1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
30 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
31 SFP_F_LOS = BIT(GPIO_LOS),
32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
73 static const char * const mod_state_strings[] = {
74 [SFP_MOD_EMPTY] = "empty",
75 [SFP_MOD_ERROR] = "error",
76 [SFP_MOD_PROBE] = "probe",
77 [SFP_MOD_WAITDEV] = "waitdev",
78 [SFP_MOD_HPOWER] = "hpower",
79 [SFP_MOD_WAITPWR] = "waitpwr",
80 [SFP_MOD_PRESENT] = "present",
83 static const char *mod_state_to_str(unsigned short mod_state)
85 if (mod_state >= ARRAY_SIZE(mod_state_strings))
86 return "Unknown module state";
87 return mod_state_strings[mod_state];
90 static const char * const dev_state_strings[] = {
91 [SFP_DEV_DETACHED] = "detached",
92 [SFP_DEV_DOWN] = "down",
96 static const char *dev_state_to_str(unsigned short dev_state)
98 if (dev_state >= ARRAY_SIZE(dev_state_strings))
99 return "Unknown device state";
100 return dev_state_strings[dev_state];
103 static const char * const event_strings[] = {
104 [SFP_E_INSERT] = "insert",
105 [SFP_E_REMOVE] = "remove",
106 [SFP_E_DEV_ATTACH] = "dev_attach",
107 [SFP_E_DEV_DETACH] = "dev_detach",
108 [SFP_E_DEV_DOWN] = "dev_down",
109 [SFP_E_DEV_UP] = "dev_up",
110 [SFP_E_TX_FAULT] = "tx_fault",
111 [SFP_E_TX_CLEAR] = "tx_clear",
112 [SFP_E_LOS_HIGH] = "los_high",
113 [SFP_E_LOS_LOW] = "los_low",
114 [SFP_E_TIMEOUT] = "timeout",
117 static const char *event_to_str(unsigned short event)
119 if (event >= ARRAY_SIZE(event_strings))
120 return "Unknown event";
121 return event_strings[event];
124 static const char * const sm_state_strings[] = {
125 [SFP_S_DOWN] = "down",
126 [SFP_S_FAIL] = "fail",
127 [SFP_S_WAIT] = "wait",
128 [SFP_S_INIT] = "init",
129 [SFP_S_INIT_PHY] = "init_phy",
130 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
131 [SFP_S_WAIT_LOS] = "wait_los",
132 [SFP_S_LINK_UP] = "link_up",
133 [SFP_S_TX_FAULT] = "tx_fault",
134 [SFP_S_REINIT] = "reinit",
135 [SFP_S_TX_DISABLE] = "tx_disable",
138 static const char *sm_state_to_str(unsigned short sm_state)
140 if (sm_state >= ARRAY_SIZE(sm_state_strings))
141 return "Unknown state";
142 return sm_state_strings[sm_state];
145 static const char *gpio_names[] = {
153 static const enum gpiod_flags gpio_flags[] = {
161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
162 * non-cooled module to initialise its laser safety circuitry. We wait
163 * an initial T_WAIT period before we check the tx fault to give any PHY
164 * on board (for a copper SFP) time to initialise.
166 #define T_WAIT msecs_to_jiffies(50)
167 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
168 #define T_START_UP msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
174 #define T_RESET_US 10
175 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
182 #define N_FAULT_INIT 5
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
188 #define T_PHY_RETRY msecs_to_jiffies(50)
189 #define R_PHY_RETRY 12
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
198 #define T_SERIAL msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT 10
202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW 12
205 /* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
208 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
210 #define SFP_PHY_ADDR 22
211 #define SFP_PHY_ADDR_ROLLBALL 17
215 bool (*module_supported)(const struct sfp_eeprom_id *id);
220 struct i2c_adapter *i2c;
221 struct mii_bus *i2c_mii;
222 struct sfp_bus *sfp_bus;
223 enum mdio_i2c_proto mdio_protocol;
224 struct phy_device *mod_phy;
225 const struct sff_data *type;
226 size_t i2c_block_size;
229 unsigned int (*get_state)(struct sfp *);
230 void (*set_state)(struct sfp *, unsigned int);
231 int (*read)(struct sfp *, bool, u8, void *, size_t);
232 int (*write)(struct sfp *, bool, u8, void *, size_t);
234 struct gpio_desc *gpio[GPIO_MAX];
235 int gpio_irq[GPIO_MAX];
239 struct mutex st_mutex; /* Protects state */
240 unsigned int state_hw_mask;
241 unsigned int state_soft_mask;
243 struct delayed_work poll;
244 struct delayed_work timeout;
245 struct mutex sm_mutex; /* Protects state machine */
246 unsigned char sm_mod_state;
247 unsigned char sm_mod_tries_init;
248 unsigned char sm_mod_tries;
249 unsigned char sm_dev_state;
250 unsigned short sm_state;
251 unsigned char sm_fault_retries;
252 unsigned char sm_phy_retries;
254 struct sfp_eeprom_id id;
255 unsigned int module_power_mW;
256 unsigned int module_t_start_up;
257 unsigned int module_t_wait;
258 bool tx_fault_ignore;
260 const struct sfp_quirk *quirk;
262 #if IS_ENABLED(CONFIG_HWMON)
263 struct sfp_diag diag;
264 struct delayed_work hwmon_probe;
265 unsigned int hwmon_tries;
266 struct device *hwmon_dev;
270 #if IS_ENABLED(CONFIG_DEBUG_FS)
271 struct dentry *debugfs_dir;
275 static bool sff_module_supported(const struct sfp_eeprom_id *id)
277 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
278 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
281 static const struct sff_data sff_data = {
282 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
283 .module_supported = sff_module_supported,
286 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
288 if (id->base.phys_id == SFF8024_ID_SFP &&
289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
292 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
293 * phys id SFF instead of SFP. Therefore mark this module explicitly
294 * as supported based on vendor name and pn match.
296 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
297 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
298 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
299 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
305 static const struct sff_data sfp_data = {
306 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
307 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
308 .module_supported = sfp_module_supported,
311 static const struct of_device_id sfp_of_match[] = {
312 { .compatible = "sff,sff", .data = &sff_data, },
313 { .compatible = "sff,sfp", .data = &sfp_data, },
316 MODULE_DEVICE_TABLE(of, sfp_of_match);
318 static void sfp_fixup_long_startup(struct sfp *sfp)
320 sfp->module_t_start_up = T_START_UP_BAD_GPON;
323 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
325 sfp->tx_fault_ignore = true;
328 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
330 /* Ignore the TX_FAULT and LOS signals on this module.
