]> Git Repo - linux.git/blob - drivers/acpi/numa/hmat.c
net/sched: Retire dsmark qdisc
[linux.git] / drivers / acpi / numa / hmat.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019, Intel Corporation.
4  *
5  * Heterogeneous Memory Attributes Table (HMAT) representation
6  *
7  * This program parses and reports the platform's HMAT tables, and registers
8  * the applicable attributes with the node's interfaces.
9  */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12
13 #include <linux/acpi.h>
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/platform_device.h>
20 #include <linux/list_sort.h>
21 #include <linux/memregion.h>
22 #include <linux/memory.h>
23 #include <linux/mutex.h>
24 #include <linux/node.h>
25 #include <linux/sysfs.h>
26 #include <linux/dax.h>
27
28 static u8 hmat_revision;
29 static int hmat_disable __initdata;
30
31 void __init disable_hmat(void)
32 {
33         hmat_disable = 1;
34 }
35
36 static LIST_HEAD(targets);
37 static LIST_HEAD(initiators);
38 static LIST_HEAD(localities);
39
40 static DEFINE_MUTEX(target_lock);
41
42 /*
43  * The defined enum order is used to prioritize attributes to break ties when
44  * selecting the best performing node.
45  */
46 enum locality_types {
47         WRITE_LATENCY,
48         READ_LATENCY,
49         WRITE_BANDWIDTH,
50         READ_BANDWIDTH,
51 };
52
53 static struct memory_locality *localities_types[4];
54
55 struct target_cache {
56         struct list_head node;
57         struct node_cache_attrs cache_attrs;
58 };
59
60 struct memory_target {
61         struct list_head node;
62         unsigned int memory_pxm;
63         unsigned int processor_pxm;
64         struct resource memregions;
65         struct node_hmem_attrs hmem_attrs[2];
66         struct list_head caches;
67         struct node_cache_attrs cache_attrs;
68         bool registered;
69 };
70
71 struct memory_initiator {
72         struct list_head node;
73         unsigned int processor_pxm;
74         bool has_cpu;
75 };
76
77 struct memory_locality {
78         struct list_head node;
79         struct acpi_hmat_locality *hmat_loc;
80 };
81
82 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
83 {
84         struct memory_initiator *initiator;
85
86         list_for_each_entry(initiator, &initiators, node)
87                 if (initiator->processor_pxm == cpu_pxm)
88                         return initiator;
89         return NULL;
90 }
91
92 static struct memory_target *find_mem_target(unsigned int mem_pxm)
93 {
94         struct memory_target *target;
95
96         list_for_each_entry(target, &targets, node)
97                 if (target->memory_pxm == mem_pxm)
98                         return target;
99         return NULL;
100 }
101
102 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
103 {
104         struct memory_initiator *initiator;
105
106         if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
107                 return;
108
109         initiator = find_mem_initiator(cpu_pxm);
110         if (initiator)
111                 return;
112
113         initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
114         if (!initiator)
115                 return;
116
117         initiator->processor_pxm = cpu_pxm;
118         initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
119         list_add_tail(&initiator->node, &initiators);
120 }
121
122 static __init void alloc_memory_target(unsigned int mem_pxm,
123                 resource_size_t start, resource_size_t len)
124 {
125         struct memory_target *target;
126
127         target = find_mem_target(mem_pxm);
128         if (!target) {
129                 target = kzalloc(sizeof(*target), GFP_KERNEL);
130                 if (!target)
131                         return;
132                 target->memory_pxm = mem_pxm;
133                 target->processor_pxm = PXM_INVAL;
134                 target->memregions = (struct resource) {
135                         .name   = "ACPI mem",
136                         .start  = 0,
137                         .end    = -1,
138                         .flags  = IORESOURCE_MEM,
139                 };
140                 list_add_tail(&target->node, &targets);
141                 INIT_LIST_HEAD(&target->caches);
142         }
143
144         /*
145          * There are potentially multiple ranges per PXM, so record each
146          * in the per-target memregions resource tree.
