2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
146 #include "net-sysfs.h"
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct net_device *dev,
163 struct netdev_notifier_info *info);
166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
171 * Writers must hold the rtnl semaphore while they loop through the
172 * dev_base_head list, and hold dev_base_lock for writing when they do the
173 * actual updates. This allows pure readers to access the list even
174 * while a writer is preparing to update it.
176 * To put it another way, dev_base_lock is held for writing only to
177 * protect against pure readers; the rtnl semaphore provides the
178 * protection against other writers.
180 * See, for example usages, register_netdevice() and
181 * unregister_netdevice(), which must be called with the rtnl
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
193 static seqcount_t devnet_rename_seq;
195 static inline void dev_base_seq_inc(struct net *net)
197 while (++net->dev_base_seq == 0)
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
213 static inline void rps_lock(struct softnet_data *sd)
216 spin_lock(&sd->input_pkt_queue.lock);
220 static inline void rps_unlock(struct softnet_data *sd)
223 spin_unlock(&sd->input_pkt_queue.lock);
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
230 struct net *net = dev_net(dev);
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
241 dev_base_seq_inc(net);
244 /* Device list removal
245 * caller must respect a RCU grace period before freeing/reusing dev
247 static void unlist_netdevice(struct net_device *dev)
251 /* Unlink dev from the device chain */
252 write_lock_bh(&dev_base_lock);
253 list_del_rcu(&dev->dev_list);
254 hlist_del_rcu(&dev->name_hlist);
255 hlist_del_rcu(&dev->index_hlist);
256 write_unlock_bh(&dev_base_lock);
258 dev_base_seq_inc(dev_net(dev));
265 static RAW_NOTIFIER_HEAD(netdev_chain);
268 * Device drivers call our routines to queue packets here. We empty the
269 * queue in the local softnet handler.
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
275 #ifdef CONFIG_LOCKDEP
277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278 * according to dev->type
280 static const unsigned short netdev_lock_type[] = {
281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
297 static const char *const netdev_lock_name[] = {
298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 if (netdev_lock_type[i] == dev_type)
324 /* the last key is used by default */
325 return ARRAY_SIZE(netdev_lock_type) - 1;
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
333 i = netdev_lock_pos(dev_type);
334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 netdev_lock_name[i]);
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 i = netdev_lock_pos(dev->type);
343 lockdep_set_class_and_name(&dev->addr_list_lock,
344 &netdev_addr_lock_key[i],
345 netdev_lock_name[i]);
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 unsigned short dev_type)
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 /*******************************************************************************
359 * Protocol management and registration routines
361 *******************************************************************************/
365 * Add a protocol ID to the list. Now that the input handler is
366 * smarter we can dispense with all the messy stuff that used to be
369 * BEWARE!!! Protocol handlers, mangling input packets,
370 * MUST BE last in hash buckets and checking protocol handlers
371 * MUST start from promiscuous ptype_all chain in net_bh.
372 * It is true now, do not change it.
373 * Explanation follows: if protocol handler, mangling packet, will
374 * be the first on list, it is not able to sense, that packet
375 * is cloned and should be copied-on-write, so that it will
376 * change it and subsequent readers will get broken packet.
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
382 if (pt->type == htons(ETH_P_ALL))
383 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
385 return pt->dev ? &pt->dev->ptype_specific :
386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 * dev_add_pack - add packet handler
391 * @pt: packet type declaration
393 * Add a protocol handler to the networking stack. The passed &packet_type
394 * is linked into kernel lists and may not be freed until it has been
395 * removed from the kernel lists.
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new packet type (until the next received packet).
402 void dev_add_pack(struct packet_type *pt)
404 struct list_head *head = ptype_head(pt);
406 spin_lock(&ptype_lock);
407 list_add_rcu(&pt->list, head);
408 spin_unlock(&ptype_lock);
410 EXPORT_SYMBOL(dev_add_pack);
413 * __dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
421 * The packet type might still be in use by receivers
422 * and must not be freed until after all the CPU's have gone
423 * through a quiescent state.
425 void __dev_remove_pack(struct packet_type *pt)
427 struct list_head *head = ptype_head(pt);
428 struct packet_type *pt1;
430 spin_lock(&ptype_lock);
432 list_for_each_entry(pt1, head, list) {
434 list_del_rcu(&pt->list);
439 pr_warn("dev_remove_pack: %p not found\n", pt);
441 spin_unlock(&ptype_lock);
443 EXPORT_SYMBOL(__dev_remove_pack);
446 * dev_remove_pack - remove packet handler
447 * @pt: packet type declaration
449 * Remove a protocol handler that was previously added to the kernel
450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
451 * from the kernel lists and can be freed or reused once this function
454 * This call sleeps to guarantee that no CPU is looking at the packet
457 void dev_remove_pack(struct packet_type *pt)
459 __dev_remove_pack(pt);
463 EXPORT_SYMBOL(dev_remove_pack);
467 * dev_add_offload - register offload handlers
468 * @po: protocol offload declaration
470 * Add protocol offload handlers to the networking stack. The passed
471 * &proto_offload is linked into kernel lists and may not be freed until
472 * it has been removed from the kernel lists.
474 * This call does not sleep therefore it can not
475 * guarantee all CPU's that are in middle of receiving packets
476 * will see the new offload handlers (until the next received packet).
478 void dev_add_offload(struct packet_offload *po)
480 struct packet_offload *elem;
482 spin_lock(&offload_lock);
483 list_for_each_entry(elem, &offload_base, list) {
484 if (po->priority < elem->priority)
487 list_add_rcu(&po->list, elem->list.prev);
488 spin_unlock(&offload_lock);
490 EXPORT_SYMBOL(dev_add_offload);
493 * __dev_remove_offload - remove offload handler
494 * @po: packet offload declaration
496 * Remove a protocol offload handler that was previously added to the
497 * kernel offload handlers by dev_add_offload(). The passed &offload_type
498 * is removed from the kernel lists and can be freed or reused once this
501 * The packet type might still be in use by receivers
502 * and must not be freed until after all the CPU's have gone
503 * through a quiescent state.
505 static void __dev_remove_offload(struct packet_offload *po)
507 struct list_head *head = &offload_base;
508 struct packet_offload *po1;
510 spin_lock(&offload_lock);
512 list_for_each_entry(po1, head, list) {
514 list_del_rcu(&po->list);
519 pr_warn("dev_remove_offload: %p not found\n", po);
521 spin_unlock(&offload_lock);
525 * dev_remove_offload - remove packet offload handler
526 * @po: packet offload declaration
528 * Remove a packet offload handler that was previously added to the kernel
529 * offload handlers by dev_add_offload(). The passed &offload_type is
530 * removed from the kernel lists and can be freed or reused once this
533 * This call sleeps to guarantee that no CPU is looking at the packet
536 void dev_remove_offload(struct packet_offload *po)
538 __dev_remove_offload(po);
542 EXPORT_SYMBOL(dev_remove_offload);
544 /******************************************************************************
546 * Device Boot-time Settings Routines
548 ******************************************************************************/
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
554 * netdev_boot_setup_add - add new setup entry
555 * @name: name of the device
556 * @map: configured settings for the device
558 * Adds new setup entry to the dev_boot_setup list. The function
559 * returns 0 on error and 1 on success. This is a generic routine to
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
564 struct netdev_boot_setup *s;
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 memset(s[i].name, 0, sizeof(s[i].name));
571 strlcpy(s[i].name, name, IFNAMSIZ);
572 memcpy(&s[i].map, map, sizeof(s[i].map));
577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 * netdev_boot_setup_check - check boot time settings
582 * @dev: the netdevice
584 * Check boot time settings for the device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found, 1 if they are.
589 int netdev_boot_setup_check(struct net_device *dev)
591 struct netdev_boot_setup *s = dev_boot_setup;
594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 !strcmp(dev->name, s[i].name)) {
597 dev->irq = s[i].map.irq;
598 dev->base_addr = s[i].map.base_addr;
599 dev->mem_start = s[i].map.mem_start;
600 dev->mem_end = s[i].map.mem_end;
606 EXPORT_SYMBOL(netdev_boot_setup_check);
610 * netdev_boot_base - get address from boot time settings
611 * @prefix: prefix for network device
612 * @unit: id for network device
614 * Check boot time settings for the base address of device.
615 * The found settings are set for the device to be used
616 * later in the device probing.
617 * Returns 0 if no settings found.
619 unsigned long netdev_boot_base(const char *prefix, int unit)
621 const struct netdev_boot_setup *s = dev_boot_setup;
625 sprintf(name, "%s%d", prefix, unit);
628 * If device already registered then return base of 1
629 * to indicate not to probe for this interface
631 if (__dev_get_by_name(&init_net, name))
634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 if (!strcmp(name, s[i].name))
636 return s[i].map.base_addr;
641 * Saves at boot time configured settings for any netdevice.
643 int __init netdev_boot_setup(char *str)
648 str = get_options(str, ARRAY_SIZE(ints), ints);
653 memset(&map, 0, sizeof(map));
657 map.base_addr = ints[2];
659 map.mem_start = ints[3];
661 map.mem_end = ints[4];
663 /* Add new entry to the list */
664 return netdev_boot_setup_add(str, &map);
667 __setup("netdev=", netdev_boot_setup);
669 /*******************************************************************************
671 * Device Interface Subroutines
673 *******************************************************************************/
676 * dev_get_iflink - get 'iflink' value of a interface
677 * @dev: targeted interface
679 * Indicates the ifindex the interface is linked to.
680 * Physical interfaces have the same 'ifindex' and 'iflink' values.
683 int dev_get_iflink(const struct net_device *dev)
685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 return dev->netdev_ops->ndo_get_iflink(dev);
690 EXPORT_SYMBOL(dev_get_iflink);
693 * dev_fill_metadata_dst - Retrieve tunnel egress information.
694 * @dev: targeted interface
697 * For better visibility of tunnel traffic OVS needs to retrieve
698 * egress tunnel information for a packet. Following API allows
699 * user to get this info.
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
703 struct ip_tunnel_info *info;
705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
708 info = skb_tunnel_info_unclone(skb);
711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
719 * __dev_get_by_name - find a device by its name
720 * @net: the applicable net namespace
721 * @name: name to find
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 struct net_device *dev;
733 struct hlist_head *head = dev_name_hash(net, name);
735 hlist_for_each_entry(dev, head, name_hlist)
736 if (!strncmp(dev->name, name, IFNAMSIZ))
741 EXPORT_SYMBOL(__dev_get_by_name);
744 * dev_get_by_name_rcu - find a device by its name
745 * @net: the applicable net namespace
746 * @name: name to find
748 * Find an interface by name.
749 * If the name is found a pointer to the device is returned.
750 * If the name is not found then %NULL is returned.
751 * The reference counters are not incremented so the caller must be
752 * careful with locks. The caller must hold RCU lock.
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
757 struct net_device *dev;
758 struct hlist_head *head = dev_name_hash(net, name);
760 hlist_for_each_entry_rcu(dev, head, name_hlist)
761 if (!strncmp(dev->name, name, IFNAMSIZ))
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
769 * dev_get_by_name - find a device by its name
770 * @net: the applicable net namespace
771 * @name: name to find
773 * Find an interface by name. This can be called from any
774 * context and does its own locking. The returned handle has
775 * the usage count incremented and the caller must use dev_put() to
776 * release it when it is no longer needed. %NULL is returned if no
777 * matching device is found.
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
782 struct net_device *dev;
785 dev = dev_get_by_name_rcu(net, name);
791 EXPORT_SYMBOL(dev_get_by_name);
794 * __dev_get_by_index - find a device by its ifindex
795 * @net: the applicable net namespace
796 * @ifindex: index of device
798 * Search for an interface by index. Returns %NULL if the device
799 * is not found or a pointer to the device. The device has not
800 * had its reference counter increased so the caller must be careful
801 * about locking. The caller must hold either the RTNL semaphore
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
807 struct net_device *dev;
808 struct hlist_head *head = dev_index_hash(net, ifindex);
810 hlist_for_each_entry(dev, head, index_hlist)
811 if (dev->ifindex == ifindex)
816 EXPORT_SYMBOL(__dev_get_by_index);
819 * dev_get_by_index_rcu - find a device by its ifindex
820 * @net: the applicable net namespace
821 * @ifindex: index of device
823 * Search for an interface by index. Returns %NULL if the device
824 * is not found or a pointer to the device. The device has not
825 * had its reference counter increased so the caller must be careful
826 * about locking. The caller must hold RCU lock.
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
834 hlist_for_each_entry_rcu(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
844 * dev_get_by_index - find a device by its ifindex
845 * @net: the applicable net namespace
846 * @ifindex: index of device
848 * Search for an interface by index. Returns NULL if the device
849 * is not found or a pointer to the device. The device returned has
850 * had a reference added and the pointer is safe until the user calls
851 * dev_put to indicate they have finished with it.
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
856 struct net_device *dev;
859 dev = dev_get_by_index_rcu(net, ifindex);
865 EXPORT_SYMBOL(dev_get_by_index);
868 * netdev_get_name - get a netdevice name, knowing its ifindex.
869 * @net: network namespace
870 * @name: a pointer to the buffer where the name will be stored.
871 * @ifindex: the ifindex of the interface to get the name from.
873 * The use of raw_seqcount_begin() and cond_resched() before
874 * retrying is required as we want to give the writers a chance
875 * to complete when CONFIG_PREEMPT is not set.
877 int netdev_get_name(struct net *net, char *name, int ifindex)
879 struct net_device *dev;
883 seq = raw_seqcount_begin(&devnet_rename_seq);
885 dev = dev_get_by_index_rcu(net, ifindex);
891 strcpy(name, dev->name);
893 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
902 * dev_getbyhwaddr_rcu - find a device by its hardware address
903 * @net: the applicable net namespace
904 * @type: media type of device
905 * @ha: hardware address
907 * Search for an interface by MAC address. Returns NULL if the device
908 * is not found or a pointer to the device.
909 * The caller must hold RCU or RTNL.
910 * The returned device has not had its ref count increased
911 * and the caller must therefore be careful about locking
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
918 struct net_device *dev;
920 for_each_netdev_rcu(net, dev)
921 if (dev->type == type &&
922 !memcmp(dev->dev_addr, ha, dev->addr_len))
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
931 struct net_device *dev;
934 for_each_netdev(net, dev)
935 if (dev->type == type)
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
944 struct net_device *dev, *ret = NULL;
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
972 struct net_device *dev, *ret;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
985 EXPORT_SYMBOL(__dev_get_by_flags);
988 * dev_valid_name - check if name is okay for network device
991 * Network device names need to be valid file names to
992 * to allow sysfs to work. We also disallow any kind of
995 bool dev_valid_name(const char *name)
999 if (strlen(name) >= IFNAMSIZ)
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1005 if (*name == '/' || *name == ':' || isspace(*name))
1011 EXPORT_SYMBOL(dev_valid_name);
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1036 p = strnchr(name, IFNAMSIZ-1, '%');
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1046 /* Use one page as a bit array of possible slots */
1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 for_each_netdev(net, d) {
1052 if (!sscanf(d->name, name, &i))
1054 if (i < 0 || i >= max_netdevices)
1057 /* avoid cases where sscanf is not exact inverse of printf */
1058 snprintf(buf, IFNAMSIZ, name, i);
1059 if (!strncmp(buf, d->name, IFNAMSIZ))
1063 i = find_first_zero_bit(inuse, max_netdevices);
1064 free_page((unsigned long) inuse);
1068 snprintf(buf, IFNAMSIZ, name, i);
1069 if (!__dev_get_by_name(net, buf))
1072 /* It is possible to run out of possible slots
1073 * when the name is long and there isn't enough space left
1074 * for the digits, or if all bits are used.
1080 * dev_alloc_name - allocate a name for a device
1082 * @name: name format string
1084 * Passed a format string - eg "lt%d" it will try and find a suitable
1085 * id. It scans list of devices to build up a free map, then chooses
1086 * the first empty slot. The caller must hold the dev_base or rtnl lock
1087 * while allocating the name and adding the device in order to avoid
1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 * Returns the number of the unit assigned or a negative errno code.
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1099 BUG_ON(!dev_net(dev));
1101 ret = __dev_alloc_name(net, name, buf);
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1106 EXPORT_SYMBOL(dev_alloc_name);
1108 static int dev_alloc_name_ns(struct net *net,
1109 struct net_device *dev,
1115 ret = __dev_alloc_name(net, name, buf);
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1121 static int dev_get_valid_name(struct net *net,
1122 struct net_device *dev,
1127 if (!dev_valid_name(name))
1130 if (strchr(name, '%'))
1131 return dev_alloc_name_ns(net, dev, name);
1132 else if (__dev_get_by_name(net, name))
1134 else if (dev->name != name)
1135 strlcpy(dev->name, name, IFNAMSIZ);
1141 * dev_change_name - change name of a device
1143 * @newname: name (or format string) must be at least IFNAMSIZ
1145 * Change name of a device, can pass format strings "eth%d".
1148 int dev_change_name(struct net_device *dev, const char *newname)
1150 unsigned char old_assign_type;
1151 char oldname[IFNAMSIZ];
1157 BUG_ON(!dev_net(dev));
1160 if (dev->flags & IFF_UP)
1163 write_seqcount_begin(&devnet_rename_seq);
1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 write_seqcount_end(&devnet_rename_seq);
1170 memcpy(oldname, dev->name, IFNAMSIZ);
1172 err = dev_get_valid_name(net, dev, newname);
1174 write_seqcount_end(&devnet_rename_seq);
1178 if (oldname[0] && !strchr(oldname, '%'))
1179 netdev_info(dev, "renamed from %s\n", oldname);
1181 old_assign_type = dev->name_assign_type;
1182 dev->name_assign_type = NET_NAME_RENAMED;
1185 ret = device_rename(&dev->dev, dev->name);
1187 memcpy(dev->name, oldname, IFNAMSIZ);
1188 dev->name_assign_type = old_assign_type;
1189 write_seqcount_end(&devnet_rename_seq);
1193 write_seqcount_end(&devnet_rename_seq);
1195 netdev_adjacent_rename_links(dev, oldname);
1197 write_lock_bh(&dev_base_lock);
1198 hlist_del_rcu(&dev->name_hlist);
1199 write_unlock_bh(&dev_base_lock);
1203 write_lock_bh(&dev_base_lock);
1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 write_unlock_bh(&dev_base_lock);
1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 ret = notifier_to_errno(ret);
1211 /* err >= 0 after dev_alloc_name() or stores the first errno */
1214 write_seqcount_begin(&devnet_rename_seq);
1215 memcpy(dev->name, oldname, IFNAMSIZ);
1216 memcpy(oldname, newname, IFNAMSIZ);
1217 dev->name_assign_type = old_assign_type;
1218 old_assign_type = NET_NAME_RENAMED;
1221 pr_err("%s: name change rollback failed: %d\n",
1230 * dev_set_alias - change ifalias of a device
1232 * @alias: name up to IFALIASZ
1233 * @len: limit of bytes to copy from info
1235 * Set ifalias for a device,
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1243 if (len >= IFALIASZ)
1247 kfree(dev->ifalias);
1248 dev->ifalias = NULL;
1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1255 dev->ifalias = new_ifalias;
1256 memcpy(dev->ifalias, alias, len);
1257 dev->ifalias[len] = 0;
1264 * netdev_features_change - device changes features
1265 * @dev: device to cause notification
1267 * Called to indicate a device has changed features.
1269 void netdev_features_change(struct net_device *dev)
1271 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1273 EXPORT_SYMBOL(netdev_features_change);
1276 * netdev_state_change - device changes state
1277 * @dev: device to cause notification
1279 * Called to indicate a device has changed state. This function calls
1280 * the notifier chains for netdev_chain and sends a NEWLINK message
1281 * to the routing socket.
1283 void netdev_state_change(struct net_device *dev)
1285 if (dev->flags & IFF_UP) {
1286 struct netdev_notifier_change_info change_info;
1288 change_info.flags_changed = 0;
1289 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1291 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1294 EXPORT_SYMBOL(netdev_state_change);
1297 * netdev_notify_peers - notify network peers about existence of @dev
1298 * @dev: network device
1300 * Generate traffic such that interested network peers are aware of
1301 * @dev, such as by generating a gratuitous ARP. This may be used when
1302 * a device wants to inform the rest of the network about some sort of
1303 * reconfiguration such as a failover event or virtual machine
1306 void netdev_notify_peers(struct net_device *dev)
1309 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1313 EXPORT_SYMBOL(netdev_notify_peers);
1315 static int __dev_open(struct net_device *dev)
1317 const struct net_device_ops *ops = dev->netdev_ops;
1322 if (!netif_device_present(dev))
1325 /* Block netpoll from trying to do any rx path servicing.
1326 * If we don't do this there is a chance ndo_poll_controller
1327 * or ndo_poll may be running while we open the device
1329 netpoll_poll_disable(dev);
1331 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332 ret = notifier_to_errno(ret);
1336 set_bit(__LINK_STATE_START, &dev->state);
1338 if (ops->ndo_validate_addr)
1339 ret = ops->ndo_validate_addr(dev);
1341 if (!ret && ops->ndo_open)
1342 ret = ops->ndo_open(dev);
1344 netpoll_poll_enable(dev);
1347 clear_bit(__LINK_STATE_START, &dev->state);
1349 dev->flags |= IFF_UP;
1350 dev_set_rx_mode(dev);
1352 add_device_randomness(dev->dev_addr, dev->addr_len);
1359 * dev_open - prepare an interface for use.
