2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 static int __init init_dax_wait_table(void)
54 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55 init_waitqueue_head(wait_table + i);
58 fs_initcall(init_dax_wait_table);
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
69 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 static unsigned long dax_radix_sector(void *entry)
77 return (unsigned long)entry >> RADIX_DAX_SHIFT;
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83 ((unsigned long)sector << RADIX_DAX_SHIFT) |
84 RADIX_DAX_ENTRY_LOCK);
87 static unsigned int dax_radix_order(void *entry)
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
94 static int dax_is_pmd_entry(void *entry)
96 return (unsigned long)entry & RADIX_DAX_PMD;
99 static int dax_is_pte_entry(void *entry)
101 return !((unsigned long)entry & RADIX_DAX_PMD);
104 static int dax_is_zero_entry(void *entry)
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
109 static int dax_is_empty_entry(void *entry)
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
115 * DAX radix tree locking
117 struct exceptional_entry_key {
118 struct address_space *mapping;
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
140 key->mapping = mapping;
141 key->entry_start = index;
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
157 return autoremove_wake_function(wait, mode, sync, NULL);
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168 pgoff_t index, void *entry, bool wake_all)
170 struct exceptional_entry_key key;
171 wait_queue_head_t *wq;
173 wq = dax_entry_waitqueue(mapping, index, entry, &key);
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
181 if (waitqueue_active(wq))
182 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
189 static inline int slot_locked(struct address_space *mapping, void **slot)
191 unsigned long entry = (unsigned long)
192 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193 return entry & RADIX_DAX_ENTRY_LOCK;
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
202 unsigned long entry = (unsigned long)
203 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
205 entry |= RADIX_DAX_ENTRY_LOCK;
206 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207 return (void *)entry;
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
216 unsigned long entry = (unsigned long)
217 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
219 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221 return (void *)entry;
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
231 * The function must be called with mapping->tree_lock held.
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void ***slotp)
237 struct wait_exceptional_entry_queue ewait;
238 wait_queue_head_t *wq;
240 init_wait(&ewait.wait);
241 ewait.wait.func = wake_exceptional_entry_func;
244 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248 !slot_locked(mapping, slot)) {
254 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255 prepare_to_wait_exclusive(wq, &ewait.wait,
256 TASK_UNINTERRUPTIBLE);
257 spin_unlock_irq(&mapping->tree_lock);
259 finish_wait(wq, &ewait.wait);
260 spin_lock_irq(&mapping->tree_lock);
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
269 spin_lock_irq(&mapping->tree_lock);
270 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272 !slot_locked(mapping, slot))) {
273 spin_unlock_irq(&mapping->tree_lock);
276 unlock_slot(mapping, slot);
277 spin_unlock_irq(&mapping->tree_lock);
278 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
281 static void put_locked_mapping_entry(struct address_space *mapping,
284 dax_unlock_mapping_entry(mapping, index);
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292 pgoff_t index, void *entry)
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
309 * happen if there are any 4k entries within the 2MiB range that we are
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328 unsigned long size_flag)
330 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
334 spin_lock_irq(&mapping->tree_lock);
335 entry = get_unlocked_mapping_entry(mapping, index, &slot);
337 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338 entry = ERR_PTR(-EIO);
343 if (size_flag & RADIX_DAX_PMD) {
344 if (dax_is_pte_entry(entry)) {
345 put_unlocked_mapping_entry(mapping, index,
347 entry = ERR_PTR(-EEXIST);
350 } else { /* trying to grab a PTE entry */
351 if (dax_is_pmd_entry(entry) &&
352 (dax_is_zero_entry(entry) ||
353 dax_is_empty_entry(entry))) {
354 pmd_downgrade = true;
359 /* No entry for given index? Make sure radix tree is big enough. */
360 if (!entry || pmd_downgrade) {
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
368 entry = lock_slot(mapping, slot);
371 spin_unlock_irq(&mapping->tree_lock);
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
377 if (pmd_downgrade && dax_is_zero_entry(entry))
378 unmap_mapping_range(mapping,
379 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
381 err = radix_tree_preload(
382 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
385 put_locked_mapping_entry(mapping, index);
388 spin_lock_irq(&mapping->tree_lock);
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
397 entry = __radix_tree_lookup(&mapping->page_tree, index,
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping->tree_lock);
407 radix_tree_delete(&mapping->page_tree, index);
408 mapping->nrexceptional--;