147          */
148         if (!__request_region(&target->memregions, start, len, "memory target",
149                                 IORESOURCE_MEM))
150                 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
151                                 start, start + len, mem_pxm);
152 }
153
154 static __init const char *hmat_data_type(u8 type)
155 {
156         switch (type) {
157         case ACPI_HMAT_ACCESS_LATENCY:
158                 return "Access Latency";
159         case ACPI_HMAT_READ_LATENCY:
160                 return "Read Latency";
161         case ACPI_HMAT_WRITE_LATENCY:
162                 return "Write Latency";
163         case ACPI_HMAT_ACCESS_BANDWIDTH:
164                 return "Access Bandwidth";
165         case ACPI_HMAT_READ_BANDWIDTH:
166                 return "Read Bandwidth";
167         case ACPI_HMAT_WRITE_BANDWIDTH:
168                 return "Write Bandwidth";
169         default:
170                 return "Reserved";
171         }
172 }
173
174 static __init const char *hmat_data_type_suffix(u8 type)
175 {
176         switch (type) {
177         case ACPI_HMAT_ACCESS_LATENCY:
178         case ACPI_HMAT_READ_LATENCY:
179         case ACPI_HMAT_WRITE_LATENCY:
180                 return " nsec";
181         case ACPI_HMAT_ACCESS_BANDWIDTH:
182         case ACPI_HMAT_READ_BANDWIDTH:
183         case ACPI_HMAT_WRITE_BANDWIDTH:
184                 return " MB/s";
185         default:
186                 return "";
187         }
188 }
189
190 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
191 {
192         u32 value;
193
194         /*
195          * Check for invalid and overflow values
196          */
197         if (entry == 0xffff || !entry)
198                 return 0;
199         else if (base > (UINT_MAX / (entry)))
200                 return 0;
201
202         /*
203          * Divide by the base unit for version 1, convert latency from
204          * picosenonds to nanoseconds if revision 2.
205          */
206         value = entry * base;
207         if (hmat_revision == 1) {
208                 if (value < 10)
209                         return 0;
210                 value = DIV_ROUND_UP(value, 10);
211         } else if (hmat_revision == 2) {
212                 switch (type) {
213                 case ACPI_HMAT_ACCESS_LATENCY:
214                 case ACPI_HMAT_READ_LATENCY:
215                 case ACPI_HMAT_WRITE_LATENCY:
216                         value = DIV_ROUND_UP(value, 1000);
217                         break;
218                 default:
219                         break;
220                 }
221         }
222         return value;
223 }
224
225 static void hmat_update_target_access(struct memory_target *target,
226                                       u8 type, u32 value, int access)
227 {
228         switch (type) {
229         case ACPI_HMAT_ACCESS_LATENCY:
230                 target->hmem_attrs[access].read_latency = value;
231                 target->hmem_attrs[access].write_latency = value;
232                 break;
233         case ACPI_HMAT_READ_LATENCY:
234                 target->hmem_attrs[access].read_latency = value;
235                 break;
236         case ACPI_HMAT_WRITE_LATENCY:
237                 target->hmem_attrs[access].write_latency = value;
238                 break;
239         case ACPI_HMAT_ACCESS_BANDWIDTH:
240                 target->hmem_attrs[access].read_bandwidth = value;
241                 target->hmem_attrs[access].write_bandwidth = value;
242                 break;
243         case ACPI_HMAT_READ_BANDWIDTH:
244                 target->hmem_attrs[access].read_bandwidth = value;
245                 break;
246         case ACPI_HMAT_WRITE_BANDWIDTH:
247                 target->hmem_attrs[access].write_bandwidth = value;
248                 break;
249         default:
250                 break;
251         }
252 }
253
254 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
255 {
256         struct memory_locality *loc;
257
258         loc = kzalloc(sizeof(*loc), GFP_KERNEL);
259         if (!loc) {
260                 pr_notice_once("Failed to allocate HMAT locality\n");
261                 return;
262         }
263
264         loc->hmat_loc = hmat_loc;
265         list_add_tail(&loc->node, &localities);
266
267         switch (hmat_loc->data_type) {
268         case ACPI_HMAT_ACCESS_LATENCY:
269                 localities_types[READ_LATENCY] = loc;
270                 localities_types[WRITE_LATENCY] = loc;
271                 break;
272         case ACPI_HMAT_READ_LATENCY:
273                 localities_types[READ_LATENCY] = loc;
274                 break;
275         case ACPI_HMAT_WRITE_LATENCY:
276                 localities_types[WRITE_LATENCY] = loc;
277                 break;
278         case ACPI_HMAT_ACCESS_BANDWIDTH:
279                 localities_types[READ_BANDWIDTH] = loc;
280                 localities_types[WRITE_BANDWIDTH] = loc;
281                 break;
282         case ACPI_HMAT_READ_BANDWIDTH:
283                 localities_types[READ_BANDWIDTH] = loc;
284                 break;
285         case ACPI_HMAT_WRITE_BANDWIDTH:
286                 localities_types[WRITE_BANDWIDTH] = loc;
287                 break;
288         default:
289                 break;
290         }
291 }
292
293 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
294                                       const unsigned long end)
295 {
296         struct acpi_hmat_locality *hmat_loc = (void *)header;
297         struct memory_target *target;
298         unsigned int init, targ, total_size, ipds, tpds;
299         u32 *inits, *targs, value;
300         u16 *entries;
301         u8 type, mem_hier;
302
303         if (hmat_loc->header.length < sizeof(*hmat_loc)) {
