1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016 Broadcom
7 * DOC: VC4 DSI0/DSI1 module
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
28 #include <linux/of_address.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_runtime.h>
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_bridge.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <drm/drm_probe_helper.h>
39 #include <drm/drm_simple_kms_helper.h>
44 #define DSI_CMD_FIFO_DEPTH 16
45 #define DSI_PIX_FIFO_DEPTH 256
46 #define DSI_PIX_FIFO_WIDTH 4
48 #define DSI0_CTRL 0x00
50 /* Command packet control. */
51 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
52 #define DSI1_TXPKT1C 0x04
53 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
54 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
55 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
56 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
58 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
59 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
60 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
61 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
62 /* Primary display where cmdfifo provides part of the payload and
63 * pixelvalve the rest.
65 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
66 /* Secondary display where cmdfifo provides part of the payload and
69 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
71 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
72 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
74 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
75 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
76 /* Command only. Uses TXPKT1H and DISPLAY_NO */
77 # define DSI_TXPKT1C_CMD_CTRL_TX 0
78 /* Command with BTA for either ack or read data. */
79 # define DSI_TXPKT1C_CMD_CTRL_RX 1
80 /* Trigger according to TRIG_CMD */
81 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
82 /* BTA alone for getting error status after a command, or a TE trigger
83 * without a previous command.
85 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
87 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
88 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
89 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
90 # define DSI_TXPKT1C_CMD_EN BIT(0)
92 /* Command packet header. */
93 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
94 #define DSI1_TXPKT1H 0x08
95 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
96 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
97 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
98 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
99 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
100 # define DSI_TXPKT1H_BC_DT_SHIFT 0
102 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
103 #define DSI1_RXPKT1H 0x14
104 # define DSI_RXPKT1H_CRC_ERR BIT(31)
105 # define DSI_RXPKT1H_DET_ERR BIT(30)
106 # define DSI_RXPKT1H_ECC_ERR BIT(29)
107 # define DSI_RXPKT1H_COR_ERR BIT(28)
108 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
109 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
110 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
111 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
112 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
113 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
114 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
115 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
116 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
117 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
118 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
119 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
121 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
122 #define DSI1_RXPKT2H 0x18
123 # define DSI_RXPKT1H_DET_ERR BIT(30)
124 # define DSI_RXPKT1H_ECC_ERR BIT(29)
125 # define DSI_RXPKT1H_COR_ERR BIT(28)
126 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
127 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
128 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
129 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
130 # define DSI_RXPKT1H_DT_SHIFT 0
132 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
133 #define DSI1_TXPKT_CMD_FIFO 0x1c
135 #define DSI0_DISP0_CTRL 0x18
136 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
137 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
138 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
139 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
140 # define DSI_DISP0_LP_STOP_DISABLE 0
141 # define DSI_DISP0_LP_STOP_PERLINE 1
142 # define DSI_DISP0_LP_STOP_PERFRAME 2
