2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
58 #include <trace/events/kvm.h>
60 #include <asm/debugreg.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
70 #define CREATE_TRACE_POINTS
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
137 static bool __read_mostly backwards_tsc_observed = false;
139 #define KVM_NR_SHARED_MSRS 16
141 struct kvm_shared_msrs_global {
143 u32 msrs[KVM_NR_SHARED_MSRS];
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
149 struct kvm_shared_msr_values {
152 } values[KVM_NR_SHARED_MSRS];
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
200 u64 __read_mostly host_xcr0;
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
211 static void kvm_on_user_return(struct user_return_notifier *urn)
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
238 static void shared_msr_update(unsigned slot, u32 msr)
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
264 static void kvm_shared_msr_cpu_online(void)
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
294 static void drop_user_return_notifiers(void)
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
305 return vcpu->arch.apic_base;
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 kvm_lapic_set_base(vcpu, msr_info->data);
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
332 asmlinkage __visible void kvm_spurious_fault(void)
334 /* Fault while not rebooting. We want the trace. */
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
343 static int exception_class(int vector)
353 return EXCPT_CONTRIBUTORY;
360 #define EXCPT_FAULT 0
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
365 static int exception_type(int vector)
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381 /* Reserved exceptions will result in fault */
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
394 if (!vcpu->arch.exception.pending) {
396 if (has_error && !is_protmode(vcpu))
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
444 kvm_inject_gp(vcpu, 0);
446 return kvm_skip_emulated_instruction(vcpu);
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
467 return fault->nested_page_fault;
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
507 kvm_queue_exception(vcpu, UD_VECTOR);
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
521 struct x86_exception exception;
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
530 real_gfn = gpa_to_gfn(real_gfn);
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
544 * Load the pae pdptrs. Return true is they are all valid.
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
580 EXPORT_SYMBOL_GPL(load_pdptrs);
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
618 if (cr0 & 0xffffffff00000000UL)
622 cr0 &= ~CR0_RESERVED_BITS;
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
632 if ((vcpu->arch.efer & EFER_LME)) {
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
650 kvm_x86_ops->set_cr0(vcpu, cr0);
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 u64 old_xcr0 = vcpu->arch.xcr0;
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
703 if (!(xcr0 & XFEATURE_MASK_FP))
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
727 vcpu->arch.xcr0 = xcr0;
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
751 if (cr4 & CR4_RESERVED_BITS)
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
804 cr3 &= ~CR3_PCID_INVD;
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
829 if (cr8 & CR8_RESERVED_BITS)
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
834 vcpu->arch.cr8 = cr8;
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
844 return vcpu->arch.cr8;
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
881 u64 fixed = DR6_FIXED_1;
883 if (!guest_cpuid_has_rtm(vcpu))
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
899 if (val & 0xffffffff00000000ULL)
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
907 if (val & 0xffffffff00000000ULL)
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 *val = vcpu->arch.db[dr];
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
939 *val = kvm_x86_ops->get_dr6(vcpu);
944 *val = vcpu->arch.dr7;
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
986 static unsigned num_msrs_to_save;
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
997 HV_X64_MSR_VP_RUNTIME,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1008 MSR_IA32_MCG_EXT_CTL,
1011 MSR_MISC_FEATURES_ENABLES,
1014 static unsigned num_emulated_msrs;
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1018 if (efer & efer_reserved_bits)
1021 if (efer & EFER_FFXSR) {
1022 struct kvm_cpuid_entry2 *feat;
1024 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029 if (efer & EFER_SVME) {
1030 struct kvm_cpuid_entry2 *feat;
1032 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1043 u64 old_efer = vcpu->arch.efer;
1045 if (!kvm_valid_efer(vcpu, efer))
1049 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053 efer |= vcpu->arch.efer & EFER_LMA;
1055 kvm_x86_ops->set_efer(vcpu, efer);
1057 /* Update reserved bits */
1058 if ((efer ^ old_efer) & EFER_NX)
1059 kvm_mmu_reset_context(vcpu);
1064 void kvm_enable_efer_bits(u64 mask)
1066 efer_reserved_bits &= ~mask;
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1071 * Writes msr value into into the appropriate "register".
1072 * Returns 0 on success, non-0 otherwise.
1073 * Assumes vcpu_load() was already called.
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1077 switch (msr->index) {
1080 case MSR_KERNEL_GS_BASE:
1083 if (is_noncanonical_address(msr->data))
1086 case MSR_IA32_SYSENTER_EIP:
1087 case MSR_IA32_SYSENTER_ESP:
1089 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090 * non-canonical address is written on Intel but not on
1091 * AMD (which ignores the top 32-bits, because it does
1092 * not implement 64-bit SYSENTER).
1094 * 64-bit code should hence be able to write a non-canonical
1095 * value on AMD. Making the address canonical ensures that
1096 * vmentry does not fail on Intel after writing a non-canonical
1097 * value, and that something deterministic happens if the guest
1098 * invokes 64-bit SYSENTER.
1100 msr->data = get_canonical(msr->data);
1102 return kvm_x86_ops->set_msr(vcpu, msr);
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1107 * Adapt set_msr() to msr_io()'s calling convention
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1111 struct msr_data msr;
1115 msr.host_initiated = true;
1116 r = kvm_get_msr(vcpu, &msr);
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1126 struct msr_data msr;
1130 msr.host_initiated = true;
1131 return kvm_set_msr(vcpu, &msr);
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1138 struct { /* extract of a clocksource struct */
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1155 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1158 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1160 write_seqcount_begin(&vdata->seq);
1162 /* copy pvclock gtod data */
1163 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1164 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1165 vdata->clock.mask = tk->tkr_mono.mask;
1166 vdata->clock.mult = tk->tkr_mono.mult;
1167 vdata->clock.shift = tk->tkr_mono.shift;
1169 vdata->boot_ns = boot_ns;
1170 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1172 vdata->wall_time_sec = tk->xtime_sec;
1174 write_seqcount_end(&vdata->seq);
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1181 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182 * vcpu_enter_guest. This function is only called from
1183 * the physical CPU that is running vcpu.
1185 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 struct pvclock_wall_clock wc;
1193 struct timespec64 boot;
1198 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1203 ++version; /* first time write, random junk */
1207 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211 * The guest calculates current wall clock time by adding
1212 * system time (updated by kvm_guest_time_update below) to the
1213 * wall clock specified here. guest system time equals host
1214 * system time for us, thus we must fill in host boot time here.
1216 getboottime64(&boot);
1218 if (kvm->arch.kvmclock_offset) {
1219 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220 boot = timespec64_sub(boot, ts);
1222 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223 wc.nsec = boot.tv_nsec;
1224 wc.version = version;
1226 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1229 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1234 do_shl32_div32(dividend, divisor);
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239 s8 *pshift, u32 *pmultiplier)
1247 scaled64 = scaled_hz;
1248 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1253 tps32 = (uint32_t)tps64;
1254 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1263 *pmultiplier = div_frac(scaled64, tps32);
1265 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1278 u64 v = (u64)khz * (1000000 + ppm);
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 /* Guest TSC same frequency as host TSC? */
1289 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293 /* TSC scaling supported? */
1294 if (!kvm_has_tsc_control) {
1295 if (user_tsc_khz > tsc_khz) {
1296 vcpu->arch.tsc_catchup = 1;
1297 vcpu->arch.tsc_always_catchup = 1;
1300 WARN(1, "user requested TSC rate below hardware speed\n");
1305 /* TSC scaling required - calculate ratio */
1306 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307 user_tsc_khz, tsc_khz);
1309 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1315 vcpu->arch.tsc_scaling_ratio = ratio;
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1321 u32 thresh_lo, thresh_hi;
1322 int use_scaling = 0;
1324 /* tsc_khz can be zero if TSC calibration fails */
1325 if (user_tsc_khz == 0) {
1326 /* set tsc_scaling_ratio to a safe value */
1327 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331 /* Compute a scale to convert nanoseconds in TSC cycles */
1332 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333 &vcpu->arch.virtual_tsc_shift,
1334 &vcpu->arch.virtual_tsc_mult);
1335 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1338 * Compute the variation in TSC rate which is acceptable
1339 * within the range of tolerance and decide if the
1340 * rate being applied is within that bounds of the hardware
1341 * rate. If so, no scaling or compensation need be done.
1343 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1349 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1354 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355 vcpu->arch.virtual_tsc_mult,
1356 vcpu->arch.virtual_tsc_shift);
1357 tsc += vcpu->arch.this_tsc_write;
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1363 #ifdef CONFIG_X86_64
1365 struct kvm_arch *ka = &vcpu->kvm->arch;
1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1368 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369 atomic_read(&vcpu->kvm->online_vcpus));
1372 * Once the masterclock is enabled, always perform request in
1373 * order to update it.
1375 * In order to enable masterclock, the host clocksource must be TSC
1376 * and the vcpus need to have matched TSCs. When that happens,
1377 * perform request to enable masterclock.
1379 if (ka->use_master_clock ||
1380 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1383 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384 atomic_read(&vcpu->kvm->online_vcpus),
1385 ka->use_master_clock, gtod->clock.vclock_mode);
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1391 u64 curr_offset = vcpu->arch.tsc_offset;
1392 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 * Multiply tsc by a fixed point number represented by ratio.
1398 * The most significant 64-N bits (mult) of ratio represent the
1399 * integral part of the fixed point number; the remaining N bits
1400 * (frac) represent the fractional part, ie. ratio represents a fixed
1401 * point number (mult + frac * 2^(-N)).
1403 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1407 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1413 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1415 if (ratio != kvm_default_tsc_scaling_ratio)
1416 _tsc = __scale_tsc(ratio, tsc);
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 tsc = kvm_scale_tsc(vcpu, rdtsc());
1428 return target_tsc - tsc;
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1433 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1439 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440 vcpu->arch.tsc_offset = offset;
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1445 struct kvm *kvm = vcpu->kvm;
1446 u64 offset, ns, elapsed;
1447 unsigned long flags;
1449 bool already_matched;
1450 u64 data = msr->data;
1451 bool synchronizing = false;
1453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454 offset = kvm_compute_tsc_offset(vcpu, data);
1455 ns = ktime_get_boot_ns();
1456 elapsed = ns - kvm->arch.last_tsc_nsec;
1458 if (vcpu->arch.virtual_tsc_khz) {
1459 if (data == 0 && msr->host_initiated) {
1461 * detection of vcpu initialization -- need to sync
1462 * with other vCPUs. This particularly helps to keep
1463 * kvm_clock stable after CPU hotplug
1465 synchronizing = true;
1467 u64 tsc_exp = kvm->arch.last_tsc_write +
1468 nsec_to_cycles(vcpu, elapsed);
1469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1471 * Special case: TSC write with a small delta (1 second)
1472 * of virtual cycle time against real time is
1473 * interpreted as an attempt to synchronize the CPU.
1475 synchronizing = data < tsc_exp + tsc_hz &&
1476 data + tsc_hz > tsc_exp;
1481 * For a reliable TSC, we can match TSC offsets, and for an unstable
1482 * TSC, we add elapsed time in this computation. We could let the
1483 * compensation code attempt to catch up if we fall behind, but
1484 * it's better to try to match offsets from the beginning.
1486 if (synchronizing &&
1487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488 if (!check_tsc_unstable()) {
1489 offset = kvm->arch.cur_tsc_offset;
1490 pr_debug("kvm: matched tsc offset for %llu\n", data);
1492 u64 delta = nsec_to_cycles(vcpu, elapsed);
1494 offset = kvm_compute_tsc_offset(vcpu, data);
1495 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1501 * We split periods of matched TSC writes into generations.
1502 * For each generation, we track the original measured
1503 * nanosecond time, offset, and write, so if TSCs are in
1504 * sync, we can match exact offset, and if not, we can match
1505 * exact software computation in compute_guest_tsc()
1507 * These values are tracked in kvm->arch.cur_xxx variables.
1509 kvm->arch.cur_tsc_generation++;
1510 kvm->arch.cur_tsc_nsec = ns;
1511 kvm->arch.cur_tsc_write = data;
1512 kvm->arch.cur_tsc_offset = offset;
1514 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515 kvm->arch.cur_tsc_generation, data);
1519 * We also track th most recent recorded KHZ, write and time to
1520 * allow the matching interval to be extended at each write.
1522 kvm->arch.last_tsc_nsec = ns;
1523 kvm->arch.last_tsc_write = data;
1524 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1526 vcpu->arch.last_guest_tsc = data;
1528 /* Keep track of which generation this VCPU has synchronized to */
1529 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1533 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534 update_ia32_tsc_adjust_msr(vcpu, offset);
1535 kvm_vcpu_write_tsc_offset(vcpu, offset);
1536 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1538 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1540 kvm->arch.nr_vcpus_matched_tsc = 0;
1541 } else if (!already_matched) {
1542 kvm->arch.nr_vcpus_matched_tsc++;
1545 kvm_track_tsc_matching(vcpu);
1546 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1554 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1559 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560 WARN_ON(adjustment < 0);
1561 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562 adjust_tsc_offset_guest(vcpu, adjustment);
1565 #ifdef CONFIG_X86_64
1567 static u64 read_tsc(void)
1569 u64 ret = (u64)rdtsc_ordered();
1570 u64 last = pvclock_gtod_data.clock.cycle_last;
1572 if (likely(ret >= last))
1576 * GCC likes to generate cmov here, but this branch is extremely
1577 * predictable (it's just a function of time and the likely is
1578 * very likely) and there's a data dependence, so force GCC
1579 * to generate a branch instead. I don't barrier() because
1580 * we don't actually need a barrier, and if this function
1581 * ever gets inlined it will generate worse code.
1587 static inline u64 vgettsc(u64 *cycle_now)
1590 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1592 *cycle_now = read_tsc();
1594 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595 return v * gtod->clock.mult;
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1600 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1606 seq = read_seqcount_begin(>od->seq);
1607 mode = gtod->clock.vclock_mode;
1608 ns = gtod->nsec_base;
1609 ns += vgettsc(cycle_now);
1610 ns >>= gtod->clock.shift;
1611 ns += gtod->boot_ns;
1612 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1626 seq = read_seqcount_begin(>od->seq);
1627 mode = gtod->clock.vclock_mode;
1628 ts->tv_sec = gtod->wall_time_sec;
1629 ns = gtod->nsec_base;
1630 ns += vgettsc(cycle_now);
1631 ns >>= gtod->clock.shift;
1632 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1634 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1643 /* checked again under seqlock below */
1644 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1647 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1654 /* checked again under seqlock below */
1655 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1658 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1664 * Assuming a stable TSC across physical CPUS, and a stable TSC
1665 * across virtual CPUs, the following condition is possible.
1666 * Each numbered line represents an event visible to both
1667 * CPUs at the next numbered event.
1669 * "timespecX" represents host monotonic time. "tscX" represents
1672 * VCPU0 on CPU0 | VCPU1 on CPU1
1674 * 1. read timespec0,tsc0
1675 * 2. | timespec1 = timespec0 + N
1677 * 3. transition to guest | transition to guest
1678 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1680 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1682 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1685 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1687 * - 0 < N - M => M < N
1689 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690 * always the case (the difference between two distinct xtime instances
1691 * might be smaller then the difference between corresponding TSC reads,
1692 * when updating guest vcpus pvclock areas).
1694 * To avoid that problem, do not allow visibility of distinct
1695 * system_timestamp/tsc_timestamp values simultaneously: use a master
1696 * copy of host monotonic time values. Update that master copy
1699 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1705 #ifdef CONFIG_X86_64
1706 struct kvm_arch *ka = &kvm->arch;
1708 bool host_tsc_clocksource, vcpus_matched;
1710 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711 atomic_read(&kvm->online_vcpus));
1714 * If the host uses TSC clock, then passthrough TSC as stable
1717 host_tsc_clocksource = kvm_get_time_and_clockread(
1718 &ka->master_kernel_ns,
1719 &ka->master_cycle_now);
1721 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722 && !backwards_tsc_observed
1723 && !ka->boot_vcpu_runs_old_kvmclock;
1725 if (ka->use_master_clock)
1726 atomic_set(&kvm_guest_has_master_clock, 1);
1728 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1736 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1741 #ifdef CONFIG_X86_64
1743 struct kvm_vcpu *vcpu;
1744 struct kvm_arch *ka = &kvm->arch;
1746 spin_lock(&ka->pvclock_gtod_sync_lock);
1747 kvm_make_mclock_inprogress_request(kvm);
1748 /* no guest entries from this point */
1749 pvclock_update_vm_gtod_copy(kvm);
1751 kvm_for_each_vcpu(i, vcpu, kvm)
1752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1754 /* guest entries allowed */
1755 kvm_for_each_vcpu(i, vcpu, kvm)
1756 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1758 spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1764 struct kvm_arch *ka = &kvm->arch;
1765 struct pvclock_vcpu_time_info hv_clock;
1768 spin_lock(&ka->pvclock_gtod_sync_lock);
1769 if (!ka->use_master_clock) {
1770 spin_unlock(&ka->pvclock_gtod_sync_lock);
1771 return ktime_get_boot_ns() + ka->kvmclock_offset;
1774 hv_clock.tsc_timestamp = ka->master_cycle_now;
1775 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1776 spin_unlock(&ka->pvclock_gtod_sync_lock);
1778 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1781 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1782 &hv_clock.tsc_shift,
1783 &hv_clock.tsc_to_system_mul);
1784 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1791 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1793 struct kvm_vcpu_arch *vcpu = &v->arch;
1794 struct pvclock_vcpu_time_info guest_hv_clock;
1796 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 &guest_hv_clock, sizeof(guest_hv_clock))))
1800 /* This VCPU is paused, but it's legal for a guest to read another
1801 * VCPU's kvmclock, so we really have to follow the specification where
1802 * it says that version is odd if data is being modified, and even after
1805 * Version field updates must be kept separate. This is because
1806 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 * writes within a string instruction are weakly ordered. So there
1808 * are three writes overall.
1810 * As a small optimization, only write the version field in the first
1811 * and third write. The vcpu->pv_time cache is still valid, because the
1812 * version field is the first in the struct.
1814 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1816 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1819 sizeof(vcpu->hv_clock.version));
1823 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1826 if (vcpu->pvclock_set_guest_stopped_request) {
1827 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1828 vcpu->pvclock_set_guest_stopped_request = false;
1831 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1833 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835 sizeof(vcpu->hv_clock));
1839 vcpu->hv_clock.version++;
1840 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1842 sizeof(vcpu->hv_clock.version));
1845 static int kvm_guest_time_update(struct kvm_vcpu *v)
1847 unsigned long flags, tgt_tsc_khz;
1848 struct kvm_vcpu_arch *vcpu = &v->arch;
1849 struct kvm_arch *ka = &v->kvm->arch;
1851 u64 tsc_timestamp, host_tsc;
1853 bool use_master_clock;
1859 * If the host uses TSC clock, then passthrough TSC as stable
1862 spin_lock(&ka->pvclock_gtod_sync_lock);
1863 use_master_clock = ka->use_master_clock;
1864 if (use_master_clock) {
1865 host_tsc = ka->master_cycle_now;
1866 kernel_ns = ka->master_kernel_ns;
1868 spin_unlock(&ka->pvclock_gtod_sync_lock);
1870 /* Keep irq disabled to prevent changes to the clock */
1871 local_irq_save(flags);
1872 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1873 if (unlikely(tgt_tsc_khz == 0)) {
1874 local_irq_restore(flags);
1875 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1878 if (!use_master_clock) {
1880 kernel_ns = ktime_get_boot_ns();
1883 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1886 * We may have to catch up the TSC to match elapsed wall clock
1887 * time for two reasons, even if kvmclock is used.