304                 pr_notice("Unexpected locality header length: %u\n",
305                          hmat_loc->header.length);
306                 return -EINVAL;
307         }
308
309         type = hmat_loc->data_type;
310         mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
311         ipds = hmat_loc->number_of_initiator_Pds;
312         tpds = hmat_loc->number_of_target_Pds;
313         total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
314                      sizeof(*inits) * ipds + sizeof(*targs) * tpds;
315         if (hmat_loc->header.length < total_size) {
316                 pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
317                          hmat_loc->header.length, total_size);
318                 return -EINVAL;
319         }
320
321         pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
322                 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
323                 hmat_loc->entry_base_unit);
324
325         inits = (u32 *)(hmat_loc + 1);
326         targs = inits + ipds;
327         entries = (u16 *)(targs + tpds);
328         for (init = 0; init < ipds; init++) {
329                 alloc_memory_initiator(inits[init]);
330                 for (targ = 0; targ < tpds; targ++) {
331                         value = hmat_normalize(entries[init * tpds + targ],
332                                                hmat_loc->entry_base_unit,
333                                                type);
334                         pr_info("  Initiator-Target[%u-%u]:%u%s\n",
335                                 inits[init], targs[targ], value,
336                                 hmat_data_type_suffix(type));
337
338                         if (mem_hier == ACPI_HMAT_MEMORY) {
339                                 target = find_mem_target(targs[targ]);
340                                 if (target && target->processor_pxm == inits[init]) {
341                                         hmat_update_target_access(target, type, value, 0);
342                                         /* If the node has a CPU, update access 1 */
343                                         if (node_state(pxm_to_node(inits[init]), N_CPU))
344                                                 hmat_update_target_access(target, type, value, 1);
345                                 }
346                         }
347                 }
348         }
349
350         if (mem_hier == ACPI_HMAT_MEMORY)
351                 hmat_add_locality(hmat_loc);
352
353         return 0;
354 }
355
356 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
357                                    const unsigned long end)
358 {
359         struct acpi_hmat_cache *cache = (void *)header;
360         struct memory_target *target;
361         struct target_cache *tcache;
362         u32 attrs;
363
364         if (cache->header.length < sizeof(*cache)) {
365                 pr_notice("Unexpected cache header length: %u\n",
366                          cache->header.length);
367                 return -EINVAL;
368         }
369
370         attrs = cache->cache_attributes;
371         pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
372                 cache->memory_PD, cache->cache_size, attrs,
373                 cache->number_of_SMBIOShandles);
374
375         target = find_mem_target(cache->memory_PD);
376         if (!target)
377                 return 0;
378
379         tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
380         if (!tcache) {
381                 pr_notice_once("Failed to allocate HMAT cache info\n");
382                 return 0;
383         }
384
385         tcache->cache_attrs.size = cache->cache_size;
386         tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
387         tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
388
389         switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
390         case ACPI_HMAT_CA_DIRECT_MAPPED:
391                 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
392                 break;
393         case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
394                 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
395                 break;
396         case ACPI_HMAT_CA_NONE:
397         default:
398                 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
399                 break;
400         }
401
402         switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
403         case ACPI_HMAT_CP_WB:
404                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
405                 break;
406         case ACPI_HMAT_CP_WT:
407                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
408                 break;
409         case ACPI_HMAT_CP_NONE:
410         default:
411                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
412                 break;
413         }
414         list_add_tail(&tcache->node, &target->caches);
415
416         return 0;
417 }
418
419 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
420                                               const unsigned long end)
421 {
422         struct acpi_hmat_proximity_domain *p = (void *)header;
423         struct memory_target *target = NULL;
424
425         if (p->header.length != sizeof(*p)) {
426                 pr_notice("Unexpected address range header length: %u\n",
427                          p->header.length);
428                 return -EINVAL;
429         }
430
431         if (hmat_revision == 1)
432                 pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
433                         p->reserved3, p->reserved4, p->flags, p->processor_PD,
434                         p->memory_PD);