409 dax_wake_mapping_entry_waiter(mapping, index, entry,
413 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
415 err = __radix_tree_insert(&mapping->page_tree, index,
416 dax_radix_order(entry), entry);
417 radix_tree_preload_end();
419 spin_unlock_irq(&mapping->tree_lock);
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping->nrexceptional++;
432 spin_unlock_irq(&mapping->tree_lock);
435 entry = lock_slot(mapping, slot);
437 spin_unlock_irq(&mapping->tree_lock);
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442 pgoff_t index, bool trunc)
446 struct radix_tree_root *page_tree = &mapping->page_tree;
448 spin_lock_irq(&mapping->tree_lock);
449 entry = get_unlocked_mapping_entry(mapping, index, NULL);
450 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
453 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
456 radix_tree_delete(page_tree, index);
457 mapping->nrexceptional--;
460 put_unlocked_mapping_entry(mapping, index, entry);
461 spin_unlock_irq(&mapping->tree_lock);
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
470 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
484 * Invalidate exceptional DAX entry if it is clean.
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
489 return __dax_invalidate_mapping_entry(mapping, index, false);
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493 sector_t sector, size_t size, struct page *to,
502 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
506 id = dax_read_lock();
507 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
512 vto = kmap_atomic(to);
513 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527 struct vm_fault *vmf,
528 void *entry, sector_t sector,
531 struct radix_tree_root *page_tree = &mapping->page_tree;
533 pgoff_t index = vmf->pgoff;
535 if (vmf->flags & FAULT_FLAG_WRITE)
536 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
538 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry))
541 unmap_mapping_range(mapping,
542 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
545 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
549 spin_lock_irq(&mapping->tree_lock);
550 new_entry = dax_radix_locked_entry(sector, flags);
552 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
561 struct radix_tree_node *node;
565 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566 WARN_ON_ONCE(ret != entry);
567 __radix_tree_replace(page_tree, node, slot,
568 new_entry, NULL, NULL);
572 if (vmf->flags & FAULT_FLAG_WRITE)
573 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
575 spin_unlock_irq(&mapping->tree_lock);
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
582 unsigned long address;
584 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591 pgoff_t index, unsigned long pfn)
593 struct vm_area_struct *vma;
594 pte_t pte, *ptep = NULL;
598 i_mmap_lock_read(mapping);
599 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600 unsigned long address, start, end;
604 if (!(vma->vm_flags & VM_SHARED))
607 address = pgoff_address(index, vma);
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
614 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
618 #ifdef CONFIG_FS_DAX_PMD
621 if (pfn != pmd_pfn(*pmdp))
623 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
626 flush_cache_page(vma, address, pfn);
627 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
628 pmd = pmd_wrprotect(pmd);
629 pmd = pmd_mkclean(pmd);
630 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
631 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
636 if (pfn != pte_pfn(*ptep))
638 if (!pte_dirty(*ptep) && !pte_write(*ptep))
641 flush_cache_page(vma, address, pfn);
642 pte = ptep_clear_flush(vma, address, ptep);
643 pte = pte_wrprotect(pte);
644 pte = pte_mkclean(pte);
645 set_pte_at(vma->vm_mm, address, ptep, pte);
646 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
648 pte_unmap_unlock(ptep, ptl);
651 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
653 i_mmap_unlock_read(mapping);
656 static int dax_writeback_one(struct block_device *bdev,
657 struct dax_device *dax_dev, struct address_space *mapping,
658 pgoff_t index, void *entry)
660 struct radix_tree_root *page_tree = &mapping->page_tree;
661 void *entry2, **slot, *kaddr;
669 * A page got tagged dirty in DAX mapping? Something is seriously
672 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
675 spin_lock_irq(&mapping->tree_lock);
676 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
677 /* Entry got punched out / reallocated? */
678 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
681 * Entry got reallocated elsewhere? No need to writeback. We have to
682 * compare sectors as we must not bail out due to difference in lockbit
685 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
687 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
688 dax_is_zero_entry(entry))) {
693 /* Another fsync thread may have already written back this entry */
694 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
696 /* Lock the entry to serialize with page faults */
697 entry = lock_slot(mapping, slot);
699 * We can clear the tag now but we have to be careful so that concurrent
700 * dax_writeback_one() calls for the same index cannot finish before we
701 * actually flush the caches. This is achieved as the calls will look
702 * at the entry only under tree_lock and once they do that they will
703 * see the entry locked and wait for it to unlock.
