1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
12 * Big-endian to little-endian byte-swapping/bitmaps by
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
59 if (start_bit >= end_bit)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
87 if (buffer_verified(bh))
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
92 ext4_lock_group(sb, block_group);
93 if (buffer_verified(bh))
95 blk = ext4_inode_bitmap(sb, desc);
96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 EXT4_INODES_PER_GROUP(sb) / 8) ||
98 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
99 ext4_unlock_group(sb, block_group);
100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group, blk);
102 ext4_mark_group_bitmap_corrupted(sb, block_group,
103 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
106 set_buffer_verified(bh);
108 ext4_unlock_group(sb, block_group);
113 * Read the inode allocation bitmap for a given block_group, reading
114 * into the specified slot in the superblock's bitmap cache.
116 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
118 static struct buffer_head *
119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
121 struct ext4_group_desc *desc;
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
123 struct buffer_head *bh = NULL;
124 ext4_fsblk_t bitmap_blk;
127 desc = ext4_get_group_desc(sb, block_group, NULL);
129 return ERR_PTR(-EFSCORRUPTED);
131 bitmap_blk = ext4_inode_bitmap(sb, desc);
132 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
133 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
134 ext4_error(sb, "Invalid inode bitmap blk %llu in "
135 "block_group %u", bitmap_blk, block_group);
136 ext4_mark_group_bitmap_corrupted(sb, block_group,
137 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
138 return ERR_PTR(-EFSCORRUPTED);
140 bh = sb_getblk(sb, bitmap_blk);
142 ext4_warning(sb, "Cannot read inode bitmap - "
143 "block_group = %u, inode_bitmap = %llu",
144 block_group, bitmap_blk);
145 return ERR_PTR(-ENOMEM);
147 if (bitmap_uptodate(bh))
151 if (bitmap_uptodate(bh)) {
156 ext4_lock_group(sb, block_group);
157 if (ext4_has_group_desc_csum(sb) &&
158 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
159 if (block_group == 0) {
160 ext4_unlock_group(sb, block_group);
162 ext4_error(sb, "Inode bitmap for bg 0 marked "
167 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
169 sb->s_blocksize * 8, bh->b_data);
170 set_bitmap_uptodate(bh);
171 set_buffer_uptodate(bh);
172 set_buffer_verified(bh);
173 ext4_unlock_group(sb, block_group);
177 ext4_unlock_group(sb, block_group);
179 if (buffer_uptodate(bh)) {
181 * if not uninit if bh is uptodate,
182 * bitmap is also uptodate
184 set_bitmap_uptodate(bh);
189 * submit the buffer_head for reading
191 trace_ext4_load_inode_bitmap(sb, block_group);
192 bh->b_end_io = ext4_end_bitmap_read;
194 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
196 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
197 if (!buffer_uptodate(bh)) {
199 ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
200 "block_group = %u, inode_bitmap = %llu",
201 block_group, bitmap_blk);
202 ext4_mark_group_bitmap_corrupted(sb, block_group,
203 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
204 return ERR_PTR(-EIO);
208 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
218 * NOTE! When we get the inode, we're the only people
219 * that have access to it, and as such there are no
220 * race conditions we have to worry about. The inode
221 * is not on the hash-lists, and it cannot be reached
222 * through the filesystem because the directory entry
223 * has been deleted earlier.
225 * HOWEVER: we must make sure that we get no aliases,
226 * which means that we have to call "clear_inode()"
227 * _before_ we mark the inode not in use in the inode
228 * bitmaps. Otherwise a newly created file might use
229 * the same inode number (not actually the same pointer
230 * though), and then we'd have two inodes sharing the
231 * same inode number and space on the harddisk.