1888 * 1) CPU could have been running below the maximum TSC rate
1889 * 2) Broken TSC compensation resets the base at each VCPU
1890 * entry to avoid unknown leaps of TSC even when running
1891 * again on the same CPU. This may cause apparent elapsed
1892 * time to disappear, and the guest to stand still or run
1895 if (vcpu->tsc_catchup) {
1896 u64 tsc = compute_guest_tsc(v, kernel_ns);
1897 if (tsc > tsc_timestamp) {
1898 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1899 tsc_timestamp = tsc;
1903 local_irq_restore(flags);
1905 /* With all the info we got, fill in the values */
1907 if (kvm_has_tsc_control)
1908 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1910 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1911 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1912 &vcpu->hv_clock.tsc_shift,
1913 &vcpu->hv_clock.tsc_to_system_mul);
1914 vcpu->hw_tsc_khz = tgt_tsc_khz;
1917 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1918 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1919 vcpu->last_guest_tsc = tsc_timestamp;
1921 /* If the host uses TSC clocksource, then it is stable */
1923 if (use_master_clock)
1924 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1926 vcpu->hv_clock.flags = pvclock_flags;
1928 if (vcpu->pv_time_enabled)
1929 kvm_setup_pvclock_page(v);
1930 if (v == kvm_get_vcpu(v->kvm, 0))
1931 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1936 * kvmclock updates which are isolated to a given vcpu, such as
1937 * vcpu->cpu migration, should not allow system_timestamp from
1938 * the rest of the vcpus to remain static. Otherwise ntp frequency
1939 * correction applies to one vcpu's system_timestamp but not
1942 * So in those cases, request a kvmclock update for all vcpus.
1943 * We need to rate-limit these requests though, as they can
1944 * considerably slow guests that have a large number of vcpus.
1945 * The time for a remote vcpu to update its kvmclock is bound
1946 * by the delay we use to rate-limit the updates.
1949 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1951 static void kvmclock_update_fn(struct work_struct *work)
1954 struct delayed_work *dwork = to_delayed_work(work);
1955 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1956 kvmclock_update_work);
1957 struct kvm *kvm = container_of(ka, struct kvm, arch);
1958 struct kvm_vcpu *vcpu;
1960 kvm_for_each_vcpu(i, vcpu, kvm) {
1961 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1962 kvm_vcpu_kick(vcpu);
1966 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1968 struct kvm *kvm = v->kvm;
1970 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1971 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1972 KVMCLOCK_UPDATE_DELAY);
1975 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1977 static void kvmclock_sync_fn(struct work_struct *work)
1979 struct delayed_work *dwork = to_delayed_work(work);
1980 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1981 kvmclock_sync_work);
1982 struct kvm *kvm = container_of(ka, struct kvm, arch);
1984 if (!kvmclock_periodic_sync)
1987 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1988 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1989 KVMCLOCK_SYNC_PERIOD);
1992 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1994 u64 mcg_cap = vcpu->arch.mcg_cap;
1995 unsigned bank_num = mcg_cap & 0xff;
1998 case MSR_IA32_MCG_STATUS:
1999 vcpu->arch.mcg_status = data;
2001 case MSR_IA32_MCG_CTL:
2002 if (!(mcg_cap & MCG_CTL_P))
2004 if (data != 0 && data != ~(u64)0)
2006 vcpu->arch.mcg_ctl = data;
2009 if (msr >= MSR_IA32_MC0_CTL &&
2010 msr < MSR_IA32_MCx_CTL(bank_num)) {
2011 u32 offset = msr - MSR_IA32_MC0_CTL;
2012 /* only 0 or all 1s can be written to IA32_MCi_CTL
2013 * some Linux kernels though clear bit 10 in bank 4 to
2014 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2015 * this to avoid an uncatched #GP in the guest
2017 if ((offset & 0x3) == 0 &&
2018 data != 0 && (data | (1 << 10)) != ~(u64)0)
2020 vcpu->arch.mce_banks[offset] = data;
2028 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2030 struct kvm *kvm = vcpu->kvm;
2031 int lm = is_long_mode(vcpu);
2032 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2033 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2034 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2035 : kvm->arch.xen_hvm_config.blob_size_32;
2036 u32 page_num = data & ~PAGE_MASK;
2037 u64 page_addr = data & PAGE_MASK;
2042 if (page_num >= blob_size)
2045 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2050 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2059 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2061 gpa_t gpa = data & ~0x3f;
2063 /* Bits 2:5 are reserved, Should be zero */
2067 vcpu->arch.apf.msr_val = data;
2069 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2070 kvm_clear_async_pf_completion_queue(vcpu);
2071 kvm_async_pf_hash_reset(vcpu);
2075 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2080 kvm_async_pf_wakeup_all(vcpu);
2084 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2086 vcpu->arch.pv_time_enabled = false;
2089 static void record_steal_time(struct kvm_vcpu *vcpu)
2091 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2094 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2095 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2098 vcpu->arch.st.steal.preempted = 0;
2100 if (vcpu->arch.st.steal.version & 1)
2101 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2103 vcpu->arch.st.steal.version += 1;
2105 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2110 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2111 vcpu->arch.st.last_steal;
2112 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2114 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2119 vcpu->arch.st.steal.version += 1;
2121 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2122 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2128 u32 msr = msr_info->index;
2129 u64 data = msr_info->data;
2132 case MSR_AMD64_NB_CFG:
2133 case MSR_IA32_UCODE_REV:
2134 case MSR_IA32_UCODE_WRITE:
2135 case MSR_VM_HSAVE_PA:
2136 case MSR_AMD64_PATCH_LOADER:
2137 case MSR_AMD64_BU_CFG2:
2138 case MSR_AMD64_DC_CFG:
2142 return set_efer(vcpu, data);
2144 data &= ~(u64)0x40; /* ignore flush filter disable */
2145 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2146 data &= ~(u64)0x8; /* ignore TLB cache disable */
2147 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2149 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154 case MSR_FAM10H_MMIO_CONF_BASE:
2156 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161 case MSR_IA32_DEBUGCTLMSR:
2163 /* We support the non-activated case already */
2165 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2166 /* Values other than LBR and BTF are vendor-specific,
2167 thus reserved and should throw a #GP */
2170 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2173 case 0x200 ... 0x2ff:
2174 return kvm_mtrr_set_msr(vcpu, msr, data);
2175 case MSR_IA32_APICBASE:
2176 return kvm_set_apic_base(vcpu, msr_info);
2177 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2178 return kvm_x2apic_msr_write(vcpu, msr, data);
2179 case MSR_IA32_TSCDEADLINE:
2180 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182 case MSR_IA32_TSC_ADJUST:
2183 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2184 if (!msr_info->host_initiated) {
2185 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2186 adjust_tsc_offset_guest(vcpu, adj);
2188 vcpu->arch.ia32_tsc_adjust_msr = data;
2191 case MSR_IA32_MISC_ENABLE:
2192 vcpu->arch.ia32_misc_enable_msr = data;
2194 case MSR_IA32_SMBASE:
2195 if (!msr_info->host_initiated)
2197 vcpu->arch.smbase = data;
2199 case MSR_KVM_WALL_CLOCK_NEW:
2200 case MSR_KVM_WALL_CLOCK:
2201 vcpu->kvm->arch.wall_clock = data;
2202 kvm_write_wall_clock(vcpu->kvm, data);
2204 case MSR_KVM_SYSTEM_TIME_NEW:
2205 case MSR_KVM_SYSTEM_TIME: {
2206 struct kvm_arch *ka = &vcpu->kvm->arch;
2208 kvmclock_reset(vcpu);
2210 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2211 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2213 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2214 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2216 ka->boot_vcpu_runs_old_kvmclock = tmp;
2219 vcpu->arch.time = data;
2220 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2222 /* we verify if the enable bit is set... */
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2227 &vcpu->arch.pv_time, data & ~1ULL,
2228 sizeof(struct pvclock_vcpu_time_info)))
2229 vcpu->arch.pv_time_enabled = false;
2231 vcpu->arch.pv_time_enabled = true;
2235 case MSR_KVM_ASYNC_PF_EN:
2236 if (kvm_pv_enable_async_pf(vcpu, data))
2239 case MSR_KVM_STEAL_TIME:
2241 if (unlikely(!sched_info_on()))
2244 if (data & KVM_STEAL_RESERVED_MASK)
2247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2248 data & KVM_STEAL_VALID_BITS,
2249 sizeof(struct kvm_steal_time)))
2252 vcpu->arch.st.msr_val = data;
2254 if (!(data & KVM_MSR_ENABLED))
2257 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2260 case MSR_KVM_PV_EOI_EN:
2261 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2265 case MSR_IA32_MCG_CTL:
2266 case MSR_IA32_MCG_STATUS:
2267 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2268 return set_msr_mce(vcpu, msr, data);
2270 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2271 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2272 pr = true; /* fall through */
2273 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2274 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2275 if (kvm_pmu_is_valid_msr(vcpu, msr))
2276 return kvm_pmu_set_msr(vcpu, msr_info);
2278 if (pr || data != 0)
2279 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2280 "0x%x data 0x%llx\n", msr, data);
2282 case MSR_K7_CLK_CTL:
2284 * Ignore all writes to this no longer documented MSR.
2285 * Writes are only relevant for old K7 processors,
2286 * all pre-dating SVM, but a recommended workaround from
2287 * AMD for these chips. It is possible to specify the
2288 * affected processor models on the command line, hence
2289 * the need to ignore the workaround.
2292 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2293 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2294 case HV_X64_MSR_CRASH_CTL:
2295 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2296 return kvm_hv_set_msr_common(vcpu, msr, data,
2297 msr_info->host_initiated);
2298 case MSR_IA32_BBL_CR_CTL3:
2299 /* Drop writes to this legacy MSR -- see rdmsr
2300 * counterpart for further detail.
2302 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2304 case MSR_AMD64_OSVW_ID_LENGTH:
2305 if (!guest_cpuid_has_osvw(vcpu))
2307 vcpu->arch.osvw.length = data;
2309 case MSR_AMD64_OSVW_STATUS:
2310 if (!guest_cpuid_has_osvw(vcpu))
2312 vcpu->arch.osvw.status = data;
2314 case MSR_PLATFORM_INFO:
2315 if (!msr_info->host_initiated ||
2316 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2317 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2318 cpuid_fault_enabled(vcpu)))
2320 vcpu->arch.msr_platform_info = data;
2322 case MSR_MISC_FEATURES_ENABLES:
2323 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2324 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2325 !supports_cpuid_fault(vcpu)))
2327 vcpu->arch.msr_misc_features_enables = data;
2330 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2331 return xen_hvm_config(vcpu, data);
2332 if (kvm_pmu_is_valid_msr(vcpu, msr))
2333 return kvm_pmu_set_msr(vcpu, msr_info);
2335 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2339 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2346 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2350 * Reads an msr value (of 'msr_index') into 'pdata'.
2351 * Returns 0 on success, non-0 otherwise.
2352 * Assumes vcpu_load() was already called.
2354 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2356 return kvm_x86_ops->get_msr(vcpu, msr);
2358 EXPORT_SYMBOL_GPL(kvm_get_msr);
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2363 u64 mcg_cap = vcpu->arch.mcg_cap;
2364 unsigned bank_num = mcg_cap & 0xff;
2367 case MSR_IA32_P5_MC_ADDR:
2368 case MSR_IA32_P5_MC_TYPE:
2371 case MSR_IA32_MCG_CAP:
2372 data = vcpu->arch.mcg_cap;
2374 case MSR_IA32_MCG_CTL:
2375 if (!(mcg_cap & MCG_CTL_P))
2377 data = vcpu->arch.mcg_ctl;
2379 case MSR_IA32_MCG_STATUS:
2380 data = vcpu->arch.mcg_status;
2383 if (msr >= MSR_IA32_MC0_CTL &&
2384 msr < MSR_IA32_MCx_CTL(bank_num)) {
2385 u32 offset = msr - MSR_IA32_MC0_CTL;
2386 data = vcpu->arch.mce_banks[offset];
2395 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2397 switch (msr_info->index) {
2398 case MSR_IA32_PLATFORM_ID:
2399 case MSR_IA32_EBL_CR_POWERON:
2400 case MSR_IA32_DEBUGCTLMSR:
2401 case MSR_IA32_LASTBRANCHFROMIP:
2402 case MSR_IA32_LASTBRANCHTOIP:
2403 case MSR_IA32_LASTINTFROMIP:
2404 case MSR_IA32_LASTINTTOIP:
2406 case MSR_K8_TSEG_ADDR:
2407 case MSR_K8_TSEG_MASK:
2409 case MSR_VM_HSAVE_PA:
2410 case MSR_K8_INT_PENDING_MSG:
2411 case MSR_AMD64_NB_CFG:
2412 case MSR_FAM10H_MMIO_CONF_BASE:
2413 case MSR_AMD64_BU_CFG2:
2414 case MSR_IA32_PERF_CTL:
2415 case MSR_AMD64_DC_CFG:
2418 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2419 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2420 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2421 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2422 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2423 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2426 case MSR_IA32_UCODE_REV:
2427 msr_info->data = 0x100000000ULL;
2430 case 0x200 ... 0x2ff:
2431 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2432 case 0xcd: /* fsb frequency */
2436 * MSR_EBC_FREQUENCY_ID
2437 * Conservative value valid for even the basic CPU models.
2438 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2439 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2440 * and 266MHz for model 3, or 4. Set Core Clock
2441 * Frequency to System Bus Frequency Ratio to 1 (bits
2442 * 31:24) even though these are only valid for CPU
2443 * models > 2, however guests may end up dividing or
2444 * multiplying by zero otherwise.
2446 case MSR_EBC_FREQUENCY_ID:
2447 msr_info->data = 1 << 24;
2449 case MSR_IA32_APICBASE:
2450 msr_info->data = kvm_get_apic_base(vcpu);
2452 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2453 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2455 case MSR_IA32_TSCDEADLINE:
2456 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2458 case MSR_IA32_TSC_ADJUST:
2459 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2461 case MSR_IA32_MISC_ENABLE:
2462 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2464 case MSR_IA32_SMBASE:
2465 if (!msr_info->host_initiated)
2467 msr_info->data = vcpu->arch.smbase;
2469 case MSR_IA32_PERF_STATUS:
2470 /* TSC increment by tick */
2471 msr_info->data = 1000ULL;
2472 /* CPU multiplier */
2473 msr_info->data |= (((uint64_t)4ULL) << 40);
2476 msr_info->data = vcpu->arch.efer;
2478 case MSR_KVM_WALL_CLOCK:
2479 case MSR_KVM_WALL_CLOCK_NEW:
2480 msr_info->data = vcpu->kvm->arch.wall_clock;
2482 case MSR_KVM_SYSTEM_TIME:
2483 case MSR_KVM_SYSTEM_TIME_NEW:
2484 msr_info->data = vcpu->arch.time;
2486 case MSR_KVM_ASYNC_PF_EN:
2487 msr_info->data = vcpu->arch.apf.msr_val;
2489 case MSR_KVM_STEAL_TIME:
2490 msr_info->data = vcpu->arch.st.msr_val;
2492 case MSR_KVM_PV_EOI_EN:
2493 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2495 case MSR_IA32_P5_MC_ADDR:
2496 case MSR_IA32_P5_MC_TYPE:
2497 case MSR_IA32_MCG_CAP:
2498 case MSR_IA32_MCG_CTL:
2499 case MSR_IA32_MCG_STATUS:
2500 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2501 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2502 case MSR_K7_CLK_CTL:
2504 * Provide expected ramp-up count for K7. All other
2505 * are set to zero, indicating minimum divisors for
2508 * This prevents guest kernels on AMD host with CPU
2509 * type 6, model 8 and higher from exploding due to
2510 * the rdmsr failing.
2512 msr_info->data = 0x20000000;
2514 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2515 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2516 case HV_X64_MSR_CRASH_CTL:
2517 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2518 return kvm_hv_get_msr_common(vcpu,
2519 msr_info->index, &msr_info->data);
2521 case MSR_IA32_BBL_CR_CTL3:
2522 /* This legacy MSR exists but isn't fully documented in current
2523 * silicon. It is however accessed by winxp in very narrow
2524 * scenarios where it sets bit #19, itself documented as
2525 * a "reserved" bit. Best effort attempt to source coherent
2526 * read data here should the balance of the register be
2527 * interpreted by the guest:
2529 * L2 cache control register 3: 64GB range, 256KB size,
2530 * enabled, latency 0x1, configured
2532 msr_info->data = 0xbe702111;
2534 case MSR_AMD64_OSVW_ID_LENGTH:
2535 if (!guest_cpuid_has_osvw(vcpu))
2537 msr_info->data = vcpu->arch.osvw.length;
2539 case MSR_AMD64_OSVW_STATUS:
2540 if (!guest_cpuid_has_osvw(vcpu))
2542 msr_info->data = vcpu->arch.osvw.status;
2544 case MSR_PLATFORM_INFO:
2545 msr_info->data = vcpu->arch.msr_platform_info;
2547 case MSR_MISC_FEATURES_ENABLES:
2548 msr_info->data = vcpu->arch.msr_misc_features_enables;
2551 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2552 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2554 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2558 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2565 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2568 * Read or write a bunch of msrs. All parameters are kernel addresses.
2570 * @return number of msrs set successfully.
2572 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2573 struct kvm_msr_entry *entries,
2574 int (*do_msr)(struct kvm_vcpu *vcpu,
2575 unsigned index, u64 *data))
2579 idx = srcu_read_lock(&vcpu->kvm->srcu);
2580 for (i = 0; i < msrs->nmsrs; ++i)
2581 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2583 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2589 * Read or write a bunch of msrs. Parameters are user addresses.
2591 * @return number of msrs set successfully.
2593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2594 int (*do_msr)(struct kvm_vcpu *vcpu,
2595 unsigned index, u64 *data),
2598 struct kvm_msrs msrs;
2599 struct kvm_msr_entry *entries;
2604 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2608 if (msrs.nmsrs >= MAX_IO_MSRS)
2611 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2612 entries = memdup_user(user_msrs->entries, size);
2613 if (IS_ERR(entries)) {
2614 r = PTR_ERR(entries);
2618 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2634 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 case KVM_CAP_IRQCHIP:
2641 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2642 case KVM_CAP_SET_TSS_ADDR:
2643 case KVM_CAP_EXT_CPUID:
2644 case KVM_CAP_EXT_EMUL_CPUID:
2645 case KVM_CAP_CLOCKSOURCE:
2647 case KVM_CAP_NOP_IO_DELAY:
2648 case KVM_CAP_MP_STATE:
2649 case KVM_CAP_SYNC_MMU:
2650 case KVM_CAP_USER_NMI:
2651 case KVM_CAP_REINJECT_CONTROL:
2652 case KVM_CAP_IRQ_INJECT_STATUS:
2653 case KVM_CAP_IOEVENTFD:
2654 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2656 case KVM_CAP_PIT_STATE2:
2657 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2658 case KVM_CAP_XEN_HVM:
2659 case KVM_CAP_VCPU_EVENTS:
2660 case KVM_CAP_HYPERV:
2661 case KVM_CAP_HYPERV_VAPIC:
2662 case KVM_CAP_HYPERV_SPIN:
2663 case KVM_CAP_HYPERV_SYNIC:
2664 case KVM_CAP_PCI_SEGMENT:
2665 case KVM_CAP_DEBUGREGS:
2666 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2668 case KVM_CAP_ASYNC_PF:
2669 case KVM_CAP_GET_TSC_KHZ:
2670 case KVM_CAP_KVMCLOCK_CTRL:
2671 case KVM_CAP_READONLY_MEM:
2672 case KVM_CAP_HYPERV_TIME:
2673 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2674 case KVM_CAP_TSC_DEADLINE_TIMER:
2675 case KVM_CAP_ENABLE_CAP_VM:
2676 case KVM_CAP_DISABLE_QUIRKS:
2677 case KVM_CAP_SET_BOOT_CPU_ID:
2678 case KVM_CAP_SPLIT_IRQCHIP:
2679 case KVM_CAP_IMMEDIATE_EXIT:
2682 case KVM_CAP_ADJUST_CLOCK:
2683 r = KVM_CLOCK_TSC_STABLE;
2685 case KVM_CAP_X86_GUEST_MWAIT:
2686 r = kvm_mwait_in_guest();
2688 case KVM_CAP_X86_SMM:
2689 /* SMBASE is usually relocated above 1M on modern chipsets,
2690 * and SMM handlers might indeed rely on 4G segment limits,
2691 * so do not report SMM to be available if real mode is
2692 * emulated via vm86 mode. Still, do not go to great lengths
2693 * to avoid userspace's usage of the feature, because it is a
2694 * fringe case that is not enabled except via specific settings
2695 * of the module parameters.