1360 * @dev: device to open
1362 * Takes a device from down to up state. The device's private open
1363 * function is invoked and then the multicast lists are loaded. Finally
1364 * the device is moved into the up state and a %NETDEV_UP message is
1365 * sent to the netdev notifier chain.
1367 * Calling this function on an active interface is a nop. On a failure
1368 * a negative errno code is returned.
1370 int dev_open(struct net_device *dev)
1374 if (dev->flags & IFF_UP)
1377 ret = __dev_open(dev);
1381 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382 call_netdevice_notifiers(NETDEV_UP, dev);
1386 EXPORT_SYMBOL(dev_open);
1388 static int __dev_close_many(struct list_head *head)
1390 struct net_device *dev;
1395 list_for_each_entry(dev, head, close_list) {
1396 /* Temporarily disable netpoll until the interface is down */
1397 netpoll_poll_disable(dev);
1399 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1401 clear_bit(__LINK_STATE_START, &dev->state);
1403 /* Synchronize to scheduled poll. We cannot touch poll list, it
1404 * can be even on different cpu. So just clear netif_running().
1406 * dev->stop() will invoke napi_disable() on all of it's
1407 * napi_struct instances on this device.
1409 smp_mb__after_atomic(); /* Commit netif_running(). */
1412 dev_deactivate_many(head);
1414 list_for_each_entry(dev, head, close_list) {
1415 const struct net_device_ops *ops = dev->netdev_ops;
1418 * Call the device specific close. This cannot fail.
1419 * Only if device is UP
1421 * We allow it to be called even after a DETACH hot-plug
1427 dev->flags &= ~IFF_UP;
1428 netpoll_poll_enable(dev);
1434 static int __dev_close(struct net_device *dev)
1439 list_add(&dev->close_list, &single);
1440 retval = __dev_close_many(&single);
1446 int dev_close_many(struct list_head *head, bool unlink)
1448 struct net_device *dev, *tmp;
1450 /* Remove the devices that don't need to be closed */
1451 list_for_each_entry_safe(dev, tmp, head, close_list)
1452 if (!(dev->flags & IFF_UP))
1453 list_del_init(&dev->close_list);
1455 __dev_close_many(head);
1457 list_for_each_entry_safe(dev, tmp, head, close_list) {
1458 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459 call_netdevice_notifiers(NETDEV_DOWN, dev);
1461 list_del_init(&dev->close_list);
1466 EXPORT_SYMBOL(dev_close_many);
1469 * dev_close - shutdown an interface.
1470 * @dev: device to shutdown
1472 * This function moves an active device into down state. A
1473 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1477 int dev_close(struct net_device *dev)
1479 if (dev->flags & IFF_UP) {
1482 list_add(&dev->close_list, &single);
1483 dev_close_many(&single, true);
1488 EXPORT_SYMBOL(dev_close);
1492 * dev_disable_lro - disable Large Receive Offload on a device
1495 * Disable Large Receive Offload (LRO) on a net device. Must be
1496 * called under RTNL. This is needed if received packets may be
1497 * forwarded to another interface.
1499 void dev_disable_lro(struct net_device *dev)
1501 struct net_device *lower_dev;
1502 struct list_head *iter;
1504 dev->wanted_features &= ~NETIF_F_LRO;
1505 netdev_update_features(dev);
1507 if (unlikely(dev->features & NETIF_F_LRO))
1508 netdev_WARN(dev, "failed to disable LRO!\n");
1510 netdev_for_each_lower_dev(dev, lower_dev, iter)
1511 dev_disable_lro(lower_dev);
1513 EXPORT_SYMBOL(dev_disable_lro);
1515 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516 struct net_device *dev)
1518 struct netdev_notifier_info info;
1520 netdev_notifier_info_init(&info, dev);
1521 return nb->notifier_call(nb, val, &info);
1524 static int dev_boot_phase = 1;
1527 * register_netdevice_notifier - register a network notifier block
1530 * Register a notifier to be called when network device events occur.
1531 * The notifier passed is linked into the kernel structures and must
1532 * not be reused until it has been unregistered. A negative errno code
1533 * is returned on a failure.
1535 * When registered all registration and up events are replayed
1536 * to the new notifier to allow device to have a race free
1537 * view of the network device list.
1540 int register_netdevice_notifier(struct notifier_block *nb)
1542 struct net_device *dev;
1543 struct net_device *last;
1548 err = raw_notifier_chain_register(&netdev_chain, nb);
1554 for_each_netdev(net, dev) {
1555 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556 err = notifier_to_errno(err);
1560 if (!(dev->flags & IFF_UP))
1563 call_netdevice_notifier(nb, NETDEV_UP, dev);
1574 for_each_netdev(net, dev) {
1578 if (dev->flags & IFF_UP) {
1579 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1583 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1588 raw_notifier_chain_unregister(&netdev_chain, nb);
1591 EXPORT_SYMBOL(register_netdevice_notifier);
1594 * unregister_netdevice_notifier - unregister a network notifier block
1597 * Unregister a notifier previously registered by
1598 * register_netdevice_notifier(). The notifier is unlinked into the
1599 * kernel structures and may then be reused. A negative errno code
1600 * is returned on a failure.
1602 * After unregistering unregister and down device events are synthesized
1603 * for all devices on the device list to the removed notifier to remove
1604 * the need for special case cleanup code.
1607 int unregister_netdevice_notifier(struct notifier_block *nb)
1609 struct net_device *dev;
1614 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1619 for_each_netdev(net, dev) {
1620 if (dev->flags & IFF_UP) {
1621 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1625 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1632 EXPORT_SYMBOL(unregister_netdevice_notifier);
1635 * call_netdevice_notifiers_info - call all network notifier blocks
1636 * @val: value passed unmodified to notifier function
1637 * @dev: net_device pointer passed unmodified to notifier function
1638 * @info: notifier information data
1640 * Call all network notifier blocks. Parameters and return value
1641 * are as for raw_notifier_call_chain().
1644 static int call_netdevice_notifiers_info(unsigned long val,
1645 struct net_device *dev,
1646 struct netdev_notifier_info *info)
1649 netdev_notifier_info_init(info, dev);
1650 return raw_notifier_call_chain(&netdev_chain, val, info);
1654 * call_netdevice_notifiers - call all network notifier blocks
1655 * @val: value passed unmodified to notifier function
1656 * @dev: net_device pointer passed unmodified to notifier function
1658 * Call all network notifier blocks. Parameters and return value
1659 * are as for raw_notifier_call_chain().
1662 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1664 struct netdev_notifier_info info;
1666 return call_netdevice_notifiers_info(val, dev, &info);
1668 EXPORT_SYMBOL(call_netdevice_notifiers);
1670 #ifdef CONFIG_NET_INGRESS
1671 static struct static_key ingress_needed __read_mostly;
1673 void net_inc_ingress_queue(void)
1675 static_key_slow_inc(&ingress_needed);
1677 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1679 void net_dec_ingress_queue(void)
1681 static_key_slow_dec(&ingress_needed);
1683 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1686 #ifdef CONFIG_NET_EGRESS
1687 static struct static_key egress_needed __read_mostly;
1689 void net_inc_egress_queue(void)
1691 static_key_slow_inc(&egress_needed);
1693 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1695 void net_dec_egress_queue(void)
1697 static_key_slow_dec(&egress_needed);
1699 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1702 static struct static_key netstamp_needed __read_mostly;
1703 #ifdef HAVE_JUMP_LABEL
1704 static atomic_t netstamp_needed_deferred;
1705 static atomic_t netstamp_wanted;
1706 static void netstamp_clear(struct work_struct *work)
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1711 wanted = atomic_add_return(deferred, &netstamp_wanted);
1713 static_key_enable(&netstamp_needed);
1715 static_key_disable(&netstamp_needed);
1717 static DECLARE_WORK(netstamp_work, netstamp_clear);
1720 void net_enable_timestamp(void)
1722 #ifdef HAVE_JUMP_LABEL
1726 wanted = atomic_read(&netstamp_wanted);
1729 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1732 atomic_inc(&netstamp_needed_deferred);
1733 schedule_work(&netstamp_work);
1735 static_key_slow_inc(&netstamp_needed);
1738 EXPORT_SYMBOL(net_enable_timestamp);
1740 void net_disable_timestamp(void)
1742 #ifdef HAVE_JUMP_LABEL
1746 wanted = atomic_read(&netstamp_wanted);
1749 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1752 atomic_dec(&netstamp_needed_deferred);
1753 schedule_work(&netstamp_work);
1755 static_key_slow_dec(&netstamp_needed);
1758 EXPORT_SYMBOL(net_disable_timestamp);
1760 static inline void net_timestamp_set(struct sk_buff *skb)
1763 if (static_key_false(&netstamp_needed))
1764 __net_timestamp(skb);
1767 #define net_timestamp_check(COND, SKB) \
1768 if (static_key_false(&netstamp_needed)) { \
1769 if ((COND) && !(SKB)->tstamp) \
1770 __net_timestamp(SKB); \
1773 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1777 if (!(dev->flags & IFF_UP))
1780 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781 if (skb->len <= len)
1784 /* if TSO is enabled, we don't care about the length as the packet
1785 * could be forwarded without being segmented before
1787 if (skb_is_gso(skb))
1792 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1794 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1796 int ret = ____dev_forward_skb(dev, skb);
1799 skb->protocol = eth_type_trans(skb, dev);
1800 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1805 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1808 * dev_forward_skb - loopback an skb to another netif
1810 * @dev: destination network device
1811 * @skb: buffer to forward
1814 * NET_RX_SUCCESS (no congestion)
1815 * NET_RX_DROP (packet was dropped, but freed)
1817 * dev_forward_skb can be used for injecting an skb from the
1818 * start_xmit function of one device into the receive queue
1819 * of another device.
1821 * The receiving device may be in another namespace, so
1822 * we have to clear all information in the skb that could
1823 * impact namespace isolation.
1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1827 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1829 EXPORT_SYMBOL_GPL(dev_forward_skb);
1831 static inline int deliver_skb(struct sk_buff *skb,
1832 struct packet_type *pt_prev,
1833 struct net_device *orig_dev)
1835 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1837 atomic_inc(&skb->users);
1838 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842 struct packet_type **pt,
1843 struct net_device *orig_dev,
1845 struct list_head *ptype_list)
1847 struct packet_type *ptype, *pt_prev = *pt;
1849 list_for_each_entry_rcu(ptype, ptype_list, list) {
1850 if (ptype->type != type)
1853 deliver_skb(skb, pt_prev, orig_dev);
1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1861 if (!ptype->af_packet_priv || !skb->sk)
1864 if (ptype->id_match)
1865 return ptype->id_match(ptype, skb->sk);
1866 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1873 * Support routine. Sends outgoing frames to any network
1874 * taps currently in use.
1877 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1879 struct packet_type *ptype;
1880 struct sk_buff *skb2 = NULL;
1881 struct packet_type *pt_prev = NULL;
1882 struct list_head *ptype_list = &ptype_all;
1886 list_for_each_entry_rcu(ptype, ptype_list, list) {
1887 /* Never send packets back to the socket
1890 if (skb_loop_sk(ptype, skb))
1894 deliver_skb(skb2, pt_prev, skb->dev);
1899 /* need to clone skb, done only once */
1900 skb2 = skb_clone(skb, GFP_ATOMIC);
1904 net_timestamp_set(skb2);
1906 /* skb->nh should be correctly
1907 * set by sender, so that the second statement is
1908 * just protection against buggy protocols.
1910 skb_reset_mac_header(skb2);
1912 if (skb_network_header(skb2) < skb2->data ||
1913 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915 ntohs(skb2->protocol),
1917 skb_reset_network_header(skb2);
1920 skb2->transport_header = skb2->network_header;
1921 skb2->pkt_type = PACKET_OUTGOING;
1925 if (ptype_list == &ptype_all) {
1926 ptype_list = &dev->ptype_all;
1931 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1934 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1937 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938 * @dev: Network device
1939 * @txq: number of queues available
1941 * If real_num_tx_queues is changed the tc mappings may no longer be
1942 * valid. To resolve this verify the tc mapping remains valid and if
1943 * not NULL the mapping. With no priorities mapping to this
1944 * offset/count pair it will no longer be used. In the worst case TC0
1945 * is invalid nothing can be done so disable priority mappings. If is
1946 * expected that drivers will fix this mapping if they can before
1947 * calling netif_set_real_num_tx_queues.
1949 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1952 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1954 /* If TC0 is invalidated disable TC mapping */
1955 if (tc->offset + tc->count > txq) {
1956 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1961 /* Invalidated prio to tc mappings set to TC0 */
1962 for (i = 1; i < TC_BITMASK + 1; i++) {
1963 int q = netdev_get_prio_tc_map(dev, i);
1965 tc = &dev->tc_to_txq[q];
1966 if (tc->offset + tc->count > txq) {
1967 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1969 netdev_set_prio_tc_map(dev, i, 0);
1974 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1977 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1980 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981 if ((txq - tc->offset) < tc->count)
1992 static DEFINE_MUTEX(xps_map_mutex);
1993 #define xmap_dereference(P) \
1994 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1996 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1999 struct xps_map *map = NULL;
2003 map = xmap_dereference(dev_maps->cpu_map[tci]);
2007 for (pos = map->len; pos--;) {
2008 if (map->queues[pos] != index)
2012 map->queues[pos] = map->queues[--map->len];
2016 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017 kfree_rcu(map, rcu);
2024 static bool remove_xps_queue_cpu(struct net_device *dev,
2025 struct xps_dev_maps *dev_maps,
2026 int cpu, u16 offset, u16 count)
2028 int num_tc = dev->num_tc ? : 1;
2029 bool active = false;
2032 for (tci = cpu * num_tc; num_tc--; tci++) {
2035 for (i = count, j = offset; i--; j++) {
2036 if (!remove_xps_queue(dev_maps, cpu, j))
2046 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2049 struct xps_dev_maps *dev_maps;
2051 bool active = false;
2053 mutex_lock(&xps_map_mutex);
2054 dev_maps = xmap_dereference(dev->xps_maps);
2059 for_each_possible_cpu(cpu)
2060 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2064 RCU_INIT_POINTER(dev->xps_maps, NULL);
2065 kfree_rcu(dev_maps, rcu);
2068 for (i = offset + (count - 1); count--; i--)
2069 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2073 mutex_unlock(&xps_map_mutex);
2076 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2078 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2081 static struct xps_map *expand_xps_map(struct xps_map *map,
2084 struct xps_map *new_map;
2085 int alloc_len = XPS_MIN_MAP_ALLOC;
2088 for (pos = 0; map && pos < map->len; pos++) {
2089 if (map->queues[pos] != index)
2094 /* Need to add queue to this CPU's existing map */
2096 if (pos < map->alloc_len)
2099 alloc_len = map->alloc_len * 2;
2102 /* Need to allocate new map to store queue on this CPU's map */
2103 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2108 for (i = 0; i < pos; i++)
2109 new_map->queues[i] = map->queues[i];
2110 new_map->alloc_len = alloc_len;
2116 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2119 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120 int i, cpu, tci, numa_node_id = -2;
2121 int maps_sz, num_tc = 1, tc = 0;
2122 struct xps_map *map, *new_map;
2123 bool active = false;
2126 num_tc = dev->num_tc;
2127 tc = netdev_txq_to_tc(dev, index);
2132 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133 if (maps_sz < L1_CACHE_BYTES)
2134 maps_sz = L1_CACHE_BYTES;
2136 mutex_lock(&xps_map_mutex);
2138 dev_maps = xmap_dereference(dev->xps_maps);
2140 /* allocate memory for queue storage */
2141 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2143 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144 if (!new_dev_maps) {
2145 mutex_unlock(&xps_map_mutex);
2149 tci = cpu * num_tc + tc;
2150 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2153 map = expand_xps_map(map, cpu, index);
2157 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2161 goto out_no_new_maps;
2163 for_each_possible_cpu(cpu) {
2164 /* copy maps belonging to foreign traffic classes */
2165 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166 /* fill in the new device map from the old device map */
2167 map = xmap_dereference(dev_maps->cpu_map[tci]);
2168 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2171 /* We need to explicitly update tci as prevous loop
2172 * could break out early if dev_maps is NULL.
2174 tci = cpu * num_tc + tc;
2176 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177 /* add queue to CPU maps */
2180 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181 while ((pos < map->len) && (map->queues[pos] != index))
2184 if (pos == map->len)
2185 map->queues[map->len++] = index;
2187 if (numa_node_id == -2)
2188 numa_node_id = cpu_to_node(cpu);
2189 else if (numa_node_id != cpu_to_node(cpu))
2192 } else if (dev_maps) {
2193 /* fill in the new device map from the old device map */
2194 map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2198 /* copy maps belonging to foreign traffic classes */
2199 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200 /* fill in the new device map from the old device map */
2201 map = xmap_dereference(dev_maps->cpu_map[tci]);
2202 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2206 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2208 /* Cleanup old maps */
2210 goto out_no_old_maps;
2212 for_each_possible_cpu(cpu) {
2213 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 if (map && map != new_map)
2217 kfree_rcu(map, rcu);
2221 kfree_rcu(dev_maps, rcu);
2224 dev_maps = new_dev_maps;
2228 /* update Tx queue numa node */
2229 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230 (numa_node_id >= 0) ? numa_node_id :
2236 /* removes queue from unused CPUs */
2237 for_each_possible_cpu(cpu) {
2238 for (i = tc, tci = cpu * num_tc; i--; tci++)
2239 active |= remove_xps_queue(dev_maps, tci, index);
2240 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241 active |= remove_xps_queue(dev_maps, tci, index);
2242 for (i = num_tc - tc, tci++; --i; tci++)
2243 active |= remove_xps_queue(dev_maps, tci, index);
2246 /* free map if not active */
2248 RCU_INIT_POINTER(dev->xps_maps, NULL);
2249 kfree_rcu(dev_maps, rcu);
2253 mutex_unlock(&xps_map_mutex);
2257 /* remove any maps that we added */
2258 for_each_possible_cpu(cpu) {
2259 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2262 xmap_dereference(dev_maps->cpu_map[tci]) :
2264 if (new_map && new_map != map)
2269 mutex_unlock(&xps_map_mutex);
2271 kfree(new_dev_maps);
2274 EXPORT_SYMBOL(netif_set_xps_queue);
2277 void netdev_reset_tc(struct net_device *dev)
2280 netif_reset_xps_queues_gt(dev, 0);
2283 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2286 EXPORT_SYMBOL(netdev_reset_tc);
2288 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2290 if (tc >= dev->num_tc)
2294 netif_reset_xps_queues(dev, offset, count);
2296 dev->tc_to_txq[tc].count = count;
2297 dev->tc_to_txq[tc].offset = offset;
2300 EXPORT_SYMBOL(netdev_set_tc_queue);
2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2304 if (num_tc > TC_MAX_QUEUE)
2308 netif_reset_xps_queues_gt(dev, 0);
2310 dev->num_tc = num_tc;
2313 EXPORT_SYMBOL(netdev_set_num_tc);
2316 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2319 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2323 if (txq < 1 || txq > dev->num_tx_queues)
2326 if (dev->reg_state == NETREG_REGISTERED ||
2327 dev->reg_state == NETREG_UNREGISTERING) {
2330 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2336 netif_setup_tc(dev, txq);
2338 if (txq < dev->real_num_tx_queues) {
2339 qdisc_reset_all_tx_gt(dev, txq);
2341 netif_reset_xps_queues_gt(dev, txq);
2346 dev->real_num_tx_queues = txq;
2349 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2353 * netif_set_real_num_rx_queues - set actual number of RX queues used
2354 * @dev: Network device
2355 * @rxq: Actual number of RX queues
2357 * This must be called either with the rtnl_lock held or before
2358 * registration of the net device. Returns 0 on success, or a
2359 * negative error code. If called before registration, it always
2362 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2366 if (rxq < 1 || rxq > dev->num_rx_queues)
2369 if (dev->reg_state == NETREG_REGISTERED) {
2372 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2378 dev->real_num_rx_queues = rxq;
2381 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2385 * netif_get_num_default_rss_queues - default number of RSS queues
2387 * This routine should set an upper limit on the number of RSS queues
2388 * used by default by multiqueue devices.
2390 int netif_get_num_default_rss_queues(void)
2392 return is_kdump_kernel() ?