144 /* Transmit RGB pixels and null packets only during HACTIVE, instead
145 * of going to LP-STOP.
147 # define DSI_DISP_HACTIVE_NULL BIT(10)
148 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
149 # define DSI_DISP_VBLP_CTRL BIT(9)
150 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
151 # define DSI_DISP_HFP_CTRL BIT(8)
152 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
153 # define DSI_DISP_HBP_CTRL BIT(7)
154 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
155 # define DSI_DISP0_CHANNEL_SHIFT 5
156 /* Enables end events for HSYNC/VSYNC, not just start events. */
157 # define DSI_DISP0_ST_END BIT(4)
158 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
159 # define DSI_DISP0_PFORMAT_SHIFT 2
160 # define DSI_PFORMAT_RGB565 0
161 # define DSI_PFORMAT_RGB666_PACKED 1
162 # define DSI_PFORMAT_RGB666 2
163 # define DSI_PFORMAT_RGB888 3
164 /* Default is VIDEO mode. */
165 # define DSI_DISP0_COMMAND_MODE BIT(1)
166 # define DSI_DISP0_ENABLE BIT(0)
168 #define DSI0_DISP1_CTRL 0x1c
169 #define DSI1_DISP1_CTRL 0x2c
170 /* Format of the data written to TXPKT_PIX_FIFO. */
171 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
172 # define DSI_DISP1_PFORMAT_SHIFT 1
173 # define DSI_DISP1_PFORMAT_16BIT 0
174 # define DSI_DISP1_PFORMAT_24BIT 1
175 # define DSI_DISP1_PFORMAT_32BIT_LE 2
176 # define DSI_DISP1_PFORMAT_32BIT_BE 3
178 /* DISP1 is always command mode. */
179 # define DSI_DISP1_ENABLE BIT(0)
181 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
183 #define DSI0_INT_STAT 0x24
184 #define DSI0_INT_EN 0x28
185 # define DSI0_INT_FIFO_ERR BIT(25)
186 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23)
187 # define DSI0_INT_CMDC_DONE_SHIFT 23
188 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1
189 # define DSI0_INT_CMDC_DONE_REPEAT 3
190 # define DSI0_INT_PHY_DIR_RTF BIT(22)
191 # define DSI0_INT_PHY_D1_ULPS BIT(21)
192 # define DSI0_INT_PHY_D1_STOP BIT(20)
193 # define DSI0_INT_PHY_RXLPDT BIT(19)
194 # define DSI0_INT_PHY_RXTRIG BIT(18)
195 # define DSI0_INT_PHY_D0_ULPS BIT(17)
196 # define DSI0_INT_PHY_D0_LPDT BIT(16)
197 # define DSI0_INT_PHY_D0_FTR BIT(15)
198 # define DSI0_INT_PHY_D0_STOP BIT(14)
199 /* Signaled when the clock lane enters the given state. */
200 # define DSI0_INT_PHY_CLK_ULPS BIT(13)
201 # define DSI0_INT_PHY_CLK_HS BIT(12)
202 # define DSI0_INT_PHY_CLK_FTR BIT(11)
203 /* Signaled on timeouts */
204 # define DSI0_INT_PR_TO BIT(10)
205 # define DSI0_INT_TA_TO BIT(9)
206 # define DSI0_INT_LPRX_TO BIT(8)
207 # define DSI0_INT_HSTX_TO BIT(7)
208 /* Contention on a line when trying to drive the line low */
209 # define DSI0_INT_ERR_CONT_LP1 BIT(6)
210 # define DSI0_INT_ERR_CONT_LP0 BIT(5)
211 /* Control error: incorrect line state sequence on data lane 0. */
212 # define DSI0_INT_ERR_CONTROL BIT(4)
213 # define DSI0_INT_ERR_SYNC_ESC BIT(3)
214 # define DSI0_INT_RX2_PKT BIT(2)
215 # define DSI0_INT_RX1_PKT BIT(1)
216 # define DSI0_INT_CMD_PKT BIT(0)
218 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \
219 DSI0_INT_ERR_CONTROL | \
220 DSI0_INT_ERR_CONT_LP0 | \
221 DSI0_INT_ERR_CONT_LP1 | \
227 # define DSI1_INT_PHY_D3_ULPS BIT(30)
228 # define DSI1_INT_PHY_D3_STOP BIT(29)
229 # define DSI1_INT_PHY_D2_ULPS BIT(28)
230 # define DSI1_INT_PHY_D2_STOP BIT(27)
231 # define DSI1_INT_PHY_D1_ULPS BIT(26)
232 # define DSI1_INT_PHY_D1_STOP BIT(25)
233 # define DSI1_INT_PHY_D0_ULPS BIT(24)
234 # define DSI1_INT_PHY_D0_STOP BIT(23)
235 # define DSI1_INT_FIFO_ERR BIT(22)
236 # define DSI1_INT_PHY_DIR_RTF BIT(21)
237 # define DSI1_INT_PHY_RXLPDT BIT(20)
238 # define DSI1_INT_PHY_RXTRIG BIT(19)
239 # define DSI1_INT_PHY_D0_LPDT BIT(18)
240 # define DSI1_INT_PHY_DIR_FTR BIT(17)
242 /* Signaled when the clock lane enters the given state. */
243 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
244 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
245 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
247 /* Signaled on timeouts */
248 # define DSI1_INT_PR_TO BIT(13)
249 # define DSI1_INT_TA_TO BIT(12)
250 # define DSI1_INT_LPRX_TO BIT(11)
251 # define DSI1_INT_HSTX_TO BIT(10)
253 /* Contention on a line when trying to drive the line low */
254 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
255 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
257 /* Control error: incorrect line state sequence on data lane 0. */
258 # define DSI1_INT_ERR_CONTROL BIT(7)
259 /* LPDT synchronization error (bits received not a multiple of 8. */
261 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
262 /* Signaled after receiving an error packet from the display in
263 * response to a read.