2697 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2700 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2702 case KVM_CAP_NR_VCPUS:
2703 r = KVM_SOFT_MAX_VCPUS;
2705 case KVM_CAP_MAX_VCPUS:
2708 case KVM_CAP_NR_MEMSLOTS:
2709 r = KVM_USER_MEM_SLOTS;
2711 case KVM_CAP_PV_MMU: /* obsolete */
2715 r = KVM_MAX_MCE_BANKS;
2718 r = boot_cpu_has(X86_FEATURE_XSAVE);
2720 case KVM_CAP_TSC_CONTROL:
2721 r = kvm_has_tsc_control;
2723 case KVM_CAP_X2APIC_API:
2724 r = KVM_X2APIC_API_VALID_FLAGS;
2734 long kvm_arch_dev_ioctl(struct file *filp,
2735 unsigned int ioctl, unsigned long arg)
2737 void __user *argp = (void __user *)arg;
2741 case KVM_GET_MSR_INDEX_LIST: {
2742 struct kvm_msr_list __user *user_msr_list = argp;
2743 struct kvm_msr_list msr_list;
2747 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2750 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2751 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2754 if (n < msr_list.nmsrs)
2757 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2758 num_msrs_to_save * sizeof(u32)))
2760 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2762 num_emulated_msrs * sizeof(u32)))
2767 case KVM_GET_SUPPORTED_CPUID:
2768 case KVM_GET_EMULATED_CPUID: {
2769 struct kvm_cpuid2 __user *cpuid_arg = argp;
2770 struct kvm_cpuid2 cpuid;
2773 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2776 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2782 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2787 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2789 if (copy_to_user(argp, &kvm_mce_cap_supported,
2790 sizeof(kvm_mce_cap_supported)))
2802 static void wbinvd_ipi(void *garbage)
2807 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2809 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2814 /* Address WBINVD may be executed by guest */
2815 if (need_emulate_wbinvd(vcpu)) {
2816 if (kvm_x86_ops->has_wbinvd_exit())
2817 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2818 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2819 smp_call_function_single(vcpu->cpu,
2820 wbinvd_ipi, NULL, 1);
2823 kvm_x86_ops->vcpu_load(vcpu, cpu);
2825 /* Apply any externally detected TSC adjustments (due to suspend) */
2826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2828 vcpu->arch.tsc_offset_adjustment = 0;
2829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2832 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2834 rdtsc() - vcpu->arch.last_host_tsc;
2836 mark_tsc_unstable("KVM discovered backwards TSC");
2838 if (check_tsc_unstable()) {
2839 u64 offset = kvm_compute_tsc_offset(vcpu,
2840 vcpu->arch.last_guest_tsc);
2841 kvm_vcpu_write_tsc_offset(vcpu, offset);
2842 vcpu->arch.tsc_catchup = 1;
2844 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2845 kvm_x86_ops->set_hv_timer(vcpu,
2846 kvm_get_lapic_target_expiration_tsc(vcpu)))
2847 kvm_lapic_switch_to_sw_timer(vcpu);
2849 * On a host with synchronized TSC, there is no need to update
2850 * kvmclock on vcpu->cpu migration
2852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2854 if (vcpu->cpu != cpu)
2855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2864 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2867 vcpu->arch.st.steal.preempted = 1;
2869 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2870 &vcpu->arch.st.steal.preempted,
2871 offsetof(struct kvm_steal_time, preempted),
2872 sizeof(vcpu->arch.st.steal.preempted));
2875 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2879 * Disable page faults because we're in atomic context here.
2880 * kvm_write_guest_offset_cached() would call might_fault()
2881 * that relies on pagefault_disable() to tell if there's a
2882 * bug. NOTE: the write to guest memory may not go through if
2883 * during postcopy live migration or if there's heavy guest
2886 pagefault_disable();
2888 * kvm_memslots() will be called by
2889 * kvm_write_guest_offset_cached() so take the srcu lock.
2891 idx = srcu_read_lock(&vcpu->kvm->srcu);
2892 kvm_steal_time_set_preempted(vcpu);
2893 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2895 kvm_x86_ops->vcpu_put(vcpu);
2896 kvm_put_guest_fpu(vcpu);
2897 vcpu->arch.last_host_tsc = rdtsc();
2900 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2901 struct kvm_lapic_state *s)
2903 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2904 kvm_x86_ops->sync_pir_to_irr(vcpu);
2906 return kvm_apic_get_state(vcpu, s);
2909 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2910 struct kvm_lapic_state *s)
2914 r = kvm_apic_set_state(vcpu, s);
2917 update_cr8_intercept(vcpu);
2922 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2924 return (!lapic_in_kernel(vcpu) ||
2925 kvm_apic_accept_pic_intr(vcpu));
2929 * if userspace requested an interrupt window, check that the
2930 * interrupt window is open.
2932 * No need to exit to userspace if we already have an interrupt queued.
2934 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2936 return kvm_arch_interrupt_allowed(vcpu) &&
2937 !kvm_cpu_has_interrupt(vcpu) &&
2938 !kvm_event_needs_reinjection(vcpu) &&
2939 kvm_cpu_accept_dm_intr(vcpu);
2942 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2943 struct kvm_interrupt *irq)
2945 if (irq->irq >= KVM_NR_INTERRUPTS)
2948 if (!irqchip_in_kernel(vcpu->kvm)) {
2949 kvm_queue_interrupt(vcpu, irq->irq, false);
2950 kvm_make_request(KVM_REQ_EVENT, vcpu);
2955 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2956 * fail for in-kernel 8259.
2958 if (pic_in_kernel(vcpu->kvm))
2961 if (vcpu->arch.pending_external_vector != -1)
2964 vcpu->arch.pending_external_vector = irq->irq;
2965 kvm_make_request(KVM_REQ_EVENT, vcpu);
2969 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2971 kvm_inject_nmi(vcpu);
2976 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2978 kvm_make_request(KVM_REQ_SMI, vcpu);
2983 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2984 struct kvm_tpr_access_ctl *tac)
2988 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2992 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2996 unsigned bank_num = mcg_cap & 0xff, bank;
2999 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3001 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3004 vcpu->arch.mcg_cap = mcg_cap;
3005 /* Init IA32_MCG_CTL to all 1s */
3006 if (mcg_cap & MCG_CTL_P)
3007 vcpu->arch.mcg_ctl = ~(u64)0;
3008 /* Init IA32_MCi_CTL to all 1s */
3009 for (bank = 0; bank < bank_num; bank++)
3010 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3012 if (kvm_x86_ops->setup_mce)
3013 kvm_x86_ops->setup_mce(vcpu);
3018 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3019 struct kvm_x86_mce *mce)
3021 u64 mcg_cap = vcpu->arch.mcg_cap;
3022 unsigned bank_num = mcg_cap & 0xff;
3023 u64 *banks = vcpu->arch.mce_banks;
3025 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3028 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3029 * reporting is disabled
3031 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3032 vcpu->arch.mcg_ctl != ~(u64)0)
3034 banks += 4 * mce->bank;
3036 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3037 * reporting is disabled for the bank
3039 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3041 if (mce->status & MCI_STATUS_UC) {
3042 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3043 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3044 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3047 if (banks[1] & MCI_STATUS_VAL)
3048 mce->status |= MCI_STATUS_OVER;
3049 banks[2] = mce->addr;
3050 banks[3] = mce->misc;
3051 vcpu->arch.mcg_status = mce->mcg_status;
3052 banks[1] = mce->status;
3053 kvm_queue_exception(vcpu, MC_VECTOR);
3054 } else if (!(banks[1] & MCI_STATUS_VAL)
3055 || !(banks[1] & MCI_STATUS_UC)) {
3056 if (banks[1] & MCI_STATUS_VAL)
3057 mce->status |= MCI_STATUS_OVER;
3058 banks[2] = mce->addr;
3059 banks[3] = mce->misc;
3060 banks[1] = mce->status;
3062 banks[1] |= MCI_STATUS_OVER;
3066 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3067 struct kvm_vcpu_events *events)
3070 events->exception.injected =
3071 vcpu->arch.exception.pending &&
3072 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3073 events->exception.nr = vcpu->arch.exception.nr;
3074 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3075 events->exception.pad = 0;
3076 events->exception.error_code = vcpu->arch.exception.error_code;
3078 events->interrupt.injected =
3079 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3080 events->interrupt.nr = vcpu->arch.interrupt.nr;
3081 events->interrupt.soft = 0;
3082 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3084 events->nmi.injected = vcpu->arch.nmi_injected;
3085 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3086 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3087 events->nmi.pad = 0;
3089 events->sipi_vector = 0; /* never valid when reporting to user space */
3091 events->smi.smm = is_smm(vcpu);
3092 events->smi.pending = vcpu->arch.smi_pending;
3093 events->smi.smm_inside_nmi =
3094 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3095 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3098 | KVM_VCPUEVENT_VALID_SHADOW
3099 | KVM_VCPUEVENT_VALID_SMM);
3100 memset(&events->reserved, 0, sizeof(events->reserved));
3103 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3105 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3106 struct kvm_vcpu_events *events)
3108 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3109 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3110 | KVM_VCPUEVENT_VALID_SHADOW
3111 | KVM_VCPUEVENT_VALID_SMM))
3114 if (events->exception.injected &&
3115 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3116 is_guest_mode(vcpu)))
3119 /* INITs are latched while in SMM */
3120 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3121 (events->smi.smm || events->smi.pending) &&
3122 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3126 vcpu->arch.exception.pending = events->exception.injected;
3127 vcpu->arch.exception.nr = events->exception.nr;
3128 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3129 vcpu->arch.exception.error_code = events->exception.error_code;
3131 vcpu->arch.interrupt.pending = events->interrupt.injected;
3132 vcpu->arch.interrupt.nr = events->interrupt.nr;
3133 vcpu->arch.interrupt.soft = events->interrupt.soft;
3134 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3135 kvm_x86_ops->set_interrupt_shadow(vcpu,
3136 events->interrupt.shadow);
3138 vcpu->arch.nmi_injected = events->nmi.injected;
3139 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3140 vcpu->arch.nmi_pending = events->nmi.pending;
3141 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3143 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3144 lapic_in_kernel(vcpu))
3145 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3147 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3148 u32 hflags = vcpu->arch.hflags;
3149 if (events->smi.smm)
3150 hflags |= HF_SMM_MASK;
3152 hflags &= ~HF_SMM_MASK;
3153 kvm_set_hflags(vcpu, hflags);
3155 vcpu->arch.smi_pending = events->smi.pending;
3156 if (events->smi.smm_inside_nmi)
3157 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3159 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3160 if (lapic_in_kernel(vcpu)) {
3161 if (events->smi.latched_init)
3162 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3164 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3168 kvm_make_request(KVM_REQ_EVENT, vcpu);
3173 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3174 struct kvm_debugregs *dbgregs)
3178 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3179 kvm_get_dr(vcpu, 6, &val);
3181 dbgregs->dr7 = vcpu->arch.dr7;
3183 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3186 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3187 struct kvm_debugregs *dbgregs)
3192 if (dbgregs->dr6 & ~0xffffffffull)
3194 if (dbgregs->dr7 & ~0xffffffffull)
3197 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3198 kvm_update_dr0123(vcpu);
3199 vcpu->arch.dr6 = dbgregs->dr6;
3200 kvm_update_dr6(vcpu);
3201 vcpu->arch.dr7 = dbgregs->dr7;
3202 kvm_update_dr7(vcpu);
3207 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3209 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3211 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3212 u64 xstate_bv = xsave->header.xfeatures;
3216 * Copy legacy XSAVE area, to avoid complications with CPUID
3217 * leaves 0 and 1 in the loop below.
3219 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3222 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3223 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3226 * Copy each region from the possibly compacted offset to the
3227 * non-compacted offset.
3229 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3231 u64 feature = valid & -valid;
3232 int index = fls64(feature) - 1;
3233 void *src = get_xsave_addr(xsave, feature);
3236 u32 size, offset, ecx, edx;
3237 cpuid_count(XSTATE_CPUID, index,
3238 &size, &offset, &ecx, &edx);
3239 memcpy(dest + offset, src, size);
3246 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3248 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3249 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3253 * Copy legacy XSAVE area, to avoid complications with CPUID
3254 * leaves 0 and 1 in the loop below.
3256 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3258 /* Set XSTATE_BV and possibly XCOMP_BV. */
3259 xsave->header.xfeatures = xstate_bv;
3260 if (boot_cpu_has(X86_FEATURE_XSAVES))
3261 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3264 * Copy each region from the non-compacted offset to the
3265 * possibly compacted offset.
3267 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3269 u64 feature = valid & -valid;
3270 int index = fls64(feature) - 1;
3271 void *dest = get_xsave_addr(xsave, feature);
3274 u32 size, offset, ecx, edx;
3275 cpuid_count(XSTATE_CPUID, index,
3276 &size, &offset, &ecx, &edx);
3277 memcpy(dest, src + offset, size);
3284 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3285 struct kvm_xsave *guest_xsave)
3287 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3288 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3289 fill_xsave((u8 *) guest_xsave->region, vcpu);
3291 memcpy(guest_xsave->region,
3292 &vcpu->arch.guest_fpu.state.fxsave,
3293 sizeof(struct fxregs_state));
3294 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3295 XFEATURE_MASK_FPSSE;
3299 #define XSAVE_MXCSR_OFFSET 24
3301 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3302 struct kvm_xsave *guest_xsave)
3305 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3306 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3308 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3310 * Here we allow setting states that are not present in
3311 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3312 * with old userspace.
3314 if (xstate_bv & ~kvm_supported_xcr0() ||
3315 mxcsr & ~mxcsr_feature_mask)
3317 load_xsave(vcpu, (u8 *)guest_xsave->region);
3319 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3320 mxcsr & ~mxcsr_feature_mask)
3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323 guest_xsave->region, sizeof(struct fxregs_state));
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329 struct kvm_xcrs *guest_xcrs)
3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332 guest_xcrs->nr_xcrs = 0;
3336 guest_xcrs->nr_xcrs = 1;
3337 guest_xcrs->flags = 0;
3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343 struct kvm_xcrs *guest_xcrs)
3347 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354 /* Only support XCR0 currently */
3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357 guest_xcrs->xcrs[i].value);
3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367 * stopped by the hypervisor. This function will be called from the host only.
3368 * EINVAL is returned when the host attempts to set the flag for a guest that
3369 * does not support pv clocks.