331 * these are possibly used for other purposes on this
332 * module, e.g. a serial port.
334 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
337 static void sfp_fixup_rollball(struct sfp *sfp)
339 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
340 sfp->module_t_wait = T_WAIT_ROLLBALL;
343 static void sfp_fixup_rollball_cc(struct sfp *sfp)
345 sfp_fixup_rollball(sfp);
347 /* Some RollBall SFPs may have wrong (zero) extended compliance code
348 * burned in EEPROM. For PHY probing we need the correct one.
350 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
353 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
354 unsigned long *modes,
355 unsigned long *interfaces)
357 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
358 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
361 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
362 unsigned long *modes,
363 unsigned long *interfaces)
365 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
366 * types including 10G Ethernet which is not truth. So clear all claimed
367 * modes and set only one mode which module supports: 1000baseX_Full.
369 linkmode_zero(modes);
370 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
373 #define SFP_QUIRK(_v, _p, _m, _f) \
374 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
375 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
376 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
378 static const struct sfp_quirk sfp_quirks[] = {
379 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
380 // report 2500MBd NRZ in their EEPROM
381 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
383 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
384 // NRZ in their EEPROM
385 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
386 sfp_fixup_long_startup),
388 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
390 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
392 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
393 sfp_fixup_ignore_tx_fault),
395 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
396 // 2500MBd NRZ in their EEPROM
397 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
399 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
401 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
402 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
403 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
404 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
405 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
408 static size_t sfp_strlen(const char *str, size_t maxlen)
412 /* Trailing characters should be filled with space chars, but
413 * some manufacturers can't read SFF-8472 and use NUL.
415 for (i = 0, size = 0; i < maxlen; i++)
416 if (str[i] != ' ' && str[i] != '\0')
422 static bool sfp_match(const char *qs, const char *str, size_t len)
426 if (strlen(qs) != len)
428 return !strncmp(qs, str, len);
431 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
433 const struct sfp_quirk *q;
437 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
438 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
440 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
441 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
442 sfp_match(q->part, id->base.vendor_pn, ps))
448 static unsigned long poll_jiffies;
450 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
452 unsigned int i, state, v;
454 for (i = state = 0; i < GPIO_MAX; i++) {
455 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
458 v = gpiod_get_value_cansleep(sfp->gpio[i]);
466 static unsigned int sff_gpio_get_state(struct sfp *sfp)
468 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
471 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
473 if (state & SFP_F_PRESENT) {
474 /* If the module is present, drive the signals */
475 if (sfp->gpio[GPIO_TX_DISABLE])
476 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
477 state & SFP_F_TX_DISABLE);
478 if (state & SFP_F_RATE_SELECT)
479 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
480 state & SFP_F_RATE_SELECT);
482 /* Otherwise, let them float to the pull-ups */
483 if (sfp->gpio[GPIO_TX_DISABLE])
484 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
485 if (state & SFP_F_RATE_SELECT)
486 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
490 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
493 struct i2c_msg msgs[2];
494 u8 bus_addr = a2 ? 0x51 : 0x50;
495 size_t block_size = sfp->i2c_block_size;
499 msgs[0].addr = bus_addr;
502 msgs[0].buf = &dev_addr;
503 msgs[1].addr = bus_addr;
504 msgs[1].flags = I2C_M_RD;
510 if (this_len > block_size)
511 this_len = block_size;
513 msgs[1].len = this_len;
515 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
519 if (ret != ARRAY_SIZE(msgs))
522 msgs[1].buf += this_len;
523 dev_addr += this_len;
527 return msgs[1].buf - (u8 *)buf;
530 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
533 struct i2c_msg msgs[1];
534 u8 bus_addr = a2 ? 0x51 : 0x50;
537 msgs[0].addr = bus_addr;
539 msgs[0].len = 1 + len;
540 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
544 msgs[0].buf[0] = dev_addr;
545 memcpy(&msgs[0].buf[1], buf, len);
547 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
554 return ret == ARRAY_SIZE(msgs) ? len : 0;
557 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
559 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
563 sfp->read = sfp_i2c_read;
564 sfp->write = sfp_i2c_write;
569 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
571 struct mii_bus *i2c_mii;
574 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
576 return PTR_ERR(i2c_mii);
578 i2c_mii->name = "SFP I2C Bus";
579 i2c_mii->phy_mask = ~0;
581 ret = mdiobus_register(i2c_mii);
583 mdiobus_free(i2c_mii);
587 sfp->i2c_mii = i2c_mii;
592 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
594 mdiobus_unregister(sfp->i2c_mii);
599 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
601 return sfp->read(sfp, a2, addr, buf, len);
604 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
606 return sfp->write(sfp, a2, addr, buf, len);
609 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
614 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
615 if (ret != sizeof(old))
618 v = (old & ~mask) | (val & mask);
622 return sfp_write(sfp, a2, addr, &v, sizeof(v));
625 static unsigned int sfp_soft_get_state(struct sfp *sfp)
627 unsigned int state = 0;
631 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
632 if (ret == sizeof(status)) {
633 if (status & SFP_STATUS_RX_LOS)
635 if (status & SFP_STATUS_TX_FAULT)
636 state |= SFP_F_TX_FAULT;
638 dev_err_ratelimited(sfp->dev,
639 "failed to read SFP soft status: %pe\n",
641 /* Preserve the current state */
645 return state & sfp->state_soft_mask;
648 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
650 u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
653 if (state & SFP_F_TX_DISABLE)
654 val |= SFP_STATUS_TX_DISABLE_FORCE;
657 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
660 static void sfp_soft_start_poll(struct sfp *sfp)
662 const struct sfp_eeprom_id *id = &sfp->id;
663 unsigned int mask = 0;
665 sfp->state_soft_mask = 0;
666 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
667 mask |= SFP_F_TX_DISABLE;
668 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
669 mask |= SFP_F_TX_FAULT;
670 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
673 // Poll the soft state for hardware pins we want to ignore
674 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
676 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
678 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
681 static void sfp_soft_stop_poll(struct sfp *sfp)
683 sfp->state_soft_mask = 0;
686 static unsigned int sfp_get_state(struct sfp *sfp)
688 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
691 state = sfp->get_state(sfp) & sfp->state_hw_mask;
692 if (state & SFP_F_PRESENT && soft)
693 state |= sfp_soft_get_state(sfp);
698 static void sfp_set_state(struct sfp *sfp, unsigned int state)
700 sfp->set_state(sfp, state);
702 if (state & SFP_F_PRESENT &&
703 sfp->state_soft_mask & SFP_F_TX_DISABLE)
704 sfp_soft_set_state(sfp, state);
707 static unsigned int sfp_check(void *buf, size_t len)
711 for (p = buf, check = 0; len; p++, len--)
718 #if IS_ENABLED(CONFIG_HWMON)
719 static umode_t sfp_hwmon_is_visible(const void *data,
720 enum hwmon_sensor_types type,
721 u32 attr, int channel)
723 const struct sfp *sfp = data;
728 case hwmon_temp_min_alarm:
729 case hwmon_temp_max_alarm:
730 case hwmon_temp_lcrit_alarm:
731 case hwmon_temp_crit_alarm:
734 case hwmon_temp_lcrit:
735 case hwmon_temp_crit:
736 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
739 case hwmon_temp_input:
740 case hwmon_temp_label:
747 case hwmon_in_min_alarm:
748 case hwmon_in_max_alarm:
749 case hwmon_in_lcrit_alarm:
750 case hwmon_in_crit_alarm:
755 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
766 case hwmon_curr_min_alarm:
767 case hwmon_curr_max_alarm:
768 case hwmon_curr_lcrit_alarm:
769 case hwmon_curr_crit_alarm:
772 case hwmon_curr_lcrit:
773 case hwmon_curr_crit:
774 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
777 case hwmon_curr_input:
778 case hwmon_curr_label:
784 /* External calibration of receive power requires
785 * floating point arithmetic. Doing that in the kernel
786 * is not easy, so just skip it. If the module does
787 * not require external calibration, we can however
788 * show receiver power, since FP is then not needed.