265 # define DSI1_INT_RXPKT2 BIT(5)
266 /* Signaled after receiving a packet. The header and optional short
267 * response will be in RXPKT1H, and a long response will be in the
270 # define DSI1_INT_RXPKT1 BIT(4)
271 # define DSI1_INT_TXPKT2_DONE BIT(3)
272 # define DSI1_INT_TXPKT2_END BIT(2)
273 /* Signaled after all repeats of TXPKT1 are transferred. */
274 # define DSI1_INT_TXPKT1_DONE BIT(1)
275 /* Signaled after each TXPKT1 repeat is scheduled. */
276 # define DSI1_INT_TXPKT1_END BIT(0)
278 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
279 DSI1_INT_ERR_CONTROL | \
280 DSI1_INT_ERR_CONT_LP0 | \
281 DSI1_INT_ERR_CONT_LP1 | \
287 #define DSI0_STAT 0x2c
288 #define DSI0_HSTX_TO_CNT 0x30
289 #define DSI0_LPRX_TO_CNT 0x34
290 #define DSI0_TA_TO_CNT 0x38
291 #define DSI0_PR_TO_CNT 0x3c
292 #define DSI0_PHYC 0x40
293 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
294 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
295 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
296 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
297 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
298 # define DSI1_PHYC_CLANE_ULPS BIT(17)
299 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
300 # define DSI_PHYC_DLANE3_ULPS BIT(13)
301 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
302 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
303 # define DSI0_PHYC_CLANE_ULPS BIT(9)
304 # define DSI_PHYC_DLANE2_ULPS BIT(9)
305 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
306 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
307 # define DSI_PHYC_DLANE1_ULPS BIT(5)
308 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
309 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
310 # define DSI_PHYC_DLANE0_ULPS BIT(1)
311 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
313 #define DSI0_HS_CLT0 0x44
314 #define DSI0_HS_CLT1 0x48
315 #define DSI0_HS_CLT2 0x4c
316 #define DSI0_HS_DLT3 0x50
317 #define DSI0_HS_DLT4 0x54
318 #define DSI0_HS_DLT5 0x58
319 #define DSI0_HS_DLT6 0x5c
320 #define DSI0_HS_DLT7 0x60
322 #define DSI0_PHY_AFEC0 0x64
323 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
324 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
325 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
326 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
328 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
330 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
332 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
334 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
335 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
336 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
340 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
342 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
343 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
344 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
345 # define DSI1_PHY_AFEC0_RESET BIT(13)
346 # define DSI1_PHY_AFEC0_PD BIT(12)
347 # define DSI0_PHY_AFEC0_RESET BIT(11)
348 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
349 # define DSI0_PHY_AFEC0_PD BIT(10)
350 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10)
351 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
352 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
353 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
354 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8)
355 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
356 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
357 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
358 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
360 #define DSI0_PHY_AFEC1 0x68
361 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
363 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
365 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
366 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
368 #define DSI0_TST_SEL 0x6c
369 #define DSI0_TST_MON 0x70
371 # define DSI_ID_VALUE 0x00647369
373 #define DSI1_CTRL 0x00
374 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
375 # define DSI_CTRL_HS_CLKC_SHIFT 14
376 # define DSI_CTRL_HS_CLKC_BYTE 0
377 # define DSI_CTRL_HS_CLKC_DDR2 1
378 # define DSI_CTRL_HS_CLKC_DDR 2
380 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
381 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
382 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
383 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
384 # define DSI_CTRL_CAL_BYTE BIT(9)
385 # define DSI_CTRL_INV_BYTE BIT(8)
386 # define DSI_CTRL_CLR_LDF BIT(7)
387 # define DSI0_CTRL_CLR_PBCF BIT(6)
388 # define DSI1_CTRL_CLR_RXF BIT(6)
389 # define DSI0_CTRL_CLR_CPBCF BIT(5)
390 # define DSI1_CTRL_CLR_PDF BIT(5)
391 # define DSI0_CTRL_CLR_PDF BIT(4)
392 # define DSI1_CTRL_CLR_CDF BIT(4)
393 # define DSI0_CTRL_CLR_CDF BIT(3)
394 # define DSI0_CTRL_CTRL2 BIT(2)
395 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
396 # define DSI0_CTRL_CTRL1 BIT(1)
397 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
398 # define DSI0_CTRL_CTRL0 BIT(0)
399 # define DSI1_CTRL_EN BIT(0)
400 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
401 DSI0_CTRL_CLR_PBCF | \
402 DSI0_CTRL_CLR_CPBCF | \
403 DSI0_CTRL_CLR_PDF | \
405 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
406 DSI1_CTRL_CLR_RXF | \
407 DSI1_CTRL_CLR_PDF | \
410 #define DSI1_TXPKT2C 0x0c
411 #define DSI1_TXPKT2H 0x10
412 #define DSI1_TXPKT_PIX_FIFO 0x20
413 #define DSI1_RXPKT_FIFO 0x24
414 #define DSI1_DISP0_CTRL 0x28
415 #define DSI1_INT_STAT 0x30
416 #define DSI1_INT_EN 0x34
417 /* State reporting bits. These mostly behave like INT_STAT, where
418 * writing a 1 clears the bit.