435         else
436                 pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
437                         p->flags, p->processor_PD, p->memory_PD);
438
439         if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
440             hmat_revision > 1) {
441                 target = find_mem_target(p->memory_PD);
442                 if (!target) {
443                         pr_debug("Memory Domain missing from SRAT\n");
444                         return -EINVAL;
445                 }
446         }
447         if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
448                 int p_node = pxm_to_node(p->processor_PD);
449
450                 if (p_node == NUMA_NO_NODE) {
451                         pr_debug("Invalid Processor Domain\n");
452                         return -EINVAL;
453                 }
454                 target->processor_pxm = p->processor_PD;
455         }
456
457         return 0;
458 }
459
460 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
461                                       const unsigned long end)
462 {
463         struct acpi_hmat_structure *hdr = (void *)header;
464
465         if (!hdr)
466                 return -EINVAL;
467
468         switch (hdr->type) {
469         case ACPI_HMAT_TYPE_PROXIMITY:
470                 return hmat_parse_proximity_domain(header, end);
471         case ACPI_HMAT_TYPE_LOCALITY:
472                 return hmat_parse_locality(header, end);
473         case ACPI_HMAT_TYPE_CACHE:
474                 return hmat_parse_cache(header, end);
475         default:
476                 return -EINVAL;
477         }
478 }
479
480 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
481                                           const unsigned long end)
482 {
483         struct acpi_srat_mem_affinity *ma = (void *)header;
484
485         if (!ma)
486                 return -EINVAL;
487         if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
488                 return 0;
489         alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
490         return 0;
491 }
492
493 static u32 hmat_initiator_perf(struct memory_target *target,
494                                struct memory_initiator *initiator,
495                                struct acpi_hmat_locality *hmat_loc)
496 {
497         unsigned int ipds, tpds, i, idx = 0, tdx = 0;
498         u32 *inits, *targs;
499         u16 *entries;
500
501         ipds = hmat_loc->number_of_initiator_Pds;
502         tpds = hmat_loc->number_of_target_Pds;
503         inits = (u32 *)(hmat_loc + 1);
504         targs = inits + ipds;
505         entries = (u16 *)(targs + tpds);
506
507         for (i = 0; i < ipds; i++) {
508                 if (inits[i] == initiator->processor_pxm) {
509                         idx = i;
510                         break;
511                 }
512         }
513
514         if (i == ipds)
515                 return 0;
516
517         for (i = 0; i < tpds; i++) {
518                 if (targs[i] == target->memory_pxm) {
519                         tdx = i;
520                         break;
521                 }
522         }
523         if (i == tpds)
524                 return 0;
525
526         return hmat_normalize(entries[idx * tpds + tdx],
527                               hmat_loc->entry_base_unit,
528                               hmat_loc->data_type);
529 }
530
531 static bool hmat_update_best(u8 type, u32 value, u32 *best)
532 {
533         bool updated = false;
534
535         if (!value)
536                 return false;
537
538         switch (type) {
539         case ACPI_HMAT_ACCESS_LATENCY:
540         case ACPI_HMAT_READ_LATENCY:
541         case ACPI_HMAT_WRITE_LATENCY:
542                 if (!*best || *best > value) {
543                         *best = value;
544                         updated = true;
545                 }
546                 break;
547         case ACPI_HMAT_ACCESS_BANDWIDTH:
548         case ACPI_HMAT_READ_BANDWIDTH:
549         case ACPI_HMAT_WRITE_BANDWIDTH:
550                 if (!*best || *best < value) {
551                         *best = value;
552                         updated = true;
553                 }
554                 break;
555         }
556
557         return updated;
558 }
559
560 static int initiator_cmp(void *priv, const struct list_head *a,
561                          const struct list_head *b)
562 {
563         struct memory_initiator *ia;
564         struct memory_initiator *ib;
565
566         ia = list_entry(a, struct memory_initiator, node);
567         ib = list_entry(b, struct memory_initiator, node);
568
569         return ia->processor_pxm - ib->processor_pxm;
570 }
571
572 static int initiators_to_nodemask(unsigned long *p_nodes)
573 {
574         struct memory_initiator *initiator;
575
576         if (list_empty(&initiators))
577                 return -ENXIO;
578
579         list_for_each_entry(initiator, &initiators, node)
580                 set_bit(initiator->processor_pxm, p_nodes);
581
582         return 0;
583 }
584
585 static void hmat_register_target_initiators(struct memory_target *target)
586 {
587         static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
588         struct memory_initiator *initiator;
589         unsigned int mem_nid, cpu_nid;
590         struct memory_locality *loc = NULL;
591         u32 best = 0;
592         bool access0done = false;
593         int i;
594
595         mem_nid = pxm_to_node(target->memory_pxm);
596         /*
597          * If the Address Range Structure provides a local processor pxm, link
598          * only that one. Otherwise, find the best performance attributes and
599          * register all initiators that match.