790 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
794 case hwmon_power_min_alarm:
795 case hwmon_power_max_alarm:
796 case hwmon_power_lcrit_alarm:
797 case hwmon_power_crit_alarm:
798 case hwmon_power_min:
799 case hwmon_power_max:
800 case hwmon_power_lcrit:
801 case hwmon_power_crit:
802 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
805 case hwmon_power_input:
806 case hwmon_power_label:
816 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
821 err = sfp_read(sfp, true, reg, &val, sizeof(val));
825 *value = be16_to_cpu(val);
830 static void sfp_hwmon_to_rx_power(long *value)
832 *value = DIV_ROUND_CLOSEST(*value, 10);
835 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
838 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
839 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
842 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
844 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
845 be16_to_cpu(sfp->diag.cal_t_offset), value);
847 if (*value >= 0x8000)
850 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
853 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
855 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
856 be16_to_cpu(sfp->diag.cal_v_offset), value);
858 *value = DIV_ROUND_CLOSEST(*value, 10);
861 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
863 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
864 be16_to_cpu(sfp->diag.cal_txi_offset), value);
866 *value = DIV_ROUND_CLOSEST(*value, 500);
869 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
871 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
872 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
874 *value = DIV_ROUND_CLOSEST(*value, 10);
877 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
881 err = sfp_hwmon_read_sensor(sfp, reg, value);
885 sfp_hwmon_calibrate_temp(sfp, value);
890 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
894 err = sfp_hwmon_read_sensor(sfp, reg, value);
898 sfp_hwmon_calibrate_vcc(sfp, value);
903 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
907 err = sfp_hwmon_read_sensor(sfp, reg, value);
911 sfp_hwmon_calibrate_bias(sfp, value);
916 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
920 err = sfp_hwmon_read_sensor(sfp, reg, value);
924 sfp_hwmon_calibrate_tx_power(sfp, value);
929 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
933 err = sfp_hwmon_read_sensor(sfp, reg, value);
937 sfp_hwmon_to_rx_power(value);
942 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
948 case hwmon_temp_input:
949 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
951 case hwmon_temp_lcrit:
952 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
953 sfp_hwmon_calibrate_temp(sfp, value);
957 *value = be16_to_cpu(sfp->diag.temp_low_warn);
958 sfp_hwmon_calibrate_temp(sfp, value);
961 *value = be16_to_cpu(sfp->diag.temp_high_warn);
962 sfp_hwmon_calibrate_temp(sfp, value);
965 case hwmon_temp_crit:
966 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
967 sfp_hwmon_calibrate_temp(sfp, value);
970 case hwmon_temp_lcrit_alarm:
971 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
975 *value = !!(status & SFP_ALARM0_TEMP_LOW);
978 case hwmon_temp_min_alarm:
979 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
983 *value = !!(status & SFP_WARN0_TEMP_LOW);
986 case hwmon_temp_max_alarm:
987 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
991 *value = !!(status & SFP_WARN0_TEMP_HIGH);
994 case hwmon_temp_crit_alarm:
995 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
999 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1008 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1014 case hwmon_in_input:
1015 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1017 case hwmon_in_lcrit:
1018 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1019 sfp_hwmon_calibrate_vcc(sfp, value);
1023 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1024 sfp_hwmon_calibrate_vcc(sfp, value);
1028 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1029 sfp_hwmon_calibrate_vcc(sfp, value);
1033 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1034 sfp_hwmon_calibrate_vcc(sfp, value);
1037 case hwmon_in_lcrit_alarm:
1038 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1042 *value = !!(status & SFP_ALARM0_VCC_LOW);
1045 case hwmon_in_min_alarm:
1046 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1050 *value = !!(status & SFP_WARN0_VCC_LOW);
1053 case hwmon_in_max_alarm:
1054 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1058 *value = !!(status & SFP_WARN0_VCC_HIGH);
1061 case hwmon_in_crit_alarm:
1062 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1066 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1075 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1081 case hwmon_curr_input:
1082 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1084 case hwmon_curr_lcrit:
1085 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1086 sfp_hwmon_calibrate_bias(sfp, value);
1089 case hwmon_curr_min:
1090 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1091 sfp_hwmon_calibrate_bias(sfp, value);
1094 case hwmon_curr_max:
1095 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1096 sfp_hwmon_calibrate_bias(sfp, value);
1099 case hwmon_curr_crit:
1100 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1101 sfp_hwmon_calibrate_bias(sfp, value);
1104 case hwmon_curr_lcrit_alarm:
1105 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1109 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1112 case hwmon_curr_min_alarm:
1113 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1117 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1120 case hwmon_curr_max_alarm:
1121 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1125 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1128 case hwmon_curr_crit_alarm:
1129 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1142 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1148 case hwmon_power_input:
1149 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1151 case hwmon_power_lcrit:
1152 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1153 sfp_hwmon_calibrate_tx_power(sfp, value);
1156 case hwmon_power_min:
1157 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1158 sfp_hwmon_calibrate_tx_power(sfp, value);
1161 case hwmon_power_max:
1162 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1163 sfp_hwmon_calibrate_tx_power(sfp, value);
1166 case hwmon_power_crit:
1167 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1168 sfp_hwmon_calibrate_tx_power(sfp, value);
1171 case hwmon_power_lcrit_alarm:
1172 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1176 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1179 case hwmon_power_min_alarm:
1180 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1184 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1187 case hwmon_power_max_alarm:
1188 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1192 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1195 case hwmon_power_crit_alarm:
1196 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1209 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1215 case hwmon_power_input:
1216 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1218 case hwmon_power_lcrit:
1219 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1220 sfp_hwmon_to_rx_power(value);
1223 case hwmon_power_min:
1224 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1225 sfp_hwmon_to_rx_power(value);
1228 case hwmon_power_max:
1229 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1230 sfp_hwmon_to_rx_power(value);
1233 case hwmon_power_crit:
1234 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1235 sfp_hwmon_to_rx_power(value);
1238 case hwmon_power_lcrit_alarm:
1239 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1243 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1246 case hwmon_power_min_alarm:
