1165                         }
1166                         break;
1167                 }
1168         }
1169
1170         for_each_memblock(memory, reg) {
1171                 phys_addr_t block_start = reg->base;
1172                 phys_addr_t block_end = reg->base + reg->size;
1173
1174                 if (memblock_is_nomap(reg))
1175                         continue;
1176
1177                 if (reg->base < vmalloc_limit) {
1178                         if (block_end > lowmem_limit)
1179                                 /*
1180                                  * Compare as u64 to ensure vmalloc_limit does
1181                                  * not get truncated. block_end should always
1182                                  * fit in phys_addr_t so there should be no
1183                                  * issue with assignment.
1184                                  */
1185                                 lowmem_limit = min_t(u64,
1186                                                          vmalloc_limit,
1187                                                          block_end);
1188
1189                         /*
1190                          * Find the first non-pmd-aligned page, and point
1191                          * memblock_limit at it. This relies on rounding the
1192                          * limit down to be pmd-aligned, which happens at the
1193                          * end of this function.
1194                          *
1195                          * With this algorithm, the start or end of almost any
1196                          * bank can be non-pmd-aligned. The only exception is
1197                          * that the start of the bank 0 must be section-
1198                          * aligned, since otherwise memory would need to be
1199                          * allocated when mapping the start of bank 0, which
1200                          * occurs before any free memory is mapped.
1201                          */
1202                         if (!memblock_limit) {
1203                                 if (!IS_ALIGNED(block_start, PMD_SIZE))
1204                                         memblock_limit = block_start;
1205                                 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1206                                         memblock_limit = lowmem_limit;
1207                         }
1208
1209                 }
1210         }
1211
1212         arm_lowmem_limit = lowmem_limit;
1213
1214         high_memory = __va(arm_lowmem_limit - 1) + 1;
1215
1216         if (!memblock_limit)
1217                 memblock_limit = arm_lowmem_limit;
1218
1219         /*
1220          * Round the memblock limit down to a pmd size.  This
1221          * helps to ensure that we will allocate memory from the
1222          * last full pmd, which should be mapped.
1223          */
1224         memblock_limit = round_down(memblock_limit, PMD_SIZE);
1225
1226         if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1227                 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1228                         phys_addr_t end = memblock_end_of_DRAM();
1229
1230                         pr_notice("Ignoring RAM at %pa-%pa\n",
1231                                   &memblock_limit, &end);
1232                         pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1233
1234                         memblock_remove(memblock_limit, end - memblock_limit);
1235                 }
1236         }
1237
1238         memblock_set_current_limit(memblock_limit);
1239 }
1240
1241 static inline void prepare_page_table(void)
1242 {
1243         unsigned long addr;
1244         phys_addr_t end;
1245
1246         /*
1247          * Clear out all the mappings below the kernel image.
1248          */
1249         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1250                 pmd_clear(pmd_off_k(addr));
1251
1252 #ifdef CONFIG_XIP_KERNEL
1253         /* The XIP kernel is mapped in the module area -- skip over it */
1254         addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1255 #endif
1256         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1257                 pmd_clear(pmd_off_k(addr));
1258
1259         /*
1260          * Find the end of the first block of lowmem.
1261          */
1262         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1263         if (end >= arm_lowmem_limit)
1264                 end = arm_lowmem_limit;
1265
1266         /*
1267          * Clear out all the kernel space mappings, except for the first
1268          * memory bank, up to the vmalloc region.
1269          */
1270         for (addr = __phys_to_virt(end);
1271              addr < VMALLOC_START; addr += PMD_SIZE)
1272                 pmd_clear(pmd_off_k(addr));
1273 }
1274
1275 #ifdef CONFIG_ARM_LPAE
1276 /* the first page is reserved for pgd */
1277 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1278                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1279 #else
1280 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1281 #endif
1282
1283 /*
1284  * Reserve the special regions of memory
1285  */
1286 void __init arm_mm_memblock_reserve(void)
1287 {
1288         /*
1289          * Reserve the page tables.  These are already in use,
1290          * and can only be in node 0.