233 void ext4_free_inode(handle_t *handle, struct inode *inode)
235 struct super_block *sb = inode->i_sb;
238 struct buffer_head *bitmap_bh = NULL;
239 struct buffer_head *bh2;
240 ext4_group_t block_group;
242 struct ext4_group_desc *gdp;
243 struct ext4_super_block *es;
244 struct ext4_sb_info *sbi;
245 int fatal = 0, err, count, cleared;
246 struct ext4_group_info *grp;
249 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
250 "nonexistent device\n", __func__, __LINE__);
253 if (atomic_read(&inode->i_count) > 1) {
254 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
255 __func__, __LINE__, inode->i_ino,
256 atomic_read(&inode->i_count));
259 if (inode->i_nlink) {
260 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
261 __func__, __LINE__, inode->i_ino, inode->i_nlink);
267 ext4_debug("freeing inode %lu\n", ino);
268 trace_ext4_free_inode(inode);
270 dquot_initialize(inode);
271 dquot_free_inode(inode);
273 is_directory = S_ISDIR(inode->i_mode);
275 /* Do this BEFORE marking the inode not in use or returning an error */
276 ext4_clear_inode(inode);
279 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
280 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
284 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
285 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
286 /* Don't bother if the inode bitmap is corrupt. */
287 grp = ext4_get_group_info(sb, block_group);
288 if (IS_ERR(bitmap_bh)) {
289 fatal = PTR_ERR(bitmap_bh);
293 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
294 fatal = -EFSCORRUPTED;
298 BUFFER_TRACE(bitmap_bh, "get_write_access");
299 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
304 gdp = ext4_get_group_desc(sb, block_group, &bh2);
306 BUFFER_TRACE(bh2, "get_write_access");
307 fatal = ext4_journal_get_write_access(handle, bh2);
309 ext4_lock_group(sb, block_group);
310 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
311 if (fatal || !cleared) {
312 ext4_unlock_group(sb, block_group);
316 count = ext4_free_inodes_count(sb, gdp) + 1;
317 ext4_free_inodes_set(sb, gdp, count);
319 count = ext4_used_dirs_count(sb, gdp) - 1;
320 ext4_used_dirs_set(sb, gdp, count);
321 percpu_counter_dec(&sbi->s_dirs_counter);
323 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
324 EXT4_INODES_PER_GROUP(sb) / 8);
325 ext4_group_desc_csum_set(sb, block_group, gdp);
326 ext4_unlock_group(sb, block_group);
328 percpu_counter_inc(&sbi->s_freeinodes_counter);
329 if (sbi->s_log_groups_per_flex) {
330 struct flex_groups *fg;
332 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
333 ext4_flex_group(sbi, block_group));
334 atomic_inc(&fg->free_inodes);
336 atomic_dec(&fg->used_dirs);
338 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
339 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
342 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
343 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
347 ext4_error(sb, "bit already cleared for inode %lu", ino);
348 ext4_mark_group_bitmap_corrupted(sb, block_group,
349 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
354 ext4_std_error(sb, fatal);
364 * Helper function for Orlov's allocator; returns critical information
365 * for a particular block group or flex_bg. If flex_size is 1, then g
366 * is a block group number; otherwise it is flex_bg number.
368 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
369 int flex_size, struct orlov_stats *stats)
371 struct ext4_group_desc *desc;
374 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
376 stats->free_inodes = atomic_read(&fg->free_inodes);
377 stats->free_clusters = atomic64_read(&fg->free_clusters);
378 stats->used_dirs = atomic_read(&fg->used_dirs);
382 desc = ext4_get_group_desc(sb, g, NULL);
384 stats->free_inodes = ext4_free_inodes_count(sb, desc);
385 stats->free_clusters = ext4_free_group_clusters(sb, desc);
386 stats->used_dirs = ext4_used_dirs_count(sb, desc);
388 stats->free_inodes = 0;
389 stats->free_clusters = 0;
390 stats->used_dirs = 0;
395 * Orlov's allocator for directories.
397 * We always try to spread first-level directories.
399 * If there are blockgroups with both free inodes and free blocks counts
400 * not worse than average we return one with smallest directory count.
401 * Otherwise we simply return a random group.
403 * For the rest rules look so:
405 * It's OK to put directory into a group unless
406 * it has too many directories already (max_dirs) or
407 * it has too few free inodes left (min_inodes) or
408 * it has too few free blocks left (min_blocks) or
409 * Parent's group is preferred, if it doesn't satisfy these
410 * conditions we search cyclically through the rest. If none
411 * of the groups look good we just look for a group with more
412 * free inodes than average (starting at parent's group).