1247 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1251 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1254 case hwmon_power_max_alarm:
1255 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1259 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1262 case hwmon_power_crit_alarm:
1263 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1267 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1276 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1277 u32 attr, int channel, long *value)
1279 struct sfp *sfp = dev_get_drvdata(dev);
1283 return sfp_hwmon_temp(sfp, attr, value);
1285 return sfp_hwmon_vcc(sfp, attr, value);
1287 return sfp_hwmon_bias(sfp, attr, value);
1291 return sfp_hwmon_tx_power(sfp, attr, value);
1293 return sfp_hwmon_rx_power(sfp, attr, value);
1302 static const char *const sfp_hwmon_power_labels[] = {
1307 static int sfp_hwmon_read_string(struct device *dev,
1308 enum hwmon_sensor_types type,
1309 u32 attr, int channel, const char **str)
1314 case hwmon_curr_label:
1323 case hwmon_temp_label:
1324 *str = "temperature";
1332 case hwmon_in_label:
1341 case hwmon_power_label:
1342 *str = sfp_hwmon_power_labels[channel];
1355 static const struct hwmon_ops sfp_hwmon_ops = {
1356 .is_visible = sfp_hwmon_is_visible,
1357 .read = sfp_hwmon_read,
1358 .read_string = sfp_hwmon_read_string,
1361 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1362 HWMON_CHANNEL_INFO(chip,
1363 HWMON_C_REGISTER_TZ),
1364 HWMON_CHANNEL_INFO(in,
1366 HWMON_I_MAX | HWMON_I_MIN |
1367 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1368 HWMON_I_CRIT | HWMON_I_LCRIT |
1369 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1371 HWMON_CHANNEL_INFO(temp,
1373 HWMON_T_MAX | HWMON_T_MIN |
1374 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1375 HWMON_T_CRIT | HWMON_T_LCRIT |
1376 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1378 HWMON_CHANNEL_INFO(curr,
1380 HWMON_C_MAX | HWMON_C_MIN |
1381 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1382 HWMON_C_CRIT | HWMON_C_LCRIT |
1383 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1385 HWMON_CHANNEL_INFO(power,
1386 /* Transmit power */
1388 HWMON_P_MAX | HWMON_P_MIN |
1389 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1390 HWMON_P_CRIT | HWMON_P_LCRIT |
1391 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1395 HWMON_P_MAX | HWMON_P_MIN |
1396 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1397 HWMON_P_CRIT | HWMON_P_LCRIT |
1398 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1403 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1404 .ops = &sfp_hwmon_ops,
1405 .info = sfp_hwmon_info,
1408 static void sfp_hwmon_probe(struct work_struct *work)
1410 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1413 /* hwmon interface needs to access 16bit registers in atomic way to
1414 * guarantee coherency of the diagnostic monitoring data. If it is not
1415 * possible to guarantee coherency because EEPROM is broken in such way
1416 * that does not support atomic 16bit read operation then we have to
1417 * skip registration of hwmon device.
1419 if (sfp->i2c_block_size < 2) {
1421 "skipping hwmon device registration due to broken EEPROM\n");
1423 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1427 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1429 if (sfp->hwmon_tries--) {
1430 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1431 T_PROBE_RETRY_SLOW);
1433 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1439 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1440 if (IS_ERR(sfp->hwmon_name)) {
1441 dev_err(sfp->dev, "out of memory for hwmon name\n");
1445 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1446 sfp->hwmon_name, sfp,
1447 &sfp_hwmon_chip_info,
1449 if (IS_ERR(sfp->hwmon_dev))
1450 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1451 PTR_ERR(sfp->hwmon_dev));
1454 static int sfp_hwmon_insert(struct sfp *sfp)
1456 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1459 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1462 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1463 /* This driver in general does not support address
1468 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1469 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1474 static void sfp_hwmon_remove(struct sfp *sfp)
1476 cancel_delayed_work_sync(&sfp->hwmon_probe);
1477 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1478 hwmon_device_unregister(sfp->hwmon_dev);
1479 sfp->hwmon_dev = NULL;
1480 kfree(sfp->hwmon_name);
1484 static int sfp_hwmon_init(struct sfp *sfp)
1486 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1491 static void sfp_hwmon_exit(struct sfp *sfp)
1493 cancel_delayed_work_sync(&sfp->hwmon_probe);
1496 static int sfp_hwmon_insert(struct sfp *sfp)
1501 static void sfp_hwmon_remove(struct sfp *sfp)
1505 static int sfp_hwmon_init(struct sfp *sfp)
1510 static void sfp_hwmon_exit(struct sfp *sfp)
1516 static void sfp_module_tx_disable(struct sfp *sfp)
1518 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1519 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1520 sfp->state |= SFP_F_TX_DISABLE;
1521 sfp_set_state(sfp, sfp->state);
1524 static void sfp_module_tx_enable(struct sfp *sfp)
1526 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1527 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1528 sfp->state &= ~SFP_F_TX_DISABLE;
1529 sfp_set_state(sfp, sfp->state);
1532 #if IS_ENABLED(CONFIG_DEBUG_FS)
1533 static int sfp_debug_state_show(struct seq_file *s, void *data)
1535 struct sfp *sfp = s->private;
1537 seq_printf(s, "Module state: %s\n",
1538 mod_state_to_str(sfp->sm_mod_state));
1539 seq_printf(s, "Module probe attempts: %d %d\n",
1540 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1541 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1542 seq_printf(s, "Device state: %s\n",
1543 dev_state_to_str(sfp->sm_dev_state));
1544 seq_printf(s, "Main state: %s\n",
1545 sm_state_to_str(sfp->sm_state));
1546 seq_printf(s, "Fault recovery remaining retries: %d\n",
1547 sfp->sm_fault_retries);
1548 seq_printf(s, "PHY probe remaining retries: %d\n",
1549 sfp->sm_phy_retries);
1550 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1551 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1552 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1553 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1556 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1558 static void sfp_debugfs_init(struct sfp *sfp)
1560 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1562 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1563 &sfp_debug_state_fops);
1566 static void sfp_debugfs_exit(struct sfp *sfp)
1568 debugfs_remove_recursive(sfp->debugfs_dir);
1571 static void sfp_debugfs_init(struct sfp *sfp)
1575 static void sfp_debugfs_exit(struct sfp *sfp)
1580 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1582 unsigned int state = sfp->state;
1584 if (state & SFP_F_TX_DISABLE)
1587 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1591 sfp_set_state(sfp, state);
1594 /* SFP state machine */
1595 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1598 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1601 cancel_delayed_work(&sfp->timeout);
1604 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1605 unsigned int timeout)
1607 sfp->sm_state = state;
1608 sfp_sm_set_timer(sfp, timeout);
1611 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1612 unsigned int timeout)
1614 sfp->sm_mod_state = state;
1615 sfp_sm_set_timer(sfp, timeout);
1618 static void sfp_sm_phy_detach(struct sfp *sfp)
1620 sfp_remove_phy(sfp->sfp_bus);
1621 phy_device_remove(sfp->mod_phy);
1622 phy_device_free(sfp->mod_phy);
1623 sfp->mod_phy = NULL;
1626 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1628 struct phy_device *phy;
1631 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1632 if (phy == ERR_PTR(-ENODEV))