420 #define DSI1_STAT 0x38
421 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
422 # define DSI1_STAT_PHY_D3_STOP BIT(30)
423 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
424 # define DSI1_STAT_PHY_D2_STOP BIT(28)
425 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
426 # define DSI1_STAT_PHY_D1_STOP BIT(26)
427 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
428 # define DSI1_STAT_PHY_D0_STOP BIT(24)
429 # define DSI1_STAT_FIFO_ERR BIT(23)
430 # define DSI1_STAT_PHY_RXLPDT BIT(22)
431 # define DSI1_STAT_PHY_RXTRIG BIT(21)
432 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
433 /* Set when in forward direction */
434 # define DSI1_STAT_PHY_DIR BIT(19)
435 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
436 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
437 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
438 # define DSI1_STAT_PR_TO BIT(15)
439 # define DSI1_STAT_TA_TO BIT(14)
440 # define DSI1_STAT_LPRX_TO BIT(13)
441 # define DSI1_STAT_HSTX_TO BIT(12)
442 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
443 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
444 # define DSI1_STAT_ERR_CONTROL BIT(9)
445 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
446 # define DSI1_STAT_RXPKT2 BIT(7)
447 # define DSI1_STAT_RXPKT1 BIT(6)
448 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
449 # define DSI1_STAT_TXPKT2_DONE BIT(4)
450 # define DSI1_STAT_TXPKT2_END BIT(3)
451 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
452 # define DSI1_STAT_TXPKT1_DONE BIT(1)
453 # define DSI1_STAT_TXPKT1_END BIT(0)
455 #define DSI1_HSTX_TO_CNT 0x3c
456 #define DSI1_LPRX_TO_CNT 0x40
457 #define DSI1_TA_TO_CNT 0x44
458 #define DSI1_PR_TO_CNT 0x48
459 #define DSI1_PHYC 0x4c
461 #define DSI1_HS_CLT0 0x50
462 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
463 # define DSI_HS_CLT0_CZERO_SHIFT 18
464 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
465 # define DSI_HS_CLT0_CPRE_SHIFT 9
466 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
467 # define DSI_HS_CLT0_CPREP_SHIFT 0
469 #define DSI1_HS_CLT1 0x54
470 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
471 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
472 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
473 # define DSI_HS_CLT1_CPOST_SHIFT 0
475 #define DSI1_HS_CLT2 0x58
476 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
477 # define DSI_HS_CLT2_WUP_SHIFT 0
479 #define DSI1_HS_DLT3 0x5c
480 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
481 # define DSI_HS_DLT3_EXIT_SHIFT 18
482 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
483 # define DSI_HS_DLT3_ZERO_SHIFT 9
484 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
485 # define DSI_HS_DLT3_PRE_SHIFT 0
487 #define DSI1_HS_DLT4 0x60
488 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
489 # define DSI_HS_DLT4_ANLAT_SHIFT 18
490 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
491 # define DSI_HS_DLT4_TRAIL_SHIFT 9
492 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
493 # define DSI_HS_DLT4_LPX_SHIFT 0
495 #define DSI1_HS_DLT5 0x64
496 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
497 # define DSI_HS_DLT5_INIT_SHIFT 0
499 #define DSI1_HS_DLT6 0x68
500 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
501 # define DSI_HS_DLT6_TA_GET_SHIFT 24
502 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
503 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
504 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
505 # define DSI_HS_DLT6_TA_GO_SHIFT 8
506 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
507 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
509 #define DSI1_HS_DLT7 0x6c
510 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
511 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
513 #define DSI1_PHY_AFEC0 0x70
515 #define DSI1_PHY_AFEC1 0x74
516 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
524 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
527 #define DSI1_TST_SEL 0x78
528 #define DSI1_TST_MON 0x7c
529 #define DSI1_PHY_TST1 0x80
530 #define DSI1_PHY_TST2 0x84
531 #define DSI1_PHY_FIFO_STAT 0x88
532 /* Actually, all registers in the range that aren't otherwise claimed
533 * will return the ID.