415 static int find_group_orlov(struct super_block *sb, struct inode *parent,
416 ext4_group_t *group, umode_t mode,
417 const struct qstr *qstr)
419 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
420 struct ext4_sb_info *sbi = EXT4_SB(sb);
421 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
422 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
423 unsigned int freei, avefreei, grp_free;
424 ext4_fsblk_t freeb, avefreec;
426 int max_dirs, min_inodes;
427 ext4_grpblk_t min_clusters;
428 ext4_group_t i, grp, g, ngroups;
429 struct ext4_group_desc *desc;
430 struct orlov_stats stats;
431 int flex_size = ext4_flex_bg_size(sbi);
432 struct dx_hash_info hinfo;
434 ngroups = real_ngroups;
436 ngroups = (real_ngroups + flex_size - 1) >>
437 sbi->s_log_groups_per_flex;
438 parent_group >>= sbi->s_log_groups_per_flex;
441 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
442 avefreei = freei / ngroups;
443 freeb = EXT4_C2B(sbi,
444 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
446 do_div(avefreec, ngroups);
447 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
450 ((parent == d_inode(sb->s_root)) ||
451 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
452 int best_ndir = inodes_per_group;
456 hinfo.hash_version = DX_HASH_HALF_MD4;
457 hinfo.seed = sbi->s_hash_seed;
458 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
462 parent_group = (unsigned)grp % ngroups;
463 for (i = 0; i < ngroups; i++) {
464 g = (parent_group + i) % ngroups;
465 get_orlov_stats(sb, g, flex_size, &stats);
466 if (!stats.free_inodes)
468 if (stats.used_dirs >= best_ndir)
470 if (stats.free_inodes < avefreei)
472 if (stats.free_clusters < avefreec)
476 best_ndir = stats.used_dirs;
481 if (flex_size == 1) {
487 * We pack inodes at the beginning of the flexgroup's
488 * inode tables. Block allocation decisions will do
489 * something similar, although regular files will
490 * start at 2nd block group of the flexgroup. See
491 * ext4_ext_find_goal() and ext4_find_near().
494 for (i = 0; i < flex_size; i++) {
495 if (grp+i >= real_ngroups)
497 desc = ext4_get_group_desc(sb, grp+i, NULL);
498 if (desc && ext4_free_inodes_count(sb, desc)) {
506 max_dirs = ndirs / ngroups + inodes_per_group / 16;
507 min_inodes = avefreei - inodes_per_group*flex_size / 4;
510 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
513 * Start looking in the flex group where we last allocated an
514 * inode for this parent directory
516 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
517 parent_group = EXT4_I(parent)->i_last_alloc_group;
519 parent_group >>= sbi->s_log_groups_per_flex;
522 for (i = 0; i < ngroups; i++) {
523 grp = (parent_group + i) % ngroups;
524 get_orlov_stats(sb, grp, flex_size, &stats);
525 if (stats.used_dirs >= max_dirs)
527 if (stats.free_inodes < min_inodes)
529 if (stats.free_clusters < min_clusters)
535 ngroups = real_ngroups;
536 avefreei = freei / ngroups;
538 parent_group = EXT4_I(parent)->i_block_group;
539 for (i = 0; i < ngroups; i++) {
540 grp = (parent_group + i) % ngroups;
541 desc = ext4_get_group_desc(sb, grp, NULL);
543 grp_free = ext4_free_inodes_count(sb, desc);
544 if (grp_free && grp_free >= avefreei) {
553 * The free-inodes counter is approximate, and for really small
554 * filesystems the above test can fail to find any blockgroups
563 static int find_group_other(struct super_block *sb, struct inode *parent,
564 ext4_group_t *group, umode_t mode)
566 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
567 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
568 struct ext4_group_desc *desc;
569 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
572 * Try to place the inode is the same flex group as its
573 * parent. If we can't find space, use the Orlov algorithm to
574 * find another flex group, and store that information in the
575 * parent directory's inode information so that use that flex
576 * group for future allocations.