1633 return PTR_ERR(phy);
1635 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1636 return PTR_ERR(phy);
1639 err = phy_device_register(phy);
1641 phy_device_free(phy);
1642 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1647 err = sfp_add_phy(sfp->sfp_bus, phy);
1649 phy_device_remove(phy);
1650 phy_device_free(phy);
1651 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1660 static void sfp_sm_link_up(struct sfp *sfp)
1662 sfp_link_up(sfp->sfp_bus);
1663 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1666 static void sfp_sm_link_down(struct sfp *sfp)
1668 sfp_link_down(sfp->sfp_bus);
1671 static void sfp_sm_link_check_los(struct sfp *sfp)
1673 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1674 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1675 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1678 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1679 * are set, we assume that no LOS signal is available. If both are
1680 * set, we assume LOS is not implemented (and is meaningless.)
1682 if (los_options == los_inverted)
1683 los = !(sfp->state & SFP_F_LOS);
1684 else if (los_options == los_normal)
1685 los = !!(sfp->state & SFP_F_LOS);
1688 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1690 sfp_sm_link_up(sfp);
1693 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1695 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1696 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1697 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1699 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1700 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1703 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1705 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1706 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1707 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1709 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1710 (los_options == los_normal && event == SFP_E_LOS_LOW);
1713 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1715 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1717 "module persistently indicates fault, disabling\n");
1718 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1721 dev_err(sfp->dev, "module transmit fault indicated\n");
1723 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1727 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1729 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1730 return sfp_i2c_mdiobus_create(sfp);
1735 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1736 * normally sits at I2C bus address 0x56, and may either be a clause 22
1739 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1740 * negotiation enabled, but some may be in 1000base-X - which is for the
1741 * PHY driver to determine.
1743 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1744 * mode according to the negotiated line speed.
1746 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1750 switch (sfp->mdio_protocol) {
1754 case MDIO_I2C_MARVELL_C22:
1755 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1759 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1762 case MDIO_I2C_ROLLBALL:
1763 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1770 static int sfp_module_parse_power(struct sfp *sfp)
1772 u32 power_mW = 1000;
1775 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1776 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1778 /* Added in Rev 11.9, but there is no compliance code for this */
1779 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1780 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1783 /* Power level 1 modules (max. 1W) are always supported. */
1784 if (power_mW <= 1000) {
1785 sfp->module_power_mW = power_mW;
1789 supports_a2 = sfp->id.ext.sff8472_compliance !=
1790 SFP_SFF8472_COMPLIANCE_NONE ||
1791 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1793 if (power_mW > sfp->max_power_mW) {
1794 /* Module power specification exceeds the allowed maximum. */
1796 /* The module appears not to implement bus address
1797 * 0xa2, so assume that the module powers up in the
1801 "Host does not support %u.%uW modules\n",
1802 power_mW / 1000, (power_mW / 100) % 10);
1806 "Host does not support %u.%uW modules, module left in power mode 1\n",
1807 power_mW / 1000, (power_mW / 100) % 10);
1813 /* The module power level is below the host maximum and the
1814 * module appears not to implement bus address 0xa2, so assume
1815 * that the module powers up in the indicated mode.
1820 /* If the module requires a higher power mode, but also requires
1821 * an address change sequence, warn the user that the module may
1822 * not be functional.
1824 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1826 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1827 power_mW / 1000, (power_mW / 100) % 10);
1831 sfp->module_power_mW = power_mW;
1836 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1840 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1841 SFP_EXT_STATUS_PWRLVL_SELECT,
1842 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1843 if (err != sizeof(u8)) {
1844 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1845 enable ? "en" : "dis", ERR_PTR(err));
1850 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1851 sfp->module_power_mW / 1000,
1852 (sfp->module_power_mW / 100) % 10);
1857 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1858 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1859 * not support multibyte reads from the EEPROM. Each multi-byte read
1860 * operation returns just one byte of EEPROM followed by zeros. There is
1861 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1862 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1863 * name and vendor id into EEPROM, so there is even no way to detect if
1864 * module is V-SOL V2801F. Therefore check for those zeros in the read
1865 * data and then based on check switch to reading EEPROM to one byte
1868 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1870 size_t i, block_size = sfp->i2c_block_size;
1872 /* Already using byte IO */
1873 if (block_size == 1)
1876 for (i = 1; i < len; i += block_size) {
1877 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1883 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1888 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1889 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1890 id->base.connector != SFF8024_CONNECTOR_LC) {
1891 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1892 id->base.phys_id = SFF8024_ID_SFF_8472;
1893 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1894 id->base.connector = SFF8024_CONNECTOR_LC;
1895 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1898 "Failed to rewrite module EEPROM: %pe\n",
1903 /* Cotsworks modules have been found to require a delay between write operations. */
1906 /* Update base structure checksum */
1907 check = sfp_check(&id->base, sizeof(id->base) - 1);
1908 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1911 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1919 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1921 /* SFP module inserted - read I2C data */
1922 struct sfp_eeprom_id id;
1923 bool cotsworks_sfbg;
1928 /* Some SFP modules and also some Linux I2C drivers do not like reads
1929 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1932 sfp->i2c_block_size = 16;
1934 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1937 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1942 if (ret != sizeof(id.base)) {
1943 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1947 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1948 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1949 * that EEPROM supports atomic 16bit read operation for diagnostic
1950 * fields, so do not switch to one byte reading at a time unless it
1951 * is really required and we have no other option.