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3373 if (!vcpu->arch.pv_time_enabled)
3375 vcpu->arch.pvclock_set_guest_stopped_request = true;
3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381 struct kvm_enable_cap *cap)
3387 case KVM_CAP_HYPERV_SYNIC:
3388 if (!irqchip_in_kernel(vcpu->kvm))
3390 return kvm_hv_activate_synic(vcpu);
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3399 struct kvm_vcpu *vcpu = filp->private_data;
3400 void __user *argp = (void __user *)arg;
3403 struct kvm_lapic_state *lapic;
3404 struct kvm_xsave *xsave;
3405 struct kvm_xcrs *xcrs;
3411 case KVM_GET_LAPIC: {
3413 if (!lapic_in_kernel(vcpu))
3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3429 case KVM_SET_LAPIC: {
3431 if (!lapic_in_kernel(vcpu))
3433 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434 if (IS_ERR(u.lapic))
3435 return PTR_ERR(u.lapic);
3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3440 case KVM_INTERRUPT: {
3441 struct kvm_interrupt irq;
3444 if (copy_from_user(&irq, argp, sizeof irq))
3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3450 r = kvm_vcpu_ioctl_nmi(vcpu);
3454 r = kvm_vcpu_ioctl_smi(vcpu);
3457 case KVM_SET_CPUID: {
3458 struct kvm_cpuid __user *cpuid_arg = argp;
3459 struct kvm_cpuid cpuid;
3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3467 case KVM_SET_CPUID2: {
3468 struct kvm_cpuid2 __user *cpuid_arg = argp;
3469 struct kvm_cpuid2 cpuid;
3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475 cpuid_arg->entries);
3478 case KVM_GET_CPUID2: {
3479 struct kvm_cpuid2 __user *cpuid_arg = argp;
3480 struct kvm_cpuid2 cpuid;
3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486 cpuid_arg->entries);
3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3496 r = msr_io(vcpu, argp, do_get_msr, 1);
3499 r = msr_io(vcpu, argp, do_set_msr, 0);
3501 case KVM_TPR_ACCESS_REPORTING: {
3502 struct kvm_tpr_access_ctl tac;
3505 if (copy_from_user(&tac, argp, sizeof tac))
3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3511 if (copy_to_user(argp, &tac, sizeof tac))
3516 case KVM_SET_VAPIC_ADDR: {
3517 struct kvm_vapic_addr va;
3521 if (!lapic_in_kernel(vcpu))
3524 if (copy_from_user(&va, argp, sizeof va))
3526 idx = srcu_read_lock(&vcpu->kvm->srcu);
3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3531 case KVM_X86_SETUP_MCE: {
3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3540 case KVM_X86_SET_MCE: {
3541 struct kvm_x86_mce mce;
3544 if (copy_from_user(&mce, argp, sizeof mce))
3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3549 case KVM_GET_VCPU_EVENTS: {
3550 struct kvm_vcpu_events events;
3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3560 case KVM_SET_VCPU_EVENTS: {
3561 struct kvm_vcpu_events events;
3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3570 case KVM_GET_DEBUGREGS: {
3571 struct kvm_debugregs dbgregs;
3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3576 if (copy_to_user(argp, &dbgregs,
3577 sizeof(struct kvm_debugregs)))
3582 case KVM_SET_DEBUGREGS: {
3583 struct kvm_debugregs dbgregs;
3586 if (copy_from_user(&dbgregs, argp,
3587 sizeof(struct kvm_debugregs)))
3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3593 case KVM_GET_XSAVE: {
3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3607 case KVM_SET_XSAVE: {
3608 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609 if (IS_ERR(u.xsave))
3610 return PTR_ERR(u.xsave);
3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3615 case KVM_GET_XCRS: {
3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3624 if (copy_to_user(argp, u.xcrs,
3625 sizeof(struct kvm_xcrs)))
3630 case KVM_SET_XCRS: {
3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3633 return PTR_ERR(u.xcrs);
3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3638 case KVM_SET_TSC_KHZ: {
3642 user_tsc_khz = (u32)arg;
3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3647 if (user_tsc_khz == 0)
3648 user_tsc_khz = tsc_khz;
3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3655 case KVM_GET_TSC_KHZ: {
3656 r = vcpu->arch.virtual_tsc_khz;
3659 case KVM_KVMCLOCK_CTRL: {
3660 r = kvm_set_guest_paused(vcpu);
3663 case KVM_ENABLE_CAP: {
3664 struct kvm_enable_cap cap;
3667 if (copy_from_user(&cap, argp, sizeof(cap)))
3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3682 return VM_FAULT_SIGBUS;
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3689 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3698 kvm->arch.ept_identity_map_addr = ident_addr;
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703 u32 kvm_nr_mmu_pages)
3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3708 mutex_lock(&kvm->slots_lock);
3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3713 mutex_unlock(&kvm->slots_lock);
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3719 return kvm->arch.n_max_mmu_pages;
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3724 struct kvm_pic *pic = kvm->arch.vpic;
3728 switch (chip->chip_id) {
3729 case KVM_IRQCHIP_PIC_MASTER:
3730 memcpy(&chip->chip.pic, &pic->pics[0],
3731 sizeof(struct kvm_pic_state));
3733 case KVM_IRQCHIP_PIC_SLAVE:
3734 memcpy(&chip->chip.pic, &pic->pics[1],
3735 sizeof(struct kvm_pic_state));
3737 case KVM_IRQCHIP_IOAPIC:
3738 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3747 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3749 struct kvm_pic *pic = kvm->arch.vpic;
3753 switch (chip->chip_id) {
3754 case KVM_IRQCHIP_PIC_MASTER:
3755 spin_lock(&pic->lock);
3756 memcpy(&pic->pics[0], &chip->chip.pic,
3757 sizeof(struct kvm_pic_state));
3758 spin_unlock(&pic->lock);
3760 case KVM_IRQCHIP_PIC_SLAVE:
3761 spin_lock(&pic->lock);
3762 memcpy(&pic->pics[1], &chip->chip.pic,
3763 sizeof(struct kvm_pic_state));
3764 spin_unlock(&pic->lock);
3766 case KVM_IRQCHIP_IOAPIC:
3767 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3773 kvm_pic_update_irq(pic);
3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3779 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3781 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3783 mutex_lock(&kps->lock);
3784 memcpy(ps, &kps->channels, sizeof(*ps));
3785 mutex_unlock(&kps->lock);
3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3792 struct kvm_pit *pit = kvm->arch.vpit;
3794 mutex_lock(&pit->pit_state.lock);
3795 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3796 for (i = 0; i < 3; i++)
3797 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3798 mutex_unlock(&pit->pit_state.lock);
3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3804 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3805 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3806 sizeof(ps->channels));
3807 ps->flags = kvm->arch.vpit->pit_state.flags;
3808 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3809 memset(&ps->reserved, 0, sizeof(ps->reserved));
3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3817 u32 prev_legacy, cur_legacy;
3818 struct kvm_pit *pit = kvm->arch.vpit;
3820 mutex_lock(&pit->pit_state.lock);
3821 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3822 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3823 if (!prev_legacy && cur_legacy)
3825 memcpy(&pit->pit_state.channels, &ps->channels,
3826 sizeof(pit->pit_state.channels));
3827 pit->pit_state.flags = ps->flags;
3828 for (i = 0; i < 3; i++)
3829 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3831 mutex_unlock(&pit->pit_state.lock);
3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3836 struct kvm_reinject_control *control)
3838 struct kvm_pit *pit = kvm->arch.vpit;
3843 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3844 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3845 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3847 mutex_lock(&pit->pit_state.lock);
3848 kvm_pit_set_reinject(pit, control->pit_reinject);
3849 mutex_unlock(&pit->pit_state.lock);
3855 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3856 * @kvm: kvm instance
3857 * @log: slot id and address to which we copy the log
3859 * Steps 1-4 below provide general overview of dirty page logging. See
3860 * kvm_get_dirty_log_protect() function description for additional details.
3862 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3863 * always flush the TLB (step 4) even if previous step failed and the dirty
3864 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3865 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3866 * writes will be marked dirty for next log read.
3868 * 1. Take a snapshot of the bit and clear it if needed.
3869 * 2. Write protect the corresponding page.
3870 * 3. Copy the snapshot to the userspace.
3871 * 4. Flush TLB's if needed.
3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3875 bool is_dirty = false;
3878 mutex_lock(&kvm->slots_lock);
3881 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3883 if (kvm_x86_ops->flush_log_dirty)
3884 kvm_x86_ops->flush_log_dirty(kvm);
3886 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3889 * All the TLBs can be flushed out of mmu lock, see the comments in
3890 * kvm_mmu_slot_remove_write_access().
3892 lockdep_assert_held(&kvm->slots_lock);
3894 kvm_flush_remote_tlbs(kvm);
3896 mutex_unlock(&kvm->slots_lock);
3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3903 if (!irqchip_in_kernel(kvm))
3906 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3907 irq_event->irq, irq_event->level,
3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3913 struct kvm_enable_cap *cap)
3921 case KVM_CAP_DISABLE_QUIRKS:
3922 kvm->arch.disabled_quirks = cap->args[0];
3925 case KVM_CAP_SPLIT_IRQCHIP: {
3926 mutex_lock(&kvm->lock);
3928 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3929 goto split_irqchip_unlock;
3931 if (irqchip_in_kernel(kvm))
3932 goto split_irqchip_unlock;
3933 if (kvm->created_vcpus)
3934 goto split_irqchip_unlock;
3935 r = kvm_setup_empty_irq_routing(kvm);
3937 goto split_irqchip_unlock;
3938 /* Pairs with irqchip_in_kernel. */
3940 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3941 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3943 split_irqchip_unlock:
3944 mutex_unlock(&kvm->lock);
3947 case KVM_CAP_X2APIC_API:
3949 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3952 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3953 kvm->arch.x2apic_format = true;
3954 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3955 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3966 long kvm_arch_vm_ioctl(struct file *filp,
3967 unsigned int ioctl, unsigned long arg)
3969 struct kvm *kvm = filp->private_data;
3970 void __user *argp = (void __user *)arg;
3973 * This union makes it completely explicit to gcc-3.x
3974 * that these two variables' stack usage should be
3975 * combined, not added together.
3978 struct kvm_pit_state ps;
3979 struct kvm_pit_state2 ps2;
3980 struct kvm_pit_config pit_config;
3984 case KVM_SET_TSS_ADDR:
3985 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3987 case KVM_SET_IDENTITY_MAP_ADDR: {
3991 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3993 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3996 case KVM_SET_NR_MMU_PAGES:
3997 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3999 case KVM_GET_NR_MMU_PAGES:
4000 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4002 case KVM_CREATE_IRQCHIP: {
4003 mutex_lock(&kvm->lock);
4006 if (irqchip_in_kernel(kvm))
4007 goto create_irqchip_unlock;
4010 if (kvm->created_vcpus)
4011 goto create_irqchip_unlock;
4013 r = kvm_pic_init(kvm);
4015 goto create_irqchip_unlock;
4017 r = kvm_ioapic_init(kvm);
4019 kvm_pic_destroy(kvm);
4020 goto create_irqchip_unlock;
4023 r = kvm_setup_default_irq_routing(kvm);
4025 kvm_ioapic_destroy(kvm);
4026 kvm_pic_destroy(kvm);
4027 goto create_irqchip_unlock;
4029 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4031 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4032 create_irqchip_unlock:
4033 mutex_unlock(&kvm->lock);
4036 case KVM_CREATE_PIT:
4037 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4039 case KVM_CREATE_PIT2:
4041 if (copy_from_user(&u.pit_config, argp,
4042 sizeof(struct kvm_pit_config)))
4045 mutex_lock(&kvm->lock);
4048 goto create_pit_unlock;
4050 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4054 mutex_unlock(&kvm->lock);
4056 case KVM_GET_IRQCHIP: {
4057 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4058 struct kvm_irqchip *chip;
4060 chip = memdup_user(argp, sizeof(*chip));
4067 if (!irqchip_kernel(kvm))
4068 goto get_irqchip_out;
4069 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4071 goto get_irqchip_out;
4073 if (copy_to_user(argp, chip, sizeof *chip))
4074 goto get_irqchip_out;
4080 case KVM_SET_IRQCHIP: {
4081 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4082 struct kvm_irqchip *chip;
4084 chip = memdup_user(argp, sizeof(*chip));
4091 if (!irqchip_kernel(kvm))
4092 goto set_irqchip_out;
4093 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4095 goto set_irqchip_out;
4103 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4106 if (!kvm->arch.vpit)
4108 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4112 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4119 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4122 if (!kvm->arch.vpit)
4124 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4127 case KVM_GET_PIT2: {
4129 if (!kvm->arch.vpit)
4131 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4135 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4140 case KVM_SET_PIT2: {
4142 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4145 if (!kvm->arch.vpit)
4147 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4150 case KVM_REINJECT_CONTROL: {
4151 struct kvm_reinject_control control;
4153 if (copy_from_user(&control, argp, sizeof(control)))
4155 r = kvm_vm_ioctl_reinject(kvm, &control);
4158 case KVM_SET_BOOT_CPU_ID:
4160 mutex_lock(&kvm->lock);
4161 if (kvm->created_vcpus)
4164 kvm->arch.bsp_vcpu_id = arg;
4165 mutex_unlock(&kvm->lock);
4167 case KVM_XEN_HVM_CONFIG: {
4169 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4170 sizeof(struct kvm_xen_hvm_config)))
4173 if (kvm->arch.xen_hvm_config.flags)
4178 case KVM_SET_CLOCK: {
4179 struct kvm_clock_data user_ns;
4183 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4191 now_ns = get_kvmclock_ns(kvm);
4192 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4193 kvm_gen_update_masterclock(kvm);
4196 case KVM_GET_CLOCK: {
4197 struct kvm_clock_data user_ns;
4200 now_ns = get_kvmclock_ns(kvm);
4201 user_ns.clock = now_ns;
4202 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4203 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4206 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4211 case KVM_ENABLE_CAP: {
4212 struct kvm_enable_cap cap;
4215 if (copy_from_user(&cap, argp, sizeof(cap)))
4217 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4227 static void kvm_init_msr_list(void)
4232 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4233 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4237 * Even MSRs that are valid in the host may not be exposed
4238 * to the guests in some cases.
4240 switch (msrs_to_save[i]) {
4241 case MSR_IA32_BNDCFGS:
4242 if (!kvm_x86_ops->mpx_supported())
4246 if (!kvm_x86_ops->rdtscp_supported())
4254 msrs_to_save[j] = msrs_to_save[i];
4257 num_msrs_to_save = j;
4259 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4260 switch (emulated_msrs[i]) {
4261 case MSR_IA32_SMBASE:
4262 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4270 emulated_msrs[j] = emulated_msrs[i];
4273 num_emulated_msrs = j;
4276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4284 if (!(lapic_in_kernel(vcpu) &&
4285 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4286 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4304 if (!(lapic_in_kernel(vcpu) &&
4305 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4307 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4309 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4319 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4320 struct kvm_segment *var, int seg)
4322 kvm_x86_ops->set_segment(vcpu, var, seg);
4325 void kvm_get_segment(struct kvm_vcpu *vcpu,
4326 struct kvm_segment *var, int seg)
4328 kvm_x86_ops->get_segment(vcpu, var, seg);
4331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4332 struct x86_exception *exception)
4336 BUG_ON(!mmu_is_nested(vcpu));
4338 /* NPT walks are always user-walks */
4339 access |= PFERR_USER_MASK;
4340 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4346 struct x86_exception *exception)
4348 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4352 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4353 struct x86_exception *exception)
4355 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4356 access |= PFERR_FETCH_MASK;
4357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4360 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4361 struct x86_exception *exception)
4363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364 access |= PFERR_WRITE_MASK;
4365 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4368 /* uses this to access any guest's mapped memory without checking CPL */
4369 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4370 struct x86_exception *exception)
4372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4375 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4376 struct kvm_vcpu *vcpu, u32 access,
4377 struct x86_exception *exception)
4380 int r = X86EMUL_CONTINUE;
4383 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4385 unsigned offset = addr & (PAGE_SIZE-1);
4386 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4389 if (gpa == UNMAPPED_GVA)
4390 return X86EMUL_PROPAGATE_FAULT;
4391 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4394 r = X86EMUL_IO_NEEDED;
4406 /* used for instruction fetching */
4407 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4408 gva_t addr, void *val, unsigned int bytes,
4409 struct x86_exception *exception)
4411 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4416 /* Inline kvm_read_guest_virt_helper for speed. */
4417 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4419 if (unlikely(gpa == UNMAPPED_GVA))
4420 return X86EMUL_PROPAGATE_FAULT;
4422 offset = addr & (PAGE_SIZE-1);
4423 if (WARN_ON(offset + bytes > PAGE_SIZE))
4424 bytes = (unsigned)PAGE_SIZE - offset;
4425 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4427 if (unlikely(ret < 0))
4428 return X86EMUL_IO_NEEDED;
4430 return X86EMUL_CONTINUE;
4433 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4434 gva_t addr, void *val, unsigned int bytes,
4435 struct x86_exception *exception)
4437 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4438 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4440 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4443 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4445 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4446 gva_t addr, void *val, unsigned int bytes,
4447 struct x86_exception *exception)
4449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4453 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4454 unsigned long addr, void *val, unsigned int bytes)
4456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4459 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4462 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4463 gva_t addr, void *val,
4465 struct x86_exception *exception)
4467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469 int r = X86EMUL_CONTINUE;
4472 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4475 unsigned offset = addr & (PAGE_SIZE-1);
4476 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4479 if (gpa == UNMAPPED_GVA)
4480 return X86EMUL_PROPAGATE_FAULT;
4481 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4483 r = X86EMUL_IO_NEEDED;
4494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4497 gpa_t gpa, bool write)
4499 /* For APIC access vmexit */
4500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4503 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4504 trace_vcpu_match_mmio(gva, gpa, write, true);
4511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4512 gpa_t *gpa, struct x86_exception *exception,
4515 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4516 | (write ? PFERR_WRITE_MASK : 0);
4519 * currently PKRU is only applied to ept enabled guest so
4520 * there is no pkey in EPT page table for L1 guest or EPT
4521 * shadow page table for L2 guest.
4523 if (vcpu_match_mmio_gva(vcpu, gva)
4524 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4525 vcpu->arch.access, 0, access)) {
4526 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4527 (gva & (PAGE_SIZE - 1));
4528 trace_vcpu_match_mmio(gva, *gpa, write, false);
4532 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4534 if (*gpa == UNMAPPED_GVA)
4537 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4540 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4541 const void *val, int bytes)
4545 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4548 kvm_page_track_write(vcpu, gpa, val, bytes);
4552 struct read_write_emulator_ops {
4553 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4555 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4556 void *val, int bytes);
4557 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4558 int bytes, void *val);
4559 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4560 void *val, int bytes);
4564 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4566 if (vcpu->mmio_read_completed) {
4567 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4568 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4569 vcpu->mmio_read_completed = 0;
4576 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4577 void *val, int bytes)
4579 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4582 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4583 void *val, int bytes)
4585 return emulator_write_phys(vcpu, gpa, val, bytes);
4588 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4590 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4591 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4594 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4595 void *val, int bytes)
4597 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4598 return X86EMUL_IO_NEEDED;
4601 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4602 void *val, int bytes)
4604 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4606 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4607 return X86EMUL_CONTINUE;
4610 static const struct read_write_emulator_ops read_emultor = {
4611 .read_write_prepare = read_prepare,
4612 .read_write_emulate = read_emulate,
4613 .read_write_mmio = vcpu_mmio_read,
4614 .read_write_exit_mmio = read_exit_mmio,
4617 static const struct read_write_emulator_ops write_emultor = {
4618 .read_write_emulate = write_emulate,
4619 .read_write_mmio = write_mmio,
4620 .read_write_exit_mmio = write_exit_mmio,
4624 static int emulator_read_write_onepage(unsigned long addr, void *val,
4626 struct x86_exception *exception,
4627 struct kvm_vcpu *vcpu,
4628 const struct read_write_emulator_ops *ops)
4632 bool write = ops->write;
4633 struct kvm_mmio_fragment *frag;
4634 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4637 * If the exit was due to a NPF we may already have a GPA.
4638 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4639 * Note, this cannot be used on string operations since string
4640 * operation using rep will only have the initial GPA from the NPF
4643 if (vcpu->arch.gpa_available &&
4644 emulator_can_use_gpa(ctxt) &&
4645 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4646 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4647 gpa = exception->address;
4651 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4654 return X86EMUL_PROPAGATE_FAULT;
4656 /* For APIC access vmexit */
4660 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4661 return X86EMUL_CONTINUE;
4665 * Is this MMIO handled locally?