582 parent_group &= ~(flex_size-1);
583 last = parent_group + flex_size;
586 for (i = parent_group; i < last; i++) {
587 desc = ext4_get_group_desc(sb, i, NULL);
588 if (desc && ext4_free_inodes_count(sb, desc)) {
593 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
595 parent_group = EXT4_I(parent)->i_last_alloc_group;
599 * If this didn't work, use the Orlov search algorithm
600 * to find a new flex group; we pass in the mode to
601 * avoid the topdir algorithms.
603 *group = parent_group + flex_size;
604 if (*group > ngroups)
606 return find_group_orlov(sb, parent, group, mode, NULL);
610 * Try to place the inode in its parent directory
612 *group = parent_group;
613 desc = ext4_get_group_desc(sb, *group, NULL);
614 if (desc && ext4_free_inodes_count(sb, desc) &&
615 ext4_free_group_clusters(sb, desc))
619 * We're going to place this inode in a different blockgroup from its
620 * parent. We want to cause files in a common directory to all land in
621 * the same blockgroup. But we want files which are in a different
622 * directory which shares a blockgroup with our parent to land in a
623 * different blockgroup.
625 * So add our directory's i_ino into the starting point for the hash.
627 *group = (*group + parent->i_ino) % ngroups;
630 * Use a quadratic hash to find a group with a free inode and some free
633 for (i = 1; i < ngroups; i <<= 1) {
635 if (*group >= ngroups)
637 desc = ext4_get_group_desc(sb, *group, NULL);
638 if (desc && ext4_free_inodes_count(sb, desc) &&
639 ext4_free_group_clusters(sb, desc))
644 * That failed: try linear search for a free inode, even if that group
645 * has no free blocks.
647 *group = parent_group;
648 for (i = 0; i < ngroups; i++) {
649 if (++*group >= ngroups)
651 desc = ext4_get_group_desc(sb, *group, NULL);
652 if (desc && ext4_free_inodes_count(sb, desc))
660 * In no journal mode, if an inode has recently been deleted, we want
661 * to avoid reusing it until we're reasonably sure the inode table
662 * block has been written back to disk. (Yes, these values are
663 * somewhat arbitrary...)
665 #define RECENTCY_MIN 60
666 #define RECENTCY_DIRTY 300
668 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
670 struct ext4_group_desc *gdp;
671 struct ext4_inode *raw_inode;
672 struct buffer_head *bh;
673 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
675 int recentcy = RECENTCY_MIN;
678 gdp = ext4_get_group_desc(sb, group, NULL);
682 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
683 (ino / inodes_per_block));
684 if (!bh || !buffer_uptodate(bh))
686 * If the block is not in the buffer cache, then it
687 * must have been written out.
691 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
692 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
694 /* i_dtime is only 32 bits on disk, but we only care about relative
695 * times in the range of a few minutes (i.e. long enough to sync a
696 * recently-deleted inode to disk), so using the low 32 bits of the
697 * clock (a 68 year range) is enough, see time_before32() */
698 dtime = le32_to_cpu(raw_inode->i_dtime);
699 now = ktime_get_real_seconds();
700 if (buffer_dirty(bh))
701 recentcy += RECENTCY_DIRTY;
703 if (dtime && time_before32(dtime, now) &&
704 time_before32(now, dtime + recentcy))
711 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
712 struct buffer_head *bitmap, unsigned long *ino)
714 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
715 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
718 *ino = ext4_find_next_zero_bit((unsigned long *)
720 EXT4_INODES_PER_GROUP(sb), *ino);
721 if (*ino >= EXT4_INODES_PER_GROUP(sb))
724 if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
725 recently_deleted_ino = *ino;
727 if (*ino < EXT4_INODES_PER_GROUP(sb))
733 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
736 * Not reusing recently deleted inodes is mostly a preference. We don't
737 * want to report ENOSPC or skew allocation patterns because of that.