2393 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2395 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2397 static void __netif_reschedule(struct Qdisc *q)
2399 struct softnet_data *sd;
2400 unsigned long flags;
2402 local_irq_save(flags);
2403 sd = this_cpu_ptr(&softnet_data);
2404 q->next_sched = NULL;
2405 *sd->output_queue_tailp = q;
2406 sd->output_queue_tailp = &q->next_sched;
2407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408 local_irq_restore(flags);
2411 void __netif_schedule(struct Qdisc *q)
2413 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414 __netif_reschedule(q);
2416 EXPORT_SYMBOL(__netif_schedule);
2418 struct dev_kfree_skb_cb {
2419 enum skb_free_reason reason;
2422 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2424 return (struct dev_kfree_skb_cb *)skb->cb;
2427 void netif_schedule_queue(struct netdev_queue *txq)
2430 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431 struct Qdisc *q = rcu_dereference(txq->qdisc);
2433 __netif_schedule(q);
2437 EXPORT_SYMBOL(netif_schedule_queue);
2439 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2441 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2445 q = rcu_dereference(dev_queue->qdisc);
2446 __netif_schedule(q);
2450 EXPORT_SYMBOL(netif_tx_wake_queue);
2452 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2454 unsigned long flags;
2459 if (likely(atomic_read(&skb->users) == 1)) {
2461 atomic_set(&skb->users, 0);
2462 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2465 get_kfree_skb_cb(skb)->reason = reason;
2466 local_irq_save(flags);
2467 skb->next = __this_cpu_read(softnet_data.completion_queue);
2468 __this_cpu_write(softnet_data.completion_queue, skb);
2469 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470 local_irq_restore(flags);
2472 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2474 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2476 if (in_irq() || irqs_disabled())
2477 __dev_kfree_skb_irq(skb, reason);
2481 EXPORT_SYMBOL(__dev_kfree_skb_any);
2485 * netif_device_detach - mark device as removed
2486 * @dev: network device
2488 * Mark device as removed from system and therefore no longer available.
2490 void netif_device_detach(struct net_device *dev)
2492 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493 netif_running(dev)) {
2494 netif_tx_stop_all_queues(dev);
2497 EXPORT_SYMBOL(netif_device_detach);
2500 * netif_device_attach - mark device as attached
2501 * @dev: network device
2503 * Mark device as attached from system and restart if needed.
2505 void netif_device_attach(struct net_device *dev)
2507 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508 netif_running(dev)) {
2509 netif_tx_wake_all_queues(dev);
2510 __netdev_watchdog_up(dev);
2513 EXPORT_SYMBOL(netif_device_attach);
2516 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517 * to be used as a distribution range.
2519 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520 unsigned int num_tx_queues)
2524 u16 qcount = num_tx_queues;
2526 if (skb_rx_queue_recorded(skb)) {
2527 hash = skb_get_rx_queue(skb);
2528 while (unlikely(hash >= num_tx_queues))
2529 hash -= num_tx_queues;
2534 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2536 qoffset = dev->tc_to_txq[tc].offset;
2537 qcount = dev->tc_to_txq[tc].count;
2540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2542 EXPORT_SYMBOL(__skb_tx_hash);
2544 static void skb_warn_bad_offload(const struct sk_buff *skb)
2546 static const netdev_features_t null_features;
2547 struct net_device *dev = skb->dev;
2548 const char *name = "";
2550 if (!net_ratelimit())
2554 if (dev->dev.parent)
2555 name = dev_driver_string(dev->dev.parent);
2557 name = netdev_name(dev);
2559 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560 "gso_type=%d ip_summed=%d\n",
2561 name, dev ? &dev->features : &null_features,
2562 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564 skb_shinfo(skb)->gso_type, skb->ip_summed);
2568 * Invalidate hardware checksum when packet is to be mangled, and
2569 * complete checksum manually on outgoing path.
2571 int skb_checksum_help(struct sk_buff *skb)
2574 int ret = 0, offset;
2576 if (skb->ip_summed == CHECKSUM_COMPLETE)
2577 goto out_set_summed;
2579 if (unlikely(skb_shinfo(skb)->gso_size)) {
2580 skb_warn_bad_offload(skb);
2584 /* Before computing a checksum, we should make sure no frag could
2585 * be modified by an external entity : checksum could be wrong.
2587 if (skb_has_shared_frag(skb)) {
2588 ret = __skb_linearize(skb);
2593 offset = skb_checksum_start_offset(skb);
2594 BUG_ON(offset >= skb_headlen(skb));
2595 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2597 offset += skb->csum_offset;
2598 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2600 if (skb_cloned(skb) &&
2601 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2607 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2609 skb->ip_summed = CHECKSUM_NONE;
2613 EXPORT_SYMBOL(skb_checksum_help);
2615 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2617 __be16 type = skb->protocol;
2619 /* Tunnel gso handlers can set protocol to ethernet. */
2620 if (type == htons(ETH_P_TEB)) {
2623 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2626 eth = (struct ethhdr *)skb_mac_header(skb);
2627 type = eth->h_proto;
2630 return __vlan_get_protocol(skb, type, depth);
2634 * skb_mac_gso_segment - mac layer segmentation handler.
2635 * @skb: buffer to segment
2636 * @features: features for the output path (see dev->features)
2638 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639 netdev_features_t features)
2641 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642 struct packet_offload *ptype;
2643 int vlan_depth = skb->mac_len;
2644 __be16 type = skb_network_protocol(skb, &vlan_depth);
2646 if (unlikely(!type))
2647 return ERR_PTR(-EINVAL);
2649 __skb_pull(skb, vlan_depth);
2652 list_for_each_entry_rcu(ptype, &offload_base, list) {
2653 if (ptype->type == type && ptype->callbacks.gso_segment) {
2654 segs = ptype->callbacks.gso_segment(skb, features);
2660 __skb_push(skb, skb->data - skb_mac_header(skb));
2664 EXPORT_SYMBOL(skb_mac_gso_segment);
2667 /* openvswitch calls this on rx path, so we need a different check.
2669 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2672 return skb->ip_summed != CHECKSUM_PARTIAL &&
2673 skb->ip_summed != CHECKSUM_NONE;
2675 return skb->ip_summed == CHECKSUM_NONE;
2679 * __skb_gso_segment - Perform segmentation on skb.
2680 * @skb: buffer to segment
2681 * @features: features for the output path (see dev->features)
2682 * @tx_path: whether it is called in TX path
2684 * This function segments the given skb and returns a list of segments.
2686 * It may return NULL if the skb requires no segmentation. This is
2687 * only possible when GSO is used for verifying header integrity.
2689 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2691 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692 netdev_features_t features, bool tx_path)
2694 struct sk_buff *segs;
2696 if (unlikely(skb_needs_check(skb, tx_path))) {
2699 /* We're going to init ->check field in TCP or UDP header */
2700 err = skb_cow_head(skb, 0);
2702 return ERR_PTR(err);
2705 /* Only report GSO partial support if it will enable us to
2706 * support segmentation on this frame without needing additional
2709 if (features & NETIF_F_GSO_PARTIAL) {
2710 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711 struct net_device *dev = skb->dev;
2713 partial_features |= dev->features & dev->gso_partial_features;
2714 if (!skb_gso_ok(skb, features | partial_features))
2715 features &= ~NETIF_F_GSO_PARTIAL;
2718 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2721 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722 SKB_GSO_CB(skb)->encap_level = 0;
2724 skb_reset_mac_header(skb);
2725 skb_reset_mac_len(skb);
2727 segs = skb_mac_gso_segment(skb, features);
2729 if (unlikely(skb_needs_check(skb, tx_path)))
2730 skb_warn_bad_offload(skb);
2734 EXPORT_SYMBOL(__skb_gso_segment);
2736 /* Take action when hardware reception checksum errors are detected. */
2738 void netdev_rx_csum_fault(struct net_device *dev)
2740 if (net_ratelimit()) {
2741 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2745 EXPORT_SYMBOL(netdev_rx_csum_fault);
2748 /* Actually, we should eliminate this check as soon as we know, that:
2749 * 1. IOMMU is present and allows to map all the memory.
2750 * 2. No high memory really exists on this machine.
2753 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2755 #ifdef CONFIG_HIGHMEM
2758 if (!(dev->features & NETIF_F_HIGHDMA)) {
2759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2762 if (PageHighMem(skb_frag_page(frag)))
2767 if (PCI_DMA_BUS_IS_PHYS) {
2768 struct device *pdev = dev->dev.parent;
2772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2776 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785 * instead of standard features for the netdev.
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 netdev_features_t features,
2792 if (eth_p_mpls(type))
2793 features &= skb->dev->mpls_features;
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 netdev_features_t features,
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807 netdev_features_t features)
2812 type = skb_network_protocol(skb, &tmp);
2813 features = net_mpls_features(skb, features, type);
2815 if (skb->ip_summed != CHECKSUM_NONE &&
2816 !can_checksum_protocol(features, type)) {
2817 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2819 if (illegal_highdma(skb->dev, skb))
2820 features &= ~NETIF_F_SG;
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 struct net_device *dev,
2827 netdev_features_t features)
2831 EXPORT_SYMBOL(passthru_features_check);
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2837 return vlan_features_check(skb, features);
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 struct net_device *dev,
2842 netdev_features_t features)
2844 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846 if (gso_segs > dev->gso_max_segs)
2847 return features & ~NETIF_F_GSO_MASK;
2849 /* Support for GSO partial features requires software
2850 * intervention before we can actually process the packets
2851 * so we need to strip support for any partial features now
2852 * and we can pull them back in after we have partially
2853 * segmented the frame.
2855 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 features &= ~dev->gso_partial_features;
2858 /* Make sure to clear the IPv4 ID mangling feature if the
2859 * IPv4 header has the potential to be fragmented.
2861 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 struct iphdr *iph = skb->encapsulation ?
2863 inner_ip_hdr(skb) : ip_hdr(skb);
2865 if (!(iph->frag_off & htons(IP_DF)))
2866 features &= ~NETIF_F_TSO_MANGLEID;
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2874 struct net_device *dev = skb->dev;
2875 netdev_features_t features = dev->features;
2877 if (skb_is_gso(skb))
2878 features = gso_features_check(skb, dev, features);
2880 /* If encapsulation offload request, verify we are testing
2881 * hardware encapsulation features instead of standard
2882 * features for the netdev
2884 if (skb->encapsulation)
2885 features &= dev->hw_enc_features;
2887 if (skb_vlan_tagged(skb))
2888 features = netdev_intersect_features(features,
2889 dev->vlan_features |
2890 NETIF_F_HW_VLAN_CTAG_TX |
2891 NETIF_F_HW_VLAN_STAG_TX);
2893 if (dev->netdev_ops->ndo_features_check)
2894 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2897 features &= dflt_features_check(skb, dev, features);
2899 return harmonize_features(skb, features);
2901 EXPORT_SYMBOL(netif_skb_features);
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904 struct netdev_queue *txq, bool more)
2909 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910 dev_queue_xmit_nit(skb, dev);
2913 trace_net_dev_start_xmit(skb, dev);
2914 rc = netdev_start_xmit(skb, dev, txq, more);
2915 trace_net_dev_xmit(skb, rc, dev, len);
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 struct netdev_queue *txq, int *ret)
2923 struct sk_buff *skb = first;
2924 int rc = NETDEV_TX_OK;
2927 struct sk_buff *next = skb->next;
2930 rc = xmit_one(skb, dev, txq, next != NULL);
2931 if (unlikely(!dev_xmit_complete(rc))) {
2937 if (netif_xmit_stopped(txq) && skb) {
2938 rc = NETDEV_TX_BUSY;
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 netdev_features_t features)
2951 if (skb_vlan_tag_present(skb) &&
2952 !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 skb = __vlan_hwaccel_push_inside(skb);
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2959 netdev_features_t features;
2961 features = netif_skb_features(skb);
2962 skb = validate_xmit_vlan(skb, features);
2966 if (netif_needs_gso(skb, features)) {
2967 struct sk_buff *segs;
2969 segs = skb_gso_segment(skb, features);
2977 if (skb_needs_linearize(skb, features) &&
2978 __skb_linearize(skb))
2981 if (validate_xmit_xfrm(skb, features))
2984 /* If packet is not checksummed and device does not
2985 * support checksumming for this protocol, complete
2986 * checksumming here.
2988 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989 if (skb->encapsulation)
2990 skb_set_inner_transport_header(skb,
2991 skb_checksum_start_offset(skb));
2993 skb_set_transport_header(skb,
2994 skb_checksum_start_offset(skb));
2995 if (!(features & NETIF_F_CSUM_MASK) &&
2996 skb_checksum_help(skb))
3006 atomic_long_inc(&dev->tx_dropped);
3010 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3012 struct sk_buff *next, *head = NULL, *tail;
3014 for (; skb != NULL; skb = next) {
3018 /* in case skb wont be segmented, point to itself */
3021 skb = validate_xmit_skb(skb, dev);
3029 /* If skb was segmented, skb->prev points to
3030 * the last segment. If not, it still contains skb.
3036 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3047 if (shinfo->gso_size) {
3048 unsigned int hdr_len;
3049 u16 gso_segs = shinfo->gso_segs;
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054 /* + transport layer */
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3058 hdr_len += sizeof(struct udphdr);
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3072 spinlock_t *root_lock = qdisc_lock(q);
3073 struct sk_buff *to_free = NULL;
3077 qdisc_calculate_pkt_len(skb, q);
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
3081 * This permits qdisc->running owner to get the lock more
3082 * often and dequeue packets faster.
3084 contended = qdisc_is_running(q);
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090 __qdisc_drop(skb, &to_free);
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093 qdisc_run_begin(q)) {
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3100 qdisc_bstats_update(q, skb);
3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3111 rc = NET_XMIT_SUCCESS;
3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3122 spin_unlock(root_lock);
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135 if (!skb->priority && skb->sk && map) {
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3144 #define skb_update_prio(skb)
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3151 * dev_loopback_xmit - loop back @skb
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
3154 * @skb: buffer to transmit
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3179 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180 qdisc_bstats_cpu_update(cl->q, skb);
3182 switch (tc_classify(skb, cl, &cl_res, false)) {
3184 case TC_ACT_RECLASSIFY:
3185 skb->tc_index = TC_H_MIN(cl_res.classid);
3188 qdisc_qstats_cpu_drop(cl->q);
3189 *ret = NET_XMIT_DROP;
3194 *ret = NET_XMIT_SUCCESS;
3197 case TC_ACT_REDIRECT:
3198 /* No need to push/pop skb's mac_header here on egress! */
3199 skb_do_redirect(skb);
3200 *ret = NET_XMIT_SUCCESS;
3208 #endif /* CONFIG_NET_EGRESS */
3210 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3213 struct xps_dev_maps *dev_maps;
3214 struct xps_map *map;
3215 int queue_index = -1;
3218 dev_maps = rcu_dereference(dev->xps_maps);
3220 unsigned int tci = skb->sender_cpu - 1;
3224 tci += netdev_get_prio_tc_map(dev, skb->priority);
3227 map = rcu_dereference(dev_maps->cpu_map[tci]);
3230 queue_index = map->queues[0];
3232 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3234 if (unlikely(queue_index >= dev->real_num_tx_queues))
3246 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3248 struct sock *sk = skb->sk;
3249 int queue_index = sk_tx_queue_get(sk);
3251 if (queue_index < 0 || skb->ooo_okay ||
3252 queue_index >= dev->real_num_tx_queues) {
3253 int new_index = get_xps_queue(dev, skb);
3256 new_index = skb_tx_hash(dev, skb);
3258 if (queue_index != new_index && sk &&
3260 rcu_access_pointer(sk->sk_dst_cache))
3261 sk_tx_queue_set(sk, new_index);
3263 queue_index = new_index;
3269 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270 struct sk_buff *skb,
3273 int queue_index = 0;
3276 u32 sender_cpu = skb->sender_cpu - 1;
3278 if (sender_cpu >= (u32)NR_CPUS)
3279 skb->sender_cpu = raw_smp_processor_id() + 1;
3282 if (dev->real_num_tx_queues != 1) {
3283 const struct net_device_ops *ops = dev->netdev_ops;
3285 if (ops->ndo_select_queue)
3286 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3289 queue_index = __netdev_pick_tx(dev, skb);
3292 queue_index = netdev_cap_txqueue(dev, queue_index);
3295 skb_set_queue_mapping(skb, queue_index);
3296 return netdev_get_tx_queue(dev, queue_index);
3300 * __dev_queue_xmit - transmit a buffer
3301 * @skb: buffer to transmit
3302 * @accel_priv: private data used for L2 forwarding offload
3304 * Queue a buffer for transmission to a network device. The caller must
3305 * have set the device and priority and built the buffer before calling
3306 * this function. The function can be called from an interrupt.
3308 * A negative errno code is returned on a failure. A success does not
3309 * guarantee the frame will be transmitted as it may be dropped due
3310 * to congestion or traffic shaping.
3312 * -----------------------------------------------------------------------------------
3313 * I notice this method can also return errors from the queue disciplines,
3314 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3317 * Regardless of the return value, the skb is consumed, so it is currently
3318 * difficult to retry a send to this method. (You can bump the ref count
3319 * before sending to hold a reference for retry if you are careful.)
3321 * When calling this method, interrupts MUST be enabled. This is because
3322 * the BH enable code must have IRQs enabled so that it will not deadlock.
3325 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3327 struct net_device *dev = skb->dev;
3328 struct netdev_queue *txq;
3332 skb_reset_mac_header(skb);
3334 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3337 /* Disable soft irqs for various locks below. Also
3338 * stops preemption for RCU.
3342 skb_update_prio(skb);
3344 qdisc_pkt_len_init(skb);
3345 #ifdef CONFIG_NET_CLS_ACT
3346 skb->tc_at_ingress = 0;
3347 # ifdef CONFIG_NET_EGRESS
3348 if (static_key_false(&egress_needed)) {
3349 skb = sch_handle_egress(skb, &rc, dev);
3355 /* If device/qdisc don't need skb->dst, release it right now while
3356 * its hot in this cpu cache.
3358 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3363 txq = netdev_pick_tx(dev, skb, accel_priv);
3364 q = rcu_dereference_bh(txq->qdisc);
3366 trace_net_dev_queue(skb);
3368 rc = __dev_xmit_skb(skb, q, dev, txq);
3372 /* The device has no queue. Common case for software devices:
3373 * loopback, all the sorts of tunnels...
3375 * Really, it is unlikely that netif_tx_lock protection is necessary
3376 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3378 * However, it is possible, that they rely on protection
3381 * Check this and shot the lock. It is not prone from deadlocks.
3382 *Either shot noqueue qdisc, it is even simpler 8)
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3387 if (txq->xmit_lock_owner != cpu) {
3388 if (unlikely(__this_cpu_read(xmit_recursion) >
3389 XMIT_RECURSION_LIMIT))
3390 goto recursion_alert;
3392 skb = validate_xmit_skb(skb, dev);
3396 HARD_TX_LOCK(dev, txq, cpu);
3398 if (!netif_xmit_stopped(txq)) {
3399 __this_cpu_inc(xmit_recursion);
3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401 __this_cpu_dec(xmit_recursion);
3402 if (dev_xmit_complete(rc)) {
3403 HARD_TX_UNLOCK(dev, txq);
3407 HARD_TX_UNLOCK(dev, txq);
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3411 /* Recursion is detected! It is possible,
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 rcu_read_unlock_bh();
3423 atomic_long_inc(&dev->tx_dropped);
3424 kfree_skb_list(skb);
3427 rcu_read_unlock_bh();
3431 int dev_queue_xmit(struct sk_buff *skb)
3433 return __dev_queue_xmit(skb, NULL);
3435 EXPORT_SYMBOL(dev_queue_xmit);
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3439 return __dev_queue_xmit(skb, accel_priv);
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3444 /*************************************************************************
3446 *************************************************************************/
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 unsigned int __read_mostly netdev_budget_usecs = 2000;
3454 int weight_p __read_mostly = 64; /* old backlog weight */
3455 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3456 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3457 int dev_rx_weight __read_mostly = 64;
3458 int dev_tx_weight __read_mostly = 64;
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478 struct static_key rfs_needed __read_mostly;
3479 EXPORT_SYMBOL(rfs_needed);
3481 static struct rps_dev_flow *
3482 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow *rflow, u16 next_cpu)
3485 if (next_cpu < nr_cpu_ids) {
3486 #ifdef CONFIG_RFS_ACCEL
3487 struct netdev_rx_queue *rxqueue;
3488 struct rps_dev_flow_table *flow_table;
3489 struct rps_dev_flow *old_rflow;
3494 /* Should we steer this flow to a different hardware queue? */
3495 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496 !(dev->features & NETIF_F_NTUPLE))
3498 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499 if (rxq_index == skb_get_rx_queue(skb))
3502 rxqueue = dev->_rx + rxq_index;
3503 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3506 flow_id = skb_get_hash(skb) & flow_table->mask;
3507 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508 rxq_index, flow_id);
3512 rflow = &flow_table->flows[flow_id];
3514 if (old_rflow->filter == rflow->filter)
3515 old_rflow->filter = RPS_NO_FILTER;
3519 per_cpu(softnet_data, next_cpu).input_queue_head;
3522 rflow->cpu = next_cpu;
3527 * get_rps_cpu is called from netif_receive_skb and returns the target
3528 * CPU from the RPS map of the receiving queue for a given skb.
3529 * rcu_read_lock must be held on entry.