705 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
706 spin_unlock_irq(&mapping->tree_lock);
709 * Even if dax_writeback_mapping_range() was given a wbc->range_start
710 * in the middle of a PMD, the 'index' we are given will be aligned to
711 * the start index of the PMD, as will the sector we pull from
712 * 'entry'. This allows us to flush for PMD_SIZE and not have to
713 * worry about partial PMD writebacks.
715 sector = dax_radix_sector(entry);
716 size = PAGE_SIZE << dax_radix_order(entry);
718 id = dax_read_lock();
719 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
724 * dax_direct_access() may sleep, so cannot hold tree_lock over
727 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
731 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
736 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
737 dax_flush(dax_dev, kaddr, size);
739 * After we have flushed the cache, we can clear the dirty tag. There
740 * cannot be new dirty data in the pfn after the flush has completed as
741 * the pfn mappings are writeprotected and fault waits for mapping
744 spin_lock_irq(&mapping->tree_lock);
745 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
746 spin_unlock_irq(&mapping->tree_lock);
747 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
750 put_locked_mapping_entry(mapping, index);
754 put_unlocked_mapping_entry(mapping, index, entry2);
755 spin_unlock_irq(&mapping->tree_lock);
760 * Flush the mapping to the persistent domain within the byte range of [start,
761 * end]. This is required by data integrity operations to ensure file data is
762 * on persistent storage prior to completion of the operation.
764 int dax_writeback_mapping_range(struct address_space *mapping,
765 struct block_device *bdev, struct writeback_control *wbc)
767 struct inode *inode = mapping->host;
768 pgoff_t start_index, end_index;
769 pgoff_t indices[PAGEVEC_SIZE];
770 struct dax_device *dax_dev;
775 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
778 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
781 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
785 start_index = wbc->range_start >> PAGE_SHIFT;
786 end_index = wbc->range_end >> PAGE_SHIFT;
788 trace_dax_writeback_range(inode, start_index, end_index);
790 tag_pages_for_writeback(mapping, start_index, end_index);
792 pagevec_init(&pvec, 0);
794 pvec.nr = find_get_entries_tag(mapping, start_index,
795 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
796 pvec.pages, indices);
801 for (i = 0; i < pvec.nr; i++) {
802 if (indices[i] > end_index) {
807 ret = dax_writeback_one(bdev, dax_dev, mapping,
808 indices[i], pvec.pages[i]);
810 mapping_set_error(mapping, ret);
814 start_index = indices[pvec.nr - 1] + 1;
818 trace_dax_writeback_range_done(inode, start_index, end_index);
819 return (ret < 0 ? ret : 0);
821 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
823 static int dax_insert_mapping(struct address_space *mapping,
824 struct block_device *bdev, struct dax_device *dax_dev,
825 sector_t sector, size_t size, void *entry,
826 struct vm_area_struct *vma, struct vm_fault *vmf)
828 unsigned long vaddr = vmf->address;
834 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
838 id = dax_read_lock();
839 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
846 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
850 trace_dax_insert_mapping(mapping->host, vmf, ret);
851 if (vmf->flags & FAULT_FLAG_WRITE)
852 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
854 return vm_insert_mixed(vma, vaddr, pfn);
858 * The user has performed a load from a hole in the file. Allocating a new
859 * page in the file would cause excessive storage usage for workloads with
860 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
861 * If this page is ever written to we will re-fault and change the mapping to
862 * point to real DAX storage instead.