738 * So return even recently deleted inode if we could find better in the
741 *ino = recently_deleted_ino;
745 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
748 struct super_block *sb = dir->i_sb;
750 #ifdef CONFIG_EXT4_FS_POSIX_ACL
751 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
756 int acl_size = p->a_count * sizeof(ext4_acl_entry);
758 nblocks += (S_ISDIR(mode) ? 2 : 1) *
759 __ext4_xattr_set_credits(sb, NULL /* inode */,
760 NULL /* block_bh */, acl_size,
761 true /* is_create */);
762 posix_acl_release(p);
766 #ifdef CONFIG_SECURITY
768 int num_security_xattrs = 1;
770 #ifdef CONFIG_INTEGRITY
771 num_security_xattrs++;
774 * We assume that security xattrs are never more than 1k.
775 * In practice they are under 128 bytes.
777 nblocks += num_security_xattrs *
778 __ext4_xattr_set_credits(sb, NULL /* inode */,
779 NULL /* block_bh */, 1024,
780 true /* is_create */);
784 nblocks += __ext4_xattr_set_credits(sb,
787 FSCRYPT_SET_CONTEXT_MAX_SIZE,
788 true /* is_create */);
793 * There are two policies for allocating an inode. If the new inode is
794 * a directory, then a forward search is made for a block group with both
795 * free space and a low directory-to-inode ratio; if that fails, then of
796 * the groups with above-average free space, that group with the fewest
797 * directories already is chosen.
799 * For other inodes, search forward from the parent directory's block
800 * group to find a free inode.
802 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
803 umode_t mode, const struct qstr *qstr,
804 __u32 goal, uid_t *owner, __u32 i_flags,
805 int handle_type, unsigned int line_no,
808 struct super_block *sb;
809 struct buffer_head *inode_bitmap_bh = NULL;
810 struct buffer_head *group_desc_bh;
811 ext4_group_t ngroups, group = 0;
812 unsigned long ino = 0;
814 struct ext4_group_desc *gdp = NULL;
815 struct ext4_inode_info *ei;
816 struct ext4_sb_info *sbi;
820 ext4_group_t flex_group;
821 struct ext4_group_info *grp;
822 bool encrypt = false;
824 /* Cannot create files in a deleted directory */
825 if (!dir || !dir->i_nlink)
826 return ERR_PTR(-EPERM);
831 if (unlikely(ext4_forced_shutdown(sbi)))
832 return ERR_PTR(-EIO);
834 ngroups = ext4_get_groups_count(sb);
835 trace_ext4_request_inode(dir, mode);
836 inode = new_inode(sb);
838 return ERR_PTR(-ENOMEM);
842 * Initialize owners and quota early so that we don't have to account
843 * for quota initialization worst case in standard inode creating
847 inode->i_mode = mode;
848 i_uid_write(inode, owner[0]);
849 i_gid_write(inode, owner[1]);
850 } else if (test_opt(sb, GRPID)) {
851 inode->i_mode = mode;
852 inode->i_uid = current_fsuid();
853 inode->i_gid = dir->i_gid;
855 inode_init_owner(inode, dir, mode);
857 if (ext4_has_feature_project(sb) &&
858 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
859 ei->i_projid = EXT4_I(dir)->i_projid;
861 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
863 if (!(i_flags & EXT4_EA_INODE_FL)) {
864 err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
869 err = dquot_initialize(inode);
873 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
874 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
883 goal = sbi->s_inode_goal;
885 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
886 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
887 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
893 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
895 ret2 = find_group_other(sb, dir, &group, mode);
898 EXT4_I(dir)->i_last_alloc_group = group;
904 * Normally we will only go through one pass of this loop,
905 * unless we get unlucky and it turns out the group we selected
906 * had its last inode grabbed by someone else.
908 for (i = 0; i < ngroups; i++, ino = 0) {
911 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
916 * Check free inodes count before loading bitmap.