537 struct vc4_dsi_variant {
538 /* Whether we're on bcm2835's DSI0 or DSI1. */
541 bool broken_axi_workaround;
543 const char *debugfs_name;
544 const struct debugfs_reg32 *regs;
549 /* General DSI hardware state. */
551 struct vc4_encoder encoder;
552 struct mipi_dsi_host dsi_host;
556 struct platform_device *pdev;
558 struct drm_bridge *out_bridge;
559 struct drm_bridge bridge;
563 struct dma_chan *reg_dma_chan;
564 dma_addr_t reg_dma_paddr;
566 dma_addr_t reg_paddr;
568 const struct vc4_dsi_variant *variant;
570 /* DSI channel for the panel we're connected to. */
577 /* Input clock from CPRMAN to the digital PHY, for the DSI
580 struct clk *escape_clock;
582 /* Input clock to the analog PHY, used to generate the DSI bit
585 struct clk *pll_phy_clock;
587 /* HS Clocks generated within the DSI analog PHY. */
588 struct clk_fixed_factor phy_clocks[3];
590 struct clk_hw_onecell_data *clk_onecell;
592 /* Pixel clock output to the pixelvalve, generated from the HS
595 struct clk *pixel_clock;
597 struct completion xfer_completion;
600 struct debugfs_regset32 regset;
603 #define host_to_dsi(host) \
604 container_of_const(host, struct vc4_dsi, dsi_host)
606 #define to_vc4_dsi(_encoder) \
607 container_of_const(_encoder, struct vc4_dsi, encoder.base)
609 #define bridge_to_vc4_dsi(_bridge) \
610 container_of_const(_bridge, struct vc4_dsi, bridge)
613 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
615 struct dma_chan *chan = dsi->reg_dma_chan;
616 struct dma_async_tx_descriptor *tx;
620 kunit_fail_current_test("Accessing a register in a unit test!\n");
622 /* DSI0 should be able to write normally. */
624 writel(val, dsi->regs + offset);
628 *dsi->reg_dma_mem = val;
630 tx = chan->device->device_prep_dma_memcpy(chan,
631 dsi->reg_paddr + offset,
635 DRM_ERROR("Failed to set up DMA register write\n");
639 cookie = tx->tx_submit(tx);
640 ret = dma_submit_error(cookie);
642 DRM_ERROR("Failed to submit DMA: %d\n", ret);
645 ret = dma_sync_wait(chan, cookie);
647 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
650 #define DSI_READ(offset) \
652 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
653 readl(dsi->regs + (offset)); \
656 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
657 #define DSI_PORT_READ(offset) \
658 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
659 #define DSI_PORT_WRITE(offset, val) \
660 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
661 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
663 static const struct debugfs_reg32 dsi0_regs[] = {
664 VC4_REG32(DSI0_CTRL),
665 VC4_REG32(DSI0_STAT),
666 VC4_REG32(DSI0_HSTX_TO_CNT),
667 VC4_REG32(DSI0_LPRX_TO_CNT),
668 VC4_REG32(DSI0_TA_TO_CNT),
669 VC4_REG32(DSI0_PR_TO_CNT),
670 VC4_REG32(DSI0_DISP0_CTRL),
671 VC4_REG32(DSI0_DISP1_CTRL),
672 VC4_REG32(DSI0_INT_STAT),
673 VC4_REG32(DSI0_INT_EN),
674 VC4_REG32(DSI0_PHYC),
675 VC4_REG32(DSI0_HS_CLT0),
676 VC4_REG32(DSI0_HS_CLT1),
677 VC4_REG32(DSI0_HS_CLT2),
678 VC4_REG32(DSI0_HS_DLT3),
679 VC4_REG32(DSI0_HS_DLT4),
680 VC4_REG32(DSI0_HS_DLT5),
681 VC4_REG32(DSI0_HS_DLT6),
682 VC4_REG32(DSI0_HS_DLT7),
683 VC4_REG32(DSI0_PHY_AFEC0),
684 VC4_REG32(DSI0_PHY_AFEC1),
688 static const struct debugfs_reg32 dsi1_regs[] = {
689 VC4_REG32(DSI1_CTRL),
690 VC4_REG32(DSI1_STAT),
691 VC4_REG32(DSI1_HSTX_TO_CNT),
692 VC4_REG32(DSI1_LPRX_TO_CNT),
693 VC4_REG32(DSI1_TA_TO_CNT),
694 VC4_REG32(DSI1_PR_TO_CNT),
695 VC4_REG32(DSI1_DISP0_CTRL),
696 VC4_REG32(DSI1_DISP1_CTRL),
697 VC4_REG32(DSI1_INT_STAT),
698 VC4_REG32(DSI1_INT_EN),
699 VC4_REG32(DSI1_PHYC),
700 VC4_REG32(DSI1_HS_CLT0),
701 VC4_REG32(DSI1_HS_CLT1),
702 VC4_REG32(DSI1_HS_CLT2),
703 VC4_REG32(DSI1_HS_DLT3),
704 VC4_REG32(DSI1_HS_DLT4),
705 VC4_REG32(DSI1_HS_DLT5),
706 VC4_REG32(DSI1_HS_DLT6),
707 VC4_REG32(DSI1_HS_DLT7),
708 VC4_REG32(DSI1_PHY_AFEC0),
709 VC4_REG32(DSI1_PHY_AFEC1),
713 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
715 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
718 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
720 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
722 DSI_PORT_WRITE(PHY_AFEC0, afec0);
725 /* Enters or exits Ultra Low Power State. */
726 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
728 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
729 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
730 DSI_PHYC_DLANE0_ULPS |
731 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
732 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
733 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
734 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
735 DSI1_STAT_PHY_D0_ULPS |
736 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
737 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
738 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
739 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
740 DSI1_STAT_PHY_D0_STOP |
741 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
742 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
743 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
745 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
746 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
748 if (ulps == ulps_currently_enabled)
751 DSI_PORT_WRITE(STAT, stat_ulps);
752 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
753 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
755 dev_warn(&dsi->pdev->dev,
756 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
757 DSI_PORT_READ(STAT));
758 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
759 vc4_dsi_latch_ulps(dsi, false);
763 /* The DSI module can't be disabled while the module is
764 * generating ULPS state. So, to be able to disable the
765 * module, we have the AFE latch the ULPS state and continue
766 * on to having the module enter STOP.