1953 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1955 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1957 "Switching to reading EEPROM to one byte at a time\n");
1958 sfp->i2c_block_size = 1;
1960 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1964 "failed to read EEPROM: %pe\n",
1969 if (ret != sizeof(id.base)) {
1970 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1976 /* Cotsworks do not seem to update the checksums when they
1977 * do the final programming with the final module part number,
1978 * serial number and date code.
1980 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1981 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1983 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1984 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1985 * Cotsworks PN matches and bytes are not correct.
1987 if (cotsworks && cotsworks_sfbg) {
1988 ret = sfp_cotsworks_fixup_check(sfp, &id);
1993 /* Validate the checksum over the base structure */
1994 check = sfp_check(&id.base, sizeof(id.base) - 1);
1995 if (check != id.base.cc_base) {
1998 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1999 check, id.base.cc_base);
2002 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2003 check, id.base.cc_base);
2004 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2005 16, 1, &id, sizeof(id), true);
2010 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2013 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2018 if (ret != sizeof(id.ext)) {
2019 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2023 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2024 if (check != id.ext.cc_ext) {
2027 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2028 check, id.ext.cc_ext);
2031 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2032 check, id.ext.cc_ext);
2033 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2034 16, 1, &id, sizeof(id), true);
2035 memset(&id.ext, 0, sizeof(id.ext));
2041 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2042 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2043 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2044 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2045 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2046 (int)sizeof(id.ext.datecode), id.ext.datecode);
2048 /* Check whether we support this module */
2049 if (!sfp->type->module_supported(&id)) {
2051 "module is not supported - phys id 0x%02x 0x%02x\n",
2052 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2056 /* If the module requires address swap mode, warn about it */
2057 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2059 "module address swap to access page 0xA2 is not supported.\n");
2061 /* Parse the module power requirement */
2062 ret = sfp_module_parse_power(sfp);
2066 /* Initialise state bits to use from hardware */
2067 sfp->state_hw_mask = SFP_F_PRESENT;
2068 if (sfp->gpio[GPIO_TX_DISABLE])
2069 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2070 if (sfp->gpio[GPIO_TX_FAULT])
2071 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2072 if (sfp->gpio[GPIO_LOS])
2073 sfp->state_hw_mask |= SFP_F_LOS;
2075 sfp->module_t_start_up = T_START_UP;
2076 sfp->module_t_wait = T_WAIT;
2078 sfp->tx_fault_ignore = false;
2080 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2081 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2082 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2083 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2084 sfp->mdio_protocol = MDIO_I2C_C45;
2085 else if (sfp->id.base.e1000_base_t)
2086 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2088 sfp->mdio_protocol = MDIO_I2C_NONE;
2090 sfp->quirk = sfp_lookup_quirk(&id);
2091 if (sfp->quirk && sfp->quirk->fixup)
2092 sfp->quirk->fixup(sfp);
2097 static void sfp_sm_mod_remove(struct sfp *sfp)
2099 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2100 sfp_module_remove(sfp->sfp_bus);
2102 sfp_hwmon_remove(sfp);
2104 memset(&sfp->id, 0, sizeof(sfp->id));
2105 sfp->module_power_mW = 0;
2107 dev_info(sfp->dev, "module removed\n");
2110 /* This state machine tracks the upstream's state */
2111 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2113 switch (sfp->sm_dev_state) {
2115 if (event == SFP_E_DEV_ATTACH)
2116 sfp->sm_dev_state = SFP_DEV_DOWN;
2120 if (event == SFP_E_DEV_DETACH)
2121 sfp->sm_dev_state = SFP_DEV_DETACHED;
2122 else if (event == SFP_E_DEV_UP)
2123 sfp->sm_dev_state = SFP_DEV_UP;
2127 if (event == SFP_E_DEV_DETACH)
2128 sfp->sm_dev_state = SFP_DEV_DETACHED;
2129 else if (event == SFP_E_DEV_DOWN)
2130 sfp->sm_dev_state = SFP_DEV_DOWN;
2135 /* This state machine tracks the insert/remove state of the module, probes
2136 * the on-board EEPROM, and sets up the power level.