918 if (ext4_free_inodes_count(sb, gdp) == 0)
921 grp = ext4_get_group_info(sb, group);
922 /* Skip groups with already-known suspicious inode tables */
923 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
926 brelse(inode_bitmap_bh);
927 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
928 /* Skip groups with suspicious inode tables */
929 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
930 IS_ERR(inode_bitmap_bh)) {
931 inode_bitmap_bh = NULL;
935 repeat_in_this_group:
936 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
940 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
941 ext4_error(sb, "reserved inode found cleared - "
942 "inode=%lu", ino + 1);
943 ext4_mark_group_bitmap_corrupted(sb, group,
944 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
949 BUG_ON(nblocks <= 0);
950 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
951 handle_type, nblocks, 0,
952 ext4_trans_default_revoke_credits(sb));
953 if (IS_ERR(handle)) {
954 err = PTR_ERR(handle);
955 ext4_std_error(sb, err);
959 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
960 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
962 ext4_std_error(sb, err);
965 ext4_lock_group(sb, group);
966 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
968 /* Someone already took the bit. Repeat the search
971 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
973 ext4_set_bit(ino, inode_bitmap_bh->b_data);
976 ret2 = 1; /* we didn't grab the inode */
979 ext4_unlock_group(sb, group);
980 ino++; /* the inode bitmap is zero-based */
982 goto got; /* we grabbed the inode! */
984 if (ino < EXT4_INODES_PER_GROUP(sb))
985 goto repeat_in_this_group;
987 if (++group == ngroups)
994 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
995 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
997 ext4_std_error(sb, err);
1001 BUFFER_TRACE(group_desc_bh, "get_write_access");
1002 err = ext4_journal_get_write_access(handle, group_desc_bh);
1004 ext4_std_error(sb, err);
1008 /* We may have to initialize the block bitmap if it isn't already */
1009 if (ext4_has_group_desc_csum(sb) &&
1010 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1011 struct buffer_head *block_bitmap_bh;
1013 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1014 if (IS_ERR(block_bitmap_bh)) {
1015 err = PTR_ERR(block_bitmap_bh);
1018 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1019 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1021 brelse(block_bitmap_bh);
1022 ext4_std_error(sb, err);
1026 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1027 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1029 /* recheck and clear flag under lock if we still need to */
1030 ext4_lock_group(sb, group);
1031 if (ext4_has_group_desc_csum(sb) &&
1032 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1033 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1034 ext4_free_group_clusters_set(sb, gdp,
1035 ext4_free_clusters_after_init(sb, group, gdp));
1036 ext4_block_bitmap_csum_set(sb, group, gdp,
1038 ext4_group_desc_csum_set(sb, group, gdp);
1040 ext4_unlock_group(sb, group);
1041 brelse(block_bitmap_bh);
1044 ext4_std_error(sb, err);
1049 /* Update the relevant bg descriptor fields */
1050 if (ext4_has_group_desc_csum(sb)) {
1052 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1054 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1055 ext4_lock_group(sb, group); /* while we modify the bg desc */
1056 free = EXT4_INODES_PER_GROUP(sb) -
1057 ext4_itable_unused_count(sb, gdp);
1058 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1059 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1063 * Check the relative inode number against the last used
1064 * relative inode number in this group. if it is greater
1065 * we need to update the bg_itable_unused count
1068 ext4_itable_unused_set(sb, gdp,
1069 (EXT4_INODES_PER_GROUP(sb) - ino));
1070 up_read(&grp->alloc_sem);
1072 ext4_lock_group(sb, group);
1075 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1076 if (S_ISDIR(mode)) {
1077 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1078 if (sbi->s_log_groups_per_flex) {
1079 ext4_group_t f = ext4_flex_group(sbi, group);
1081 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1085 if (ext4_has_group_desc_csum(sb)) {
1086 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1087 EXT4_INODES_PER_GROUP(sb) / 8);
1088 ext4_group_desc_csum_set(sb, group, gdp);
1090 ext4_unlock_group(sb, group);