768 vc4_dsi_latch_ulps(dsi, ulps);
770 DSI_PORT_WRITE(STAT, stat_stop);
771 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
772 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
774 dev_warn(&dsi->pdev->dev,
775 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
776 DSI_PORT_READ(STAT));
777 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
783 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
785 /* The HS timings have to be rounded up to a multiple of 8
786 * because we're using the byte clock.
788 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
791 /* ESC always runs at 100Mhz. */
792 #define ESC_TIME_NS 10
795 dsi_esc_timing(u32 ns)
797 return DIV_ROUND_UP(ns, ESC_TIME_NS);
800 static void vc4_dsi_bridge_disable(struct drm_bridge *bridge,
801 struct drm_bridge_state *state)
803 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
806 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
807 disp0_ctrl &= ~DSI_DISP0_ENABLE;
808 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
811 static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge,
812 struct drm_bridge_state *state)
814 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
815 struct device *dev = &dsi->pdev->dev;
817 clk_disable_unprepare(dsi->pll_phy_clock);
818 clk_disable_unprepare(dsi->escape_clock);
819 clk_disable_unprepare(dsi->pixel_clock);
824 /* Extends the mode's blank intervals to handle BCM2835's integer-only
827 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
828 * driver since most peripherals are hanging off of the PLLD_PER
829 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
830 * the pixel clock), only has an integer divider off of DSI.
832 * To get our panel mode to refresh at the expected 60Hz, we need to
833 * extend the horizontal blank time. This means we drive a
834 * higher-than-expected clock rate to the panel, but that's what the
837 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
838 const struct drm_display_mode *mode,
839 struct drm_display_mode *adjusted_mode)
841 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
842 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
843 unsigned long parent_rate = clk_get_rate(phy_parent);
844 unsigned long pixel_clock_hz = mode->clock * 1000;
845 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
848 /* Find what divider gets us a faster clock than the requested
851 for (divider = 1; divider < 255; divider++) {
852 if (parent_rate / (divider + 1) < pll_clock)
856 /* Now that we've picked a PLL divider, calculate back to its
859 pll_clock = parent_rate / divider;
860 pixel_clock_hz = pll_clock / dsi->divider;
862 adjusted_mode->clock = pixel_clock_hz / 1000;
864 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
865 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
867 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
868 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
873 static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge,
874 struct drm_bridge_state *old_state)
876 struct drm_atomic_state *state = old_state->base.state;
877 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
878 const struct drm_crtc_state *crtc_state;
879 struct device *dev = &dsi->pdev->dev;
880 const struct drm_display_mode *mode;
881 struct drm_connector *connector;
882 bool debug_dump_regs = false;
883 unsigned long hs_clock;
884 struct drm_crtc *crtc;
886 /* Minimum LP state duration in escape clock cycles. */
887 u32 lpx = dsi_esc_timing(60);
888 unsigned long pixel_clock_hz;
889 unsigned long dsip_clock;
890 unsigned long phy_clock;
893 ret = pm_runtime_resume_and_get(dev);
895 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
899 if (debug_dump_regs) {
900 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
901 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
902 drm_print_regset32(&p, &dsi->regset);
906 * Retrieve the CRTC adjusted mode. This requires a little dance to go
907 * from the bridge to the encoder, to the connector and to the CRTC.
909 connector = drm_atomic_get_new_connector_for_encoder(state,
911 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
912 crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
913 mode = &crtc_state->adjusted_mode;
915 pixel_clock_hz = mode->clock * 1000;
917 /* Round up the clk_set_rate() request slightly, since
918 * PLLD_DSI1 is an integer divider and its rate selection will
921 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
922 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
924 dev_err(&dsi->pdev->dev,
925 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
928 /* Reset the DSI and all its fifos. */
930 DSI_CTRL_SOFT_RESET_CFG |
931 DSI_PORT_BIT(CTRL_RESET_FIFOS));
934 DSI_CTRL_HSDT_EOT_DISABLE |
935 DSI_CTRL_RX_LPDT_EOT_DISABLE);
937 /* Clear all stat bits so we see what has happened during enable. */
938 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
940 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
941 if (dsi->variant->port == 0) {
942 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
943 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
946 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
948 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
949 afec0 |= DSI0_PHY_AFEC0_RESET;
951 DSI_PORT_WRITE(PHY_AFEC0, afec0);
953 /* AFEC reset hold time */
956 DSI_PORT_WRITE(PHY_AFEC1,
957 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
958 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
959 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
961 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
962 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
963 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
964 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
965 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
966 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
967 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
970 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
972 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
974 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
976 afec0 |= DSI1_PHY_AFEC0_RESET;
978 DSI_PORT_WRITE(PHY_AFEC0, afec0);
980 DSI_PORT_WRITE(PHY_AFEC1, 0);
982 /* AFEC reset hold time */
986 ret = clk_prepare_enable(dsi->escape_clock);
988 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
992 ret = clk_prepare_enable(dsi->pll_phy_clock);
994 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
998 hs_clock = clk_get_rate(dsi->pll_phy_clock);
1000 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1001 * not the pixel clock rate. DSIxP take from the APHY's byte,
1002 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1003 * that rate. Separately, a value derived from PIX_CLK_DIV
1004 * and HS_CLKC is fed into the PV to divide down to the actual
1005 * pixel clock for pushing pixels into DSI.