864 static int dax_load_hole(struct address_space *mapping, void *entry,
865 struct vm_fault *vmf)
867 struct inode *inode = mapping->host;
868 unsigned long vaddr = vmf->address;
869 int ret = VM_FAULT_NOPAGE;
870 struct page *zero_page;
873 zero_page = ZERO_PAGE(0);
874 if (unlikely(!zero_page)) {
879 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
880 RADIX_DAX_ZERO_PAGE);
881 if (IS_ERR(entry2)) {
882 ret = VM_FAULT_SIGBUS;
886 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
888 trace_dax_load_hole(inode, vmf, ret);
892 static bool dax_range_is_aligned(struct block_device *bdev,
893 unsigned int offset, unsigned int length)
895 unsigned short sector_size = bdev_logical_block_size(bdev);
897 if (!IS_ALIGNED(offset, sector_size))
899 if (!IS_ALIGNED(length, sector_size))
905 int __dax_zero_page_range(struct block_device *bdev,
906 struct dax_device *dax_dev, sector_t sector,
907 unsigned int offset, unsigned int size)
909 if (dax_range_is_aligned(bdev, offset, size)) {
910 sector_t start_sector = sector + (offset >> 9);
912 return blkdev_issue_zeroout(bdev, start_sector,
913 size >> 9, GFP_NOFS, 0);
920 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
924 id = dax_read_lock();
925 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
931 memset(kaddr + offset, 0, size);
932 dax_flush(dax_dev, kaddr + offset, size);
937 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
939 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
941 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
945 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
948 struct block_device *bdev = iomap->bdev;
949 struct dax_device *dax_dev = iomap->dax_dev;
950 struct iov_iter *iter = data;
951 loff_t end = pos + length, done = 0;
955 if (iov_iter_rw(iter) == READ) {
956 end = min(end, i_size_read(inode));
960 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
961 return iov_iter_zero(min(length, end - pos), iter);
964 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
968 * Write can allocate block for an area which has a hole page mapped
969 * into page tables. We have to tear down these mappings so that data
970 * written by write(2) is visible in mmap.
972 if (iomap->flags & IOMAP_F_NEW) {
973 invalidate_inode_pages2_range(inode->i_mapping,
975 (end - 1) >> PAGE_SHIFT);
978 id = dax_read_lock();
980 unsigned offset = pos & (PAGE_SIZE - 1);
981 const size_t size = ALIGN(length + offset, PAGE_SIZE);
982 const sector_t sector = dax_iomap_sector(iomap, pos);
988 if (fatal_signal_pending(current)) {
993 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
997 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1004 map_len = PFN_PHYS(map_len);
1007 if (map_len > end - pos)
1008 map_len = end - pos;
1011 * The userspace address for the memory copy has already been
1012 * validated via access_ok() in either vfs_read() or
1013 * vfs_write(), depending on which operation we are doing.
1015 if (iov_iter_rw(iter) == WRITE)
1016 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1019 map_len = copy_to_iter(kaddr, map_len, iter);
1021 ret = map_len ? map_len : -EFAULT;
1029 dax_read_unlock(id);
1031 return done ? done : ret;
1035 * dax_iomap_rw - Perform I/O to a DAX file
1036 * @iocb: The control block for this I/O
1037 * @iter: The addresses to do I/O from or to
1038 * @ops: iomap ops passed from the file system
1040 * This function performs read and write operations to directly mapped
1041 * persistent memory. The callers needs to take care of read/write exclusion
1042 * and evicting any page cache pages in the region under I/O.