4667 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4668 if (handled == bytes)
4669 return X86EMUL_CONTINUE;
4675 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4676 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4680 return X86EMUL_CONTINUE;
4683 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4685 void *val, unsigned int bytes,
4686 struct x86_exception *exception,
4687 const struct read_write_emulator_ops *ops)
4689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4693 if (ops->read_write_prepare &&
4694 ops->read_write_prepare(vcpu, val, bytes))
4695 return X86EMUL_CONTINUE;
4697 vcpu->mmio_nr_fragments = 0;
4699 /* Crossing a page boundary? */
4700 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4703 now = -addr & ~PAGE_MASK;
4704 rc = emulator_read_write_onepage(addr, val, now, exception,
4707 if (rc != X86EMUL_CONTINUE)
4710 if (ctxt->mode != X86EMUL_MODE_PROT64)
4716 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4718 if (rc != X86EMUL_CONTINUE)
4721 if (!vcpu->mmio_nr_fragments)
4724 gpa = vcpu->mmio_fragments[0].gpa;
4726 vcpu->mmio_needed = 1;
4727 vcpu->mmio_cur_fragment = 0;
4729 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4730 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4731 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4732 vcpu->run->mmio.phys_addr = gpa;
4734 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4737 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4741 struct x86_exception *exception)
4743 return emulator_read_write(ctxt, addr, val, bytes,
4744 exception, &read_emultor);
4747 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4751 struct x86_exception *exception)
4753 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4754 exception, &write_emultor);
4757 #define CMPXCHG_TYPE(t, ptr, old, new) \
4758 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4760 #ifdef CONFIG_X86_64
4761 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4763 # define CMPXCHG64(ptr, old, new) \
4764 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4767 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4772 struct x86_exception *exception)
4774 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4780 /* guests cmpxchg8b have to be emulated atomically */
4781 if (bytes > 8 || (bytes & (bytes - 1)))
4784 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4786 if (gpa == UNMAPPED_GVA ||
4787 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4790 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4793 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4794 if (is_error_page(page))
4797 kaddr = kmap_atomic(page);
4798 kaddr += offset_in_page(gpa);
4801 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4804 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4807 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4810 exchanged = CMPXCHG64(kaddr, old, new);
4815 kunmap_atomic(kaddr);
4816 kvm_release_page_dirty(page);
4819 return X86EMUL_CMPXCHG_FAILED;
4821 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4822 kvm_page_track_write(vcpu, gpa, new, bytes);
4824 return X86EMUL_CONTINUE;
4827 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4829 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4832 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4836 for (i = 0; i < vcpu->arch.pio.count; i++) {
4837 if (vcpu->arch.pio.in)
4838 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4839 vcpu->arch.pio.size, pd);
4841 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4842 vcpu->arch.pio.port, vcpu->arch.pio.size,
4846 pd += vcpu->arch.pio.size;
4851 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4852 unsigned short port, void *val,
4853 unsigned int count, bool in)
4855 vcpu->arch.pio.port = port;
4856 vcpu->arch.pio.in = in;
4857 vcpu->arch.pio.count = count;
4858 vcpu->arch.pio.size = size;
4860 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4861 vcpu->arch.pio.count = 0;
4865 vcpu->run->exit_reason = KVM_EXIT_IO;
4866 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4867 vcpu->run->io.size = size;
4868 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4869 vcpu->run->io.count = count;
4870 vcpu->run->io.port = port;
4875 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4876 int size, unsigned short port, void *val,
4879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4882 if (vcpu->arch.pio.count)
4885 memset(vcpu->arch.pio_data, 0, size * count);
4887 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4890 memcpy(val, vcpu->arch.pio_data, size * count);
4891 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4892 vcpu->arch.pio.count = 0;
4899 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4900 int size, unsigned short port,
4901 const void *val, unsigned int count)
4903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4905 memcpy(vcpu->arch.pio_data, val, size * count);
4906 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4907 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4910 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4912 return kvm_x86_ops->get_segment_base(vcpu, seg);
4915 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4917 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4920 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4922 if (!need_emulate_wbinvd(vcpu))
4923 return X86EMUL_CONTINUE;
4925 if (kvm_x86_ops->has_wbinvd_exit()) {
4926 int cpu = get_cpu();
4928 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4929 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4930 wbinvd_ipi, NULL, 1);
4932 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4935 return X86EMUL_CONTINUE;
4938 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4940 kvm_emulate_wbinvd_noskip(vcpu);
4941 return kvm_skip_emulated_instruction(vcpu);
4943 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4947 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4949 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4952 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4953 unsigned long *dest)
4955 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4958 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959 unsigned long value)
4962 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4965 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4967 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4970 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4972 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4973 unsigned long value;
4977 value = kvm_read_cr0(vcpu);
4980 value = vcpu->arch.cr2;
4983 value = kvm_read_cr3(vcpu);
4986 value = kvm_read_cr4(vcpu);
4989 value = kvm_get_cr8(vcpu);
4992 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4999 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5006 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5009 vcpu->arch.cr2 = val;
5012 res = kvm_set_cr3(vcpu, val);
5015 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5018 res = kvm_set_cr8(vcpu, val);
5021 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5028 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5030 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5033 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5035 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5038 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5040 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5043 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5045 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5048 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5050 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5053 static unsigned long emulator_get_cached_segment_base(
5054 struct x86_emulate_ctxt *ctxt, int seg)
5056 return get_segment_base(emul_to_vcpu(ctxt), seg);
5059 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5060 struct desc_struct *desc, u32 *base3,
5063 struct kvm_segment var;
5065 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5066 *selector = var.selector;
5069 memset(desc, 0, sizeof(*desc));
5077 set_desc_limit(desc, var.limit);
5078 set_desc_base(desc, (unsigned long)var.base);
5079 #ifdef CONFIG_X86_64
5081 *base3 = var.base >> 32;
5083 desc->type = var.type;
5085 desc->dpl = var.dpl;
5086 desc->p = var.present;
5087 desc->avl = var.avl;
5095 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5096 struct desc_struct *desc, u32 base3,
5099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5100 struct kvm_segment var;
5102 var.selector = selector;
5103 var.base = get_desc_base(desc);
5104 #ifdef CONFIG_X86_64
5105 var.base |= ((u64)base3) << 32;
5107 var.limit = get_desc_limit(desc);
5109 var.limit = (var.limit << 12) | 0xfff;
5110 var.type = desc->type;
5111 var.dpl = desc->dpl;
5116 var.avl = desc->avl;
5117 var.present = desc->p;
5118 var.unusable = !var.present;
5121 kvm_set_segment(vcpu, &var, seg);
5125 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5126 u32 msr_index, u64 *pdata)
5128 struct msr_data msr;
5131 msr.index = msr_index;
5132 msr.host_initiated = false;
5133 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5141 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5142 u32 msr_index, u64 data)
5144 struct msr_data msr;
5147 msr.index = msr_index;
5148 msr.host_initiated = false;
5149 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5152 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5156 return vcpu->arch.smbase;
5159 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5163 vcpu->arch.smbase = smbase;
5166 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5169 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5173 u32 pmc, u64 *pdata)
5175 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5178 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5180 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5186 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5189 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5194 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5195 struct x86_instruction_info *info,
5196 enum x86_intercept_stage stage)
5198 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5201 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5202 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5204 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5207 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5209 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5212 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5214 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5217 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5219 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5222 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5224 return emul_to_vcpu(ctxt)->arch.hflags;
5227 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5229 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5232 static const struct x86_emulate_ops emulate_ops = {
5233 .read_gpr = emulator_read_gpr,
5234 .write_gpr = emulator_write_gpr,
5235 .read_std = kvm_read_guest_virt_system,
5236 .write_std = kvm_write_guest_virt_system,
5237 .read_phys = kvm_read_guest_phys_system,
5238 .fetch = kvm_fetch_guest_virt,
5239 .read_emulated = emulator_read_emulated,
5240 .write_emulated = emulator_write_emulated,
5241 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5242 .invlpg = emulator_invlpg,
5243 .pio_in_emulated = emulator_pio_in_emulated,
5244 .pio_out_emulated = emulator_pio_out_emulated,
5245 .get_segment = emulator_get_segment,
5246 .set_segment = emulator_set_segment,
5247 .get_cached_segment_base = emulator_get_cached_segment_base,
5248 .get_gdt = emulator_get_gdt,
5249 .get_idt = emulator_get_idt,
5250 .set_gdt = emulator_set_gdt,
5251 .set_idt = emulator_set_idt,
5252 .get_cr = emulator_get_cr,
5253 .set_cr = emulator_set_cr,
5254 .cpl = emulator_get_cpl,
5255 .get_dr = emulator_get_dr,
5256 .set_dr = emulator_set_dr,
5257 .get_smbase = emulator_get_smbase,
5258 .set_smbase = emulator_set_smbase,
5259 .set_msr = emulator_set_msr,
5260 .get_msr = emulator_get_msr,
5261 .check_pmc = emulator_check_pmc,
5262 .read_pmc = emulator_read_pmc,
5263 .halt = emulator_halt,
5264 .wbinvd = emulator_wbinvd,
5265 .fix_hypercall = emulator_fix_hypercall,
5266 .get_fpu = emulator_get_fpu,
5267 .put_fpu = emulator_put_fpu,
5268 .intercept = emulator_intercept,
5269 .get_cpuid = emulator_get_cpuid,
5270 .set_nmi_mask = emulator_set_nmi_mask,
5271 .get_hflags = emulator_get_hflags,
5272 .set_hflags = emulator_set_hflags,
5275 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5277 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5279 * an sti; sti; sequence only disable interrupts for the first
5280 * instruction. So, if the last instruction, be it emulated or
5281 * not, left the system with the INT_STI flag enabled, it
5282 * means that the last instruction is an sti. We should not
5283 * leave the flag on in this case. The same goes for mov ss
5285 if (int_shadow & mask)
5287 if (unlikely(int_shadow || mask)) {
5288 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5290 kvm_make_request(KVM_REQ_EVENT, vcpu);
5294 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5296 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5297 if (ctxt->exception.vector == PF_VECTOR)
5298 return kvm_propagate_fault(vcpu, &ctxt->exception);
5300 if (ctxt->exception.error_code_valid)
5301 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5302 ctxt->exception.error_code);
5304 kvm_queue_exception(vcpu, ctxt->exception.vector);
5308 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5310 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5313 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5315 ctxt->eflags = kvm_get_rflags(vcpu);
5316 ctxt->eip = kvm_rip_read(vcpu);
5317 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5318 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5319 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5320 cs_db ? X86EMUL_MODE_PROT32 :
5321 X86EMUL_MODE_PROT16;
5322 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5323 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5324 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5326 init_decode_cache(ctxt);
5327 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5330 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5332 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5335 init_emulate_ctxt(vcpu);
5339 ctxt->_eip = ctxt->eip + inc_eip;
5340 ret = emulate_int_real(ctxt, irq);
5342 if (ret != X86EMUL_CONTINUE)
5343 return EMULATE_FAIL;
5345 ctxt->eip = ctxt->_eip;
5346 kvm_rip_write(vcpu, ctxt->eip);
5347 kvm_set_rflags(vcpu, ctxt->eflags);
5349 if (irq == NMI_VECTOR)
5350 vcpu->arch.nmi_pending = 0;
5352 vcpu->arch.interrupt.pending = false;
5354 return EMULATE_DONE;
5356 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5358 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5360 int r = EMULATE_DONE;
5362 ++vcpu->stat.insn_emulation_fail;
5363 trace_kvm_emulate_insn_failed(vcpu);
5364 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5365 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5366 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5367 vcpu->run->internal.ndata = 0;
5370 kvm_queue_exception(vcpu, UD_VECTOR);
5375 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5376 bool write_fault_to_shadow_pgtable,
5382 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5385 if (!vcpu->arch.mmu.direct_map) {
5387 * Write permission should be allowed since only
5388 * write access need to be emulated.
5390 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5393 * If the mapping is invalid in guest, let cpu retry
5394 * it to generate fault.
5396 if (gpa == UNMAPPED_GVA)
5401 * Do not retry the unhandleable instruction if it faults on the
5402 * readonly host memory, otherwise it will goto a infinite loop:
5403 * retry instruction -> write #PF -> emulation fail -> retry
5404 * instruction -> ...
5406 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5409 * If the instruction failed on the error pfn, it can not be fixed,
5410 * report the error to userspace.
5412 if (is_error_noslot_pfn(pfn))
5415 kvm_release_pfn_clean(pfn);
5417 /* The instructions are well-emulated on direct mmu. */
5418 if (vcpu->arch.mmu.direct_map) {
5419 unsigned int indirect_shadow_pages;
5421 spin_lock(&vcpu->kvm->mmu_lock);
5422 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5423 spin_unlock(&vcpu->kvm->mmu_lock);
5425 if (indirect_shadow_pages)
5426 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5432 * if emulation was due to access to shadowed page table
5433 * and it failed try to unshadow page and re-enter the
5434 * guest to let CPU execute the instruction.
5436 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5439 * If the access faults on its page table, it can not
5440 * be fixed by unprotecting shadow page and it should
5441 * be reported to userspace.
5443 return !write_fault_to_shadow_pgtable;
5446 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5447 unsigned long cr2, int emulation_type)
5449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5450 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5452 last_retry_eip = vcpu->arch.last_retry_eip;
5453 last_retry_addr = vcpu->arch.last_retry_addr;
5456 * If the emulation is caused by #PF and it is non-page_table
5457 * writing instruction, it means the VM-EXIT is caused by shadow
5458 * page protected, we can zap the shadow page and retry this
5459 * instruction directly.
5461 * Note: if the guest uses a non-page-table modifying instruction
5462 * on the PDE that points to the instruction, then we will unmap
5463 * the instruction and go to an infinite loop. So, we cache the
5464 * last retried eip and the last fault address, if we meet the eip
5465 * and the address again, we can break out of the potential infinite
5468 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5470 if (!(emulation_type & EMULTYPE_RETRY))
5473 if (x86_page_table_writing_insn(ctxt))
5476 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5479 vcpu->arch.last_retry_eip = ctxt->eip;
5480 vcpu->arch.last_retry_addr = cr2;
5482 if (!vcpu->arch.mmu.direct_map)
5483 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5485 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5490 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5491 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5493 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5495 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5496 /* This is a good place to trace that we are exiting SMM. */
5497 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5499 /* Process a latched INIT or SMI, if any. */
5500 kvm_make_request(KVM_REQ_EVENT, vcpu);
5503 kvm_mmu_reset_context(vcpu);
5506 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5508 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5510 vcpu->arch.hflags = emul_flags;
5512 if (changed & HF_SMM_MASK)
5513 kvm_smm_changed(vcpu);
5516 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5525 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5526 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5531 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5533 struct kvm_run *kvm_run = vcpu->run;
5536 * rflags is the old, "raw" value of the flags. The new value has
5537 * not been saved yet.
5539 * This is correct even for TF set by the guest, because "the
5540 * processor will not generate this exception after the instruction
5541 * that sets the TF flag".
5543 if (unlikely(rflags & X86_EFLAGS_TF)) {
5544 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5545 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5547 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5548 kvm_run->debug.arch.exception = DB_VECTOR;
5549 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5550 *r = EMULATE_USER_EXIT;
5553 * "Certain debug exceptions may clear bit 0-3. The
5554 * remaining contents of the DR6 register are never
5555 * cleared by the processor".
5557 vcpu->arch.dr6 &= ~15;
5558 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5559 kvm_queue_exception(vcpu, DB_VECTOR);
5564 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5566 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5567 int r = EMULATE_DONE;
5569 kvm_x86_ops->skip_emulated_instruction(vcpu);
5570 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5571 return r == EMULATE_DONE;
5573 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5575 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5577 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5578 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5579 struct kvm_run *kvm_run = vcpu->run;
5580 unsigned long eip = kvm_get_linear_rip(vcpu);
5581 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5582 vcpu->arch.guest_debug_dr7,
5586 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5587 kvm_run->debug.arch.pc = eip;
5588 kvm_run->debug.arch.exception = DB_VECTOR;
5589 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5590 *r = EMULATE_USER_EXIT;
5595 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5596 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5597 unsigned long eip = kvm_get_linear_rip(vcpu);
5598 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5603 vcpu->arch.dr6 &= ~15;
5604 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5605 kvm_queue_exception(vcpu, DB_VECTOR);
5614 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5621 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5622 bool writeback = true;
5623 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5626 * Clear write_fault_to_shadow_pgtable here to ensure it is
5629 vcpu->arch.write_fault_to_shadow_pgtable = false;
5630 kvm_clear_exception_queue(vcpu);
5632 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5633 init_emulate_ctxt(vcpu);
5636 * We will reenter on the same instruction since
5637 * we do not set complete_userspace_io. This does not
5638 * handle watchpoints yet, those would be handled in
5641 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5644 ctxt->interruptibility = 0;
5645 ctxt->have_exception = false;
5646 ctxt->exception.vector = -1;
5647 ctxt->perm_ok = false;
5649 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5651 r = x86_decode_insn(ctxt, insn, insn_len);
5653 trace_kvm_emulate_insn_start(vcpu);
5654 ++vcpu->stat.insn_emulation;
5655 if (r != EMULATION_OK) {
5656 if (emulation_type & EMULTYPE_TRAP_UD)
5657 return EMULATE_FAIL;
5658 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5660 return EMULATE_DONE;
5661 if (emulation_type & EMULTYPE_SKIP)
5662 return EMULATE_FAIL;
5663 return handle_emulation_failure(vcpu);
5667 if (emulation_type & EMULTYPE_SKIP) {
5668 kvm_rip_write(vcpu, ctxt->_eip);
5669 if (ctxt->eflags & X86_EFLAGS_RF)
5670 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5671 return EMULATE_DONE;
5674 if (retry_instruction(ctxt, cr2, emulation_type))
5675 return EMULATE_DONE;
5677 /* this is needed for vmware backdoor interface to work since it
5678 changes registers values during IO operation */
5679 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5680 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5681 emulator_invalidate_register_cache(ctxt);
5685 /* Save the faulting GPA (cr2) in the address field */
5686 ctxt->exception.address = cr2;
5688 r = x86_emulate_insn(ctxt);
5690 if (r == EMULATION_INTERCEPTED)
5691 return EMULATE_DONE;
5693 if (r == EMULATION_FAILED) {
5694 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5696 return EMULATE_DONE;
5698 return handle_emulation_failure(vcpu);
5701 if (ctxt->have_exception) {
5703 if (inject_emulated_exception(vcpu))
5705 } else if (vcpu->arch.pio.count) {
5706 if (!vcpu->arch.pio.in) {
5707 /* FIXME: return into emulator if single-stepping. */
5708 vcpu->arch.pio.count = 0;
5711 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5713 r = EMULATE_USER_EXIT;
5714 } else if (vcpu->mmio_needed) {
5715 if (!vcpu->mmio_is_write)
5717 r = EMULATE_USER_EXIT;
5718 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5719 } else if (r == EMULATION_RESTART)
5725 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5726 toggle_interruptibility(vcpu, ctxt->interruptibility);
5727 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5728 kvm_rip_write(vcpu, ctxt->eip);
5729 if (r == EMULATE_DONE)
5730 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5731 if (!ctxt->have_exception ||
5732 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5733 __kvm_set_rflags(vcpu, ctxt->eflags);
5736 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5737 * do nothing, and it will be requested again as soon as
5738 * the shadow expires. But we still need to check here,
5739 * because POPF has no interrupt shadow.
5741 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5742 kvm_make_request(KVM_REQ_EVENT, vcpu);
5744 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5748 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5750 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5752 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5753 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5754 size, port, &val, 1);
5755 /* do not return to emulator after return from userspace */
5756 vcpu->arch.pio.count = 0;
5759 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5761 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5765 /* We should only ever be called with arch.pio.count equal to 1 */
5766 BUG_ON(vcpu->arch.pio.count != 1);
5768 /* For size less than 4 we merge, else we zero extend */
5769 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5773 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5774 * the copy and tracing
5776 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5777 vcpu->arch.pio.port, &val, 1);
5778 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5783 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5788 /* For size less than 4 we merge, else we zero extend */
5789 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5791 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5794 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5798 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5802 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5804 static int kvmclock_cpu_down_prep(unsigned int cpu)
5806 __this_cpu_write(cpu_tsc_khz, 0);
5810 static void tsc_khz_changed(void *data)
5812 struct cpufreq_freqs *freq = data;
5813 unsigned long khz = 0;
5817 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5818 khz = cpufreq_quick_get(raw_smp_processor_id());
5821 __this_cpu_write(cpu_tsc_khz, khz);
5824 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5827 struct cpufreq_freqs *freq = data;
5829 struct kvm_vcpu *vcpu;
5830 int i, send_ipi = 0;
5833 * We allow guests to temporarily run on slowing clocks,
5834 * provided we notify them after, or to run on accelerating
5835 * clocks, provided we notify them before. Thus time never
5838 * However, we have a problem. We can't atomically update
5839 * the frequency of a given CPU from this function; it is
5840 * merely a notifier, which can be called from any CPU.
5841 * Changing the TSC frequency at arbitrary points in time
5842 * requires a recomputation of local variables related to
5843 * the TSC for each VCPU. We must flag these local variables
5844 * to be updated and be sure the update takes place with the
5845 * new frequency before any guests proceed.
5847 * Unfortunately, the combination of hotplug CPU and frequency
5848 * change creates an intractable locking scenario; the order
5849 * of when these callouts happen is undefined with respect to
5850 * CPU hotplug, and they can race with each other. As such,
5851 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5852 * undefined; you can actually have a CPU frequency change take
5853 * place in between the computation of X and the setting of the
5854 * variable. To protect against this problem, all updates of
5855 * the per_cpu tsc_khz variable are done in an interrupt
5856 * protected IPI, and all callers wishing to update the value
5857 * must wait for a synchronous IPI to complete (which is trivial
5858 * if the caller is on the CPU already). This establishes the
5859 * necessary total order on variable updates.
5861 * Note that because a guest time update may take place
5862 * anytime after the setting of the VCPU's request bit, the
5863 * correct TSC value must be set before the request. However,
5864 * to ensure the update actually makes it to any guest which
5865 * starts running in hardware virtualization between the set
5866 * and the acquisition of the spinlock, we must also ping the
5867 * CPU after setting the request bit.