1007 dsip_clock = phy_clock / 8;
1008 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1010 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1014 ret = clk_prepare_enable(dsi->pixel_clock);
1016 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1020 /* How many ns one DSI unit interval is. Note that the clock
1021 * is DDR, so there's an extra divide by 2.
1023 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1025 DSI_PORT_WRITE(HS_CLT0,
1026 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1027 DSI_HS_CLT0_CZERO) |
1028 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1030 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1031 DSI_HS_CLT0_CPREP));
1033 DSI_PORT_WRITE(HS_CLT1,
1034 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1035 DSI_HS_CLT1_CTRAIL) |
1036 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1037 DSI_HS_CLT1_CPOST));
1039 DSI_PORT_WRITE(HS_CLT2,
1040 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1043 DSI_PORT_WRITE(HS_DLT3,
1044 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1046 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1048 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1051 DSI_PORT_WRITE(HS_DLT4,
1052 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1054 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1055 dsi_hs_timing(ui_ns, 60, 4)),
1056 DSI_HS_DLT4_TRAIL) |
1057 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1059 /* T_INIT is how long STOP is driven after power-up to
1060 * indicate to the slave (also coming out of power-up) that
1061 * master init is complete, and should be greater than the
1062 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1063 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1064 * T_INIT,SLAVE, while allowing protocols on top of it to give
1065 * greater minimums. The vc4 firmware uses an extremely
1066 * conservative 5ms, and we maintain that here.
1068 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1069 5 * 1000 * 1000, 0),
1072 DSI_PORT_WRITE(HS_DLT6,
1073 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1074 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1075 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1076 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1078 DSI_PORT_WRITE(HS_DLT7,
1079 VC4_SET_FIELD(dsi_esc_timing(1000000),
1080 DSI_HS_DLT7_LP_WUP));
1082 DSI_PORT_WRITE(PHYC,
1083 DSI_PHYC_DLANE0_ENABLE |
1084 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1085 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1086 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1087 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1088 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1089 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1090 (dsi->variant->port == 0 ?
1091 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1092 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1094 DSI_PORT_WRITE(CTRL,
1095 DSI_PORT_READ(CTRL) |
1098 /* HS timeout in HS clock cycles: disabled. */
1099 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1100 /* LP receive timeout in HS clocks. */
1101 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1102 /* Bus turnaround timeout */
1103 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1104 /* Display reset sequence timeout */
1105 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1107 /* Set up DISP1 for transferring long command payloads through
1110 DSI_PORT_WRITE(DISP1_CTRL,
1111 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1112 DSI_DISP1_PFORMAT) |
1115 /* Ungate the block. */
1116 if (dsi->variant->port == 0)
1117 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1119 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1121 /* Bring AFE out of reset. */
1122 DSI_PORT_WRITE(PHY_AFEC0,
1123 DSI_PORT_READ(PHY_AFEC0) &
1124 ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1126 vc4_dsi_ulps(dsi, false);
1128 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1129 DSI_PORT_WRITE(DISP0_CTRL,
1130 VC4_SET_FIELD(dsi->divider,
1131 DSI_DISP0_PIX_CLK_DIV) |
1132 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1133 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1134 DSI_DISP0_LP_STOP_CTRL) |
1137 DSI_PORT_WRITE(DISP0_CTRL,
1138 DSI_DISP0_COMMAND_MODE);
1142 static void vc4_dsi_bridge_enable(struct drm_bridge *bridge,
1143 struct drm_bridge_state *old_state)
1145 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1146 bool debug_dump_regs = false;
1149 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
1150 disp0_ctrl |= DSI_DISP0_ENABLE;
1151 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
1153 if (debug_dump_regs) {
1154 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1155 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1156 drm_print_regset32(&p, &dsi->regset);
1160 static int vc4_dsi_bridge_attach(struct drm_bridge *bridge,
1161 enum drm_bridge_attach_flags flags)
1163 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1165 /* Attach the panel or bridge to the dsi bridge */
1166 return drm_bridge_attach(bridge->encoder, dsi->out_bridge,
1167 &dsi->bridge, flags);
1170 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1171 const struct mipi_dsi_msg *msg)
1173 struct vc4_dsi *dsi = host_to_dsi(host);
1174 struct mipi_dsi_packet packet;
1175 u32 pkth = 0, pktc = 0;
1177 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1178 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1180 mipi_dsi_create_packet(&packet, msg);
1182 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1183 pkth |= VC4_SET_FIELD(packet.header[1] |
1184 (packet.header[2] << 8),
1185 DSI_TXPKT1H_BC_PARAM);
1187 /* Divide data across the various FIFOs we have available.