1291          */
1292         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1293
1294 #ifdef CONFIG_SA1111
1295         /*
1296          * Because of the SA1111 DMA bug, we want to preserve our
1297          * precious DMA-able memory...
1298          */
1299         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1300 #endif
1301 }
1302
1303 /*
1304  * Set up the device mappings.  Since we clear out the page tables for all
1305  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1306  * device mappings.  This means earlycon can be used to debug this function
1307  * Any other function or debugging method which may touch any device _will_
1308  * crash the kernel.
1309  */
1310 static void __init devicemaps_init(const struct machine_desc *mdesc)
1311 {
1312         struct map_desc map;
1313         unsigned long addr;
1314         void *vectors;
1315
1316         /*
1317          * Allocate the vector page early.
1318          */
1319         vectors = early_alloc(PAGE_SIZE * 2);
1320
1321         early_trap_init(vectors);
1322
1323         /*
1324          * Clear page table except top pmd used by early fixmaps
1325          */
1326         for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1327                 pmd_clear(pmd_off_k(addr));
1328
1329         /*
1330          * Map the kernel if it is XIP.
1331          * It is always first in the modulearea.
1332          */
1333 #ifdef CONFIG_XIP_KERNEL
1334         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1335         map.virtual = MODULES_VADDR;
1336         map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1337         map.type = MT_ROM;
1338         create_mapping(&map);
1339 #endif
1340
1341         /*
1342          * Map the cache flushing regions.
1343          */
1344 #ifdef FLUSH_BASE
1345         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1346         map.virtual = FLUSH_BASE;
1347         map.length = SZ_1M;
1348         map.type = MT_CACHECLEAN;
1349         create_mapping(&map);
1350 #endif
1351 #ifdef FLUSH_BASE_MINICACHE
1352         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1353         map.virtual = FLUSH_BASE_MINICACHE;
1354         map.length = SZ_1M;
1355         map.type = MT_MINICLEAN;
1356         create_mapping(&map);
1357 #endif
1358
1359         /*
1360          * Create a mapping for the machine vectors at the high-vectors
1361          * location (0xffff0000).  If we aren't using high-vectors, also
1362          * create a mapping at the low-vectors virtual address.
1363          */
1364         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1365         map.virtual = 0xffff0000;
1366         map.length = PAGE_SIZE;
1367 #ifdef CONFIG_KUSER_HELPERS
1368         map.type = MT_HIGH_VECTORS;
1369 #else
1370         map.type = MT_LOW_VECTORS;
1371 #endif
1372         create_mapping(&map);
1373
1374         if (!vectors_high()) {
1375                 map.virtual = 0;
1376                 map.length = PAGE_SIZE * 2;
1377                 map.type = MT_LOW_VECTORS;
1378                 create_mapping(&map);
1379         }
1380
1381         /* Now create a kernel read-only mapping */
1382         map.pfn += 1;
1383         map.virtual = 0xffff0000 + PAGE_SIZE;
1384         map.length = PAGE_SIZE;
1385         map.type = MT_LOW_VECTORS;
1386         create_mapping(&map);
1387
1388         /*
1389          * Ask the machine support to map in the statically mapped devices.
1390          */
1391         if (mdesc->map_io)
1392                 mdesc->map_io();
1393         else
1394                 debug_ll_io_init();
1395         fill_pmd_gaps();
1396
1397         /* Reserve fixed i/o space in VMALLOC region */
1398         pci_reserve_io();
1399
1400         /*
1401          * Finally flush the caches and tlb to ensure that we're in a
1402          * consistent state wrt the writebuffer.  This also ensures that
1403          * any write-allocated cache lines in the vector page are written
1404          * back.  After this point, we can start to touch devices again.