1045 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1046 const struct iomap_ops *ops)
1048 struct address_space *mapping = iocb->ki_filp->f_mapping;
1049 struct inode *inode = mapping->host;
1050 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1053 if (iov_iter_rw(iter) == WRITE) {
1054 lockdep_assert_held_exclusive(&inode->i_rwsem);
1055 flags |= IOMAP_WRITE;
1057 lockdep_assert_held(&inode->i_rwsem);
1060 while (iov_iter_count(iter)) {
1061 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1062 iter, dax_iomap_actor);
1069 iocb->ki_pos += done;
1070 return done ? done : ret;
1072 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1074 static int dax_fault_return(int error)
1077 return VM_FAULT_NOPAGE;
1078 if (error == -ENOMEM)
1079 return VM_FAULT_OOM;
1080 return VM_FAULT_SIGBUS;
1083 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1084 const struct iomap_ops *ops)
1086 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1087 struct inode *inode = mapping->host;
1088 unsigned long vaddr = vmf->address;
1089 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1091 struct iomap iomap = { 0 };
1092 unsigned flags = IOMAP_FAULT;
1093 int error, major = 0;
1097 trace_dax_pte_fault(inode, vmf, vmf_ret);
1099 * Check whether offset isn't beyond end of file now. Caller is supposed
1100 * to hold locks serializing us with truncate / punch hole so this is
1103 if (pos >= i_size_read(inode)) {
1104 vmf_ret = VM_FAULT_SIGBUS;
1108 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1109 flags |= IOMAP_WRITE;
1111 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1112 if (IS_ERR(entry)) {
1113 vmf_ret = dax_fault_return(PTR_ERR(entry));
1118 * It is possible, particularly with mixed reads & writes to private
1119 * mappings, that we have raced with a PMD fault that overlaps with
1120 * the PTE we need to set up. If so just return and the fault will be
1123 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1124 vmf_ret = VM_FAULT_NOPAGE;
1129 * Note that we don't bother to use iomap_apply here: DAX required
1130 * the file system block size to be equal the page size, which means
1131 * that we never have to deal with more than a single extent here.
1133 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1135 vmf_ret = dax_fault_return(error);
1138 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1139 error = -EIO; /* fs corruption? */
1140 goto error_finish_iomap;
1143 sector = dax_iomap_sector(&iomap, pos);
1145 if (vmf->cow_page) {
1146 switch (iomap.type) {
1148 case IOMAP_UNWRITTEN:
1149 clear_user_highpage(vmf->cow_page, vaddr);
1152 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1153 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1162 goto error_finish_iomap;
1164 __SetPageUptodate(vmf->cow_page);
1165 vmf_ret = finish_fault(vmf);
1167 vmf_ret = VM_FAULT_DONE_COW;
1171 switch (iomap.type) {
1173 if (iomap.flags & IOMAP_F_NEW) {
1174 count_vm_event(PGMAJFAULT);
1175 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1176 major = VM_FAULT_MAJOR;
1178 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1179 sector, PAGE_SIZE, entry, vmf->vma, vmf);
1180 /* -EBUSY is fine, somebody else faulted on the same PTE */
1181 if (error == -EBUSY)
1184 case IOMAP_UNWRITTEN:
1186 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1187 vmf_ret = dax_load_hole(mapping, entry, vmf);
1198 vmf_ret = dax_fault_return(error) | major;
1200 if (ops->iomap_end) {
1201 int copied = PAGE_SIZE;
1203 if (vmf_ret & VM_FAULT_ERROR)
1206 * The fault is done by now and there's no way back (other
1207 * thread may be already happily using PTE we have installed).