600          */
601         if (target->processor_pxm != PXM_INVAL) {
602                 cpu_nid = pxm_to_node(target->processor_pxm);
603                 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
604                 access0done = true;
605                 if (node_state(cpu_nid, N_CPU)) {
606                         register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
607                         return;
608                 }
609         }
610
611         if (list_empty(&localities))
612                 return;
613
614         /*
615          * We need the initiator list sorted so we can use bitmap_clear for
616          * previously set initiators when we find a better memory accessor.
617          * We'll also use the sorting to prime the candidate nodes with known
618          * initiators.
619          */
620         bitmap_zero(p_nodes, MAX_NUMNODES);
621         list_sort(NULL, &initiators, initiator_cmp);
622         if (initiators_to_nodemask(p_nodes) < 0)
623                 return;
624
625         if (!access0done) {
626                 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
627                         loc = localities_types[i];
628                         if (!loc)
629                                 continue;
630
631                         best = 0;
632                         list_for_each_entry(initiator, &initiators, node) {
633                                 u32 value;
634
635                                 if (!test_bit(initiator->processor_pxm, p_nodes))
636                                         continue;
637
638                                 value = hmat_initiator_perf(target, initiator,
639                                                             loc->hmat_loc);
640                                 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
641                                         bitmap_clear(p_nodes, 0, initiator->processor_pxm);
642                                 if (value != best)
643                                         clear_bit(initiator->processor_pxm, p_nodes);
644                         }
645                         if (best)
646                                 hmat_update_target_access(target, loc->hmat_loc->data_type,
647                                                           best, 0);
648                 }
649
650                 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
651                         cpu_nid = pxm_to_node(i);
652                         register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
653                 }
654         }
655
656         /* Access 1 ignores Generic Initiators */
657         bitmap_zero(p_nodes, MAX_NUMNODES);
658         if (initiators_to_nodemask(p_nodes) < 0)
659                 return;
660
661         for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
662                 loc = localities_types[i];
663                 if (!loc)
664                         continue;
665
666                 best = 0;
667                 list_for_each_entry(initiator, &initiators, node) {
668                         u32 value;
669
670                         if (!initiator->has_cpu) {
671                                 clear_bit(initiator->processor_pxm, p_nodes);
672                                 continue;
673                         }
674                         if (!test_bit(initiator->processor_pxm, p_nodes))
675                                 continue;
676
677                         value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
678                         if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
679                                 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
680                         if (value != best)
681                                 clear_bit(initiator->processor_pxm, p_nodes);
682                 }
683                 if (best)
684                         hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
685         }
686         for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
687                 cpu_nid = pxm_to_node(i);
688                 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
689         }
690 }
691
692 static void hmat_register_target_cache(struct memory_target *target)
693 {
694         unsigned mem_nid = pxm_to_node(target->memory_pxm);
695         struct target_cache *tcache;
696
697         list_for_each_entry(tcache, &target->caches, node)
698                 node_add_cache(mem_nid, &tcache->cache_attrs);
699 }
700
701 static void hmat_register_target_perf(struct memory_target *target, int access)
702 {
703         unsigned mem_nid = pxm_to_node(target->memory_pxm);
704         node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
705 }
706
707 static void hmat_register_target_devices(struct memory_target *target)
708 {
709         struct resource *res;
710
711         /*
712          * Do not bother creating devices if no driver is available to
713          * consume them.