1092 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1093 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1095 ext4_std_error(sb, err);
1099 percpu_counter_dec(&sbi->s_freeinodes_counter);
1101 percpu_counter_inc(&sbi->s_dirs_counter);
1103 if (sbi->s_log_groups_per_flex) {
1104 flex_group = ext4_flex_group(sbi, group);
1105 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1106 flex_group)->free_inodes);
1109 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1110 /* This is the optimal IO size (for stat), not the fs block size */
1111 inode->i_blocks = 0;
1112 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1113 ei->i_crtime = inode->i_mtime;
1115 memset(ei->i_data, 0, sizeof(ei->i_data));
1116 ei->i_dir_start_lookup = 0;
1119 /* Don't inherit extent flag from directory, amongst others. */
1121 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1122 ei->i_flags |= i_flags;
1125 ei->i_block_group = group;
1126 ei->i_last_alloc_group = ~0;
1128 ext4_set_inode_flags(inode, true);
1129 if (IS_DIRSYNC(inode))
1130 ext4_handle_sync(handle);
1131 if (insert_inode_locked(inode) < 0) {
1133 * Likely a bitmap corruption causing inode to be allocated
1137 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1139 ext4_mark_group_bitmap_corrupted(sb, group,
1140 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1143 inode->i_generation = prandom_u32();
1145 /* Precompute checksum seed for inode metadata */
1146 if (ext4_has_metadata_csum(sb)) {
1148 __le32 inum = cpu_to_le32(inode->i_ino);
1149 __le32 gen = cpu_to_le32(inode->i_generation);
1150 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1152 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1156 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1157 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1159 ei->i_extra_isize = sbi->s_want_extra_isize;
1160 ei->i_inline_off = 0;
1161 if (ext4_has_feature_inline_data(sb))
1162 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1164 err = dquot_alloc_inode(inode);
1169 * Since the encryption xattr will always be unique, create it first so
1170 * that it's less likely to end up in an external xattr block and
1171 * prevent its deduplication.
1174 err = fscrypt_set_context(inode, handle);
1176 goto fail_free_drop;
1179 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1180 err = ext4_init_acl(handle, inode, dir);
1182 goto fail_free_drop;
1184 err = ext4_init_security(handle, inode, dir, qstr);
1186 goto fail_free_drop;
1189 if (ext4_has_feature_extents(sb)) {
1190 /* set extent flag only for directory, file and normal symlink*/
1191 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1192 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1193 ext4_ext_tree_init(handle, inode);
1197 if (ext4_handle_valid(handle)) {
1198 ei->i_sync_tid = handle->h_transaction->t_tid;
1199 ei->i_datasync_tid = handle->h_transaction->t_tid;
1202 err = ext4_mark_inode_dirty(handle, inode);
1204 ext4_std_error(sb, err);
1205 goto fail_free_drop;
1208 ext4_debug("allocating inode %lu\n", inode->i_ino);
1209 trace_ext4_allocate_inode(inode, dir, mode);
1210 brelse(inode_bitmap_bh);
1214 dquot_free_inode(inode);
1217 unlock_new_inode(inode);
1220 inode->i_flags |= S_NOQUOTA;
1222 brelse(inode_bitmap_bh);
1223 return ERR_PTR(err);
1226 /* Verify that we are loading a valid orphan from disk */
1227 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1229 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1230 ext4_group_t block_group;
1232 struct buffer_head *bitmap_bh = NULL;
1233 struct inode *inode = NULL;
1234 int err = -EFSCORRUPTED;
1236 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1239 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1240 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1241 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1242 if (IS_ERR(bitmap_bh))
1243 return ERR_CAST(bitmap_bh);
1245 /* Having the inode bit set should be a 100% indicator that this
1246 * is a valid orphan (no e2fsck run on fs). Orphans also include
1247 * inodes that were being truncated, so we can't check i_nlink==0.
1249 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1252 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1253 if (IS_ERR(inode)) {
1254 err = PTR_ERR(inode);
1255 ext4_error_err(sb, -err,
1256 "couldn't read orphan inode %lu (err %d)",
1263 * If the orphans has i_nlinks > 0 then it should be able to
1264 * be truncated, otherwise it won't be removed from the orphan
1265 * list during processing and an infinite loop will result.
1266 * Similarly, it must not be a bad inode.