5871 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5873 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5876 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5878 spin_lock(&kvm_lock);
5879 list_for_each_entry(kvm, &vm_list, vm_list) {
5880 kvm_for_each_vcpu(i, vcpu, kvm) {
5881 if (vcpu->cpu != freq->cpu)
5883 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5884 if (vcpu->cpu != smp_processor_id())
5888 spin_unlock(&kvm_lock);
5890 if (freq->old < freq->new && send_ipi) {
5892 * We upscale the frequency. Must make the guest
5893 * doesn't see old kvmclock values while running with
5894 * the new frequency, otherwise we risk the guest sees
5895 * time go backwards.
5897 * In case we update the frequency for another cpu
5898 * (which might be in guest context) send an interrupt
5899 * to kick the cpu out of guest context. Next time
5900 * guest context is entered kvmclock will be updated,
5901 * so the guest will not see stale values.
5903 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5908 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5909 .notifier_call = kvmclock_cpufreq_notifier
5912 static int kvmclock_cpu_online(unsigned int cpu)
5914 tsc_khz_changed(NULL);
5918 static void kvm_timer_init(void)
5920 max_tsc_khz = tsc_khz;
5922 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5923 #ifdef CONFIG_CPU_FREQ
5924 struct cpufreq_policy policy;
5927 memset(&policy, 0, sizeof(policy));
5929 cpufreq_get_policy(&policy, cpu);
5930 if (policy.cpuinfo.max_freq)
5931 max_tsc_khz = policy.cpuinfo.max_freq;
5934 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5935 CPUFREQ_TRANSITION_NOTIFIER);
5937 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5939 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5940 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5943 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5945 int kvm_is_in_guest(void)
5947 return __this_cpu_read(current_vcpu) != NULL;
5950 static int kvm_is_user_mode(void)
5954 if (__this_cpu_read(current_vcpu))
5955 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5957 return user_mode != 0;
5960 static unsigned long kvm_get_guest_ip(void)
5962 unsigned long ip = 0;
5964 if (__this_cpu_read(current_vcpu))
5965 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5970 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5971 .is_in_guest = kvm_is_in_guest,
5972 .is_user_mode = kvm_is_user_mode,
5973 .get_guest_ip = kvm_get_guest_ip,
5976 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5978 __this_cpu_write(current_vcpu, vcpu);
5980 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5982 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5984 __this_cpu_write(current_vcpu, NULL);
5986 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5988 static void kvm_set_mmio_spte_mask(void)
5991 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5994 * Set the reserved bits and the present bit of an paging-structure
5995 * entry to generate page fault with PFER.RSV = 1.
5997 /* Mask the reserved physical address bits. */
5998 mask = rsvd_bits(maxphyaddr, 51);
6000 /* Set the present bit. */
6003 #ifdef CONFIG_X86_64
6005 * If reserved bit is not supported, clear the present bit to disable
6008 if (maxphyaddr == 52)
6012 kvm_mmu_set_mmio_spte_mask(mask);
6015 #ifdef CONFIG_X86_64
6016 static void pvclock_gtod_update_fn(struct work_struct *work)
6020 struct kvm_vcpu *vcpu;
6023 spin_lock(&kvm_lock);
6024 list_for_each_entry(kvm, &vm_list, vm_list)
6025 kvm_for_each_vcpu(i, vcpu, kvm)
6026 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6027 atomic_set(&kvm_guest_has_master_clock, 0);
6028 spin_unlock(&kvm_lock);
6031 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6034 * Notification about pvclock gtod data update.
6036 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6039 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6040 struct timekeeper *tk = priv;
6042 update_pvclock_gtod(tk);
6044 /* disable master clock if host does not trust, or does not
6045 * use, TSC clocksource
6047 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6048 atomic_read(&kvm_guest_has_master_clock) != 0)
6049 queue_work(system_long_wq, &pvclock_gtod_work);
6054 static struct notifier_block pvclock_gtod_notifier = {
6055 .notifier_call = pvclock_gtod_notify,
6059 int kvm_arch_init(void *opaque)
6062 struct kvm_x86_ops *ops = opaque;
6065 printk(KERN_ERR "kvm: already loaded the other module\n");
6070 if (!ops->cpu_has_kvm_support()) {
6071 printk(KERN_ERR "kvm: no hardware support\n");
6075 if (ops->disabled_by_bios()) {
6076 printk(KERN_ERR "kvm: disabled by bios\n");
6082 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6084 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6088 r = kvm_mmu_module_init();
6090 goto out_free_percpu;
6092 kvm_set_mmio_spte_mask();
6096 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6097 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6098 PT_PRESENT_MASK, 0);
6101 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6103 if (boot_cpu_has(X86_FEATURE_XSAVE))
6104 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6107 #ifdef CONFIG_X86_64
6108 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6114 free_percpu(shared_msrs);
6119 void kvm_arch_exit(void)
6122 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6124 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6125 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6126 CPUFREQ_TRANSITION_NOTIFIER);
6127 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6128 #ifdef CONFIG_X86_64
6129 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6132 kvm_mmu_module_exit();
6133 free_percpu(shared_msrs);
6136 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6138 ++vcpu->stat.halt_exits;
6139 if (lapic_in_kernel(vcpu)) {
6140 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6143 vcpu->run->exit_reason = KVM_EXIT_HLT;
6147 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6149 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6151 int ret = kvm_skip_emulated_instruction(vcpu);
6153 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6154 * KVM_EXIT_DEBUG here.
6156 return kvm_vcpu_halt(vcpu) && ret;
6158 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6160 #ifdef CONFIG_X86_64
6161 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6162 unsigned long clock_type)
6164 struct kvm_clock_pairing clock_pairing;
6169 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6170 return -KVM_EOPNOTSUPP;
6172 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6173 return -KVM_EOPNOTSUPP;
6175 clock_pairing.sec = ts.tv_sec;
6176 clock_pairing.nsec = ts.tv_nsec;
6177 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6178 clock_pairing.flags = 0;
6181 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6182 sizeof(struct kvm_clock_pairing)))
6190 * kvm_pv_kick_cpu_op: Kick a vcpu.
6192 * @apicid - apicid of vcpu to be kicked.
6194 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6196 struct kvm_lapic_irq lapic_irq;
6198 lapic_irq.shorthand = 0;
6199 lapic_irq.dest_mode = 0;
6200 lapic_irq.dest_id = apicid;
6201 lapic_irq.msi_redir_hint = false;
6203 lapic_irq.delivery_mode = APIC_DM_REMRD;
6204 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6207 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6209 vcpu->arch.apicv_active = false;
6210 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6213 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6215 unsigned long nr, a0, a1, a2, a3, ret;
6218 r = kvm_skip_emulated_instruction(vcpu);
6220 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6221 return kvm_hv_hypercall(vcpu);
6223 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6224 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6225 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6226 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6227 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6229 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6231 op_64_bit = is_64_bit_mode(vcpu);
6240 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6246 case KVM_HC_VAPIC_POLL_IRQ:
6249 case KVM_HC_KICK_CPU:
6250 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6253 #ifdef CONFIG_X86_64
6254 case KVM_HC_CLOCK_PAIRING:
6255 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6265 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6266 ++vcpu->stat.hypercalls;
6269 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6271 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6274 char instruction[3];
6275 unsigned long rip = kvm_rip_read(vcpu);
6277 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6279 return emulator_write_emulated(ctxt, rip, instruction, 3,
6283 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6285 return vcpu->run->request_interrupt_window &&
6286 likely(!pic_in_kernel(vcpu->kvm));
6289 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6291 struct kvm_run *kvm_run = vcpu->run;
6293 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6294 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6295 kvm_run->cr8 = kvm_get_cr8(vcpu);
6296 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6297 kvm_run->ready_for_interrupt_injection =
6298 pic_in_kernel(vcpu->kvm) ||
6299 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6302 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6306 if (!kvm_x86_ops->update_cr8_intercept)
6309 if (!lapic_in_kernel(vcpu))
6312 if (vcpu->arch.apicv_active)
6315 if (!vcpu->arch.apic->vapic_addr)
6316 max_irr = kvm_lapic_find_highest_irr(vcpu);
6323 tpr = kvm_lapic_get_cr8(vcpu);
6325 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6328 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6332 /* try to reinject previous events if any */
6333 if (vcpu->arch.exception.pending) {
6334 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6335 vcpu->arch.exception.has_error_code,
6336 vcpu->arch.exception.error_code);
6338 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6339 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6342 if (vcpu->arch.exception.nr == DB_VECTOR &&
6343 (vcpu->arch.dr7 & DR7_GD)) {
6344 vcpu->arch.dr7 &= ~DR7_GD;
6345 kvm_update_dr7(vcpu);
6348 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6349 vcpu->arch.exception.has_error_code,
6350 vcpu->arch.exception.error_code,
6351 vcpu->arch.exception.reinject);
6355 if (vcpu->arch.nmi_injected) {
6356 kvm_x86_ops->set_nmi(vcpu);
6360 if (vcpu->arch.interrupt.pending) {
6361 kvm_x86_ops->set_irq(vcpu);
6365 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6366 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6371 /* try to inject new event if pending */
6372 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6373 vcpu->arch.smi_pending = false;
6375 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6376 --vcpu->arch.nmi_pending;
6377 vcpu->arch.nmi_injected = true;
6378 kvm_x86_ops->set_nmi(vcpu);
6379 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6381 * Because interrupts can be injected asynchronously, we are
6382 * calling check_nested_events again here to avoid a race condition.
6383 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6384 * proposal and current concerns. Perhaps we should be setting
6385 * KVM_REQ_EVENT only on certain events and not unconditionally?
6387 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6388 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6392 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6393 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6395 kvm_x86_ops->set_irq(vcpu);
6402 static void process_nmi(struct kvm_vcpu *vcpu)
6407 * x86 is limited to one NMI running, and one NMI pending after it.
6408 * If an NMI is already in progress, limit further NMIs to just one.
6409 * Otherwise, allow two (and we'll inject the first one immediately).
6411 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6414 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6415 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6416 kvm_make_request(KVM_REQ_EVENT, vcpu);
6419 #define put_smstate(type, buf, offset, val) \
6420 *(type *)((buf) + (offset) - 0x7e00) = val
6422 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6425 flags |= seg->g << 23;
6426 flags |= seg->db << 22;
6427 flags |= seg->l << 21;
6428 flags |= seg->avl << 20;
6429 flags |= seg->present << 15;
6430 flags |= seg->dpl << 13;
6431 flags |= seg->s << 12;
6432 flags |= seg->type << 8;
6436 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6438 struct kvm_segment seg;
6441 kvm_get_segment(vcpu, &seg, n);
6442 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6445 offset = 0x7f84 + n * 12;
6447 offset = 0x7f2c + (n - 3) * 12;
6449 put_smstate(u32, buf, offset + 8, seg.base);
6450 put_smstate(u32, buf, offset + 4, seg.limit);
6451 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6454 #ifdef CONFIG_X86_64
6455 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6457 struct kvm_segment seg;
6461 kvm_get_segment(vcpu, &seg, n);
6462 offset = 0x7e00 + n * 16;
6464 flags = enter_smm_get_segment_flags(&seg) >> 8;
6465 put_smstate(u16, buf, offset, seg.selector);
6466 put_smstate(u16, buf, offset + 2, flags);
6467 put_smstate(u32, buf, offset + 4, seg.limit);
6468 put_smstate(u64, buf, offset + 8, seg.base);
6472 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6475 struct kvm_segment seg;
6479 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6480 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6481 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6482 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6484 for (i = 0; i < 8; i++)
6485 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6487 kvm_get_dr(vcpu, 6, &val);
6488 put_smstate(u32, buf, 0x7fcc, (u32)val);
6489 kvm_get_dr(vcpu, 7, &val);
6490 put_smstate(u32, buf, 0x7fc8, (u32)val);
6492 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6493 put_smstate(u32, buf, 0x7fc4, seg.selector);
6494 put_smstate(u32, buf, 0x7f64, seg.base);
6495 put_smstate(u32, buf, 0x7f60, seg.limit);
6496 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6498 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6499 put_smstate(u32, buf, 0x7fc0, seg.selector);
6500 put_smstate(u32, buf, 0x7f80, seg.base);
6501 put_smstate(u32, buf, 0x7f7c, seg.limit);
6502 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6504 kvm_x86_ops->get_gdt(vcpu, &dt);
6505 put_smstate(u32, buf, 0x7f74, dt.address);
6506 put_smstate(u32, buf, 0x7f70, dt.size);
6508 kvm_x86_ops->get_idt(vcpu, &dt);
6509 put_smstate(u32, buf, 0x7f58, dt.address);
6510 put_smstate(u32, buf, 0x7f54, dt.size);
6512 for (i = 0; i < 6; i++)
6513 enter_smm_save_seg_32(vcpu, buf, i);
6515 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6518 put_smstate(u32, buf, 0x7efc, 0x00020000);
6519 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6524 #ifdef CONFIG_X86_64
6526 struct kvm_segment seg;
6530 for (i = 0; i < 16; i++)
6531 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6533 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6534 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6536 kvm_get_dr(vcpu, 6, &val);
6537 put_smstate(u64, buf, 0x7f68, val);
6538 kvm_get_dr(vcpu, 7, &val);
6539 put_smstate(u64, buf, 0x7f60, val);
6541 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6542 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6543 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6545 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6548 put_smstate(u32, buf, 0x7efc, 0x00020064);
6550 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6552 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6553 put_smstate(u16, buf, 0x7e90, seg.selector);
6554 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6555 put_smstate(u32, buf, 0x7e94, seg.limit);
6556 put_smstate(u64, buf, 0x7e98, seg.base);
6558 kvm_x86_ops->get_idt(vcpu, &dt);
6559 put_smstate(u32, buf, 0x7e84, dt.size);
6560 put_smstate(u64, buf, 0x7e88, dt.address);
6562 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6563 put_smstate(u16, buf, 0x7e70, seg.selector);
6564 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6565 put_smstate(u32, buf, 0x7e74, seg.limit);
6566 put_smstate(u64, buf, 0x7e78, seg.base);
6568 kvm_x86_ops->get_gdt(vcpu, &dt);
6569 put_smstate(u32, buf, 0x7e64, dt.size);
6570 put_smstate(u64, buf, 0x7e68, dt.address);
6572 for (i = 0; i < 6; i++)
6573 enter_smm_save_seg_64(vcpu, buf, i);
6579 static void enter_smm(struct kvm_vcpu *vcpu)
6581 struct kvm_segment cs, ds;
6586 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6587 vcpu->arch.hflags |= HF_SMM_MASK;
6588 memset(buf, 0, 512);
6589 if (guest_cpuid_has_longmode(vcpu))
6590 enter_smm_save_state_64(vcpu, buf);
6592 enter_smm_save_state_32(vcpu, buf);
6594 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6596 if (kvm_x86_ops->get_nmi_mask(vcpu))
6597 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6599 kvm_x86_ops->set_nmi_mask(vcpu, true);
6601 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6602 kvm_rip_write(vcpu, 0x8000);
6604 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6605 kvm_x86_ops->set_cr0(vcpu, cr0);
6606 vcpu->arch.cr0 = cr0;
6608 kvm_x86_ops->set_cr4(vcpu, 0);
6610 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6611 dt.address = dt.size = 0;
6612 kvm_x86_ops->set_idt(vcpu, &dt);
6614 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6616 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6617 cs.base = vcpu->arch.smbase;
6622 cs.limit = ds.limit = 0xffffffff;
6623 cs.type = ds.type = 0x3;
6624 cs.dpl = ds.dpl = 0;
6629 cs.avl = ds.avl = 0;
6630 cs.present = ds.present = 1;
6631 cs.unusable = ds.unusable = 0;
6632 cs.padding = ds.padding = 0;
6634 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6635 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6636 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6637 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6638 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6639 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6641 if (guest_cpuid_has_longmode(vcpu))
6642 kvm_x86_ops->set_efer(vcpu, 0);
6644 kvm_update_cpuid(vcpu);
6645 kvm_mmu_reset_context(vcpu);
6648 static void process_smi(struct kvm_vcpu *vcpu)
6650 vcpu->arch.smi_pending = true;
6651 kvm_make_request(KVM_REQ_EVENT, vcpu);
6654 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6656 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6659 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6661 u64 eoi_exit_bitmap[4];
6663 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6666 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6668 if (irqchip_split(vcpu->kvm))
6669 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6671 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6672 kvm_x86_ops->sync_pir_to_irr(vcpu);
6673 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6675 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6676 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6677 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6682 ++vcpu->stat.tlb_flush;
6683 kvm_x86_ops->tlb_flush(vcpu);
6686 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6688 struct page *page = NULL;
6690 if (!lapic_in_kernel(vcpu))
6693 if (!kvm_x86_ops->set_apic_access_page_addr)
6696 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6697 if (is_error_page(page))
6699 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6702 * Do not pin apic access page in memory, the MMU notifier
6703 * will call us again if it is migrated or swapped out.
6707 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6709 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6710 unsigned long address)
6713 * The physical address of apic access page is stored in the VMCS.
6714 * Update it when it becomes invalid.
6716 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6717 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6721 * Returns 1 to let vcpu_run() continue the guest execution loop without
6722 * exiting to the userspace. Otherwise, the value will be returned to the
6725 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6729 dm_request_for_irq_injection(vcpu) &&
6730 kvm_cpu_accept_dm_intr(vcpu);
6732 bool req_immediate_exit = false;
6734 if (vcpu->requests) {
6735 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6736 kvm_mmu_unload(vcpu);
6737 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6738 __kvm_migrate_timers(vcpu);
6739 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6740 kvm_gen_update_masterclock(vcpu->kvm);
6741 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6742 kvm_gen_kvmclock_update(vcpu);
6743 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6744 r = kvm_guest_time_update(vcpu);
6748 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6749 kvm_mmu_sync_roots(vcpu);
6750 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6751 kvm_vcpu_flush_tlb(vcpu);
6752 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6753 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6757 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6758 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6762 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6763 /* Page is swapped out. Do synthetic halt */
6764 vcpu->arch.apf.halted = true;
6768 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6769 record_steal_time(vcpu);
6770 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6772 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6774 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6775 kvm_pmu_handle_event(vcpu);
6776 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6777 kvm_pmu_deliver_pmi(vcpu);
6778 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6779 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6780 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6781 vcpu->arch.ioapic_handled_vectors)) {
6782 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6783 vcpu->run->eoi.vector =
6784 vcpu->arch.pending_ioapic_eoi;
6789 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6790 vcpu_scan_ioapic(vcpu);
6791 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6792 kvm_vcpu_reload_apic_access_page(vcpu);
6793 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6794 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6795 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6799 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6800 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6801 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6805 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6806 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6807 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6813 * KVM_REQ_HV_STIMER has to be processed after
6814 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6815 * depend on the guest clock being up-to-date
6817 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6818 kvm_hv_process_stimers(vcpu);
6821 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6822 ++vcpu->stat.req_event;
6823 kvm_apic_accept_events(vcpu);
6824 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6829 if (inject_pending_event(vcpu, req_int_win) != 0)
6830 req_immediate_exit = true;
6832 /* Enable NMI/IRQ window open exits if needed.
6834 * SMIs have two cases: 1) they can be nested, and
6835 * then there is nothing to do here because RSM will
6836 * cause a vmexit anyway; 2) or the SMI can be pending
6837 * because inject_pending_event has completed the
6838 * injection of an IRQ or NMI from the previous vmexit,
6839 * and then we request an immediate exit to inject the SMI.