2138 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2142 /* Handle remove event globally, it resets this state machine */
2143 if (event == SFP_E_REMOVE) {
2144 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2145 sfp_sm_mod_remove(sfp);
2146 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2150 /* Handle device detach globally */
2151 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2152 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2153 if (sfp->module_power_mW > 1000 &&
2154 sfp->sm_mod_state > SFP_MOD_HPOWER)
2155 sfp_sm_mod_hpower(sfp, false);
2156 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2160 switch (sfp->sm_mod_state) {
2162 if (event == SFP_E_INSERT) {
2163 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2164 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2165 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2170 /* Wait for T_PROBE_INIT to time out */
2171 if (event != SFP_E_TIMEOUT)
2174 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2175 if (err == -EAGAIN) {
2176 if (sfp->sm_mod_tries_init &&
2177 --sfp->sm_mod_tries_init) {
2178 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2180 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2181 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2183 "please wait, module slow to respond\n");
2184 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2189 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2193 err = sfp_hwmon_insert(sfp);
2195 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2198 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2200 case SFP_MOD_WAITDEV:
2201 /* Ensure that the device is attached before proceeding */
2202 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2205 /* Report the module insertion to the upstream device */
2206 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2209 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2213 /* If this is a power level 1 module, we are done */
2214 if (sfp->module_power_mW <= 1000)
2217 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2219 case SFP_MOD_HPOWER:
2220 /* Enable high power mode */
2221 err = sfp_sm_mod_hpower(sfp, true);
2223 if (err != -EAGAIN) {
2224 sfp_module_remove(sfp->sfp_bus);
2225 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2227 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2232 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2235 case SFP_MOD_WAITPWR:
2236 /* Wait for T_HPOWER_LEVEL to time out */
2237 if (event != SFP_E_TIMEOUT)
2241 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2244 case SFP_MOD_PRESENT:
2250 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2252 unsigned long timeout;
2255 /* Some events are global */
2256 if (sfp->sm_state != SFP_S_DOWN &&
2257 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2258 sfp->sm_dev_state != SFP_DEV_UP)) {
2259 if (sfp->sm_state == SFP_S_LINK_UP &&
2260 sfp->sm_dev_state == SFP_DEV_UP)
2261 sfp_sm_link_down(sfp);
2262 if (sfp->sm_state > SFP_S_INIT)
2263 sfp_module_stop(sfp->sfp_bus);
2265 sfp_sm_phy_detach(sfp);
2267 sfp_i2c_mdiobus_destroy(sfp);
2268 sfp_module_tx_disable(sfp);
2269 sfp_soft_stop_poll(sfp);
2270 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2274 /* The main state machine */
2275 switch (sfp->sm_state) {
2277 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2278 sfp->sm_dev_state != SFP_DEV_UP)
2281 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2282 sfp_soft_start_poll(sfp);
2284 sfp_module_tx_enable(sfp);
2286 /* Initialise the fault clearance retries */
2287 sfp->sm_fault_retries = N_FAULT_INIT;
2289 /* We need to check the TX_FAULT state, which is not defined
2290 * while TX_DISABLE is asserted. The earliest we want to do
2291 * anything (such as probe for a PHY) is 50ms (or more on
2292 * specific modules).
2294 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2298 if (event != SFP_E_TIMEOUT)
2301 if (sfp->state & SFP_F_TX_FAULT) {
2302 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2303 * from the TX_DISABLE deassertion for the module to
2304 * initialise, which is indicated by TX_FAULT
2307 timeout = sfp->module_t_start_up;
2308 if (timeout > sfp->module_t_wait)
2309 timeout -= sfp->module_t_wait;
2313 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2315 /* TX_FAULT is not asserted, assume the module has
2316 * finished initialising.
2323 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2324 /* TX_FAULT is still asserted after t_init
2325 * or t_start_up, so assume there is a fault.
2327 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2328 sfp->sm_fault_retries == N_FAULT_INIT);
2329 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2331 /* Create mdiobus and start trying for PHY */
2332 ret = sfp_sm_add_mdio_bus(sfp);
2334 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2337 sfp->sm_phy_retries = R_PHY_RETRY;
2342 case SFP_S_INIT_PHY:
2343 if (event != SFP_E_TIMEOUT)
2346 /* TX_FAULT deasserted or we timed out with TX_FAULT
2347 * clear. Probe for the PHY and check the LOS state.
2349 ret = sfp_sm_probe_for_phy(sfp);
2350 if (ret == -ENODEV) {
2351 if (--sfp->sm_phy_retries) {
2352 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2355 dev_info(sfp->dev, "no PHY detected\n");
2358 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2361 if (sfp_module_start(sfp->sfp_bus)) {
2362 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2365 sfp_sm_link_check_los(sfp);
2367 /* Reset the fault retry count */
2368 sfp->sm_fault_retries = N_FAULT;
2371 case SFP_S_INIT_TX_FAULT:
2372 if (event == SFP_E_TIMEOUT) {
2373 sfp_module_tx_fault_reset(sfp);
2374 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2378 case SFP_S_WAIT_LOS:
2379 if (event == SFP_E_TX_FAULT)
2380 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2381 else if (sfp_los_event_inactive(sfp, event))
2382 sfp_sm_link_up(sfp);
2386 if (event == SFP_E_TX_FAULT) {
2387 sfp_sm_link_down(sfp);
2388 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2389 } else if (sfp_los_event_active(sfp, event)) {
2390 sfp_sm_link_down(sfp);
2391 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2395 case SFP_S_TX_FAULT:
2396 if (event == SFP_E_TIMEOUT) {
2397 sfp_module_tx_fault_reset(sfp);
2398 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2403 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2404 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2405 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2406 dev_info(sfp->dev, "module transmit fault recovered\n");
2407 sfp_sm_link_check_los(sfp);
2411 case SFP_S_TX_DISABLE:
2416 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2418 mutex_lock(&sfp->sm_mutex);
2420 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2421 mod_state_to_str(sfp->sm_mod_state),
2422 dev_state_to_str(sfp->sm_dev_state),
2423 sm_state_to_str(sfp->sm_state),
2424 event_to_str(event));
2426 sfp_sm_device(sfp, event);
2427 sfp_sm_module(sfp, event);
2428 sfp_sm_main(sfp, event);
2430 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2431 mod_state_to_str(sfp->sm_mod_state),
2432 dev_state_to_str(sfp->sm_dev_state),
2433 sm_state_to_str(sfp->sm_state));
2435 mutex_unlock(&sfp->sm_mutex);
2438 static void sfp_attach(struct sfp *sfp)
2440 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2443 static void sfp_detach(struct sfp *sfp)
2445 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2448 static void sfp_start(struct sfp *sfp)
2450 sfp_sm_event(sfp, SFP_E_DEV_UP);
2453 static void sfp_stop(struct sfp *sfp)
2455 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2458 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2460 /* locking... and check module is present */
2462 if (sfp->id.ext.sff8472_compliance &&
2463 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2464 modinfo->type = ETH_MODULE_SFF_8472;
2465 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2467 modinfo->type = ETH_MODULE_SFF_8079;
2468 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2473 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2476 unsigned int first, last, len;
2483 last = ee->offset + ee->len;
2484 if (first < ETH_MODULE_SFF_8079_LEN) {
2485 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2488 ret = sfp_read(sfp, false, first, data, len);
2495 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2496 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2498 first -= ETH_MODULE_SFF_8079_LEN;
2500 ret = sfp_read(sfp, true, first, data, len);
2507 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2508 const struct ethtool_module_eeprom *page,
2509 struct netlink_ext_ack *extack)
2512 NL_SET_ERR_MSG(extack, "Banks not supported");
2517 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2521 if (page->i2c_address != 0x50 &&
2522 page->i2c_address != 0x51) {
2523 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2527 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2528 page->data, page->length);
2531 static const struct sfp_socket_ops sfp_module_ops = {
2532 .attach = sfp_attach,
2533 .detach = sfp_detach,
2536 .module_info = sfp_module_info,
2537 .module_eeprom = sfp_module_eeprom,
2538 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2541 static void sfp_timeout(struct work_struct *work)
2543 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2546 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2550 static void sfp_check_state(struct sfp *sfp)
2552 unsigned int state, i, changed;
2554 mutex_lock(&sfp->st_mutex);
2555 state = sfp_get_state(sfp);
2556 changed = state ^ sfp->state;
2557 if (sfp->tx_fault_ignore)
2558 changed &= SFP_F_PRESENT | SFP_F_LOS;
2560 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2562 for (i = 0; i < GPIO_MAX; i++)
2563 if (changed & BIT(i))
2564 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2565 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2567 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2571 if (changed & SFP_F_PRESENT)
2572 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2573 SFP_E_INSERT : SFP_E_REMOVE);
2575 if (changed & SFP_F_TX_FAULT)
2576 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2577 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2579 if (changed & SFP_F_LOS)
2580 sfp_sm_event(sfp, state & SFP_F_LOS ?