3531 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532 struct rps_dev_flow **rflowp)
3534 const struct rps_sock_flow_table *sock_flow_table;
3535 struct netdev_rx_queue *rxqueue = dev->_rx;
3536 struct rps_dev_flow_table *flow_table;
3537 struct rps_map *map;
3542 if (skb_rx_queue_recorded(skb)) {
3543 u16 index = skb_get_rx_queue(skb);
3545 if (unlikely(index >= dev->real_num_rx_queues)) {
3546 WARN_ONCE(dev->real_num_rx_queues > 1,
3547 "%s received packet on queue %u, but number "
3548 "of RX queues is %u\n",
3549 dev->name, index, dev->real_num_rx_queues);
3555 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3557 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558 map = rcu_dereference(rxqueue->rps_map);
3559 if (!flow_table && !map)
3562 skb_reset_network_header(skb);
3563 hash = skb_get_hash(skb);
3567 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568 if (flow_table && sock_flow_table) {
3569 struct rps_dev_flow *rflow;
3573 /* First check into global flow table if there is a match */
3574 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575 if ((ident ^ hash) & ~rps_cpu_mask)
3578 next_cpu = ident & rps_cpu_mask;
3580 /* OK, now we know there is a match,
3581 * we can look at the local (per receive queue) flow table
3583 rflow = &flow_table->flows[hash & flow_table->mask];
3587 * If the desired CPU (where last recvmsg was done) is
3588 * different from current CPU (one in the rx-queue flow
3589 * table entry), switch if one of the following holds:
3590 * - Current CPU is unset (>= nr_cpu_ids).
3591 * - Current CPU is offline.
3592 * - The current CPU's queue tail has advanced beyond the
3593 * last packet that was enqueued using this table entry.
3594 * This guarantees that all previous packets for the flow
3595 * have been dequeued, thus preserving in order delivery.
3597 if (unlikely(tcpu != next_cpu) &&
3598 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600 rflow->last_qtail)) >= 0)) {
3602 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3605 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3615 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616 if (cpu_online(tcpu)) {
3626 #ifdef CONFIG_RFS_ACCEL
3629 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630 * @dev: Device on which the filter was set
3631 * @rxq_index: RX queue index
3632 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3635 * Drivers that implement ndo_rx_flow_steer() should periodically call
3636 * this function for each installed filter and remove the filters for
3637 * which it returns %true.
3639 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640 u32 flow_id, u16 filter_id)
3642 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643 struct rps_dev_flow_table *flow_table;
3644 struct rps_dev_flow *rflow;
3649 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650 if (flow_table && flow_id <= flow_table->mask) {
3651 rflow = &flow_table->flows[flow_id];
3652 cpu = ACCESS_ONCE(rflow->cpu);
3653 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655 rflow->last_qtail) <
3656 (int)(10 * flow_table->mask)))
3662 EXPORT_SYMBOL(rps_may_expire_flow);
3664 #endif /* CONFIG_RFS_ACCEL */
3666 /* Called from hardirq (IPI) context */
3667 static void rps_trigger_softirq(void *data)
3669 struct softnet_data *sd = data;
3671 ____napi_schedule(sd, &sd->backlog);
3675 #endif /* CONFIG_RPS */
3678 * Check if this softnet_data structure is another cpu one
3679 * If yes, queue it to our IPI list and return 1
3682 static int rps_ipi_queued(struct softnet_data *sd)
3685 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3688 sd->rps_ipi_next = mysd->rps_ipi_list;
3689 mysd->rps_ipi_list = sd;
3691 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3694 #endif /* CONFIG_RPS */
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3702 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3704 #ifdef CONFIG_NET_FLOW_LIMIT
3705 struct sd_flow_limit *fl;
3706 struct softnet_data *sd;
3707 unsigned int old_flow, new_flow;
3709 if (qlen < (netdev_max_backlog >> 1))
3712 sd = this_cpu_ptr(&softnet_data);
3715 fl = rcu_dereference(sd->flow_limit);
3717 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718 old_flow = fl->history[fl->history_head];
3719 fl->history[fl->history_head] = new_flow;
3722 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3724 if (likely(fl->buckets[old_flow]))
3725 fl->buckets[old_flow]--;
3727 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3739 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740 * queue (may be a remote CPU queue).
3742 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743 unsigned int *qtail)
3745 struct softnet_data *sd;
3746 unsigned long flags;
3749 sd = &per_cpu(softnet_data, cpu);
3751 local_irq_save(flags);
3754 if (!netif_running(skb->dev))
3756 qlen = skb_queue_len(&sd->input_pkt_queue);
3757 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3760 __skb_queue_tail(&sd->input_pkt_queue, skb);
3761 input_queue_tail_incr_save(sd, qtail);
3763 local_irq_restore(flags);
3764 return NET_RX_SUCCESS;
3767 /* Schedule NAPI for backlog device
3768 * We can use non atomic operation since we own the queue lock
3770 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771 if (!rps_ipi_queued(sd))
3772 ____napi_schedule(sd, &sd->backlog);
3781 local_irq_restore(flags);
3783 atomic_long_inc(&skb->dev->rx_dropped);
3788 static int netif_rx_internal(struct sk_buff *skb)
3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
3794 trace_netif_rx(skb);
3796 if (static_key_false(&rps_needed)) {
3797 struct rps_dev_flow voidflow, *rflow = &voidflow;
3803 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805 cpu = smp_processor_id();
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3816 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3823 * netif_rx - post buffer to the network code
3824 * @skb: buffer to post
3826 * This function receives a packet from a device driver and queues it for
3827 * the upper (protocol) levels to process. It always succeeds. The buffer
3828 * may be dropped during processing for congestion control or by the
3832 * NET_RX_SUCCESS (no congestion)
3833 * NET_RX_DROP (packet was dropped)
3837 int netif_rx(struct sk_buff *skb)
3839 trace_netif_rx_entry(skb);
3841 return netif_rx_internal(skb);
3843 EXPORT_SYMBOL(netif_rx);
3845 int netif_rx_ni(struct sk_buff *skb)
3849 trace_netif_rx_ni_entry(skb);
3852 err = netif_rx_internal(skb);
3853 if (local_softirq_pending())
3859 EXPORT_SYMBOL(netif_rx_ni);
3861 static __latent_entropy void net_tx_action(struct softirq_action *h)
3863 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3865 if (sd->completion_queue) {
3866 struct sk_buff *clist;
3868 local_irq_disable();
3869 clist = sd->completion_queue;
3870 sd->completion_queue = NULL;
3874 struct sk_buff *skb = clist;
3876 clist = clist->next;
3878 WARN_ON(atomic_read(&skb->users));
3879 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880 trace_consume_skb(skb);
3882 trace_kfree_skb(skb, net_tx_action);
3884 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3887 __kfree_skb_defer(skb);
3890 __kfree_skb_flush();
3893 if (sd->output_queue) {
3896 local_irq_disable();
3897 head = sd->output_queue;
3898 sd->output_queue = NULL;
3899 sd->output_queue_tailp = &sd->output_queue;
3903 struct Qdisc *q = head;
3904 spinlock_t *root_lock;
3906 head = head->next_sched;
3908 root_lock = qdisc_lock(q);
3909 spin_lock(root_lock);
3910 /* We need to make sure head->next_sched is read
3911 * before clearing __QDISC_STATE_SCHED
3913 smp_mb__before_atomic();
3914 clear_bit(__QDISC_STATE_SCHED, &q->state);
3916 spin_unlock(root_lock);
3921 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 struct net_device *orig_dev)
3932 #ifdef CONFIG_NET_CLS_ACT
3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 struct tcf_result cl_res;
3936 /* If there's at least one ingress present somewhere (so
3937 * we get here via enabled static key), remaining devices
3938 * that are not configured with an ingress qdisc will bail
3944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3948 qdisc_skb_cb(skb)->pkt_len = skb->len;
3949 skb->tc_at_ingress = 1;
3950 qdisc_bstats_cpu_update(cl->q, skb);
3952 switch (tc_classify(skb, cl, &cl_res, false)) {
3954 case TC_ACT_RECLASSIFY:
3955 skb->tc_index = TC_H_MIN(cl_res.classid);
3958 qdisc_qstats_cpu_drop(cl->q);
3965 case TC_ACT_REDIRECT:
3966 /* skb_mac_header check was done by cls/act_bpf, so
3967 * we can safely push the L2 header back before
3968 * redirecting to another netdev
3970 __skb_push(skb, skb->mac_len);
3971 skb_do_redirect(skb);
3976 #endif /* CONFIG_NET_CLS_ACT */
3981 * netdev_is_rx_handler_busy - check if receive handler is registered
3982 * @dev: device to check
3984 * Check if a receive handler is already registered for a given device.
3985 * Return true if there one.
3987 * The caller must hold the rtnl_mutex.
3989 bool netdev_is_rx_handler_busy(struct net_device *dev)
3992 return dev && rtnl_dereference(dev->rx_handler);
3994 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3997 * netdev_rx_handler_register - register receive handler
3998 * @dev: device to register a handler for
3999 * @rx_handler: receive handler to register
4000 * @rx_handler_data: data pointer that is used by rx handler
4002 * Register a receive handler for a device. This handler will then be
4003 * called from __netif_receive_skb. A negative errno code is returned
4006 * The caller must hold the rtnl_mutex.
4008 * For a general description of rx_handler, see enum rx_handler_result.
4010 int netdev_rx_handler_register(struct net_device *dev,
4011 rx_handler_func_t *rx_handler,
4012 void *rx_handler_data)
4014 if (netdev_is_rx_handler_busy(dev))
4017 /* Note: rx_handler_data must be set before rx_handler */
4018 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019 rcu_assign_pointer(dev->rx_handler, rx_handler);
4023 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4026 * netdev_rx_handler_unregister - unregister receive handler
4027 * @dev: device to unregister a handler from
4029 * Unregister a receive handler from a device.
4031 * The caller must hold the rtnl_mutex.
4033 void netdev_rx_handler_unregister(struct net_device *dev)
4037 RCU_INIT_POINTER(dev->rx_handler, NULL);
4038 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039 * section has a guarantee to see a non NULL rx_handler_data
4043 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4045 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4048 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049 * the special handling of PFMEMALLOC skbs.
4051 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4053 switch (skb->protocol) {
4054 case htons(ETH_P_ARP):
4055 case htons(ETH_P_IP):
4056 case htons(ETH_P_IPV6):
4057 case htons(ETH_P_8021Q):
4058 case htons(ETH_P_8021AD):
4065 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066 int *ret, struct net_device *orig_dev)
4068 #ifdef CONFIG_NETFILTER_INGRESS
4069 if (nf_hook_ingress_active(skb)) {
4073 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4078 ingress_retval = nf_hook_ingress(skb);
4080 return ingress_retval;
4082 #endif /* CONFIG_NETFILTER_INGRESS */
4086 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4088 struct packet_type *ptype, *pt_prev;
4089 rx_handler_func_t *rx_handler;
4090 struct net_device *orig_dev;
4091 bool deliver_exact = false;
4092 int ret = NET_RX_DROP;
4095 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4097 trace_netif_receive_skb(skb);
4099 orig_dev = skb->dev;
4101 skb_reset_network_header(skb);
4102 if (!skb_transport_header_was_set(skb))
4103 skb_reset_transport_header(skb);
4104 skb_reset_mac_len(skb);
4109 skb->skb_iif = skb->dev->ifindex;
4111 __this_cpu_inc(softnet_data.processed);
4113 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115 skb = skb_vlan_untag(skb);
4120 if (skb_skip_tc_classify(skb))
4126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4128 ret = deliver_skb(skb, pt_prev, orig_dev);
4132 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4139 #ifdef CONFIG_NET_INGRESS
4140 if (static_key_false(&ingress_needed)) {
4141 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4145 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4154 if (skb_vlan_tag_present(skb)) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4159 if (vlan_do_receive(&skb))
4161 else if (unlikely(!skb))
4165 rx_handler = rcu_dereference(skb->dev->rx_handler);
4168 ret = deliver_skb(skb, pt_prev, orig_dev);
4171 switch (rx_handler(&skb)) {
4172 case RX_HANDLER_CONSUMED:
4173 ret = NET_RX_SUCCESS;
4175 case RX_HANDLER_ANOTHER:
4177 case RX_HANDLER_EXACT:
4178 deliver_exact = true;
4179 case RX_HANDLER_PASS:
4186 if (unlikely(skb_vlan_tag_present(skb))) {
4187 if (skb_vlan_tag_get_id(skb))
4188 skb->pkt_type = PACKET_OTHERHOST;
4189 /* Note: we might in the future use prio bits
4190 * and set skb->priority like in vlan_do_receive()
4191 * For the time being, just ignore Priority Code Point
4196 type = skb->protocol;
4198 /* deliver only exact match when indicated */
4199 if (likely(!deliver_exact)) {
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &ptype_base[ntohs(type) &
4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 &orig_dev->ptype_specific);
4208 if (unlikely(skb->dev != orig_dev)) {
4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 &skb->dev->ptype_specific);
4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4221 atomic_long_inc(&skb->dev->rx_dropped);
4223 atomic_long_inc(&skb->dev->rx_nohandler);
4225 /* Jamal, now you will not able to escape explaining
4226 * me how you were going to use this. :-)
4235 static int __netif_receive_skb(struct sk_buff *skb)
4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240 unsigned int noreclaim_flag;
4243 * PFMEMALLOC skbs are special, they should
4244 * - be delivered to SOCK_MEMALLOC sockets only
4245 * - stay away from userspace
4246 * - have bounded memory usage
4248 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 * context down to all allocation sites.
4251 noreclaim_flag = memalloc_noreclaim_save();
4252 ret = __netif_receive_skb_core(skb, true);
4253 memalloc_noreclaim_restore(noreclaim_flag);
4255 ret = __netif_receive_skb_core(skb, false);
4260 static struct static_key generic_xdp_needed __read_mostly;
4262 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4264 struct bpf_prog *new = xdp->prog;
4267 switch (xdp->command) {
4268 case XDP_SETUP_PROG: {
4269 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4271 rcu_assign_pointer(dev->xdp_prog, new);
4276 static_key_slow_dec(&generic_xdp_needed);
4277 } else if (new && !old) {
4278 static_key_slow_inc(&generic_xdp_needed);
4279 dev_disable_lro(dev);
4284 case XDP_QUERY_PROG:
4285 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4296 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297 struct bpf_prog *xdp_prog)
4299 struct xdp_buff xdp;
4305 /* Reinjected packets coming from act_mirred or similar should
4306 * not get XDP generic processing.
4308 if (skb_cloned(skb))
4311 if (skb_linearize(skb))
4314 /* The XDP program wants to see the packet starting at the MAC
4317 mac_len = skb->data - skb_mac_header(skb);
4318 hlen = skb_headlen(skb) + mac_len;
4319 xdp.data = skb->data - mac_len;
4320 xdp.data_end = xdp.data + hlen;
4321 xdp.data_hard_start = skb->data - skb_headroom(skb);
4322 orig_data = xdp.data;
4324 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4326 off = xdp.data - orig_data;
4328 __skb_pull(skb, off);
4330 __skb_push(skb, -off);
4334 __skb_push(skb, mac_len);
4340 bpf_warn_invalid_xdp_action(act);
4343 trace_xdp_exception(skb->dev, xdp_prog, act);
4354 /* When doing generic XDP we have to bypass the qdisc layer and the
4355 * network taps in order to match in-driver-XDP behavior.
4357 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4359 struct net_device *dev = skb->dev;
4360 struct netdev_queue *txq;
4361 bool free_skb = true;
4364 txq = netdev_pick_tx(dev, skb, NULL);
4365 cpu = smp_processor_id();
4366 HARD_TX_LOCK(dev, txq, cpu);
4367 if (!netif_xmit_stopped(txq)) {
4368 rc = netdev_start_xmit(skb, dev, txq, 0);
4369 if (dev_xmit_complete(rc))
4372 HARD_TX_UNLOCK(dev, txq);
4374 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4379 static int netif_receive_skb_internal(struct sk_buff *skb)
4383 net_timestamp_check(netdev_tstamp_prequeue, skb);
4385 if (skb_defer_rx_timestamp(skb))
4386 return NET_RX_SUCCESS;
4390 if (static_key_false(&generic_xdp_needed)) {
4391 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4394 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4396 if (act != XDP_PASS) {
4399 generic_xdp_tx(skb, xdp_prog);
4406 if (static_key_false(&rps_needed)) {
4407 struct rps_dev_flow voidflow, *rflow = &voidflow;
4408 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4411 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4417 ret = __netif_receive_skb(skb);
4423 * netif_receive_skb - process receive buffer from network
4424 * @skb: buffer to process
4426 * netif_receive_skb() is the main receive data processing function.
4427 * It always succeeds. The buffer may be dropped during processing
4428 * for congestion control or by the protocol layers.
4430 * This function may only be called from softirq context and interrupts
4431 * should be enabled.
4433 * Return values (usually ignored):
4434 * NET_RX_SUCCESS: no congestion
4435 * NET_RX_DROP: packet was dropped
4437 int netif_receive_skb(struct sk_buff *skb)
4439 trace_netif_receive_skb_entry(skb);
4441 return netif_receive_skb_internal(skb);
4443 EXPORT_SYMBOL(netif_receive_skb);
4445 DEFINE_PER_CPU(struct work_struct, flush_works);
4447 /* Network device is going away, flush any packets still pending */
4448 static void flush_backlog(struct work_struct *work)
4450 struct sk_buff *skb, *tmp;
4451 struct softnet_data *sd;
4454 sd = this_cpu_ptr(&softnet_data);
4456 local_irq_disable();
4458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460 __skb_unlink(skb, &sd->input_pkt_queue);
4462 input_queue_head_incr(sd);
4468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470 __skb_unlink(skb, &sd->process_queue);
4472 input_queue_head_incr(sd);
4478 static void flush_all_backlogs(void)
4484 for_each_online_cpu(cpu)
4485 queue_work_on(cpu, system_highpri_wq,
4486 per_cpu_ptr(&flush_works, cpu));
4488 for_each_online_cpu(cpu)
4489 flush_work(per_cpu_ptr(&flush_works, cpu));
4494 static int napi_gro_complete(struct sk_buff *skb)
4496 struct packet_offload *ptype;
4497 __be16 type = skb->protocol;
4498 struct list_head *head = &offload_base;
4501 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4503 if (NAPI_GRO_CB(skb)->count == 1) {
4504 skb_shinfo(skb)->gso_size = 0;
4509 list_for_each_entry_rcu(ptype, head, list) {
4510 if (ptype->type != type || !ptype->callbacks.gro_complete)
4513 err = ptype->callbacks.gro_complete(skb, 0);
4519 WARN_ON(&ptype->list == head);
4521 return NET_RX_SUCCESS;
4525 return netif_receive_skb_internal(skb);
4528 /* napi->gro_list contains packets ordered by age.
4529 * youngest packets at the head of it.
4530 * Complete skbs in reverse order to reduce latencies.