1405          */
1406         local_flush_tlb_all();
1407         flush_cache_all();
1408
1409         /* Enable asynchronous aborts */
1410         early_abt_enable();
1411 }
1412
1413 static void __init kmap_init(void)
1414 {
1415 #ifdef CONFIG_HIGHMEM
1416         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1417                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1418 #endif
1419
1420         early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1421                         _PAGE_KERNEL_TABLE);
1422 }
1423
1424 static void __init map_lowmem(void)
1425 {
1426         struct memblock_region *reg;
1427         phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1428         phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1429
1430         /* Map all the lowmem memory banks. */
1431         for_each_memblock(memory, reg) {
1432                 phys_addr_t start = reg->base;
1433                 phys_addr_t end = start + reg->size;
1434                 struct map_desc map;
1435
1436                 if (memblock_is_nomap(reg))
1437                         continue;
1438
1439                 if (end > arm_lowmem_limit)
1440                         end = arm_lowmem_limit;
1441                 if (start >= end)
1442                         break;
1443
1444                 if (end < kernel_x_start) {
1445                         map.pfn = __phys_to_pfn(start);
1446                         map.virtual = __phys_to_virt(start);
1447                         map.length = end - start;
1448                         map.type = MT_MEMORY_RWX;
1449
1450                         create_mapping(&map);
1451                 } else if (start >= kernel_x_end) {
1452                         map.pfn = __phys_to_pfn(start);
1453                         map.virtual = __phys_to_virt(start);
1454                         map.length = end - start;
1455                         map.type = MT_MEMORY_RW;
1456
1457                         create_mapping(&map);
1458                 } else {
1459                         /* This better cover the entire kernel */
1460                         if (start < kernel_x_start) {
1461                                 map.pfn = __phys_to_pfn(start);
1462                                 map.virtual = __phys_to_virt(start);
1463                                 map.length = kernel_x_start - start;
1464                                 map.type = MT_MEMORY_RW;
1465
1466                                 create_mapping(&map);
1467                         }
1468
1469                         map.pfn = __phys_to_pfn(kernel_x_start);
1470                         map.virtual = __phys_to_virt(kernel_x_start);
1471                         map.length = kernel_x_end - kernel_x_start;
1472                         map.type = MT_MEMORY_RWX;
1473
1474                         create_mapping(&map);
1475
1476                         if (kernel_x_end < end) {
1477                                 map.pfn = __phys_to_pfn(kernel_x_end);
1478                                 map.virtual = __phys_to_virt(kernel_x_end);
1479                                 map.length = end - kernel_x_end;
1480                                 map.type = MT_MEMORY_RW;
1481
1482                                 create_mapping(&map);
1483                         }
1484                 }
1485         }
1486 }
1487
1488 #ifdef CONFIG_ARM_PV_FIXUP
1489 extern unsigned long __atags_pointer;
1490 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1491 pgtables_remap lpae_pgtables_remap_asm;
1492
1493 /*
1494  * early_paging_init() recreates boot time page table setup, allowing machines
1495  * to switch over to a high (>4G) address space on LPAE systems
1496  */
1497 static void __init early_paging_init(const struct machine_desc *mdesc)
1498 {
1499         pgtables_remap *lpae_pgtables_remap;
1500         unsigned long pa_pgd;
1501         unsigned int cr, ttbcr;
1502         long long offset;
1503         void *boot_data;
1504
1505         if (!mdesc->pv_fixup)
1506                 return;
1507
1508         offset = mdesc->pv_fixup();
1509         if (offset == 0)
1510                 return;
1511
1512         /*
1513          * Get the address of the remap function in the 1:1 identity
1514          * mapping setup by the early page table assembly code.  We
1515          * must get this prior to the pv update.  The following barrier
1516          * ensures that this is complete before we fixup any P:V offsets.
1517          */
1518         lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1519         pa_pgd = __pa(swapper_pg_dir);
1520         boot_data = __va(__atags_pointer);
1521         barrier();
1522
1523         pr_info("Switching physical address space to 0x%08llx\n",
1524                 (u64)PHYS_OFFSET + offset);
1525
1526         /* Re-set the phys pfn offset, and the pv offset */
1527         __pv_offset += offset;
1528         __pv_phys_pfn_offset += PFN_DOWN(offset);
1529
1530         /* Run the patch stub to update the constants */
1531         fixup_pv_table(&__pv_table_begin,
1532                 (&__pv_table_end - &__pv_table_begin) << 2);
1533
1534         /*
1535          * We changing not only the virtual to physical mapping, but also
1536          * the physical addresses used to access memory.  We need to flush
1537          * all levels of cache in the system with caching disabled to
1538          * ensure that all data is written back, and nothing is prefetched
1539          * into the caches.  We also need to prevent the TLB walkers
1540          * allocating into the caches too.  Note that this is ARMv7 LPAE
1541          * specific.