2581 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2583 mutex_unlock(&sfp->st_mutex);
2586 static irqreturn_t sfp_irq(int irq, void *data)
2588 struct sfp *sfp = data;
2590 sfp_check_state(sfp);
2595 static void sfp_poll(struct work_struct *work)
2597 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2599 sfp_check_state(sfp);
2601 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2603 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2606 static struct sfp *sfp_alloc(struct device *dev)
2610 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2612 return ERR_PTR(-ENOMEM);
2616 mutex_init(&sfp->sm_mutex);
2617 mutex_init(&sfp->st_mutex);
2618 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2619 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2621 sfp_hwmon_init(sfp);
2626 static void sfp_cleanup(void *data)
2628 struct sfp *sfp = data;
2630 sfp_hwmon_exit(sfp);
2632 cancel_delayed_work_sync(&sfp->poll);
2633 cancel_delayed_work_sync(&sfp->timeout);
2635 mdiobus_unregister(sfp->i2c_mii);
2636 mdiobus_free(sfp->i2c_mii);
2639 i2c_put_adapter(sfp->i2c);
2643 static int sfp_i2c_get(struct sfp *sfp)
2645 struct fwnode_handle *h;
2646 struct i2c_adapter *i2c;
2649 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2651 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2655 i2c = i2c_get_adapter_by_fwnode(h);
2657 err = -EPROBE_DEFER;
2661 err = sfp_i2c_configure(sfp, i2c);
2663 i2c_put_adapter(i2c);
2665 fwnode_handle_put(h);
2669 static int sfp_probe(struct platform_device *pdev)
2671 const struct sff_data *sff;
2676 sfp = sfp_alloc(&pdev->dev);
2678 return PTR_ERR(sfp);
2680 platform_set_drvdata(pdev, sfp);
2682 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2686 sff = device_get_match_data(sfp->dev);
2692 err = sfp_i2c_get(sfp);
2696 for (i = 0; i < GPIO_MAX; i++)
2697 if (sff->gpios & BIT(i)) {
2698 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2699 gpio_names[i], gpio_flags[i]);
2700 if (IS_ERR(sfp->gpio[i]))
2701 return PTR_ERR(sfp->gpio[i]);
2704 sfp->state_hw_mask = SFP_F_PRESENT;
2706 sfp->get_state = sfp_gpio_get_state;
2707 sfp->set_state = sfp_gpio_set_state;
2709 /* Modules that have no detect signal are always present */
2710 if (!(sfp->gpio[GPIO_MODDEF0]))
2711 sfp->get_state = sff_gpio_get_state;
2713 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2714 &sfp->max_power_mW);
2715 if (sfp->max_power_mW < 1000) {
2716 if (sfp->max_power_mW)
2718 "Firmware bug: host maximum power should be at least 1W\n");
2719 sfp->max_power_mW = 1000;
2722 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2723 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2725 /* Get the initial state, and always signal TX disable,
2726 * since the network interface will not be up.
2728 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2730 if (sfp->gpio[GPIO_RATE_SELECT] &&
2731 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2732 sfp->state |= SFP_F_RATE_SELECT;
2733 sfp_set_state(sfp, sfp->state);
2734 sfp_module_tx_disable(sfp);
2735 if (sfp->state & SFP_F_PRESENT) {
2737 sfp_sm_event(sfp, SFP_E_INSERT);
2741 for (i = 0; i < GPIO_MAX; i++) {
2742 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2745 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2746 if (sfp->gpio_irq[i] < 0) {
2747 sfp->gpio_irq[i] = 0;
2748 sfp->need_poll = true;
2752 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2753 "%s-%s", dev_name(sfp->dev),
2759 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2762 IRQF_TRIGGER_RISING |
2763 IRQF_TRIGGER_FALLING,
2766 sfp->gpio_irq[i] = 0;
2767 sfp->need_poll = true;
2772 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2774 /* We could have an issue in cases no Tx disable pin is available or
2775 * wired as modules using a laser as their light source will continue to
2776 * be active when the fiber is removed. This could be a safety issue and
2777 * we should at least warn the user about that.
2779 if (!sfp->gpio[GPIO_TX_DISABLE])
2781 "No tx_disable pin: SFP modules will always be emitting.\n");
2783 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2787 sfp_debugfs_init(sfp);
2792 static int sfp_remove(struct platform_device *pdev)
2794 struct sfp *sfp = platform_get_drvdata(pdev);
2796 sfp_debugfs_exit(sfp);
2797 sfp_unregister_socket(sfp->sfp_bus);
2800 sfp_sm_event(sfp, SFP_E_REMOVE);
2806 static void sfp_shutdown(struct platform_device *pdev)
2808 struct sfp *sfp = platform_get_drvdata(pdev);
2811 for (i = 0; i < GPIO_MAX; i++) {
2812 if (!sfp->gpio_irq[i])
2815 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2818 cancel_delayed_work_sync(&sfp->poll);
2819 cancel_delayed_work_sync(&sfp->timeout);
2822 static struct platform_driver sfp_driver = {
2824 .remove = sfp_remove,
2825 .shutdown = sfp_shutdown,
2828 .of_match_table = sfp_of_match,
2832 static int sfp_init(void)
2834 poll_jiffies = msecs_to_jiffies(100);
2836 return platform_driver_register(&sfp_driver);
2838 module_init(sfp_init);
2840 static void sfp_exit(void)
2842 platform_driver_unregister(&sfp_driver);
2844 module_exit(sfp_exit);
2846 MODULE_ALIAS("platform:sfp");
2847 MODULE_AUTHOR("Russell King");
2848 MODULE_LICENSE("GPL v2");