4532 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4534 struct sk_buff *skb, *prev = NULL;
4536 /* scan list and build reverse chain */
4537 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4542 for (skb = prev; skb; skb = prev) {
4545 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4549 napi_gro_complete(skb);
4553 napi->gro_list = NULL;
4555 EXPORT_SYMBOL(napi_gro_flush);
4557 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4560 unsigned int maclen = skb->dev->hard_header_len;
4561 u32 hash = skb_get_hash_raw(skb);
4563 for (p = napi->gro_list; p; p = p->next) {
4564 unsigned long diffs;
4566 NAPI_GRO_CB(p)->flush = 0;
4568 if (hash != skb_get_hash_raw(p)) {
4569 NAPI_GRO_CB(p)->same_flow = 0;
4573 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574 diffs |= p->vlan_tci ^ skb->vlan_tci;
4575 diffs |= skb_metadata_dst_cmp(p, skb);
4576 if (maclen == ETH_HLEN)
4577 diffs |= compare_ether_header(skb_mac_header(p),
4578 skb_mac_header(skb));
4580 diffs = memcmp(skb_mac_header(p),
4581 skb_mac_header(skb),
4583 NAPI_GRO_CB(p)->same_flow = !diffs;
4587 static void skb_gro_reset_offset(struct sk_buff *skb)
4589 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590 const skb_frag_t *frag0 = &pinfo->frags[0];
4592 NAPI_GRO_CB(skb)->data_offset = 0;
4593 NAPI_GRO_CB(skb)->frag0 = NULL;
4594 NAPI_GRO_CB(skb)->frag0_len = 0;
4596 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4598 !PageHighMem(skb_frag_page(frag0))) {
4599 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601 skb_frag_size(frag0),
4602 skb->end - skb->tail);
4606 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4608 struct skb_shared_info *pinfo = skb_shinfo(skb);
4610 BUG_ON(skb->end - skb->tail < grow);
4612 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4614 skb->data_len -= grow;
4617 pinfo->frags[0].page_offset += grow;
4618 skb_frag_size_sub(&pinfo->frags[0], grow);
4620 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621 skb_frag_unref(skb, 0);
4622 memmove(pinfo->frags, pinfo->frags + 1,
4623 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4627 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4629 struct sk_buff **pp = NULL;
4630 struct packet_offload *ptype;
4631 __be16 type = skb->protocol;
4632 struct list_head *head = &offload_base;
4634 enum gro_result ret;
4637 if (netif_elide_gro(skb->dev))
4643 gro_list_prepare(napi, skb);
4646 list_for_each_entry_rcu(ptype, head, list) {
4647 if (ptype->type != type || !ptype->callbacks.gro_receive)
4650 skb_set_network_header(skb, skb_gro_offset(skb));
4651 skb_reset_mac_len(skb);
4652 NAPI_GRO_CB(skb)->same_flow = 0;
4653 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654 NAPI_GRO_CB(skb)->free = 0;
4655 NAPI_GRO_CB(skb)->encap_mark = 0;
4656 NAPI_GRO_CB(skb)->recursion_counter = 0;
4657 NAPI_GRO_CB(skb)->is_fou = 0;
4658 NAPI_GRO_CB(skb)->is_atomic = 1;
4659 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4661 /* Setup for GRO checksum validation */
4662 switch (skb->ip_summed) {
4663 case CHECKSUM_COMPLETE:
4664 NAPI_GRO_CB(skb)->csum = skb->csum;
4665 NAPI_GRO_CB(skb)->csum_valid = 1;
4666 NAPI_GRO_CB(skb)->csum_cnt = 0;
4668 case CHECKSUM_UNNECESSARY:
4669 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670 NAPI_GRO_CB(skb)->csum_valid = 0;
4673 NAPI_GRO_CB(skb)->csum_cnt = 0;
4674 NAPI_GRO_CB(skb)->csum_valid = 0;
4677 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4682 if (&ptype->list == head)
4685 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4690 same_flow = NAPI_GRO_CB(skb)->same_flow;
4691 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4694 struct sk_buff *nskb = *pp;
4698 napi_gro_complete(nskb);
4705 if (NAPI_GRO_CB(skb)->flush)
4708 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709 struct sk_buff *nskb = napi->gro_list;
4711 /* locate the end of the list to select the 'oldest' flow */
4712 while (nskb->next) {
4718 napi_gro_complete(nskb);
4722 NAPI_GRO_CB(skb)->count = 1;
4723 NAPI_GRO_CB(skb)->age = jiffies;
4724 NAPI_GRO_CB(skb)->last = skb;
4725 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726 skb->next = napi->gro_list;
4727 napi->gro_list = skb;
4731 grow = skb_gro_offset(skb) - skb_headlen(skb);
4733 gro_pull_from_frag0(skb, grow);
4742 struct packet_offload *gro_find_receive_by_type(__be16 type)
4744 struct list_head *offload_head = &offload_base;
4745 struct packet_offload *ptype;
4747 list_for_each_entry_rcu(ptype, offload_head, list) {
4748 if (ptype->type != type || !ptype->callbacks.gro_receive)
4754 EXPORT_SYMBOL(gro_find_receive_by_type);
4756 struct packet_offload *gro_find_complete_by_type(__be16 type)
4758 struct list_head *offload_head = &offload_base;
4759 struct packet_offload *ptype;
4761 list_for_each_entry_rcu(ptype, offload_head, list) {
4762 if (ptype->type != type || !ptype->callbacks.gro_complete)
4768 EXPORT_SYMBOL(gro_find_complete_by_type);
4770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4774 if (netif_receive_skb_internal(skb))
4782 case GRO_MERGED_FREE:
4783 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4786 kmem_cache_free(skbuff_head_cache, skb);
4801 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4803 skb_mark_napi_id(skb, napi);
4804 trace_napi_gro_receive_entry(skb);
4806 skb_gro_reset_offset(skb);
4808 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4810 EXPORT_SYMBOL(napi_gro_receive);
4812 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4814 if (unlikely(skb->pfmemalloc)) {
4818 __skb_pull(skb, skb_headlen(skb));
4819 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4820 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4822 skb->dev = napi->dev;
4824 skb->encapsulation = 0;
4825 skb_shinfo(skb)->gso_type = 0;
4826 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4832 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4834 struct sk_buff *skb = napi->skb;
4837 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4840 skb_mark_napi_id(skb, napi);
4845 EXPORT_SYMBOL(napi_get_frags);
4847 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4848 struct sk_buff *skb,
4854 __skb_push(skb, ETH_HLEN);
4855 skb->protocol = eth_type_trans(skb, skb->dev);
4856 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4861 case GRO_MERGED_FREE:
4862 napi_reuse_skb(napi, skb);
4873 /* Upper GRO stack assumes network header starts at gro_offset=0
4874 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4875 * We copy ethernet header into skb->data to have a common layout.
4877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4879 struct sk_buff *skb = napi->skb;
4880 const struct ethhdr *eth;
4881 unsigned int hlen = sizeof(*eth);
4885 skb_reset_mac_header(skb);
4886 skb_gro_reset_offset(skb);
4888 eth = skb_gro_header_fast(skb, 0);
4889 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4890 eth = skb_gro_header_slow(skb, hlen, 0);
4891 if (unlikely(!eth)) {
4892 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4893 __func__, napi->dev->name);
4894 napi_reuse_skb(napi, skb);
4898 gro_pull_from_frag0(skb, hlen);
4899 NAPI_GRO_CB(skb)->frag0 += hlen;
4900 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4902 __skb_pull(skb, hlen);
4905 * This works because the only protocols we care about don't require
4907 * We'll fix it up properly in napi_frags_finish()
4909 skb->protocol = eth->h_proto;
4914 gro_result_t napi_gro_frags(struct napi_struct *napi)
4916 struct sk_buff *skb = napi_frags_skb(napi);
4921 trace_napi_gro_frags_entry(skb);
4923 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4925 EXPORT_SYMBOL(napi_gro_frags);
4927 /* Compute the checksum from gro_offset and return the folded value
4928 * after adding in any pseudo checksum.
4930 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4935 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4937 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4938 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4940 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4941 !skb->csum_complete_sw)
4942 netdev_rx_csum_fault(skb->dev);
4945 NAPI_GRO_CB(skb)->csum = wsum;
4946 NAPI_GRO_CB(skb)->csum_valid = 1;
4950 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4952 static void net_rps_send_ipi(struct softnet_data *remsd)
4956 struct softnet_data *next = remsd->rps_ipi_next;
4958 if (cpu_online(remsd->cpu))
4959 smp_call_function_single_async(remsd->cpu, &remsd->csd);
4966 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4967 * Note: called with local irq disabled, but exits with local irq enabled.
4969 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4972 struct softnet_data *remsd = sd->rps_ipi_list;
4975 sd->rps_ipi_list = NULL;
4979 /* Send pending IPI's to kick RPS processing on remote cpus. */
4980 net_rps_send_ipi(remsd);
4986 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4989 return sd->rps_ipi_list != NULL;
4995 static int process_backlog(struct napi_struct *napi, int quota)
4997 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5001 /* Check if we have pending ipi, its better to send them now,
5002 * not waiting net_rx_action() end.
5004 if (sd_has_rps_ipi_waiting(sd)) {
5005 local_irq_disable();
5006 net_rps_action_and_irq_enable(sd);
5009 napi->weight = dev_rx_weight;
5011 struct sk_buff *skb;
5013 while ((skb = __skb_dequeue(&sd->process_queue))) {
5015 __netif_receive_skb(skb);
5017 input_queue_head_incr(sd);
5018 if (++work >= quota)
5023 local_irq_disable();
5025 if (skb_queue_empty(&sd->input_pkt_queue)) {
5027 * Inline a custom version of __napi_complete().
5028 * only current cpu owns and manipulates this napi,
5029 * and NAPI_STATE_SCHED is the only possible flag set
5031 * We can use a plain write instead of clear_bit(),
5032 * and we dont need an smp_mb() memory barrier.
5037 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5038 &sd->process_queue);
5048 * __napi_schedule - schedule for receive
5049 * @n: entry to schedule
5051 * The entry's receive function will be scheduled to run.
5052 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5054 void __napi_schedule(struct napi_struct *n)
5056 unsigned long flags;
5058 local_irq_save(flags);
5059 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5060 local_irq_restore(flags);
5062 EXPORT_SYMBOL(__napi_schedule);
5065 * napi_schedule_prep - check if napi can be scheduled
5068 * Test if NAPI routine is already running, and if not mark
5069 * it as running. This is used as a condition variable
5070 * insure only one NAPI poll instance runs. We also make
5071 * sure there is no pending NAPI disable.
5073 bool napi_schedule_prep(struct napi_struct *n)
5075 unsigned long val, new;
5078 val = READ_ONCE(n->state);
5079 if (unlikely(val & NAPIF_STATE_DISABLE))
5081 new = val | NAPIF_STATE_SCHED;
5083 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5084 * This was suggested by Alexander Duyck, as compiler
5085 * emits better code than :
5086 * if (val & NAPIF_STATE_SCHED)
5087 * new |= NAPIF_STATE_MISSED;
5089 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5091 } while (cmpxchg(&n->state, val, new) != val);
5093 return !(val & NAPIF_STATE_SCHED);
5095 EXPORT_SYMBOL(napi_schedule_prep);
5098 * __napi_schedule_irqoff - schedule for receive
5099 * @n: entry to schedule
5101 * Variant of __napi_schedule() assuming hard irqs are masked
5103 void __napi_schedule_irqoff(struct napi_struct *n)
5105 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5107 EXPORT_SYMBOL(__napi_schedule_irqoff);
5109 bool napi_complete_done(struct napi_struct *n, int work_done)
5111 unsigned long flags, val, new;
5114 * 1) Don't let napi dequeue from the cpu poll list
5115 * just in case its running on a different cpu.
5116 * 2) If we are busy polling, do nothing here, we have
5117 * the guarantee we will be called later.
5119 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5120 NAPIF_STATE_IN_BUSY_POLL)))
5124 unsigned long timeout = 0;
5127 timeout = n->dev->gro_flush_timeout;
5130 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5131 HRTIMER_MODE_REL_PINNED);
5133 napi_gro_flush(n, false);
5135 if (unlikely(!list_empty(&n->poll_list))) {
5136 /* If n->poll_list is not empty, we need to mask irqs */
5137 local_irq_save(flags);
5138 list_del_init(&n->poll_list);
5139 local_irq_restore(flags);
5143 val = READ_ONCE(n->state);
5145 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5147 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5149 /* If STATE_MISSED was set, leave STATE_SCHED set,
5150 * because we will call napi->poll() one more time.
5151 * This C code was suggested by Alexander Duyck to help gcc.
5153 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5155 } while (cmpxchg(&n->state, val, new) != val);
5157 if (unlikely(val & NAPIF_STATE_MISSED)) {
5164 EXPORT_SYMBOL(napi_complete_done);
5166 /* must be called under rcu_read_lock(), as we dont take a reference */
5167 static struct napi_struct *napi_by_id(unsigned int napi_id)
5169 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5170 struct napi_struct *napi;
5172 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5173 if (napi->napi_id == napi_id)
5179 #if defined(CONFIG_NET_RX_BUSY_POLL)
5181 #define BUSY_POLL_BUDGET 8
5183 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5187 /* Busy polling means there is a high chance device driver hard irq
5188 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5189 * set in napi_schedule_prep().
5190 * Since we are about to call napi->poll() once more, we can safely
5191 * clear NAPI_STATE_MISSED.
5193 * Note: x86 could use a single "lock and ..." instruction
5194 * to perform these two clear_bit()
5196 clear_bit(NAPI_STATE_MISSED, &napi->state);
5197 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5201 /* All we really want here is to re-enable device interrupts.
5202 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5204 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5205 netpoll_poll_unlock(have_poll_lock);
5206 if (rc == BUSY_POLL_BUDGET)
5207 __napi_schedule(napi);
5211 void napi_busy_loop(unsigned int napi_id,
5212 bool (*loop_end)(void *, unsigned long),
5215 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5216 int (*napi_poll)(struct napi_struct *napi, int budget);
5217 void *have_poll_lock = NULL;
5218 struct napi_struct *napi;
5225 napi = napi_by_id(napi_id);
5235 unsigned long val = READ_ONCE(napi->state);
5237 /* If multiple threads are competing for this napi,
5238 * we avoid dirtying napi->state as much as we can.
5240 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5241 NAPIF_STATE_IN_BUSY_POLL))
5243 if (cmpxchg(&napi->state, val,
5244 val | NAPIF_STATE_IN_BUSY_POLL |
5245 NAPIF_STATE_SCHED) != val)
5247 have_poll_lock = netpoll_poll_lock(napi);
5248 napi_poll = napi->poll;
5250 work = napi_poll(napi, BUSY_POLL_BUDGET);
5251 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5254 __NET_ADD_STATS(dev_net(napi->dev),
5255 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5258 if (!loop_end || loop_end(loop_end_arg, start_time))
5261 if (unlikely(need_resched())) {
5263 busy_poll_stop(napi, have_poll_lock);
5267 if (loop_end(loop_end_arg, start_time))
5274 busy_poll_stop(napi, have_poll_lock);
5279 EXPORT_SYMBOL(napi_busy_loop);
5281 #endif /* CONFIG_NET_RX_BUSY_POLL */
5283 static void napi_hash_add(struct napi_struct *napi)
5285 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5286 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5289 spin_lock(&napi_hash_lock);
5291 /* 0..NR_CPUS range is reserved for sender_cpu use */
5293 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5294 napi_gen_id = MIN_NAPI_ID;
5295 } while (napi_by_id(napi_gen_id));
5296 napi->napi_id = napi_gen_id;
5298 hlist_add_head_rcu(&napi->napi_hash_node,
5299 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5301 spin_unlock(&napi_hash_lock);
5304 /* Warning : caller is responsible to make sure rcu grace period
5305 * is respected before freeing memory containing @napi
5307 bool napi_hash_del(struct napi_struct *napi)
5309 bool rcu_sync_needed = false;
5311 spin_lock(&napi_hash_lock);
5313 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5314 rcu_sync_needed = true;
5315 hlist_del_rcu(&napi->napi_hash_node);
5317 spin_unlock(&napi_hash_lock);
5318 return rcu_sync_needed;
5320 EXPORT_SYMBOL_GPL(napi_hash_del);
5322 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5324 struct napi_struct *napi;
5326 napi = container_of(timer, struct napi_struct, timer);
5328 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5329 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5331 if (napi->gro_list && !napi_disable_pending(napi) &&
5332 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5333 __napi_schedule_irqoff(napi);
5335 return HRTIMER_NORESTART;
5338 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5339 int (*poll)(struct napi_struct *, int), int weight)
5341 INIT_LIST_HEAD(&napi->poll_list);
5342 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5343 napi->timer.function = napi_watchdog;
5344 napi->gro_count = 0;
5345 napi->gro_list = NULL;
5348 if (weight > NAPI_POLL_WEIGHT)
5349 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5351 napi->weight = weight;
5352 list_add(&napi->dev_list, &dev->napi_list);
5354 #ifdef CONFIG_NETPOLL
5355 napi->poll_owner = -1;
5357 set_bit(NAPI_STATE_SCHED, &napi->state);
5358 napi_hash_add(napi);
5360 EXPORT_SYMBOL(netif_napi_add);
5362 void napi_disable(struct napi_struct *n)
5365 set_bit(NAPI_STATE_DISABLE, &n->state);
5367 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5369 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5372 hrtimer_cancel(&n->timer);
5374 clear_bit(NAPI_STATE_DISABLE, &n->state);
5376 EXPORT_SYMBOL(napi_disable);
5378 /* Must be called in process context */
5379 void netif_napi_del(struct napi_struct *napi)
5382 if (napi_hash_del(napi))
5384 list_del_init(&napi->dev_list);
5385 napi_free_frags(napi);
5387 kfree_skb_list(napi->gro_list);
5388 napi->gro_list = NULL;
5389 napi->gro_count = 0;
5391 EXPORT_SYMBOL(netif_napi_del);
5393 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5398 list_del_init(&n->poll_list);
5400 have = netpoll_poll_lock(n);
5404 /* This NAPI_STATE_SCHED test is for avoiding a race
5405 * with netpoll's poll_napi(). Only the entity which
5406 * obtains the lock and sees NAPI_STATE_SCHED set will
5407 * actually make the ->poll() call. Therefore we avoid
5408 * accidentally calling ->poll() when NAPI is not scheduled.
5411 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5412 work = n->poll(n, weight);
5413 trace_napi_poll(n, work, weight);
5416 WARN_ON_ONCE(work > weight);
5418 if (likely(work < weight))
5421 /* Drivers must not modify the NAPI state if they
5422 * consume the entire weight. In such cases this code
5423 * still "owns" the NAPI instance and therefore can
5424 * move the instance around on the list at-will.
5426 if (unlikely(napi_disable_pending(n))) {
5432 /* flush too old packets
5433 * If HZ < 1000, flush all packets.
5435 napi_gro_flush(n, HZ >= 1000);
5438 /* Some drivers may have called napi_schedule
5439 * prior to exhausting their budget.
5441 if (unlikely(!list_empty(&n->poll_list))) {
5442 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5443 n->dev ? n->dev->name : "backlog");
5447 list_add_tail(&n->poll_list, repoll);
5450 netpoll_poll_unlock(have);
5455 static __latent_entropy void net_rx_action(struct softirq_action *h)
5457 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5458 unsigned long time_limit = jiffies +
5459 usecs_to_jiffies(netdev_budget_usecs);
5460 int budget = netdev_budget;
5464 local_irq_disable();
5465 list_splice_init(&sd->poll_list, &list);
5469 struct napi_struct *n;
5471 if (list_empty(&list)) {
5472 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5477 n = list_first_entry(&list, struct napi_struct, poll_list);
5478 budget -= napi_poll(n, &repoll);
5480 /* If softirq window is exhausted then punt.
5481 * Allow this to run for 2 jiffies since which will allow
5482 * an average latency of 1.5/HZ.
5484 if (unlikely(budget <= 0 ||
5485 time_after_eq(jiffies, time_limit))) {
5491 local_irq_disable();
5493 list_splice_tail_init(&sd->poll_list, &list);
5494 list_splice_tail(&repoll, &list);
5495 list_splice(&list, &sd->poll_list);
5496 if (!list_empty(&sd->poll_list))
5497 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5499 net_rps_action_and_irq_enable(sd);
5501 __kfree_skb_flush();
5504 struct netdev_adjacent {
5505 struct net_device *dev;
5507 /* upper master flag, there can only be one master device per list */
5510 /* counter for the number of times this device was added to us */
5513 /* private field for the users */
5516 struct list_head list;
5517 struct rcu_head rcu;
5520 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5521 struct list_head *adj_list)
5523 struct netdev_adjacent *adj;
5525 list_for_each_entry(adj, adj_list, list) {
5526 if (adj->dev == adj_dev)
5532 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5534 struct net_device *dev = data;
5536 return upper_dev == dev;
5540 * netdev_has_upper_dev - Check if device is linked to an upper device
5542 * @upper_dev: upper device to check
5544 * Find out if a device is linked to specified upper device and return true
5545 * in case it is. Note that this checks only immediate upper device,
5546 * not through a complete stack of devices. The caller must hold the RTNL lock.
5548 bool netdev_has_upper_dev(struct net_device *dev,
5549 struct net_device *upper_dev)
5553 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5556 EXPORT_SYMBOL(netdev_has_upper_dev);
5559 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5561 * @upper_dev: upper device to check
5563 * Find out if a device is linked to specified upper device and return true
5564 * in case it is. Note that this checks the entire upper device chain.
5565 * The caller must hold rcu lock.
5568 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5569 struct net_device *upper_dev)
5571 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5574 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5577 * netdev_has_any_upper_dev - Check if device is linked to some device
5580 * Find out if a device is linked to an upper device and return true in case
5581 * it is. The caller must hold the RTNL lock.
5583 static bool netdev_has_any_upper_dev(struct net_device *dev)
5587 return !list_empty(&dev->adj_list.upper);
5591 * netdev_master_upper_dev_get - Get master upper device
5594 * Find a master upper device and return pointer to it or NULL in case
5595 * it's not there. The caller must hold the RTNL lock.
5597 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5599 struct netdev_adjacent *upper;
5603 if (list_empty(&dev->adj_list.upper))
5606 upper = list_first_entry(&dev->adj_list.upper,
5607 struct netdev_adjacent, list);
5608 if (likely(upper->master))
5612 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5615 * netdev_has_any_lower_dev - Check if device is linked to some device
5618 * Find out if a device is linked to a lower device and return true in case
5619 * it is. The caller must hold the RTNL lock.
5621 static bool netdev_has_any_lower_dev(struct net_device *dev)
5625 return !list_empty(&dev->adj_list.lower);
5628 void *netdev_adjacent_get_private(struct list_head *adj_list)
5630 struct netdev_adjacent *adj;
5632 adj = list_entry(adj_list, struct netdev_adjacent, list);
5634 return adj->private;
5636 EXPORT_SYMBOL(netdev_adjacent_get_private);
5639 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5641 * @iter: list_head ** of the current position
5643 * Gets the next device from the dev's upper list, starting from iter
5644 * position. The caller must hold RCU read lock.
5646 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5647 struct list_head **iter)
5649 struct netdev_adjacent *upper;
5651 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5653 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5655 if (&upper->list == &dev->adj_list.upper)
5658 *iter = &upper->list;
5662 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5664 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5665 struct list_head **iter)
5667 struct netdev_adjacent *upper;
5669 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5671 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5673 if (&upper->list == &dev->adj_list.upper)
5676 *iter = &upper->list;
5681 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5682 int (*fn)(struct net_device *dev,
5686 struct net_device *udev;
5687 struct list_head *iter;
5690 for (iter = &dev->adj_list.upper,
5691 udev = netdev_next_upper_dev_rcu(dev, &iter);
5693 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5694 /* first is the upper device itself */
5695 ret = fn(udev, data);
5699 /* then look at all of its upper devices */
5700 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5707 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5710 * netdev_lower_get_next_private - Get the next ->private from the
5711 * lower neighbour list
5713 * @iter: list_head ** of the current position
5715 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5716 * list, starting from iter position. The caller must hold either hold the
5717 * RTNL lock or its own locking that guarantees that the neighbour lower
5718 * list will remain unchanged.