6841 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6842 req_immediate_exit = true;
6843 if (vcpu->arch.nmi_pending)
6844 kvm_x86_ops->enable_nmi_window(vcpu);
6845 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6846 kvm_x86_ops->enable_irq_window(vcpu);
6849 if (kvm_lapic_enabled(vcpu)) {
6850 update_cr8_intercept(vcpu);
6851 kvm_lapic_sync_to_vapic(vcpu);
6855 r = kvm_mmu_reload(vcpu);
6857 goto cancel_injection;
6862 kvm_x86_ops->prepare_guest_switch(vcpu);
6863 kvm_load_guest_fpu(vcpu);
6866 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6867 * IPI are then delayed after guest entry, which ensures that they
6868 * result in virtual interrupt delivery.
6870 local_irq_disable();
6871 vcpu->mode = IN_GUEST_MODE;
6873 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6876 * 1) We should set ->mode before checking ->requests. Please see
6877 * the comment in kvm_vcpu_exiting_guest_mode().
6879 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6880 * pairs with the memory barrier implicit in pi_test_and_set_on
6881 * (see vmx_deliver_posted_interrupt).
6883 * 3) This also orders the write to mode from any reads to the page
6884 * tables done while the VCPU is running. Please see the comment
6885 * in kvm_flush_remote_tlbs.
6887 smp_mb__after_srcu_read_unlock();
6890 * This handles the case where a posted interrupt was
6891 * notified with kvm_vcpu_kick.
6893 if (kvm_lapic_enabled(vcpu)) {
6894 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6895 kvm_x86_ops->sync_pir_to_irr(vcpu);
6898 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6899 || need_resched() || signal_pending(current)) {
6900 vcpu->mode = OUTSIDE_GUEST_MODE;
6904 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6906 goto cancel_injection;
6909 kvm_load_guest_xcr0(vcpu);
6911 if (req_immediate_exit) {
6912 kvm_make_request(KVM_REQ_EVENT, vcpu);
6913 smp_send_reschedule(vcpu->cpu);
6916 trace_kvm_entry(vcpu->vcpu_id);
6917 wait_lapic_expire(vcpu);
6918 guest_enter_irqoff();
6920 if (unlikely(vcpu->arch.switch_db_regs)) {
6922 set_debugreg(vcpu->arch.eff_db[0], 0);
6923 set_debugreg(vcpu->arch.eff_db[1], 1);
6924 set_debugreg(vcpu->arch.eff_db[2], 2);
6925 set_debugreg(vcpu->arch.eff_db[3], 3);
6926 set_debugreg(vcpu->arch.dr6, 6);
6927 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6930 kvm_x86_ops->run(vcpu);
6933 * Do this here before restoring debug registers on the host. And
6934 * since we do this before handling the vmexit, a DR access vmexit
6935 * can (a) read the correct value of the debug registers, (b) set
6936 * KVM_DEBUGREG_WONT_EXIT again.
6938 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6939 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6940 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6941 kvm_update_dr0123(vcpu);
6942 kvm_update_dr6(vcpu);
6943 kvm_update_dr7(vcpu);
6944 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6948 * If the guest has used debug registers, at least dr7
6949 * will be disabled while returning to the host.
6950 * If we don't have active breakpoints in the host, we don't
6951 * care about the messed up debug address registers. But if
6952 * we have some of them active, restore the old state.
6954 if (hw_breakpoint_active())
6955 hw_breakpoint_restore();
6957 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6959 vcpu->mode = OUTSIDE_GUEST_MODE;
6962 kvm_put_guest_xcr0(vcpu);
6964 kvm_x86_ops->handle_external_intr(vcpu);
6968 guest_exit_irqoff();
6973 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6976 * Profile KVM exit RIPs:
6978 if (unlikely(prof_on == KVM_PROFILING)) {
6979 unsigned long rip = kvm_rip_read(vcpu);
6980 profile_hit(KVM_PROFILING, (void *)rip);
6983 if (unlikely(vcpu->arch.tsc_always_catchup))
6984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6986 if (vcpu->arch.apic_attention)
6987 kvm_lapic_sync_from_vapic(vcpu);
6989 r = kvm_x86_ops->handle_exit(vcpu);
6993 kvm_x86_ops->cancel_injection(vcpu);
6994 if (unlikely(vcpu->arch.apic_attention))
6995 kvm_lapic_sync_from_vapic(vcpu);
7000 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7002 if (!kvm_arch_vcpu_runnable(vcpu) &&
7003 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7004 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7005 kvm_vcpu_block(vcpu);
7006 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7008 if (kvm_x86_ops->post_block)
7009 kvm_x86_ops->post_block(vcpu);
7011 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7015 kvm_apic_accept_events(vcpu);
7016 switch(vcpu->arch.mp_state) {
7017 case KVM_MP_STATE_HALTED:
7018 vcpu->arch.pv.pv_unhalted = false;
7019 vcpu->arch.mp_state =
7020 KVM_MP_STATE_RUNNABLE;
7021 case KVM_MP_STATE_RUNNABLE:
7022 vcpu->arch.apf.halted = false;
7024 case KVM_MP_STATE_INIT_RECEIVED:
7033 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7035 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7036 kvm_x86_ops->check_nested_events(vcpu, false);
7038 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7039 !vcpu->arch.apf.halted);
7042 static int vcpu_run(struct kvm_vcpu *vcpu)
7045 struct kvm *kvm = vcpu->kvm;
7047 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7050 if (kvm_vcpu_running(vcpu)) {
7051 r = vcpu_enter_guest(vcpu);
7053 r = vcpu_block(kvm, vcpu);
7059 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7060 if (kvm_cpu_has_pending_timer(vcpu))
7061 kvm_inject_pending_timer_irqs(vcpu);
7063 if (dm_request_for_irq_injection(vcpu) &&
7064 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7066 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7067 ++vcpu->stat.request_irq_exits;
7071 kvm_check_async_pf_completion(vcpu);
7073 if (signal_pending(current)) {
7075 vcpu->run->exit_reason = KVM_EXIT_INTR;
7076 ++vcpu->stat.signal_exits;
7079 if (need_resched()) {
7080 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7082 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7086 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7091 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7094 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7095 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7096 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7097 if (r != EMULATE_DONE)
7102 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7104 BUG_ON(!vcpu->arch.pio.count);
7106 return complete_emulated_io(vcpu);
7110 * Implements the following, as a state machine:
7114 * for each mmio piece in the fragment
7122 * for each mmio piece in the fragment
7127 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7129 struct kvm_run *run = vcpu->run;
7130 struct kvm_mmio_fragment *frag;
7133 BUG_ON(!vcpu->mmio_needed);
7135 /* Complete previous fragment */
7136 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7137 len = min(8u, frag->len);
7138 if (!vcpu->mmio_is_write)
7139 memcpy(frag->data, run->mmio.data, len);
7141 if (frag->len <= 8) {
7142 /* Switch to the next fragment. */
7144 vcpu->mmio_cur_fragment++;
7146 /* Go forward to the next mmio piece. */
7152 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7153 vcpu->mmio_needed = 0;
7155 /* FIXME: return into emulator if single-stepping. */
7156 if (vcpu->mmio_is_write)
7158 vcpu->mmio_read_completed = 1;
7159 return complete_emulated_io(vcpu);
7162 run->exit_reason = KVM_EXIT_MMIO;
7163 run->mmio.phys_addr = frag->gpa;
7164 if (vcpu->mmio_is_write)
7165 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7166 run->mmio.len = min(8u, frag->len);
7167 run->mmio.is_write = vcpu->mmio_is_write;
7168 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7173 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7175 struct fpu *fpu = ¤t->thread.fpu;
7179 fpu__activate_curr(fpu);
7181 if (vcpu->sigset_active)
7182 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7184 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7185 kvm_vcpu_block(vcpu);
7186 kvm_apic_accept_events(vcpu);
7187 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7192 /* re-sync apic's tpr */
7193 if (!lapic_in_kernel(vcpu)) {
7194 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7200 if (unlikely(vcpu->arch.complete_userspace_io)) {
7201 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7202 vcpu->arch.complete_userspace_io = NULL;
7207 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7209 if (kvm_run->immediate_exit)
7215 post_kvm_run_save(vcpu);
7216 if (vcpu->sigset_active)
7217 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7224 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7226 * We are here if userspace calls get_regs() in the middle of
7227 * instruction emulation. Registers state needs to be copied
7228 * back from emulation context to vcpu. Userspace shouldn't do
7229 * that usually, but some bad designed PV devices (vmware
7230 * backdoor interface) need this to work
7232 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7233 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7235 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7236 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7237 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7238 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7239 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7240 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7241 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7242 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7243 #ifdef CONFIG_X86_64
7244 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7245 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7246 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7247 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7248 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7249 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7250 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7251 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7254 regs->rip = kvm_rip_read(vcpu);
7255 regs->rflags = kvm_get_rflags(vcpu);
7260 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7262 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7263 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7265 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7266 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7267 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7268 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7269 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7270 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7271 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7272 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7273 #ifdef CONFIG_X86_64
7274 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7275 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7276 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7277 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7278 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7279 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7280 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7281 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7284 kvm_rip_write(vcpu, regs->rip);
7285 kvm_set_rflags(vcpu, regs->rflags);
7287 vcpu->arch.exception.pending = false;
7289 kvm_make_request(KVM_REQ_EVENT, vcpu);
7294 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7296 struct kvm_segment cs;
7298 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7302 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7304 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7305 struct kvm_sregs *sregs)
7309 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7310 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7311 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7312 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7313 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7314 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7316 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7317 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7319 kvm_x86_ops->get_idt(vcpu, &dt);
7320 sregs->idt.limit = dt.size;
7321 sregs->idt.base = dt.address;
7322 kvm_x86_ops->get_gdt(vcpu, &dt);
7323 sregs->gdt.limit = dt.size;
7324 sregs->gdt.base = dt.address;
7326 sregs->cr0 = kvm_read_cr0(vcpu);
7327 sregs->cr2 = vcpu->arch.cr2;
7328 sregs->cr3 = kvm_read_cr3(vcpu);
7329 sregs->cr4 = kvm_read_cr4(vcpu);
7330 sregs->cr8 = kvm_get_cr8(vcpu);
7331 sregs->efer = vcpu->arch.efer;
7332 sregs->apic_base = kvm_get_apic_base(vcpu);
7334 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7336 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7337 set_bit(vcpu->arch.interrupt.nr,
7338 (unsigned long *)sregs->interrupt_bitmap);
7343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7344 struct kvm_mp_state *mp_state)
7346 kvm_apic_accept_events(vcpu);
7347 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7348 vcpu->arch.pv.pv_unhalted)
7349 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7351 mp_state->mp_state = vcpu->arch.mp_state;
7356 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7357 struct kvm_mp_state *mp_state)
7359 if (!lapic_in_kernel(vcpu) &&
7360 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7363 /* INITs are latched while in SMM */
7364 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7365 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7366 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7369 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7370 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7371 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7373 vcpu->arch.mp_state = mp_state->mp_state;
7374 kvm_make_request(KVM_REQ_EVENT, vcpu);
7378 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7379 int reason, bool has_error_code, u32 error_code)
7381 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7384 init_emulate_ctxt(vcpu);
7386 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7387 has_error_code, error_code);
7390 return EMULATE_FAIL;
7392 kvm_rip_write(vcpu, ctxt->eip);
7393 kvm_set_rflags(vcpu, ctxt->eflags);
7394 kvm_make_request(KVM_REQ_EVENT, vcpu);
7395 return EMULATE_DONE;
7397 EXPORT_SYMBOL_GPL(kvm_task_switch);
7399 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7400 struct kvm_sregs *sregs)
7402 struct msr_data apic_base_msr;
7403 int mmu_reset_needed = 0;
7404 int pending_vec, max_bits, idx;
7407 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7410 dt.size = sregs->idt.limit;
7411 dt.address = sregs->idt.base;
7412 kvm_x86_ops->set_idt(vcpu, &dt);
7413 dt.size = sregs->gdt.limit;
7414 dt.address = sregs->gdt.base;
7415 kvm_x86_ops->set_gdt(vcpu, &dt);
7417 vcpu->arch.cr2 = sregs->cr2;
7418 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7419 vcpu->arch.cr3 = sregs->cr3;
7420 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7422 kvm_set_cr8(vcpu, sregs->cr8);
7424 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7425 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7426 apic_base_msr.data = sregs->apic_base;
7427 apic_base_msr.host_initiated = true;
7428 kvm_set_apic_base(vcpu, &apic_base_msr);
7430 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7431 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7432 vcpu->arch.cr0 = sregs->cr0;
7434 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7435 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7436 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7437 kvm_update_cpuid(vcpu);
7439 idx = srcu_read_lock(&vcpu->kvm->srcu);
7440 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7441 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7442 mmu_reset_needed = 1;
7444 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7446 if (mmu_reset_needed)
7447 kvm_mmu_reset_context(vcpu);
7449 max_bits = KVM_NR_INTERRUPTS;
7450 pending_vec = find_first_bit(
7451 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7452 if (pending_vec < max_bits) {
7453 kvm_queue_interrupt(vcpu, pending_vec, false);
7454 pr_debug("Set back pending irq %d\n", pending_vec);
7457 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7458 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7459 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7460 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7461 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7462 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7464 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7465 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7467 update_cr8_intercept(vcpu);
7469 /* Older userspace won't unhalt the vcpu on reset. */
7470 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7471 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7473 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7475 kvm_make_request(KVM_REQ_EVENT, vcpu);
7480 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7481 struct kvm_guest_debug *dbg)
7483 unsigned long rflags;
7486 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7488 if (vcpu->arch.exception.pending)
7490 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7491 kvm_queue_exception(vcpu, DB_VECTOR);
7493 kvm_queue_exception(vcpu, BP_VECTOR);
7497 * Read rflags as long as potentially injected trace flags are still
7500 rflags = kvm_get_rflags(vcpu);
7502 vcpu->guest_debug = dbg->control;
7503 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7504 vcpu->guest_debug = 0;
7506 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7507 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7508 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7509 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7511 for (i = 0; i < KVM_NR_DB_REGS; i++)
7512 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7514 kvm_update_dr7(vcpu);
7516 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7517 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7518 get_segment_base(vcpu, VCPU_SREG_CS);
7521 * Trigger an rflags update that will inject or remove the trace
7524 kvm_set_rflags(vcpu, rflags);
7526 kvm_x86_ops->update_bp_intercept(vcpu);
7536 * Translate a guest virtual address to a guest physical address.
7538 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7539 struct kvm_translation *tr)
7541 unsigned long vaddr = tr->linear_address;
7545 idx = srcu_read_lock(&vcpu->kvm->srcu);
7546 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7547 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7548 tr->physical_address = gpa;
7549 tr->valid = gpa != UNMAPPED_GVA;
7556 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7558 struct fxregs_state *fxsave =
7559 &vcpu->arch.guest_fpu.state.fxsave;
7561 memcpy(fpu->fpr, fxsave->st_space, 128);
7562 fpu->fcw = fxsave->cwd;
7563 fpu->fsw = fxsave->swd;
7564 fpu->ftwx = fxsave->twd;
7565 fpu->last_opcode = fxsave->fop;
7566 fpu->last_ip = fxsave->rip;
7567 fpu->last_dp = fxsave->rdp;
7568 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7573 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7575 struct fxregs_state *fxsave =
7576 &vcpu->arch.guest_fpu.state.fxsave;
7578 memcpy(fxsave->st_space, fpu->fpr, 128);
7579 fxsave->cwd = fpu->fcw;
7580 fxsave->swd = fpu->fsw;
7581 fxsave->twd = fpu->ftwx;
7582 fxsave->fop = fpu->last_opcode;
7583 fxsave->rip = fpu->last_ip;
7584 fxsave->rdp = fpu->last_dp;
7585 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7590 static void fx_init(struct kvm_vcpu *vcpu)
7592 fpstate_init(&vcpu->arch.guest_fpu.state);
7593 if (boot_cpu_has(X86_FEATURE_XSAVES))
7594 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7595 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7598 * Ensure guest xcr0 is valid for loading
7600 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7602 vcpu->arch.cr0 |= X86_CR0_ET;
7605 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7607 if (vcpu->guest_fpu_loaded)
7611 * Restore all possible states in the guest,
7612 * and assume host would use all available bits.
7613 * Guest xcr0 would be loaded later.
7615 vcpu->guest_fpu_loaded = 1;
7616 __kernel_fpu_begin();
7617 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7621 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7623 if (!vcpu->guest_fpu_loaded)
7626 vcpu->guest_fpu_loaded = 0;
7627 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7629 ++vcpu->stat.fpu_reload;
7633 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7635 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7637 kvmclock_reset(vcpu);
7639 kvm_x86_ops->vcpu_free(vcpu);
7640 free_cpumask_var(wbinvd_dirty_mask);
7643 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7646 struct kvm_vcpu *vcpu;
7648 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7649 printk_once(KERN_WARNING
7650 "kvm: SMP vm created on host with unstable TSC; "
7651 "guest TSC will not be reliable\n");
7653 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7658 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7662 kvm_vcpu_mtrr_init(vcpu);
7663 r = vcpu_load(vcpu);
7666 kvm_vcpu_reset(vcpu, false);
7667 kvm_mmu_setup(vcpu);
7672 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7674 struct msr_data msr;
7675 struct kvm *kvm = vcpu->kvm;
7677 if (vcpu_load(vcpu))
7680 msr.index = MSR_IA32_TSC;
7681 msr.host_initiated = true;
7682 kvm_write_tsc(vcpu, &msr);
7685 if (!kvmclock_periodic_sync)
7688 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7689 KVMCLOCK_SYNC_PERIOD);
7692 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7695 vcpu->arch.apf.msr_val = 0;
7697 r = vcpu_load(vcpu);
7699 kvm_mmu_unload(vcpu);
7702 kvm_x86_ops->vcpu_free(vcpu);
7705 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7707 vcpu->arch.hflags = 0;
7709 vcpu->arch.smi_pending = 0;
7710 atomic_set(&vcpu->arch.nmi_queued, 0);
7711 vcpu->arch.nmi_pending = 0;
7712 vcpu->arch.nmi_injected = false;
7713 kvm_clear_interrupt_queue(vcpu);
7714 kvm_clear_exception_queue(vcpu);
7716 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7717 kvm_update_dr0123(vcpu);
7718 vcpu->arch.dr6 = DR6_INIT;
7719 kvm_update_dr6(vcpu);
7720 vcpu->arch.dr7 = DR7_FIXED_1;
7721 kvm_update_dr7(vcpu);
7725 kvm_make_request(KVM_REQ_EVENT, vcpu);
7726 vcpu->arch.apf.msr_val = 0;
7727 vcpu->arch.st.msr_val = 0;
7729 kvmclock_reset(vcpu);
7731 kvm_clear_async_pf_completion_queue(vcpu);
7732 kvm_async_pf_hash_reset(vcpu);
7733 vcpu->arch.apf.halted = false;
7736 kvm_pmu_reset(vcpu);
7737 vcpu->arch.smbase = 0x30000;
7739 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7740 vcpu->arch.msr_misc_features_enables = 0;
7743 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7744 vcpu->arch.regs_avail = ~0;
7745 vcpu->arch.regs_dirty = ~0;
7747 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7750 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7752 struct kvm_segment cs;
7754 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7755 cs.selector = vector << 8;
7756 cs.base = vector << 12;
7757 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7758 kvm_rip_write(vcpu, 0);
7761 int kvm_arch_hardware_enable(void)
7764 struct kvm_vcpu *vcpu;
7769 bool stable, backwards_tsc = false;
7771 kvm_shared_msr_cpu_online();
7772 ret = kvm_x86_ops->hardware_enable();
7776 local_tsc = rdtsc();
7777 stable = !check_tsc_unstable();
7778 list_for_each_entry(kvm, &vm_list, vm_list) {
7779 kvm_for_each_vcpu(i, vcpu, kvm) {
7780 if (!stable && vcpu->cpu == smp_processor_id())
7781 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7782 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7783 backwards_tsc = true;
7784 if (vcpu->arch.last_host_tsc > max_tsc)
7785 max_tsc = vcpu->arch.last_host_tsc;
7791 * Sometimes, even reliable TSCs go backwards. This happens on
7792 * platforms that reset TSC during suspend or hibernate actions, but
7793 * maintain synchronization. We must compensate. Fortunately, we can
7794 * detect that condition here, which happens early in CPU bringup,
7795 * before any KVM threads can be running. Unfortunately, we can't
7796 * bring the TSCs fully up to date with real time, as we aren't yet far
7797 * enough into CPU bringup that we know how much real time has actually
7798 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7799 * variables that haven't been updated yet.