1208 * Just ignore error from ->iomap_end since we cannot do much
1211 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1214 put_locked_mapping_entry(mapping, vmf->pgoff);
1216 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1220 #ifdef CONFIG_FS_DAX_PMD
1221 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1222 loff_t pos, void *entry)
1224 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1225 const sector_t sector = dax_iomap_sector(iomap, pos);
1226 struct dax_device *dax_dev = iomap->dax_dev;
1227 struct block_device *bdev = iomap->bdev;
1228 struct inode *inode = mapping->host;
1229 const size_t size = PMD_SIZE;
1230 void *ret = NULL, *kaddr;
1236 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1239 id = dax_read_lock();
1240 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1242 goto unlock_fallback;
1243 length = PFN_PHYS(length);
1246 goto unlock_fallback;
1247 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1248 goto unlock_fallback;
1249 if (!pfn_t_devmap(pfn))
1250 goto unlock_fallback;
1251 dax_read_unlock(id);
1253 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1258 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1259 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1260 pfn, vmf->flags & FAULT_FLAG_WRITE);
1263 dax_read_unlock(id);
1265 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1266 return VM_FAULT_FALLBACK;
1269 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1272 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1273 unsigned long pmd_addr = vmf->address & PMD_MASK;
1274 struct inode *inode = mapping->host;
1275 struct page *zero_page;
1280 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1282 if (unlikely(!zero_page))
1285 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1286 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1290 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1291 if (!pmd_none(*(vmf->pmd))) {
1296 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1297 pmd_entry = pmd_mkhuge(pmd_entry);
1298 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1300 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1301 return VM_FAULT_NOPAGE;
1304 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1305 return VM_FAULT_FALLBACK;
1308 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1309 const struct iomap_ops *ops)
1311 struct vm_area_struct *vma = vmf->vma;
1312 struct address_space *mapping = vma->vm_file->f_mapping;
1313 unsigned long pmd_addr = vmf->address & PMD_MASK;
1314 bool write = vmf->flags & FAULT_FLAG_WRITE;
1315 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1316 struct inode *inode = mapping->host;
1317 int result = VM_FAULT_FALLBACK;
1318 struct iomap iomap = { 0 };
1319 pgoff_t max_pgoff, pgoff;
1325 * Check whether offset isn't beyond end of file now. Caller is
1326 * supposed to hold locks serializing us with truncate / punch hole so
1327 * this is a reliable test.
1329 pgoff = linear_page_index(vma, pmd_addr);
1330 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1332 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1335 * Make sure that the faulting address's PMD offset (color) matches
1336 * the PMD offset from the start of the file. This is necessary so
1337 * that a PMD range in the page table overlaps exactly with a PMD
1338 * range in the radix tree.
1340 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1341 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1344 /* Fall back to PTEs if we're going to COW */
1345 if (write && !(vma->vm_flags & VM_SHARED))
1348 /* If the PMD would extend outside the VMA */
1349 if (pmd_addr < vma->vm_start)
1351 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1354 if (pgoff > max_pgoff) {
1355 result = VM_FAULT_SIGBUS;
1359 /* If the PMD would extend beyond the file size */
1360 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1364 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1365 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1366 * is already in the tree, for instance), it will return -EEXIST and
1367 * we just fall back to 4k entries.
1369 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1374 * It is possible, particularly with mixed reads & writes to private
1375 * mappings, that we have raced with a PTE fault that overlaps with
1376 * the PMD we need to set up. If so just return and the fault will be
1379 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1380 !pmd_devmap(*vmf->pmd)) {
1386 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1387 * setting up a mapping, so really we're using iomap_begin() as a way
1388 * to look up our filesystem block.
1390 pos = (loff_t)pgoff << PAGE_SHIFT;
1391 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1395 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1398 switch (iomap.type) {
1400 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1402 case IOMAP_UNWRITTEN:
1404 if (WARN_ON_ONCE(write))
1406 result = dax_pmd_load_hole(vmf, &iomap, entry);
1414 if (ops->iomap_end) {
1415 int copied = PMD_SIZE;
1417 if (result == VM_FAULT_FALLBACK)
1420 * The fault is done by now and there's no way back (other
1421 * thread may be already happily using PMD we have installed).
1422 * Just ignore error from ->iomap_end since we cannot do much
1425 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1429 put_locked_mapping_entry(mapping, pgoff);
1431 if (result == VM_FAULT_FALLBACK) {
1432 split_huge_pmd(vma, vmf->pmd, vmf->address);
1433 count_vm_event(THP_FAULT_FALLBACK);
1436 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1440 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1441 const struct iomap_ops *ops)
1443 return VM_FAULT_FALLBACK;
1445 #endif /* CONFIG_FS_DAX_PMD */
1448 * dax_iomap_fault - handle a page fault on a DAX file
1449 * @vmf: The description of the fault
1450 * @ops: iomap ops passed from the file system
1452 * When a page fault occurs, filesystems may call this helper in
1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454 * has done all the necessary locking for page fault to proceed
1457 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1458 const struct iomap_ops *ops)
1462 return dax_iomap_pte_fault(vmf, ops);
1464 return dax_iomap_pmd_fault(vmf, ops);
1466 return VM_FAULT_FALLBACK;
1469 EXPORT_SYMBOL_GPL(dax_iomap_fault);