5720 void *netdev_lower_get_next_private(struct net_device *dev,
5721 struct list_head **iter)
5723 struct netdev_adjacent *lower;
5725 lower = list_entry(*iter, struct netdev_adjacent, list);
5727 if (&lower->list == &dev->adj_list.lower)
5730 *iter = lower->list.next;
5732 return lower->private;
5734 EXPORT_SYMBOL(netdev_lower_get_next_private);
5737 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5738 * lower neighbour list, RCU
5741 * @iter: list_head ** of the current position
5743 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5744 * list, starting from iter position. The caller must hold RCU read lock.
5746 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5747 struct list_head **iter)
5749 struct netdev_adjacent *lower;
5751 WARN_ON_ONCE(!rcu_read_lock_held());
5753 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5755 if (&lower->list == &dev->adj_list.lower)
5758 *iter = &lower->list;
5760 return lower->private;
5762 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5765 * netdev_lower_get_next - Get the next device from the lower neighbour
5768 * @iter: list_head ** of the current position
5770 * Gets the next netdev_adjacent from the dev's lower neighbour
5771 * list, starting from iter position. The caller must hold RTNL lock or
5772 * its own locking that guarantees that the neighbour lower
5773 * list will remain unchanged.
5775 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5777 struct netdev_adjacent *lower;
5779 lower = list_entry(*iter, struct netdev_adjacent, list);
5781 if (&lower->list == &dev->adj_list.lower)
5784 *iter = lower->list.next;
5788 EXPORT_SYMBOL(netdev_lower_get_next);
5790 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5791 struct list_head **iter)
5793 struct netdev_adjacent *lower;
5795 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5797 if (&lower->list == &dev->adj_list.lower)
5800 *iter = &lower->list;
5805 int netdev_walk_all_lower_dev(struct net_device *dev,
5806 int (*fn)(struct net_device *dev,
5810 struct net_device *ldev;
5811 struct list_head *iter;
5814 for (iter = &dev->adj_list.lower,
5815 ldev = netdev_next_lower_dev(dev, &iter);
5817 ldev = netdev_next_lower_dev(dev, &iter)) {
5818 /* first is the lower device itself */
5819 ret = fn(ldev, data);
5823 /* then look at all of its lower devices */
5824 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5831 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5833 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5834 struct list_head **iter)
5836 struct netdev_adjacent *lower;
5838 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5839 if (&lower->list == &dev->adj_list.lower)
5842 *iter = &lower->list;
5847 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5848 int (*fn)(struct net_device *dev,
5852 struct net_device *ldev;
5853 struct list_head *iter;
5856 for (iter = &dev->adj_list.lower,
5857 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5859 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5860 /* first is the lower device itself */
5861 ret = fn(ldev, data);
5865 /* then look at all of its lower devices */
5866 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5873 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5876 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5877 * lower neighbour list, RCU
5881 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5882 * list. The caller must hold RCU read lock.
5884 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5886 struct netdev_adjacent *lower;
5888 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5889 struct netdev_adjacent, list);
5891 return lower->private;
5894 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5897 * netdev_master_upper_dev_get_rcu - Get master upper device
5900 * Find a master upper device and return pointer to it or NULL in case
5901 * it's not there. The caller must hold the RCU read lock.
5903 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5905 struct netdev_adjacent *upper;
5907 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5908 struct netdev_adjacent, list);
5909 if (upper && likely(upper->master))
5913 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5915 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5916 struct net_device *adj_dev,
5917 struct list_head *dev_list)
5919 char linkname[IFNAMSIZ+7];
5921 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5922 "upper_%s" : "lower_%s", adj_dev->name);
5923 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5926 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5928 struct list_head *dev_list)
5930 char linkname[IFNAMSIZ+7];
5932 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5933 "upper_%s" : "lower_%s", name);
5934 sysfs_remove_link(&(dev->dev.kobj), linkname);
5937 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5938 struct net_device *adj_dev,
5939 struct list_head *dev_list)
5941 return (dev_list == &dev->adj_list.upper ||
5942 dev_list == &dev->adj_list.lower) &&
5943 net_eq(dev_net(dev), dev_net(adj_dev));
5946 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5947 struct net_device *adj_dev,
5948 struct list_head *dev_list,
5949 void *private, bool master)
5951 struct netdev_adjacent *adj;
5954 adj = __netdev_find_adj(adj_dev, dev_list);
5958 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5959 dev->name, adj_dev->name, adj->ref_nr);
5964 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5969 adj->master = master;
5971 adj->private = private;
5974 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5975 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5978 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5983 /* Ensure that master link is always the first item in list. */
5985 ret = sysfs_create_link(&(dev->dev.kobj),
5986 &(adj_dev->dev.kobj), "master");
5988 goto remove_symlinks;
5990 list_add_rcu(&adj->list, dev_list);
5992 list_add_tail_rcu(&adj->list, dev_list);
5998 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5999 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6007 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6008 struct net_device *adj_dev,
6010 struct list_head *dev_list)
6012 struct netdev_adjacent *adj;
6014 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6015 dev->name, adj_dev->name, ref_nr);
6017 adj = __netdev_find_adj(adj_dev, dev_list);
6020 pr_err("Adjacency does not exist for device %s from %s\n",
6021 dev->name, adj_dev->name);
6026 if (adj->ref_nr > ref_nr) {
6027 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6028 dev->name, adj_dev->name, ref_nr,
6029 adj->ref_nr - ref_nr);
6030 adj->ref_nr -= ref_nr;
6035 sysfs_remove_link(&(dev->dev.kobj), "master");
6037 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6038 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6040 list_del_rcu(&adj->list);
6041 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6042 adj_dev->name, dev->name, adj_dev->name);
6044 kfree_rcu(adj, rcu);
6047 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6048 struct net_device *upper_dev,
6049 struct list_head *up_list,
6050 struct list_head *down_list,
6051 void *private, bool master)
6055 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6060 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6063 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6070 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6071 struct net_device *upper_dev,
6073 struct list_head *up_list,
6074 struct list_head *down_list)
6076 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6077 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6080 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6081 struct net_device *upper_dev,
6082 void *private, bool master)
6084 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6085 &dev->adj_list.upper,
6086 &upper_dev->adj_list.lower,
6090 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6091 struct net_device *upper_dev)
6093 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6094 &dev->adj_list.upper,
6095 &upper_dev->adj_list.lower);
6098 static int __netdev_upper_dev_link(struct net_device *dev,
6099 struct net_device *upper_dev, bool master,
6100 void *upper_priv, void *upper_info)
6102 struct netdev_notifier_changeupper_info changeupper_info;
6107 if (dev == upper_dev)
6110 /* To prevent loops, check if dev is not upper device to upper_dev. */
6111 if (netdev_has_upper_dev(upper_dev, dev))
6114 if (netdev_has_upper_dev(dev, upper_dev))
6117 if (master && netdev_master_upper_dev_get(dev))
6120 changeupper_info.upper_dev = upper_dev;
6121 changeupper_info.master = master;
6122 changeupper_info.linking = true;
6123 changeupper_info.upper_info = upper_info;
6125 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6126 &changeupper_info.info);
6127 ret = notifier_to_errno(ret);
6131 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6136 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6137 &changeupper_info.info);
6138 ret = notifier_to_errno(ret);
6145 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6151 * netdev_upper_dev_link - Add a link to the upper device
6153 * @upper_dev: new upper device
6155 * Adds a link to device which is upper to this one. The caller must hold
6156 * the RTNL lock. On a failure a negative errno code is returned.
6157 * On success the reference counts are adjusted and the function
6160 int netdev_upper_dev_link(struct net_device *dev,
6161 struct net_device *upper_dev)
6163 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6165 EXPORT_SYMBOL(netdev_upper_dev_link);
6168 * netdev_master_upper_dev_link - Add a master link to the upper device
6170 * @upper_dev: new upper device
6171 * @upper_priv: upper device private
6172 * @upper_info: upper info to be passed down via notifier
6174 * Adds a link to device which is upper to this one. In this case, only
6175 * one master upper device can be linked, although other non-master devices
6176 * might be linked as well. The caller must hold the RTNL lock.
6177 * On a failure a negative errno code is returned. On success the reference
6178 * counts are adjusted and the function returns zero.
6180 int netdev_master_upper_dev_link(struct net_device *dev,
6181 struct net_device *upper_dev,
6182 void *upper_priv, void *upper_info)
6184 return __netdev_upper_dev_link(dev, upper_dev, true,
6185 upper_priv, upper_info);
6187 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6190 * netdev_upper_dev_unlink - Removes a link to upper device
6192 * @upper_dev: new upper device
6194 * Removes a link to device which is upper to this one. The caller must hold
6197 void netdev_upper_dev_unlink(struct net_device *dev,
6198 struct net_device *upper_dev)
6200 struct netdev_notifier_changeupper_info changeupper_info;
6204 changeupper_info.upper_dev = upper_dev;
6205 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6206 changeupper_info.linking = false;
6208 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6209 &changeupper_info.info);
6211 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6213 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6214 &changeupper_info.info);
6216 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6219 * netdev_bonding_info_change - Dispatch event about slave change
6221 * @bonding_info: info to dispatch
6223 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6224 * The caller must hold the RTNL lock.
6226 void netdev_bonding_info_change(struct net_device *dev,
6227 struct netdev_bonding_info *bonding_info)
6229 struct netdev_notifier_bonding_info info;
6231 memcpy(&info.bonding_info, bonding_info,
6232 sizeof(struct netdev_bonding_info));
6233 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6236 EXPORT_SYMBOL(netdev_bonding_info_change);
6238 static void netdev_adjacent_add_links(struct net_device *dev)
6240 struct netdev_adjacent *iter;
6242 struct net *net = dev_net(dev);
6244 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6245 if (!net_eq(net, dev_net(iter->dev)))
6247 netdev_adjacent_sysfs_add(iter->dev, dev,
6248 &iter->dev->adj_list.lower);
6249 netdev_adjacent_sysfs_add(dev, iter->dev,
6250 &dev->adj_list.upper);
6253 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6254 if (!net_eq(net, dev_net(iter->dev)))
6256 netdev_adjacent_sysfs_add(iter->dev, dev,
6257 &iter->dev->adj_list.upper);
6258 netdev_adjacent_sysfs_add(dev, iter->dev,
6259 &dev->adj_list.lower);
6263 static void netdev_adjacent_del_links(struct net_device *dev)
6265 struct netdev_adjacent *iter;
6267 struct net *net = dev_net(dev);
6269 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6270 if (!net_eq(net, dev_net(iter->dev)))
6272 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6273 &iter->dev->adj_list.lower);
6274 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6275 &dev->adj_list.upper);
6278 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6279 if (!net_eq(net, dev_net(iter->dev)))
6281 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6282 &iter->dev->adj_list.upper);
6283 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6284 &dev->adj_list.lower);
6288 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6290 struct netdev_adjacent *iter;
6292 struct net *net = dev_net(dev);
6294 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6295 if (!net_eq(net, dev_net(iter->dev)))
6297 netdev_adjacent_sysfs_del(iter->dev, oldname,
6298 &iter->dev->adj_list.lower);
6299 netdev_adjacent_sysfs_add(iter->dev, dev,
6300 &iter->dev->adj_list.lower);
6303 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6304 if (!net_eq(net, dev_net(iter->dev)))
6306 netdev_adjacent_sysfs_del(iter->dev, oldname,
6307 &iter->dev->adj_list.upper);
6308 netdev_adjacent_sysfs_add(iter->dev, dev,
6309 &iter->dev->adj_list.upper);
6313 void *netdev_lower_dev_get_private(struct net_device *dev,
6314 struct net_device *lower_dev)
6316 struct netdev_adjacent *lower;
6320 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6324 return lower->private;
6326 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6329 int dev_get_nest_level(struct net_device *dev)
6331 struct net_device *lower = NULL;
6332 struct list_head *iter;
6338 netdev_for_each_lower_dev(dev, lower, iter) {
6339 nest = dev_get_nest_level(lower);
6340 if (max_nest < nest)
6344 return max_nest + 1;
6346 EXPORT_SYMBOL(dev_get_nest_level);
6349 * netdev_lower_change - Dispatch event about lower device state change
6350 * @lower_dev: device
6351 * @lower_state_info: state to dispatch
6353 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6354 * The caller must hold the RTNL lock.
6356 void netdev_lower_state_changed(struct net_device *lower_dev,
6357 void *lower_state_info)
6359 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6362 changelowerstate_info.lower_state_info = lower_state_info;
6363 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6364 &changelowerstate_info.info);
6366 EXPORT_SYMBOL(netdev_lower_state_changed);
6368 static void dev_change_rx_flags(struct net_device *dev, int flags)
6370 const struct net_device_ops *ops = dev->netdev_ops;
6372 if (ops->ndo_change_rx_flags)
6373 ops->ndo_change_rx_flags(dev, flags);
6376 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6378 unsigned int old_flags = dev->flags;
6384 dev->flags |= IFF_PROMISC;
6385 dev->promiscuity += inc;
6386 if (dev->promiscuity == 0) {
6389 * If inc causes overflow, untouch promisc and return error.
6392 dev->flags &= ~IFF_PROMISC;
6394 dev->promiscuity -= inc;
6395 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6400 if (dev->flags != old_flags) {
6401 pr_info("device %s %s promiscuous mode\n",
6403 dev->flags & IFF_PROMISC ? "entered" : "left");
6404 if (audit_enabled) {
6405 current_uid_gid(&uid, &gid);
6406 audit_log(current->audit_context, GFP_ATOMIC,
6407 AUDIT_ANOM_PROMISCUOUS,
6408 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6409 dev->name, (dev->flags & IFF_PROMISC),
6410 (old_flags & IFF_PROMISC),
6411 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6412 from_kuid(&init_user_ns, uid),
6413 from_kgid(&init_user_ns, gid),
6414 audit_get_sessionid(current));
6417 dev_change_rx_flags(dev, IFF_PROMISC);
6420 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6425 * dev_set_promiscuity - update promiscuity count on a device
6429 * Add or remove promiscuity from a device. While the count in the device
6430 * remains above zero the interface remains promiscuous. Once it hits zero
6431 * the device reverts back to normal filtering operation. A negative inc
6432 * value is used to drop promiscuity on the device.
6433 * Return 0 if successful or a negative errno code on error.
6435 int dev_set_promiscuity(struct net_device *dev, int inc)
6437 unsigned int old_flags = dev->flags;
6440 err = __dev_set_promiscuity(dev, inc, true);
6443 if (dev->flags != old_flags)
6444 dev_set_rx_mode(dev);
6447 EXPORT_SYMBOL(dev_set_promiscuity);
6449 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6451 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6455 dev->flags |= IFF_ALLMULTI;
6456 dev->allmulti += inc;
6457 if (dev->allmulti == 0) {
6460 * If inc causes overflow, untouch allmulti and return error.
6463 dev->flags &= ~IFF_ALLMULTI;
6465 dev->allmulti -= inc;
6466 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6471 if (dev->flags ^ old_flags) {
6472 dev_change_rx_flags(dev, IFF_ALLMULTI);
6473 dev_set_rx_mode(dev);
6475 __dev_notify_flags(dev, old_flags,
6476 dev->gflags ^ old_gflags);
6482 * dev_set_allmulti - update allmulti count on a device
6486 * Add or remove reception of all multicast frames to a device. While the
6487 * count in the device remains above zero the interface remains listening
6488 * to all interfaces. Once it hits zero the device reverts back to normal
6489 * filtering operation. A negative @inc value is used to drop the counter
6490 * when releasing a resource needing all multicasts.
6491 * Return 0 if successful or a negative errno code on error.
6494 int dev_set_allmulti(struct net_device *dev, int inc)
6496 return __dev_set_allmulti(dev, inc, true);
6498 EXPORT_SYMBOL(dev_set_allmulti);
6501 * Upload unicast and multicast address lists to device and
6502 * configure RX filtering. When the device doesn't support unicast
6503 * filtering it is put in promiscuous mode while unicast addresses
6506 void __dev_set_rx_mode(struct net_device *dev)
6508 const struct net_device_ops *ops = dev->netdev_ops;
6510 /* dev_open will call this function so the list will stay sane. */
6511 if (!(dev->flags&IFF_UP))
6514 if (!netif_device_present(dev))
6517 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6518 /* Unicast addresses changes may only happen under the rtnl,
6519 * therefore calling __dev_set_promiscuity here is safe.
6521 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6522 __dev_set_promiscuity(dev, 1, false);
6523 dev->uc_promisc = true;
6524 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6525 __dev_set_promiscuity(dev, -1, false);
6526 dev->uc_promisc = false;
6530 if (ops->ndo_set_rx_mode)
6531 ops->ndo_set_rx_mode(dev);
6534 void dev_set_rx_mode(struct net_device *dev)
6536 netif_addr_lock_bh(dev);
6537 __dev_set_rx_mode(dev);
6538 netif_addr_unlock_bh(dev);
6542 * dev_get_flags - get flags reported to userspace
6545 * Get the combination of flag bits exported through APIs to userspace.
6547 unsigned int dev_get_flags(const struct net_device *dev)
6551 flags = (dev->flags & ~(IFF_PROMISC |
6556 (dev->gflags & (IFF_PROMISC |
6559 if (netif_running(dev)) {
6560 if (netif_oper_up(dev))
6561 flags |= IFF_RUNNING;
6562 if (netif_carrier_ok(dev))
6563 flags |= IFF_LOWER_UP;
6564 if (netif_dormant(dev))
6565 flags |= IFF_DORMANT;
6570 EXPORT_SYMBOL(dev_get_flags);
6572 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6574 unsigned int old_flags = dev->flags;
6580 * Set the flags on our device.
6583 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6584 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6586 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6590 * Load in the correct multicast list now the flags have changed.
6593 if ((old_flags ^ flags) & IFF_MULTICAST)
6594 dev_change_rx_flags(dev, IFF_MULTICAST);
6596 dev_set_rx_mode(dev);
6599 * Have we downed the interface. We handle IFF_UP ourselves
6600 * according to user attempts to set it, rather than blindly
6605 if ((old_flags ^ flags) & IFF_UP)
6606 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6608 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6609 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6610 unsigned int old_flags = dev->flags;
6612 dev->gflags ^= IFF_PROMISC;
6614 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6615 if (dev->flags != old_flags)
6616 dev_set_rx_mode(dev);
6619 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6620 * is important. Some (broken) drivers set IFF_PROMISC, when
6621 * IFF_ALLMULTI is requested not asking us and not reporting.
6623 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6624 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6626 dev->gflags ^= IFF_ALLMULTI;
6627 __dev_set_allmulti(dev, inc, false);
6633 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6634 unsigned int gchanges)
6636 unsigned int changes = dev->flags ^ old_flags;
6639 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6641 if (changes & IFF_UP) {
6642 if (dev->flags & IFF_UP)
6643 call_netdevice_notifiers(NETDEV_UP, dev);
6645 call_netdevice_notifiers(NETDEV_DOWN, dev);
6648 if (dev->flags & IFF_UP &&
6649 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6650 struct netdev_notifier_change_info change_info;
6652 change_info.flags_changed = changes;
6653 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6659 * dev_change_flags - change device settings
6661 * @flags: device state flags
6663 * Change settings on device based state flags. The flags are
6664 * in the userspace exported format.
6666 int dev_change_flags(struct net_device *dev, unsigned int flags)
6669 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6671 ret = __dev_change_flags(dev, flags);
6675 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6676 __dev_notify_flags(dev, old_flags, changes);
6679 EXPORT_SYMBOL(dev_change_flags);
6681 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6683 const struct net_device_ops *ops = dev->netdev_ops;
6685 if (ops->ndo_change_mtu)
6686 return ops->ndo_change_mtu(dev, new_mtu);
6693 * dev_set_mtu - Change maximum transfer unit
6695 * @new_mtu: new transfer unit
6697 * Change the maximum transfer size of the network device.
6699 int dev_set_mtu(struct net_device *dev, int new_mtu)
6703 if (new_mtu == dev->mtu)
6706 /* MTU must be positive, and in range */
6707 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6708 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6709 dev->name, new_mtu, dev->min_mtu);
6713 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6714 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6715 dev->name, new_mtu, dev->max_mtu);
6719 if (!netif_device_present(dev))
6722 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6723 err = notifier_to_errno(err);
6727 orig_mtu = dev->mtu;
6728 err = __dev_set_mtu(dev, new_mtu);
6731 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6732 err = notifier_to_errno(err);
6734 /* setting mtu back and notifying everyone again,
6735 * so that they have a chance to revert changes.