1268 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1269 is_bad_inode(inode))
1272 if (NEXT_ORPHAN(inode) > max_ino)
1278 ext4_error(sb, "bad orphan inode %lu", ino);
1280 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1281 bit, (unsigned long long)bitmap_bh->b_blocknr,
1282 ext4_test_bit(bit, bitmap_bh->b_data));
1284 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1285 is_bad_inode(inode));
1286 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1287 NEXT_ORPHAN(inode));
1288 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1289 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1290 /* Avoid freeing blocks if we got a bad deleted inode */
1291 if (inode->i_nlink == 0)
1292 inode->i_blocks = 0;
1296 return ERR_PTR(err);
1299 unsigned long ext4_count_free_inodes(struct super_block *sb)
1301 unsigned long desc_count;
1302 struct ext4_group_desc *gdp;
1303 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1305 struct ext4_super_block *es;
1306 unsigned long bitmap_count, x;
1307 struct buffer_head *bitmap_bh = NULL;
1309 es = EXT4_SB(sb)->s_es;
1313 for (i = 0; i < ngroups; i++) {
1314 gdp = ext4_get_group_desc(sb, i, NULL);
1317 desc_count += ext4_free_inodes_count(sb, gdp);
1319 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1320 if (IS_ERR(bitmap_bh)) {
1325 x = ext4_count_free(bitmap_bh->b_data,
1326 EXT4_INODES_PER_GROUP(sb) / 8);
1327 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1328 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1332 printk(KERN_DEBUG "ext4_count_free_inodes: "
1333 "stored = %u, computed = %lu, %lu\n",
1334 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1338 for (i = 0; i < ngroups; i++) {
1339 gdp = ext4_get_group_desc(sb, i, NULL);
1342 desc_count += ext4_free_inodes_count(sb, gdp);
1349 /* Called at mount-time, super-block is locked */
1350 unsigned long ext4_count_dirs(struct super_block * sb)
1352 unsigned long count = 0;
1353 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1355 for (i = 0; i < ngroups; i++) {
1356 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1359 count += ext4_used_dirs_count(sb, gdp);
1365 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1366 * inode table. Must be called without any spinlock held. The only place
1367 * where it is called from on active part of filesystem is ext4lazyinit
1368 * thread, so we do not need any special locks, however we have to prevent
1369 * inode allocation from the current group, so we take alloc_sem lock, to
1370 * block ext4_new_inode() until we are finished.
1372 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1375 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1376 struct ext4_sb_info *sbi = EXT4_SB(sb);
1377 struct ext4_group_desc *gdp = NULL;
1378 struct buffer_head *group_desc_bh;
1381 int num, ret = 0, used_blks = 0;
1383 /* This should not happen, but just to be sure check this */
1384 if (sb_rdonly(sb)) {
1389 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1394 * We do not need to lock this, because we are the only one
1395 * handling this flag.
1397 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1400 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1401 if (IS_ERR(handle)) {
1402 ret = PTR_ERR(handle);
1406 down_write(&grp->alloc_sem);
1408 * If inode bitmap was already initialized there may be some
1409 * used inodes so we need to skip blocks with used inodes in
1412 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1413 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1414 ext4_itable_unused_count(sb, gdp)),
1415 sbi->s_inodes_per_block);
1417 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1418 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1419 ext4_itable_unused_count(sb, gdp)) <
1420 EXT4_FIRST_INO(sb)))) {
1421 ext4_error(sb, "Something is wrong with group %u: "
1422 "used itable blocks: %d; "
1423 "itable unused count: %u",
1425 ext4_itable_unused_count(sb, gdp));
1430 blk = ext4_inode_table(sb, gdp) + used_blks;
1431 num = sbi->s_itb_per_group - used_blks;
1433 BUFFER_TRACE(group_desc_bh, "get_write_access");
1434 ret = ext4_journal_get_write_access(handle,
1440 * Skip zeroout if the inode table is full. But we set the ZEROED
1441 * flag anyway, because obviously, when it is full it does not need
1444 if (unlikely(num == 0))
1447 ext4_debug("going to zero out inode table in group %d\n",
1449 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1453 blkdev_issue_flush(sb->s_bdev, GFP_NOFS);
1456 ext4_lock_group(sb, group);
1457 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1458 ext4_group_desc_csum_set(sb, group, gdp);
1459 ext4_unlock_group(sb, group);
1461 BUFFER_TRACE(group_desc_bh,
1462 "call ext4_handle_dirty_metadata");
1463 ret = ext4_handle_dirty_metadata(handle, NULL,
1467 up_write(&grp->alloc_sem);
1468 ext4_journal_stop(handle);