7801 * So we simply find the maximum observed TSC above, then record the
7802 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7803 * the adjustment will be applied. Note that we accumulate
7804 * adjustments, in case multiple suspend cycles happen before some VCPU
7805 * gets a chance to run again. In the event that no KVM threads get a
7806 * chance to run, we will miss the entire elapsed period, as we'll have
7807 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7808 * loose cycle time. This isn't too big a deal, since the loss will be
7809 * uniform across all VCPUs (not to mention the scenario is extremely
7810 * unlikely). It is possible that a second hibernate recovery happens
7811 * much faster than a first, causing the observed TSC here to be
7812 * smaller; this would require additional padding adjustment, which is
7813 * why we set last_host_tsc to the local tsc observed here.
7815 * N.B. - this code below runs only on platforms with reliable TSC,
7816 * as that is the only way backwards_tsc is set above. Also note
7817 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7818 * have the same delta_cyc adjustment applied if backwards_tsc
7819 * is detected. Note further, this adjustment is only done once,
7820 * as we reset last_host_tsc on all VCPUs to stop this from being
7821 * called multiple times (one for each physical CPU bringup).
7823 * Platforms with unreliable TSCs don't have to deal with this, they
7824 * will be compensated by the logic in vcpu_load, which sets the TSC to
7825 * catchup mode. This will catchup all VCPUs to real time, but cannot
7826 * guarantee that they stay in perfect synchronization.
7828 if (backwards_tsc) {
7829 u64 delta_cyc = max_tsc - local_tsc;
7830 backwards_tsc_observed = true;
7831 list_for_each_entry(kvm, &vm_list, vm_list) {
7832 kvm_for_each_vcpu(i, vcpu, kvm) {
7833 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7834 vcpu->arch.last_host_tsc = local_tsc;
7835 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7839 * We have to disable TSC offset matching.. if you were
7840 * booting a VM while issuing an S4 host suspend....
7841 * you may have some problem. Solving this issue is
7842 * left as an exercise to the reader.
7844 kvm->arch.last_tsc_nsec = 0;
7845 kvm->arch.last_tsc_write = 0;
7852 void kvm_arch_hardware_disable(void)
7854 kvm_x86_ops->hardware_disable();
7855 drop_user_return_notifiers();
7858 int kvm_arch_hardware_setup(void)
7862 r = kvm_x86_ops->hardware_setup();
7866 if (kvm_has_tsc_control) {
7868 * Make sure the user can only configure tsc_khz values that
7869 * fit into a signed integer.
7870 * A min value is not calculated needed because it will always
7871 * be 1 on all machines.
7873 u64 max = min(0x7fffffffULL,
7874 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7875 kvm_max_guest_tsc_khz = max;
7877 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7880 kvm_init_msr_list();
7884 void kvm_arch_hardware_unsetup(void)
7886 kvm_x86_ops->hardware_unsetup();
7889 void kvm_arch_check_processor_compat(void *rtn)
7891 kvm_x86_ops->check_processor_compatibility(rtn);
7894 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7896 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7898 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7900 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7902 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7905 struct static_key kvm_no_apic_vcpu __read_mostly;
7906 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7908 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7914 BUG_ON(vcpu->kvm == NULL);
7917 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7918 vcpu->arch.pv.pv_unhalted = false;
7919 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7920 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7921 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7923 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7925 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7930 vcpu->arch.pio_data = page_address(page);
7932 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7934 r = kvm_mmu_create(vcpu);
7936 goto fail_free_pio_data;
7938 if (irqchip_in_kernel(kvm)) {
7939 r = kvm_create_lapic(vcpu);
7941 goto fail_mmu_destroy;
7943 static_key_slow_inc(&kvm_no_apic_vcpu);
7945 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7947 if (!vcpu->arch.mce_banks) {
7949 goto fail_free_lapic;
7951 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7953 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7955 goto fail_free_mce_banks;
7960 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7961 vcpu->arch.pv_time_enabled = false;
7963 vcpu->arch.guest_supported_xcr0 = 0;
7964 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7966 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7968 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7970 kvm_async_pf_hash_reset(vcpu);
7973 vcpu->arch.pending_external_vector = -1;
7975 kvm_hv_vcpu_init(vcpu);
7979 fail_free_mce_banks:
7980 kfree(vcpu->arch.mce_banks);
7982 kvm_free_lapic(vcpu);
7984 kvm_mmu_destroy(vcpu);
7986 free_page((unsigned long)vcpu->arch.pio_data);
7991 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7995 kvm_hv_vcpu_uninit(vcpu);
7996 kvm_pmu_destroy(vcpu);
7997 kfree(vcpu->arch.mce_banks);
7998 kvm_free_lapic(vcpu);
7999 idx = srcu_read_lock(&vcpu->kvm->srcu);
8000 kvm_mmu_destroy(vcpu);
8001 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8002 free_page((unsigned long)vcpu->arch.pio_data);
8003 if (!lapic_in_kernel(vcpu))
8004 static_key_slow_dec(&kvm_no_apic_vcpu);
8007 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8009 kvm_x86_ops->sched_in(vcpu, cpu);
8012 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8017 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8018 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8019 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8020 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8021 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8023 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8024 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8025 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8026 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8027 &kvm->arch.irq_sources_bitmap);
8029 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8030 mutex_init(&kvm->arch.apic_map_lock);
8031 mutex_init(&kvm->arch.hyperv.hv_lock);
8032 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8034 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8035 pvclock_update_vm_gtod_copy(kvm);
8037 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8038 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8040 kvm_page_track_init(kvm);
8041 kvm_mmu_init_vm(kvm);
8043 if (kvm_x86_ops->vm_init)
8044 return kvm_x86_ops->vm_init(kvm);
8049 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8052 r = vcpu_load(vcpu);
8054 kvm_mmu_unload(vcpu);
8058 static void kvm_free_vcpus(struct kvm *kvm)
8061 struct kvm_vcpu *vcpu;
8064 * Unpin any mmu pages first.
8066 kvm_for_each_vcpu(i, vcpu, kvm) {
8067 kvm_clear_async_pf_completion_queue(vcpu);
8068 kvm_unload_vcpu_mmu(vcpu);
8070 kvm_for_each_vcpu(i, vcpu, kvm)
8071 kvm_arch_vcpu_free(vcpu);
8073 mutex_lock(&kvm->lock);
8074 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8075 kvm->vcpus[i] = NULL;
8077 atomic_set(&kvm->online_vcpus, 0);
8078 mutex_unlock(&kvm->lock);
8081 void kvm_arch_sync_events(struct kvm *kvm)
8083 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8084 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8088 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8092 struct kvm_memslots *slots = kvm_memslots(kvm);
8093 struct kvm_memory_slot *slot, old;
8095 /* Called with kvm->slots_lock held. */
8096 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8099 slot = id_to_memslot(slots, id);
8105 * MAP_SHARED to prevent internal slot pages from being moved
8108 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8109 MAP_SHARED | MAP_ANONYMOUS, 0);
8110 if (IS_ERR((void *)hva))
8111 return PTR_ERR((void *)hva);
8120 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8121 struct kvm_userspace_memory_region m;
8123 m.slot = id | (i << 16);
8125 m.guest_phys_addr = gpa;
8126 m.userspace_addr = hva;
8127 m.memory_size = size;
8128 r = __kvm_set_memory_region(kvm, &m);
8134 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8140 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8142 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8146 mutex_lock(&kvm->slots_lock);
8147 r = __x86_set_memory_region(kvm, id, gpa, size);
8148 mutex_unlock(&kvm->slots_lock);
8152 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8154 void kvm_arch_destroy_vm(struct kvm *kvm)
8156 if (current->mm == kvm->mm) {
8158 * Free memory regions allocated on behalf of userspace,
8159 * unless the the memory map has changed due to process exit
8162 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8163 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8164 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8166 if (kvm_x86_ops->vm_destroy)
8167 kvm_x86_ops->vm_destroy(kvm);
8168 kvm_pic_destroy(kvm);
8169 kvm_ioapic_destroy(kvm);
8170 kvm_free_vcpus(kvm);
8171 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8172 kvm_mmu_uninit_vm(kvm);
8173 kvm_page_track_cleanup(kvm);
8176 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8177 struct kvm_memory_slot *dont)
8181 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8182 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8183 kvfree(free->arch.rmap[i]);
8184 free->arch.rmap[i] = NULL;
8189 if (!dont || free->arch.lpage_info[i - 1] !=
8190 dont->arch.lpage_info[i - 1]) {
8191 kvfree(free->arch.lpage_info[i - 1]);
8192 free->arch.lpage_info[i - 1] = NULL;
8196 kvm_page_track_free_memslot(free, dont);
8199 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8200 unsigned long npages)
8204 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8205 struct kvm_lpage_info *linfo;
8210 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8211 slot->base_gfn, level) + 1;
8213 slot->arch.rmap[i] =
8214 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8215 if (!slot->arch.rmap[i])
8220 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8224 slot->arch.lpage_info[i - 1] = linfo;
8226 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8227 linfo[0].disallow_lpage = 1;
8228 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8229 linfo[lpages - 1].disallow_lpage = 1;
8230 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8232 * If the gfn and userspace address are not aligned wrt each
8233 * other, or if explicitly asked to, disable large page
8234 * support for this slot
8236 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8237 !kvm_largepages_enabled()) {
8240 for (j = 0; j < lpages; ++j)
8241 linfo[j].disallow_lpage = 1;
8245 if (kvm_page_track_create_memslot(slot, npages))
8251 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8252 kvfree(slot->arch.rmap[i]);
8253 slot->arch.rmap[i] = NULL;
8257 kvfree(slot->arch.lpage_info[i - 1]);
8258 slot->arch.lpage_info[i - 1] = NULL;
8263 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8266 * memslots->generation has been incremented.
8267 * mmio generation may have reached its maximum value.
8269 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8272 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8273 struct kvm_memory_slot *memslot,
8274 const struct kvm_userspace_memory_region *mem,
8275 enum kvm_mr_change change)
8280 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8281 struct kvm_memory_slot *new)
8283 /* Still write protect RO slot */
8284 if (new->flags & KVM_MEM_READONLY) {
8285 kvm_mmu_slot_remove_write_access(kvm, new);
8290 * Call kvm_x86_ops dirty logging hooks when they are valid.
8292 * kvm_x86_ops->slot_disable_log_dirty is called when:
8294 * - KVM_MR_CREATE with dirty logging is disabled
8295 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8297 * The reason is, in case of PML, we need to set D-bit for any slots
8298 * with dirty logging disabled in order to eliminate unnecessary GPA
8299 * logging in PML buffer (and potential PML buffer full VMEXT). This
8300 * guarantees leaving PML enabled during guest's lifetime won't have
8301 * any additonal overhead from PML when guest is running with dirty
8302 * logging disabled for memory slots.
8304 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8305 * to dirty logging mode.
8307 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8309 * In case of write protect:
8311 * Write protect all pages for dirty logging.
8313 * All the sptes including the large sptes which point to this
8314 * slot are set to readonly. We can not create any new large
8315 * spte on this slot until the end of the logging.
8317 * See the comments in fast_page_fault().
8319 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8320 if (kvm_x86_ops->slot_enable_log_dirty)
8321 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8323 kvm_mmu_slot_remove_write_access(kvm, new);
8325 if (kvm_x86_ops->slot_disable_log_dirty)
8326 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8330 void kvm_arch_commit_memory_region(struct kvm *kvm,
8331 const struct kvm_userspace_memory_region *mem,
8332 const struct kvm_memory_slot *old,
8333 const struct kvm_memory_slot *new,
8334 enum kvm_mr_change change)
8336 int nr_mmu_pages = 0;
8338 if (!kvm->arch.n_requested_mmu_pages)
8339 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8342 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8345 * Dirty logging tracks sptes in 4k granularity, meaning that large
8346 * sptes have to be split. If live migration is successful, the guest
8347 * in the source machine will be destroyed and large sptes will be
8348 * created in the destination. However, if the guest continues to run
8349 * in the source machine (for example if live migration fails), small
8350 * sptes will remain around and cause bad performance.
8352 * Scan sptes if dirty logging has been stopped, dropping those
8353 * which can be collapsed into a single large-page spte. Later
8354 * page faults will create the large-page sptes.
8356 if ((change != KVM_MR_DELETE) &&
8357 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8358 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8359 kvm_mmu_zap_collapsible_sptes(kvm, new);
8362 * Set up write protection and/or dirty logging for the new slot.
8364 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8365 * been zapped so no dirty logging staff is needed for old slot. For
8366 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8367 * new and it's also covered when dealing with the new slot.
8369 * FIXME: const-ify all uses of struct kvm_memory_slot.
8371 if (change != KVM_MR_DELETE)
8372 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8375 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8377 kvm_mmu_invalidate_zap_all_pages(kvm);
8380 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8381 struct kvm_memory_slot *slot)
8383 kvm_page_track_flush_slot(kvm, slot);
8386 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8388 if (!list_empty_careful(&vcpu->async_pf.done))
8391 if (kvm_apic_has_events(vcpu))
8394 if (vcpu->arch.pv.pv_unhalted)
8397 if (atomic_read(&vcpu->arch.nmi_queued))
8400 if (kvm_test_request(KVM_REQ_SMI, vcpu))
8403 if (kvm_arch_interrupt_allowed(vcpu) &&
8404 kvm_cpu_has_interrupt(vcpu))
8407 if (kvm_hv_has_stimer_pending(vcpu))
8413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8415 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8418 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8420 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8423 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8425 return kvm_x86_ops->interrupt_allowed(vcpu);
8428 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8430 if (is_64_bit_mode(vcpu))
8431 return kvm_rip_read(vcpu);
8432 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8433 kvm_rip_read(vcpu));
8435 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8437 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8439 return kvm_get_linear_rip(vcpu) == linear_rip;
8441 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8443 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8445 unsigned long rflags;
8447 rflags = kvm_x86_ops->get_rflags(vcpu);
8448 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8449 rflags &= ~X86_EFLAGS_TF;
8452 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8454 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8456 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8457 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8458 rflags |= X86_EFLAGS_TF;
8459 kvm_x86_ops->set_rflags(vcpu, rflags);
8462 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8464 __kvm_set_rflags(vcpu, rflags);
8465 kvm_make_request(KVM_REQ_EVENT, vcpu);
8467 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8469 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8473 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8477 r = kvm_mmu_reload(vcpu);
8481 if (!vcpu->arch.mmu.direct_map &&
8482 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8485 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8488 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8490 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8493 static inline u32 kvm_async_pf_next_probe(u32 key)
8495 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8498 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8500 u32 key = kvm_async_pf_hash_fn(gfn);
8502 while (vcpu->arch.apf.gfns[key] != ~0)
8503 key = kvm_async_pf_next_probe(key);
8505 vcpu->arch.apf.gfns[key] = gfn;
8508 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8511 u32 key = kvm_async_pf_hash_fn(gfn);
8513 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8514 (vcpu->arch.apf.gfns[key] != gfn &&
8515 vcpu->arch.apf.gfns[key] != ~0); i++)
8516 key = kvm_async_pf_next_probe(key);
8521 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8526 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8530 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8532 vcpu->arch.apf.gfns[i] = ~0;
8534 j = kvm_async_pf_next_probe(j);
8535 if (vcpu->arch.apf.gfns[j] == ~0)
8537 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8539 * k lies cyclically in ]i,j]
8541 * |....j i.k.| or |.k..j i...|
8543 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8544 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8549 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8552 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8556 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8557 struct kvm_async_pf *work)
8559 struct x86_exception fault;
8561 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8562 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8564 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8565 (vcpu->arch.apf.send_user_only &&
8566 kvm_x86_ops->get_cpl(vcpu) == 0))
8567 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8568 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8569 fault.vector = PF_VECTOR;
8570 fault.error_code_valid = true;
8571 fault.error_code = 0;
8572 fault.nested_page_fault = false;
8573 fault.address = work->arch.token;
8574 kvm_inject_page_fault(vcpu, &fault);
8578 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8579 struct kvm_async_pf *work)
8581 struct x86_exception fault;
8583 if (work->wakeup_all)
8584 work->arch.token = ~0; /* broadcast wakeup */
8586 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8587 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8589 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8590 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8591 fault.vector = PF_VECTOR;
8592 fault.error_code_valid = true;
8593 fault.error_code = 0;
8594 fault.nested_page_fault = false;
8595 fault.address = work->arch.token;
8596 kvm_inject_page_fault(vcpu, &fault);
8598 vcpu->arch.apf.halted = false;
8599 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8602 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8604 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8607 return !kvm_event_needs_reinjection(vcpu) &&
8608 kvm_x86_ops->interrupt_allowed(vcpu);
8611 void kvm_arch_start_assignment(struct kvm *kvm)
8613 atomic_inc(&kvm->arch.assigned_device_count);
8615 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8617 void kvm_arch_end_assignment(struct kvm *kvm)
8619 atomic_dec(&kvm->arch.assigned_device_count);
8621 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8623 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8625 return atomic_read(&kvm->arch.assigned_device_count);
8627 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8629 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8631 atomic_inc(&kvm->arch.noncoherent_dma_count);
8633 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8635 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8637 atomic_dec(&kvm->arch.noncoherent_dma_count);
8639 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8641 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8643 return atomic_read(&kvm->arch.noncoherent_dma_count);
8645 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8647 bool kvm_arch_has_irq_bypass(void)
8649 return kvm_x86_ops->update_pi_irte != NULL;
8652 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8653 struct irq_bypass_producer *prod)
8655 struct kvm_kernel_irqfd *irqfd =
8656 container_of(cons, struct kvm_kernel_irqfd, consumer);
8658 irqfd->producer = prod;
8660 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8661 prod->irq, irqfd->gsi, 1);
8664 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8665 struct irq_bypass_producer *prod)
8668 struct kvm_kernel_irqfd *irqfd =
8669 container_of(cons, struct kvm_kernel_irqfd, consumer);
8671 WARN_ON(irqfd->producer != prod);
8672 irqfd->producer = NULL;
8675 * When producer of consumer is unregistered, we change back to
8676 * remapped mode, so we can re-use the current implementation
8677 * when the irq is masked/disabled or the consumer side (KVM
8678 * int this case doesn't want to receive the interrupts.
8680 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8682 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8683 " fails: %d\n", irqfd->consumer.token, ret);
8686 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8687 uint32_t guest_irq, bool set)
8689 if (!kvm_x86_ops->update_pi_irte)
8692 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8695 bool kvm_vector_hashing_enabled(void)
8697 return vector_hashing;
8699 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);