6737 __dev_set_mtu(dev, orig_mtu);
6738 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6743 EXPORT_SYMBOL(dev_set_mtu);
6746 * dev_set_group - Change group this device belongs to
6748 * @new_group: group this device should belong to
6750 void dev_set_group(struct net_device *dev, int new_group)
6752 dev->group = new_group;
6754 EXPORT_SYMBOL(dev_set_group);
6757 * dev_set_mac_address - Change Media Access Control Address
6761 * Change the hardware (MAC) address of the device
6763 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6765 const struct net_device_ops *ops = dev->netdev_ops;
6768 if (!ops->ndo_set_mac_address)
6770 if (sa->sa_family != dev->type)
6772 if (!netif_device_present(dev))
6774 err = ops->ndo_set_mac_address(dev, sa);
6777 dev->addr_assign_type = NET_ADDR_SET;
6778 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6779 add_device_randomness(dev->dev_addr, dev->addr_len);
6782 EXPORT_SYMBOL(dev_set_mac_address);
6785 * dev_change_carrier - Change device carrier
6787 * @new_carrier: new value
6789 * Change device carrier
6791 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6793 const struct net_device_ops *ops = dev->netdev_ops;
6795 if (!ops->ndo_change_carrier)
6797 if (!netif_device_present(dev))
6799 return ops->ndo_change_carrier(dev, new_carrier);
6801 EXPORT_SYMBOL(dev_change_carrier);
6804 * dev_get_phys_port_id - Get device physical port ID
6808 * Get device physical port ID
6810 int dev_get_phys_port_id(struct net_device *dev,
6811 struct netdev_phys_item_id *ppid)
6813 const struct net_device_ops *ops = dev->netdev_ops;
6815 if (!ops->ndo_get_phys_port_id)
6817 return ops->ndo_get_phys_port_id(dev, ppid);
6819 EXPORT_SYMBOL(dev_get_phys_port_id);
6822 * dev_get_phys_port_name - Get device physical port name
6825 * @len: limit of bytes to copy to name
6827 * Get device physical port name
6829 int dev_get_phys_port_name(struct net_device *dev,
6830 char *name, size_t len)
6832 const struct net_device_ops *ops = dev->netdev_ops;
6834 if (!ops->ndo_get_phys_port_name)
6836 return ops->ndo_get_phys_port_name(dev, name, len);
6838 EXPORT_SYMBOL(dev_get_phys_port_name);
6841 * dev_change_proto_down - update protocol port state information
6843 * @proto_down: new value
6845 * This info can be used by switch drivers to set the phys state of the
6848 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6850 const struct net_device_ops *ops = dev->netdev_ops;
6852 if (!ops->ndo_change_proto_down)
6854 if (!netif_device_present(dev))
6856 return ops->ndo_change_proto_down(dev, proto_down);
6858 EXPORT_SYMBOL(dev_change_proto_down);
6860 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6862 struct netdev_xdp xdp;
6864 memset(&xdp, 0, sizeof(xdp));
6865 xdp.command = XDP_QUERY_PROG;
6867 /* Query must always succeed. */
6868 WARN_ON(xdp_op(dev, &xdp) < 0);
6869 return xdp.prog_attached;
6872 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6873 struct netlink_ext_ack *extack,
6874 struct bpf_prog *prog)
6876 struct netdev_xdp xdp;
6878 memset(&xdp, 0, sizeof(xdp));
6879 xdp.command = XDP_SETUP_PROG;
6880 xdp.extack = extack;
6883 return xdp_op(dev, &xdp);
6887 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6889 * @extack: netlink extended ack
6890 * @fd: new program fd or negative value to clear
6891 * @flags: xdp-related flags
6893 * Set or clear a bpf program for a device
6895 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6898 const struct net_device_ops *ops = dev->netdev_ops;
6899 struct bpf_prog *prog = NULL;
6900 xdp_op_t xdp_op, xdp_chk;
6905 xdp_op = xdp_chk = ops->ndo_xdp;
6906 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6908 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6909 xdp_op = generic_xdp_install;
6910 if (xdp_op == xdp_chk)
6911 xdp_chk = generic_xdp_install;
6914 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6916 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6917 __dev_xdp_attached(dev, xdp_op))
6920 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6922 return PTR_ERR(prog);
6925 err = dev_xdp_install(dev, xdp_op, extack, prog);
6926 if (err < 0 && prog)
6933 * dev_new_index - allocate an ifindex
6934 * @net: the applicable net namespace
6936 * Returns a suitable unique value for a new device interface
6937 * number. The caller must hold the rtnl semaphore or the
6938 * dev_base_lock to be sure it remains unique.
6940 static int dev_new_index(struct net *net)
6942 int ifindex = net->ifindex;
6947 if (!__dev_get_by_index(net, ifindex))
6948 return net->ifindex = ifindex;
6952 /* Delayed registration/unregisteration */
6953 static LIST_HEAD(net_todo_list);
6954 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6956 static void net_set_todo(struct net_device *dev)
6958 list_add_tail(&dev->todo_list, &net_todo_list);
6959 dev_net(dev)->dev_unreg_count++;
6962 static void rollback_registered_many(struct list_head *head)
6964 struct net_device *dev, *tmp;
6965 LIST_HEAD(close_head);
6967 BUG_ON(dev_boot_phase);
6970 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6971 /* Some devices call without registering
6972 * for initialization unwind. Remove those
6973 * devices and proceed with the remaining.
6975 if (dev->reg_state == NETREG_UNINITIALIZED) {
6976 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6980 list_del(&dev->unreg_list);
6983 dev->dismantle = true;
6984 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6987 /* If device is running, close it first. */
6988 list_for_each_entry(dev, head, unreg_list)
6989 list_add_tail(&dev->close_list, &close_head);
6990 dev_close_many(&close_head, true);
6992 list_for_each_entry(dev, head, unreg_list) {
6993 /* And unlink it from device chain. */
6994 unlist_netdevice(dev);
6996 dev->reg_state = NETREG_UNREGISTERING;
6998 flush_all_backlogs();
7002 list_for_each_entry(dev, head, unreg_list) {
7003 struct sk_buff *skb = NULL;
7005 /* Shutdown queueing discipline. */
7009 /* Notify protocols, that we are about to destroy
7010 * this device. They should clean all the things.
7012 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7014 if (!dev->rtnl_link_ops ||
7015 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7016 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7020 * Flush the unicast and multicast chains
7025 if (dev->netdev_ops->ndo_uninit)
7026 dev->netdev_ops->ndo_uninit(dev);
7029 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7031 /* Notifier chain MUST detach us all upper devices. */
7032 WARN_ON(netdev_has_any_upper_dev(dev));
7033 WARN_ON(netdev_has_any_lower_dev(dev));
7035 /* Remove entries from kobject tree */
7036 netdev_unregister_kobject(dev);
7038 /* Remove XPS queueing entries */
7039 netif_reset_xps_queues_gt(dev, 0);
7045 list_for_each_entry(dev, head, unreg_list)
7049 static void rollback_registered(struct net_device *dev)
7053 list_add(&dev->unreg_list, &single);
7054 rollback_registered_many(&single);
7058 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7059 struct net_device *upper, netdev_features_t features)
7061 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7062 netdev_features_t feature;
7065 for_each_netdev_feature(&upper_disables, feature_bit) {
7066 feature = __NETIF_F_BIT(feature_bit);
7067 if (!(upper->wanted_features & feature)
7068 && (features & feature)) {
7069 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7070 &feature, upper->name);
7071 features &= ~feature;
7078 static void netdev_sync_lower_features(struct net_device *upper,
7079 struct net_device *lower, netdev_features_t features)
7081 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7082 netdev_features_t feature;
7085 for_each_netdev_feature(&upper_disables, feature_bit) {
7086 feature = __NETIF_F_BIT(feature_bit);
7087 if (!(features & feature) && (lower->features & feature)) {
7088 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7089 &feature, lower->name);
7090 lower->wanted_features &= ~feature;
7091 netdev_update_features(lower);
7093 if (unlikely(lower->features & feature))
7094 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7095 &feature, lower->name);
7100 static netdev_features_t netdev_fix_features(struct net_device *dev,
7101 netdev_features_t features)
7103 /* Fix illegal checksum combinations */
7104 if ((features & NETIF_F_HW_CSUM) &&
7105 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7106 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7107 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7110 /* TSO requires that SG is present as well. */
7111 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7112 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7113 features &= ~NETIF_F_ALL_TSO;
7116 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7117 !(features & NETIF_F_IP_CSUM)) {
7118 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7119 features &= ~NETIF_F_TSO;
7120 features &= ~NETIF_F_TSO_ECN;
7123 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7124 !(features & NETIF_F_IPV6_CSUM)) {
7125 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7126 features &= ~NETIF_F_TSO6;
7129 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7130 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7131 features &= ~NETIF_F_TSO_MANGLEID;
7133 /* TSO ECN requires that TSO is present as well. */
7134 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7135 features &= ~NETIF_F_TSO_ECN;
7137 /* Software GSO depends on SG. */
7138 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7139 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7140 features &= ~NETIF_F_GSO;
7143 /* UFO needs SG and checksumming */
7144 if (features & NETIF_F_UFO) {
7145 /* maybe split UFO into V4 and V6? */
7146 if (!(features & NETIF_F_HW_CSUM) &&
7147 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7148 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7150 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7151 features &= ~NETIF_F_UFO;
7154 if (!(features & NETIF_F_SG)) {
7156 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7157 features &= ~NETIF_F_UFO;
7161 /* GSO partial features require GSO partial be set */
7162 if ((features & dev->gso_partial_features) &&
7163 !(features & NETIF_F_GSO_PARTIAL)) {
7165 "Dropping partially supported GSO features since no GSO partial.\n");
7166 features &= ~dev->gso_partial_features;
7172 int __netdev_update_features(struct net_device *dev)
7174 struct net_device *upper, *lower;
7175 netdev_features_t features;
7176 struct list_head *iter;
7181 features = netdev_get_wanted_features(dev);
7183 if (dev->netdev_ops->ndo_fix_features)
7184 features = dev->netdev_ops->ndo_fix_features(dev, features);
7186 /* driver might be less strict about feature dependencies */
7187 features = netdev_fix_features(dev, features);
7189 /* some features can't be enabled if they're off an an upper device */
7190 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7191 features = netdev_sync_upper_features(dev, upper, features);
7193 if (dev->features == features)
7196 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7197 &dev->features, &features);
7199 if (dev->netdev_ops->ndo_set_features)
7200 err = dev->netdev_ops->ndo_set_features(dev, features);
7204 if (unlikely(err < 0)) {
7206 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7207 err, &features, &dev->features);
7208 /* return non-0 since some features might have changed and
7209 * it's better to fire a spurious notification than miss it
7215 /* some features must be disabled on lower devices when disabled
7216 * on an upper device (think: bonding master or bridge)
7218 netdev_for_each_lower_dev(dev, lower, iter)
7219 netdev_sync_lower_features(dev, lower, features);
7222 dev->features = features;
7224 return err < 0 ? 0 : 1;
7228 * netdev_update_features - recalculate device features
7229 * @dev: the device to check
7231 * Recalculate dev->features set and send notifications if it
7232 * has changed. Should be called after driver or hardware dependent
7233 * conditions might have changed that influence the features.
7235 void netdev_update_features(struct net_device *dev)
7237 if (__netdev_update_features(dev))
7238 netdev_features_change(dev);
7240 EXPORT_SYMBOL(netdev_update_features);
7243 * netdev_change_features - recalculate device features
7244 * @dev: the device to check
7246 * Recalculate dev->features set and send notifications even
7247 * if they have not changed. Should be called instead of
7248 * netdev_update_features() if also dev->vlan_features might
7249 * have changed to allow the changes to be propagated to stacked
7252 void netdev_change_features(struct net_device *dev)
7254 __netdev_update_features(dev);
7255 netdev_features_change(dev);
7257 EXPORT_SYMBOL(netdev_change_features);
7260 * netif_stacked_transfer_operstate - transfer operstate
7261 * @rootdev: the root or lower level device to transfer state from
7262 * @dev: the device to transfer operstate to
7264 * Transfer operational state from root to device. This is normally
7265 * called when a stacking relationship exists between the root
7266 * device and the device(a leaf device).
7268 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7269 struct net_device *dev)
7271 if (rootdev->operstate == IF_OPER_DORMANT)
7272 netif_dormant_on(dev);
7274 netif_dormant_off(dev);
7276 if (netif_carrier_ok(rootdev))
7277 netif_carrier_on(dev);
7279 netif_carrier_off(dev);
7281 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7284 static int netif_alloc_rx_queues(struct net_device *dev)
7286 unsigned int i, count = dev->num_rx_queues;
7287 struct netdev_rx_queue *rx;
7288 size_t sz = count * sizeof(*rx);
7292 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7298 for (i = 0; i < count; i++)
7304 static void netdev_init_one_queue(struct net_device *dev,
7305 struct netdev_queue *queue, void *_unused)
7307 /* Initialize queue lock */
7308 spin_lock_init(&queue->_xmit_lock);
7309 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7310 queue->xmit_lock_owner = -1;
7311 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7314 dql_init(&queue->dql, HZ);
7318 static void netif_free_tx_queues(struct net_device *dev)
7323 static int netif_alloc_netdev_queues(struct net_device *dev)
7325 unsigned int count = dev->num_tx_queues;
7326 struct netdev_queue *tx;
7327 size_t sz = count * sizeof(*tx);
7329 if (count < 1 || count > 0xffff)
7332 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7338 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7339 spin_lock_init(&dev->tx_global_lock);
7344 void netif_tx_stop_all_queues(struct net_device *dev)
7348 for (i = 0; i < dev->num_tx_queues; i++) {
7349 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7351 netif_tx_stop_queue(txq);
7354 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7357 * register_netdevice - register a network device
7358 * @dev: device to register
7360 * Take a completed network device structure and add it to the kernel
7361 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7362 * chain. 0 is returned on success. A negative errno code is returned
7363 * on a failure to set up the device, or if the name is a duplicate.
7365 * Callers must hold the rtnl semaphore. You may want
7366 * register_netdev() instead of this.
7369 * The locking appears insufficient to guarantee two parallel registers
7370 * will not get the same name.
7373 int register_netdevice(struct net_device *dev)
7376 struct net *net = dev_net(dev);
7378 BUG_ON(dev_boot_phase);
7383 /* When net_device's are persistent, this will be fatal. */
7384 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7387 spin_lock_init(&dev->addr_list_lock);
7388 netdev_set_addr_lockdep_class(dev);
7390 ret = dev_get_valid_name(net, dev, dev->name);
7394 /* Init, if this function is available */
7395 if (dev->netdev_ops->ndo_init) {
7396 ret = dev->netdev_ops->ndo_init(dev);
7404 if (((dev->hw_features | dev->features) &
7405 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7406 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7407 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7408 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7415 dev->ifindex = dev_new_index(net);
7416 else if (__dev_get_by_index(net, dev->ifindex))
7419 /* Transfer changeable features to wanted_features and enable
7420 * software offloads (GSO and GRO).
7422 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7423 dev->features |= NETIF_F_SOFT_FEATURES;
7424 dev->wanted_features = dev->features & dev->hw_features;
7426 if (!(dev->flags & IFF_LOOPBACK))
7427 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7429 /* If IPv4 TCP segmentation offload is supported we should also
7430 * allow the device to enable segmenting the frame with the option
7431 * of ignoring a static IP ID value. This doesn't enable the
7432 * feature itself but allows the user to enable it later.
7434 if (dev->hw_features & NETIF_F_TSO)
7435 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7436 if (dev->vlan_features & NETIF_F_TSO)
7437 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7438 if (dev->mpls_features & NETIF_F_TSO)
7439 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7440 if (dev->hw_enc_features & NETIF_F_TSO)
7441 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7443 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7445 dev->vlan_features |= NETIF_F_HIGHDMA;
7447 /* Make NETIF_F_SG inheritable to tunnel devices.
7449 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7451 /* Make NETIF_F_SG inheritable to MPLS.
7453 dev->mpls_features |= NETIF_F_SG;
7455 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7456 ret = notifier_to_errno(ret);
7460 ret = netdev_register_kobject(dev);
7463 dev->reg_state = NETREG_REGISTERED;
7465 __netdev_update_features(dev);
7468 * Default initial state at registry is that the
7469 * device is present.
7472 set_bit(__LINK_STATE_PRESENT, &dev->state);
7474 linkwatch_init_dev(dev);
7476 dev_init_scheduler(dev);
7478 list_netdevice(dev);
7479 add_device_randomness(dev->dev_addr, dev->addr_len);
7481 /* If the device has permanent device address, driver should
7482 * set dev_addr and also addr_assign_type should be set to
7483 * NET_ADDR_PERM (default value).
7485 if (dev->addr_assign_type == NET_ADDR_PERM)
7486 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7488 /* Notify protocols, that a new device appeared. */
7489 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7490 ret = notifier_to_errno(ret);
7492 rollback_registered(dev);
7493 dev->reg_state = NETREG_UNREGISTERED;
7496 * Prevent userspace races by waiting until the network
7497 * device is fully setup before sending notifications.
7499 if (!dev->rtnl_link_ops ||
7500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7501 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7507 if (dev->netdev_ops->ndo_uninit)
7508 dev->netdev_ops->ndo_uninit(dev);
7509 if (dev->priv_destructor)
7510 dev->priv_destructor(dev);
7513 EXPORT_SYMBOL(register_netdevice);
7516 * init_dummy_netdev - init a dummy network device for NAPI
7517 * @dev: device to init
7519 * This takes a network device structure and initialize the minimum
7520 * amount of fields so it can be used to schedule NAPI polls without
7521 * registering a full blown interface. This is to be used by drivers
7522 * that need to tie several hardware interfaces to a single NAPI
7523 * poll scheduler due to HW limitations.
7525 int init_dummy_netdev(struct net_device *dev)
7527 /* Clear everything. Note we don't initialize spinlocks
7528 * are they aren't supposed to be taken by any of the
7529 * NAPI code and this dummy netdev is supposed to be
7530 * only ever used for NAPI polls
7532 memset(dev, 0, sizeof(struct net_device));
7534 /* make sure we BUG if trying to hit standard
7535 * register/unregister code path
7537 dev->reg_state = NETREG_DUMMY;
7539 /* NAPI wants this */
7540 INIT_LIST_HEAD(&dev->napi_list);
7542 /* a dummy interface is started by default */
7543 set_bit(__LINK_STATE_PRESENT, &dev->state);
7544 set_bit(__LINK_STATE_START, &dev->state);
7546 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7547 * because users of this 'device' dont need to change
7553 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7557 * register_netdev - register a network device
7558 * @dev: device to register
7560 * Take a completed network device structure and add it to the kernel
7561 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7562 * chain. 0 is returned on success. A negative errno code is returned
7563 * on a failure to set up the device, or if the name is a duplicate.
7565 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7566 * and expands the device name if you passed a format string to
7569 int register_netdev(struct net_device *dev)
7574 err = register_netdevice(dev);
7578 EXPORT_SYMBOL(register_netdev);
7580 int netdev_refcnt_read(const struct net_device *dev)
7584 for_each_possible_cpu(i)
7585 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7588 EXPORT_SYMBOL(netdev_refcnt_read);
7591 * netdev_wait_allrefs - wait until all references are gone.
7592 * @dev: target net_device
7594 * This is called when unregistering network devices.
7596 * Any protocol or device that holds a reference should register
7597 * for netdevice notification, and cleanup and put back the
7598 * reference if they receive an UNREGISTER event.
7599 * We can get stuck here if buggy protocols don't correctly
7602 static void netdev_wait_allrefs(struct net_device *dev)
7604 unsigned long rebroadcast_time, warning_time;
7607 linkwatch_forget_dev(dev);
7609 rebroadcast_time = warning_time = jiffies;
7610 refcnt = netdev_refcnt_read(dev);
7612 while (refcnt != 0) {
7613 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7616 /* Rebroadcast unregister notification */
7617 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7623 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7624 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7626 /* We must not have linkwatch events
7627 * pending on unregister. If this
7628 * happens, we simply run the queue
7629 * unscheduled, resulting in a noop
7632 linkwatch_run_queue();
7637 rebroadcast_time = jiffies;
7642 refcnt = netdev_refcnt_read(dev);
7644 if (time_after(jiffies, warning_time + 10 * HZ)) {
7645 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7647 warning_time = jiffies;
7656 * register_netdevice(x1);
7657 * register_netdevice(x2);
7659 * unregister_netdevice(y1);
7660 * unregister_netdevice(y2);
7666 * We are invoked by rtnl_unlock().
7667 * This allows us to deal with problems:
7668 * 1) We can delete sysfs objects which invoke hotplug
7669 * without deadlocking with linkwatch via keventd.
7670 * 2) Since we run with the RTNL semaphore not held, we can sleep
7671 * safely in order to wait for the netdev refcnt to drop to zero.
7673 * We must not return until all unregister events added during
7674 * the interval the lock was held have been completed.