1542          */
1543         cr = get_cr();
1544         set_cr(cr & ~(CR_I | CR_C));
1545         asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1546         asm volatile("mcr p15, 0, %0, c2, c0, 2"
1547                 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1548         flush_cache_all();
1549
1550         /*
1551          * Fixup the page tables - this must be in the idmap region as
1552          * we need to disable the MMU to do this safely, and hence it
1553          * needs to be assembly.  It's fairly simple, as we're using the
1554          * temporary tables setup by the initial assembly code.
1555          */
1556         lpae_pgtables_remap(offset, pa_pgd, boot_data);
1557
1558         /* Re-enable the caches and cacheable TLB walks */
1559         asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1560         set_cr(cr);
1561 }
1562
1563 #else
1564
1565 static void __init early_paging_init(const struct machine_desc *mdesc)
1566 {
1567         long long offset;
1568
1569         if (!mdesc->pv_fixup)
1570                 return;
1571
1572         offset = mdesc->pv_fixup();
1573         if (offset == 0)
1574                 return;
1575
1576         pr_crit("Physical address space modification is only to support Keystone2.\n");
1577         pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1578         pr_crit("feature. Your kernel may crash now, have a good day.\n");
1579         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1580 }
1581
1582 #endif
1583
1584 static void __init early_fixmap_shutdown(void)
1585 {
1586         int i;
1587         unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1588
1589         pte_offset_fixmap = pte_offset_late_fixmap;
1590         pmd_clear(fixmap_pmd(va));
1591         local_flush_tlb_kernel_page(va);
1592
1593         for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1594                 pte_t *pte;
1595                 struct map_desc map;
1596
1597                 map.virtual = fix_to_virt(i);
1598                 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1599
1600                 /* Only i/o device mappings are supported ATM */
1601                 if (pte_none(*pte) ||
1602                     (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1603                         continue;
1604
1605                 map.pfn = pte_pfn(*pte);
1606                 map.type = MT_DEVICE;
1607                 map.length = PAGE_SIZE;
1608
1609                 create_mapping(&map);
1610         }
1611 }
1612
1613 /*
1614  * paging_init() sets up the page tables, initialises the zone memory
1615  * maps, and sets up the zero page, bad page and bad page tables.
1616  */
1617 void __init paging_init(const struct machine_desc *mdesc)
1618 {
1619         void *zero_page;
1620
1621         prepare_page_table();
1622         map_lowmem();
1623         memblock_set_current_limit(arm_lowmem_limit);
1624         dma_contiguous_remap();
1625         early_fixmap_shutdown();
1626         devicemaps_init(mdesc);
1627         kmap_init();
1628         tcm_init();
1629
1630         top_pmd = pmd_off_k(0xffff0000);
1631
1632         /* allocate the zero page. */
1633         zero_page = early_alloc(PAGE_SIZE);
1634
1635         bootmem_init();
1636
1637         empty_zero_page = virt_to_page(zero_page);
1638         __flush_dcache_page(NULL, empty_zero_page);
1639
1640         /* Compute the virt/idmap offset, mostly for the sake of KVM */
1641         kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1642 }
1643
1644 void __init early_mm_init(const struct machine_desc *mdesc)
1645 {
1646         build_mem_type_table();
1647         early_paging_init(mdesc);
1648 }
1649
1650 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1651                               pte_t *ptep, pte_t pteval)
1652 {
1653         unsigned long ext = 0;
1654
1655         if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1656                 if (!pte_special(pteval))
1657                         __sync_icache_dcache(pteval);
1658                 ext |= PTE_EXT_NG;
1659         }
1660
1661         set_pte_ext(ptep, pteval, ext);
1662 }
This page took 0.126279 seconds and 4 git commands to generate.