714          */
715         if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
716                 return;
717
718         for (res = target->memregions.child; res; res = res->sibling) {
719                 int target_nid = pxm_to_node(target->memory_pxm);
720
721                 hmem_register_device(target_nid, res);
722         }
723 }
724
725 static void hmat_register_target(struct memory_target *target)
726 {
727         int nid = pxm_to_node(target->memory_pxm);
728
729         /*
730          * Devices may belong to either an offline or online
731          * node, so unconditionally add them.
732          */
733         hmat_register_target_devices(target);
734
735         /*
736          * Skip offline nodes. This can happen when memory
737          * marked EFI_MEMORY_SP, "specific purpose", is applied
738          * to all the memory in a proximity domain leading to
739          * the node being marked offline / unplugged, or if
740          * memory-only "hotplug" node is offline.
741          */
742         if (nid == NUMA_NO_NODE || !node_online(nid))
743                 return;
744
745         mutex_lock(&target_lock);
746         if (!target->registered) {
747                 hmat_register_target_initiators(target);
748                 hmat_register_target_cache(target);
749                 hmat_register_target_perf(target, 0);
750                 hmat_register_target_perf(target, 1);
751                 target->registered = true;
752         }
753         mutex_unlock(&target_lock);
754 }
755
756 static void hmat_register_targets(void)
757 {
758         struct memory_target *target;
759
760         list_for_each_entry(target, &targets, node)
761                 hmat_register_target(target);
762 }
763
764 static int hmat_callback(struct notifier_block *self,
765                          unsigned long action, void *arg)
766 {
767         struct memory_target *target;
768         struct memory_notify *mnb = arg;
769         int pxm, nid = mnb->status_change_nid;
770
771         if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
772                 return NOTIFY_OK;
773
774         pxm = node_to_pxm(nid);
775         target = find_mem_target(pxm);
776         if (!target)
777                 return NOTIFY_OK;
778
779         hmat_register_target(target);
780         return NOTIFY_OK;
781 }
782
783 static __init void hmat_free_structures(void)
784 {
785         struct memory_target *target, *tnext;
786         struct memory_locality *loc, *lnext;
787         struct memory_initiator *initiator, *inext;
788         struct target_cache *tcache, *cnext;
789
790         list_for_each_entry_safe(target, tnext, &targets, node) {
791                 struct resource *res, *res_next;
792
793                 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
794                         list_del(&tcache->node);
795                         kfree(tcache);
796                 }
797
798                 list_del(&target->node);
799                 res = target->memregions.child;
800                 while (res) {
801                         res_next = res->sibling;
802                         __release_region(&target->memregions, res->start,
803                                         resource_size(res));
804                         res = res_next;
805                 }
806                 kfree(target);
807         }
808
809         list_for_each_entry_safe(initiator, inext, &initiators, node) {
810                 list_del(&initiator->node);
811                 kfree(initiator);
812         }
813
814         list_for_each_entry_safe(loc, lnext, &localities, node) {
815                 list_del(&loc->node);
816                 kfree(loc);
817         }
818 }
819
820 static __init int hmat_init(void)
821 {
822         struct acpi_table_header *tbl;
823         enum acpi_hmat_type i;
824         acpi_status status;
825
826         if (srat_disabled() || hmat_disable)
827                 return 0;
828
829         status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
830         if (ACPI_FAILURE(status))
831                 return 0;
832
833         if (acpi_table_parse_entries(ACPI_SIG_SRAT,
834                                 sizeof(struct acpi_table_srat),
835                                 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
836                                 srat_parse_mem_affinity, 0) < 0)
837                 goto out_put;
838         acpi_put_table(tbl);
839
840         status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
841         if (ACPI_FAILURE(status))
842                 goto out_put;
843
844         hmat_revision = tbl->revision;
845         switch (hmat_revision) {
846         case 1:
847         case 2:
848                 break;
849         default:
850                 pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
851                 goto out_put;
852         }
853
854         for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
855                 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
856                                              sizeof(struct acpi_table_hmat), i,
857                                              hmat_parse_subtable, 0) < 0) {
858                         pr_notice("Ignoring: Invalid table");
859                         goto out_put;
860                 }
861         }
862         hmat_register_targets();
863
864         /* Keep the table and structures if the notifier may use them */
865         if (!hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
866                 return 0;
867 out_put:
868         hmat_free_structures();
869         acpi_put_table(tbl);
870         return 0;
871 }
872 device_initcall(hmat_init);
This page took 0.081398 seconds and 4 git commands to generate.