7676 void netdev_run_todo(void)
7678 struct list_head list;
7680 /* Snapshot list, allow later requests */
7681 list_replace_init(&net_todo_list, &list);
7686 /* Wait for rcu callbacks to finish before next phase */
7687 if (!list_empty(&list))
7690 while (!list_empty(&list)) {
7691 struct net_device *dev
7692 = list_first_entry(&list, struct net_device, todo_list);
7693 list_del(&dev->todo_list);
7696 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7699 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7700 pr_err("network todo '%s' but state %d\n",
7701 dev->name, dev->reg_state);
7706 dev->reg_state = NETREG_UNREGISTERED;
7708 netdev_wait_allrefs(dev);
7711 BUG_ON(netdev_refcnt_read(dev));
7712 BUG_ON(!list_empty(&dev->ptype_all));
7713 BUG_ON(!list_empty(&dev->ptype_specific));
7714 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7715 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7716 WARN_ON(dev->dn_ptr);
7718 if (dev->priv_destructor)
7719 dev->priv_destructor(dev);
7720 if (dev->needs_free_netdev)
7723 /* Report a network device has been unregistered */
7725 dev_net(dev)->dev_unreg_count--;
7727 wake_up(&netdev_unregistering_wq);
7729 /* Free network device */
7730 kobject_put(&dev->dev.kobj);
7734 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7735 * all the same fields in the same order as net_device_stats, with only
7736 * the type differing, but rtnl_link_stats64 may have additional fields
7737 * at the end for newer counters.
7739 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7740 const struct net_device_stats *netdev_stats)
7742 #if BITS_PER_LONG == 64
7743 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7744 memcpy(stats64, netdev_stats, sizeof(*stats64));
7745 /* zero out counters that only exist in rtnl_link_stats64 */
7746 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7747 sizeof(*stats64) - sizeof(*netdev_stats));
7749 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7750 const unsigned long *src = (const unsigned long *)netdev_stats;
7751 u64 *dst = (u64 *)stats64;
7753 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7754 for (i = 0; i < n; i++)
7756 /* zero out counters that only exist in rtnl_link_stats64 */
7757 memset((char *)stats64 + n * sizeof(u64), 0,
7758 sizeof(*stats64) - n * sizeof(u64));
7761 EXPORT_SYMBOL(netdev_stats_to_stats64);
7764 * dev_get_stats - get network device statistics
7765 * @dev: device to get statistics from
7766 * @storage: place to store stats
7768 * Get network statistics from device. Return @storage.
7769 * The device driver may provide its own method by setting
7770 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7771 * otherwise the internal statistics structure is used.
7773 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7774 struct rtnl_link_stats64 *storage)
7776 const struct net_device_ops *ops = dev->netdev_ops;
7778 if (ops->ndo_get_stats64) {
7779 memset(storage, 0, sizeof(*storage));
7780 ops->ndo_get_stats64(dev, storage);
7781 } else if (ops->ndo_get_stats) {
7782 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7784 netdev_stats_to_stats64(storage, &dev->stats);
7786 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7787 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7788 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7791 EXPORT_SYMBOL(dev_get_stats);
7793 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7795 struct netdev_queue *queue = dev_ingress_queue(dev);
7797 #ifdef CONFIG_NET_CLS_ACT
7800 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7803 netdev_init_one_queue(dev, queue, NULL);
7804 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7805 queue->qdisc_sleeping = &noop_qdisc;
7806 rcu_assign_pointer(dev->ingress_queue, queue);
7811 static const struct ethtool_ops default_ethtool_ops;
7813 void netdev_set_default_ethtool_ops(struct net_device *dev,
7814 const struct ethtool_ops *ops)
7816 if (dev->ethtool_ops == &default_ethtool_ops)
7817 dev->ethtool_ops = ops;
7819 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7821 void netdev_freemem(struct net_device *dev)
7823 char *addr = (char *)dev - dev->padded;
7829 * alloc_netdev_mqs - allocate network device
7830 * @sizeof_priv: size of private data to allocate space for
7831 * @name: device name format string
7832 * @name_assign_type: origin of device name
7833 * @setup: callback to initialize device
7834 * @txqs: the number of TX subqueues to allocate
7835 * @rxqs: the number of RX subqueues to allocate
7837 * Allocates a struct net_device with private data area for driver use
7838 * and performs basic initialization. Also allocates subqueue structs
7839 * for each queue on the device.
7841 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7842 unsigned char name_assign_type,
7843 void (*setup)(struct net_device *),
7844 unsigned int txqs, unsigned int rxqs)
7846 struct net_device *dev;
7848 struct net_device *p;
7850 BUG_ON(strlen(name) >= sizeof(dev->name));
7853 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7859 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7864 alloc_size = sizeof(struct net_device);
7866 /* ensure 32-byte alignment of private area */
7867 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7868 alloc_size += sizeof_priv;
7870 /* ensure 32-byte alignment of whole construct */
7871 alloc_size += NETDEV_ALIGN - 1;
7873 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7877 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7878 dev->padded = (char *)dev - (char *)p;
7880 dev->pcpu_refcnt = alloc_percpu(int);
7881 if (!dev->pcpu_refcnt)
7884 if (dev_addr_init(dev))
7890 dev_net_set(dev, &init_net);
7892 dev->gso_max_size = GSO_MAX_SIZE;
7893 dev->gso_max_segs = GSO_MAX_SEGS;
7895 INIT_LIST_HEAD(&dev->napi_list);
7896 INIT_LIST_HEAD(&dev->unreg_list);
7897 INIT_LIST_HEAD(&dev->close_list);
7898 INIT_LIST_HEAD(&dev->link_watch_list);
7899 INIT_LIST_HEAD(&dev->adj_list.upper);
7900 INIT_LIST_HEAD(&dev->adj_list.lower);
7901 INIT_LIST_HEAD(&dev->ptype_all);
7902 INIT_LIST_HEAD(&dev->ptype_specific);
7903 #ifdef CONFIG_NET_SCHED
7904 hash_init(dev->qdisc_hash);
7906 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7909 if (!dev->tx_queue_len) {
7910 dev->priv_flags |= IFF_NO_QUEUE;
7911 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7914 dev->num_tx_queues = txqs;
7915 dev->real_num_tx_queues = txqs;
7916 if (netif_alloc_netdev_queues(dev))
7920 dev->num_rx_queues = rxqs;
7921 dev->real_num_rx_queues = rxqs;
7922 if (netif_alloc_rx_queues(dev))
7926 strcpy(dev->name, name);
7927 dev->name_assign_type = name_assign_type;
7928 dev->group = INIT_NETDEV_GROUP;
7929 if (!dev->ethtool_ops)
7930 dev->ethtool_ops = &default_ethtool_ops;
7932 nf_hook_ingress_init(dev);
7941 free_percpu(dev->pcpu_refcnt);
7943 netdev_freemem(dev);
7946 EXPORT_SYMBOL(alloc_netdev_mqs);
7949 * free_netdev - free network device
7952 * This function does the last stage of destroying an allocated device
7953 * interface. The reference to the device object is released. If this
7954 * is the last reference then it will be freed.Must be called in process
7957 void free_netdev(struct net_device *dev)
7959 struct napi_struct *p, *n;
7960 struct bpf_prog *prog;
7963 netif_free_tx_queues(dev);
7968 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7970 /* Flush device addresses */
7971 dev_addr_flush(dev);
7973 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7976 free_percpu(dev->pcpu_refcnt);
7977 dev->pcpu_refcnt = NULL;
7979 prog = rcu_dereference_protected(dev->xdp_prog, 1);
7982 static_key_slow_dec(&generic_xdp_needed);
7985 /* Compatibility with error handling in drivers */
7986 if (dev->reg_state == NETREG_UNINITIALIZED) {
7987 netdev_freemem(dev);
7991 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7992 dev->reg_state = NETREG_RELEASED;
7994 /* will free via device release */
7995 put_device(&dev->dev);
7997 EXPORT_SYMBOL(free_netdev);
8000 * synchronize_net - Synchronize with packet receive processing
8002 * Wait for packets currently being received to be done.
8003 * Does not block later packets from starting.
8005 void synchronize_net(void)
8008 if (rtnl_is_locked())
8009 synchronize_rcu_expedited();
8013 EXPORT_SYMBOL(synchronize_net);
8016 * unregister_netdevice_queue - remove device from the kernel
8020 * This function shuts down a device interface and removes it
8021 * from the kernel tables.
8022 * If head not NULL, device is queued to be unregistered later.
8024 * Callers must hold the rtnl semaphore. You may want
8025 * unregister_netdev() instead of this.
8028 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8033 list_move_tail(&dev->unreg_list, head);
8035 rollback_registered(dev);
8036 /* Finish processing unregister after unlock */
8040 EXPORT_SYMBOL(unregister_netdevice_queue);
8043 * unregister_netdevice_many - unregister many devices
8044 * @head: list of devices
8046 * Note: As most callers use a stack allocated list_head,
8047 * we force a list_del() to make sure stack wont be corrupted later.
8049 void unregister_netdevice_many(struct list_head *head)
8051 struct net_device *dev;
8053 if (!list_empty(head)) {
8054 rollback_registered_many(head);
8055 list_for_each_entry(dev, head, unreg_list)
8060 EXPORT_SYMBOL(unregister_netdevice_many);
8063 * unregister_netdev - remove device from the kernel
8066 * This function shuts down a device interface and removes it
8067 * from the kernel tables.
8069 * This is just a wrapper for unregister_netdevice that takes
8070 * the rtnl semaphore. In general you want to use this and not
8071 * unregister_netdevice.
8073 void unregister_netdev(struct net_device *dev)
8076 unregister_netdevice(dev);
8079 EXPORT_SYMBOL(unregister_netdev);
8082 * dev_change_net_namespace - move device to different nethost namespace
8084 * @net: network namespace
8085 * @pat: If not NULL name pattern to try if the current device name
8086 * is already taken in the destination network namespace.
8088 * This function shuts down a device interface and moves it
8089 * to a new network namespace. On success 0 is returned, on
8090 * a failure a netagive errno code is returned.
8092 * Callers must hold the rtnl semaphore.
8095 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8101 /* Don't allow namespace local devices to be moved. */
8103 if (dev->features & NETIF_F_NETNS_LOCAL)
8106 /* Ensure the device has been registrered */
8107 if (dev->reg_state != NETREG_REGISTERED)
8110 /* Get out if there is nothing todo */
8112 if (net_eq(dev_net(dev), net))
8115 /* Pick the destination device name, and ensure
8116 * we can use it in the destination network namespace.
8119 if (__dev_get_by_name(net, dev->name)) {
8120 /* We get here if we can't use the current device name */
8123 if (dev_get_valid_name(net, dev, pat) < 0)
8128 * And now a mini version of register_netdevice unregister_netdevice.
8131 /* If device is running close it first. */
8134 /* And unlink it from device chain */
8136 unlist_netdevice(dev);
8140 /* Shutdown queueing discipline. */
8143 /* Notify protocols, that we are about to destroy
8144 * this device. They should clean all the things.
8146 * Note that dev->reg_state stays at NETREG_REGISTERED.
8147 * This is wanted because this way 8021q and macvlan know
8148 * the device is just moving and can keep their slaves up.
8150 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8152 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8153 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8156 * Flush the unicast and multicast chains
8161 /* Send a netdev-removed uevent to the old namespace */
8162 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8163 netdev_adjacent_del_links(dev);
8165 /* Actually switch the network namespace */
8166 dev_net_set(dev, net);
8168 /* If there is an ifindex conflict assign a new one */
8169 if (__dev_get_by_index(net, dev->ifindex))
8170 dev->ifindex = dev_new_index(net);
8172 /* Send a netdev-add uevent to the new namespace */
8173 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8174 netdev_adjacent_add_links(dev);
8176 /* Fixup kobjects */
8177 err = device_rename(&dev->dev, dev->name);
8180 /* Add the device back in the hashes */
8181 list_netdevice(dev);
8183 /* Notify protocols, that a new device appeared. */
8184 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8187 * Prevent userspace races by waiting until the network
8188 * device is fully setup before sending notifications.
8190 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8197 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8199 static int dev_cpu_dead(unsigned int oldcpu)
8201 struct sk_buff **list_skb;
8202 struct sk_buff *skb;
8204 struct softnet_data *sd, *oldsd, *remsd = NULL;
8206 local_irq_disable();
8207 cpu = smp_processor_id();
8208 sd = &per_cpu(softnet_data, cpu);
8209 oldsd = &per_cpu(softnet_data, oldcpu);
8211 /* Find end of our completion_queue. */
8212 list_skb = &sd->completion_queue;
8214 list_skb = &(*list_skb)->next;
8215 /* Append completion queue from offline CPU. */
8216 *list_skb = oldsd->completion_queue;
8217 oldsd->completion_queue = NULL;
8219 /* Append output queue from offline CPU. */
8220 if (oldsd->output_queue) {
8221 *sd->output_queue_tailp = oldsd->output_queue;
8222 sd->output_queue_tailp = oldsd->output_queue_tailp;
8223 oldsd->output_queue = NULL;
8224 oldsd->output_queue_tailp = &oldsd->output_queue;
8226 /* Append NAPI poll list from offline CPU, with one exception :
8227 * process_backlog() must be called by cpu owning percpu backlog.
8228 * We properly handle process_queue & input_pkt_queue later.
8230 while (!list_empty(&oldsd->poll_list)) {
8231 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8235 list_del_init(&napi->poll_list);
8236 if (napi->poll == process_backlog)
8239 ____napi_schedule(sd, napi);
8242 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8246 remsd = oldsd->rps_ipi_list;
8247 oldsd->rps_ipi_list = NULL;
8249 /* send out pending IPI's on offline CPU */
8250 net_rps_send_ipi(remsd);
8252 /* Process offline CPU's input_pkt_queue */
8253 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8255 input_queue_head_incr(oldsd);
8257 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8259 input_queue_head_incr(oldsd);
8266 * netdev_increment_features - increment feature set by one
8267 * @all: current feature set
8268 * @one: new feature set
8269 * @mask: mask feature set
8271 * Computes a new feature set after adding a device with feature set
8272 * @one to the master device with current feature set @all. Will not
8273 * enable anything that is off in @mask. Returns the new feature set.
8275 netdev_features_t netdev_increment_features(netdev_features_t all,
8276 netdev_features_t one, netdev_features_t mask)
8278 if (mask & NETIF_F_HW_CSUM)
8279 mask |= NETIF_F_CSUM_MASK;
8280 mask |= NETIF_F_VLAN_CHALLENGED;
8282 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8283 all &= one | ~NETIF_F_ALL_FOR_ALL;
8285 /* If one device supports hw checksumming, set for all. */
8286 if (all & NETIF_F_HW_CSUM)
8287 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8291 EXPORT_SYMBOL(netdev_increment_features);
8293 static struct hlist_head * __net_init netdev_create_hash(void)
8296 struct hlist_head *hash;
8298 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8300 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8301 INIT_HLIST_HEAD(&hash[i]);
8306 /* Initialize per network namespace state */
8307 static int __net_init netdev_init(struct net *net)
8309 if (net != &init_net)
8310 INIT_LIST_HEAD(&net->dev_base_head);
8312 net->dev_name_head = netdev_create_hash();
8313 if (net->dev_name_head == NULL)
8316 net->dev_index_head = netdev_create_hash();
8317 if (net->dev_index_head == NULL)
8323 kfree(net->dev_name_head);
8329 * netdev_drivername - network driver for the device
8330 * @dev: network device
8332 * Determine network driver for device.
8334 const char *netdev_drivername(const struct net_device *dev)
8336 const struct device_driver *driver;
8337 const struct device *parent;
8338 const char *empty = "";
8340 parent = dev->dev.parent;
8344 driver = parent->driver;
8345 if (driver && driver->name)
8346 return driver->name;
8350 static void __netdev_printk(const char *level, const struct net_device *dev,
8351 struct va_format *vaf)
8353 if (dev && dev->dev.parent) {
8354 dev_printk_emit(level[1] - '0',
8357 dev_driver_string(dev->dev.parent),
8358 dev_name(dev->dev.parent),
8359 netdev_name(dev), netdev_reg_state(dev),
8362 printk("%s%s%s: %pV",
8363 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8365 printk("%s(NULL net_device): %pV", level, vaf);
8369 void netdev_printk(const char *level, const struct net_device *dev,
8370 const char *format, ...)
8372 struct va_format vaf;
8375 va_start(args, format);
8380 __netdev_printk(level, dev, &vaf);
8384 EXPORT_SYMBOL(netdev_printk);
8386 #define define_netdev_printk_level(func, level) \
8387 void func(const struct net_device *dev, const char *fmt, ...) \
8389 struct va_format vaf; \
8392 va_start(args, fmt); \
8397 __netdev_printk(level, dev, &vaf); \
8401 EXPORT_SYMBOL(func);
8403 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8404 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8405 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8406 define_netdev_printk_level(netdev_err, KERN_ERR);
8407 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8408 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8409 define_netdev_printk_level(netdev_info, KERN_INFO);
8411 static void __net_exit netdev_exit(struct net *net)
8413 kfree(net->dev_name_head);
8414 kfree(net->dev_index_head);
8417 static struct pernet_operations __net_initdata netdev_net_ops = {
8418 .init = netdev_init,
8419 .exit = netdev_exit,
8422 static void __net_exit default_device_exit(struct net *net)
8424 struct net_device *dev, *aux;
8426 * Push all migratable network devices back to the
8427 * initial network namespace
8430 for_each_netdev_safe(net, dev, aux) {
8432 char fb_name[IFNAMSIZ];
8434 /* Ignore unmoveable devices (i.e. loopback) */
8435 if (dev->features & NETIF_F_NETNS_LOCAL)
8438 /* Leave virtual devices for the generic cleanup */
8439 if (dev->rtnl_link_ops)
8442 /* Push remaining network devices to init_net */
8443 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8444 err = dev_change_net_namespace(dev, &init_net, fb_name);
8446 pr_emerg("%s: failed to move %s to init_net: %d\n",
8447 __func__, dev->name, err);
8454 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8456 /* Return with the rtnl_lock held when there are no network
8457 * devices unregistering in any network namespace in net_list.
8461 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8463 add_wait_queue(&netdev_unregistering_wq, &wait);
8465 unregistering = false;
8467 list_for_each_entry(net, net_list, exit_list) {
8468 if (net->dev_unreg_count > 0) {
8469 unregistering = true;
8477 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8479 remove_wait_queue(&netdev_unregistering_wq, &wait);
8482 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8484 /* At exit all network devices most be removed from a network
8485 * namespace. Do this in the reverse order of registration.
8486 * Do this across as many network namespaces as possible to
8487 * improve batching efficiency.
8489 struct net_device *dev;
8491 LIST_HEAD(dev_kill_list);
8493 /* To prevent network device cleanup code from dereferencing
8494 * loopback devices or network devices that have been freed
8495 * wait here for all pending unregistrations to complete,
8496 * before unregistring the loopback device and allowing the
8497 * network namespace be freed.
8499 * The netdev todo list containing all network devices
8500 * unregistrations that happen in default_device_exit_batch
8501 * will run in the rtnl_unlock() at the end of
8502 * default_device_exit_batch.
8504 rtnl_lock_unregistering(net_list);
8505 list_for_each_entry(net, net_list, exit_list) {
8506 for_each_netdev_reverse(net, dev) {
8507 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8508 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8510 unregister_netdevice_queue(dev, &dev_kill_list);
8513 unregister_netdevice_many(&dev_kill_list);
8517 static struct pernet_operations __net_initdata default_device_ops = {
8518 .exit = default_device_exit,
8519 .exit_batch = default_device_exit_batch,
8523 * Initialize the DEV module. At boot time this walks the device list and
8524 * unhooks any devices that fail to initialise (normally hardware not
8525 * present) and leaves us with a valid list of present and active devices.
8530 * This is called single threaded during boot, so no need
8531 * to take the rtnl semaphore.
8533 static int __init net_dev_init(void)
8535 int i, rc = -ENOMEM;
8537 BUG_ON(!dev_boot_phase);
8539 if (dev_proc_init())
8542 if (netdev_kobject_init())
8545 INIT_LIST_HEAD(&ptype_all);
8546 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8547 INIT_LIST_HEAD(&ptype_base[i]);
8549 INIT_LIST_HEAD(&offload_base);
8551 if (register_pernet_subsys(&netdev_net_ops))
8555 * Initialise the packet receive queues.
8558 for_each_possible_cpu(i) {
8559 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8560 struct softnet_data *sd = &per_cpu(softnet_data, i);
8562 INIT_WORK(flush, flush_backlog);
8564 skb_queue_head_init(&sd->input_pkt_queue);
8565 skb_queue_head_init(&sd->process_queue);
8566 INIT_LIST_HEAD(&sd->poll_list);
8567 sd->output_queue_tailp = &sd->output_queue;
8569 sd->csd.func = rps_trigger_softirq;
8574 sd->backlog.poll = process_backlog;
8575 sd->backlog.weight = weight_p;
8580 /* The loopback device is special if any other network devices
8581 * is present in a network namespace the loopback device must
8582 * be present. Since we now dynamically allocate and free the
8583 * loopback device ensure this invariant is maintained by
8584 * keeping the loopback device as the first device on the
8585 * list of network devices. Ensuring the loopback devices
8586 * is the first device that appears and the last network device
8589 if (register_pernet_device(&loopback_net_ops))
8592 if (register_pernet_device(&default_device_ops))
8595 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8596 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8598 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8599 NULL, dev_cpu_dead);
8607 subsys_initcall(net_dev_init);