1188 * The command FIFO takes byte-oriented data, but is of
1189 * limited size. The pixel FIFO (never actually used for
1190 * pixel data in reality) is word oriented, and substantially
1191 * larger. So, we use the pixel FIFO for most of the data,
1192 * sending the residual bytes in the command FIFO at the start.
1194 * With this arrangement, the command FIFO will never get full.
1196 if (packet.payload_length <= 16) {
1197 cmd_fifo_len = packet.payload_length;
1200 cmd_fifo_len = (packet.payload_length %
1201 DSI_PIX_FIFO_WIDTH);
1202 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1203 DSI_PIX_FIFO_WIDTH);
1206 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1208 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1212 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1213 DSI_TXPKT1C_CMD_CTRL);
1215 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1216 DSI_TXPKT1C_CMD_CTRL);
1219 for (i = 0; i < cmd_fifo_len; i++)
1220 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1221 for (i = 0; i < pix_fifo_len; i++) {
1222 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1224 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1231 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1232 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1234 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1236 /* Send one copy of the packet. Larger repeats are used for pixel
1237 * data in command mode.
1239 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1241 pktc |= DSI_TXPKT1C_CMD_EN;
1243 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1244 DSI_TXPKT1C_DISPLAY_NO);
1246 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1247 DSI_TXPKT1C_DISPLAY_NO);
1250 /* Enable the appropriate interrupt for the transfer completion. */
1251 dsi->xfer_result = 0;
1252 reinit_completion(&dsi->xfer_completion);
1253 if (dsi->variant->port == 0) {
1254 DSI_PORT_WRITE(INT_STAT,
1255 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1257 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1258 DSI0_INT_PHY_DIR_RTF));
1260 DSI_PORT_WRITE(INT_EN,
1261 (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1262 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1263 DSI0_INT_CMDC_DONE)));
1266 DSI_PORT_WRITE(INT_STAT,
1267 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1269 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1270 DSI1_INT_PHY_DIR_RTF));
1272 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1273 DSI1_INT_TXPKT1_DONE));
1277 /* Send the packet. */
1278 DSI_PORT_WRITE(TXPKT1H, pkth);
1279 DSI_PORT_WRITE(TXPKT1C, pktc);
1281 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1282 msecs_to_jiffies(1000))) {
1283 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1284 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1285 DSI_PORT_READ(INT_STAT));
1288 ret = dsi->xfer_result;
1291 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1294 goto reset_fifo_and_return;
1296 if (ret == 0 && msg->rx_len) {
1297 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1298 u8 *msg_rx = msg->rx_buf;
1300 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1301 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1302 DSI_RXPKT1H_BC_PARAM);
1304 if (rxlen != msg->rx_len) {
1305 DRM_ERROR("DSI returned %db, expecting %db\n",
1306 rxlen, (int)msg->rx_len);
1308 goto reset_fifo_and_return;
1311 for (i = 0; i < msg->rx_len; i++)
1312 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1314 /* FINISHME: Handle AWER */
1316 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1317 DSI_RXPKT1H_SHORT_0);
1318 if (msg->rx_len > 1) {
1319 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1320 DSI_RXPKT1H_SHORT_1);
1327 reset_fifo_and_return:
1328 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1330 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1332 DSI_PORT_WRITE(CTRL,
1333 DSI_PORT_READ(CTRL) |
1334 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1336 DSI_PORT_WRITE(TXPKT1C, 0);
1337 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1341 static const struct component_ops vc4_dsi_ops;
1342 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1343 struct mipi_dsi_device *device)
1345 struct vc4_dsi *dsi = host_to_dsi(host);
1348 dsi->lanes = device->lanes;
1349 dsi->channel = device->channel;
1350 dsi->mode_flags = device->mode_flags;
1352 switch (device->format) {
1353 case MIPI_DSI_FMT_RGB888:
1354 dsi->format = DSI_PFORMAT_RGB888;
1355 dsi->divider = 24 / dsi->lanes;
1357 case MIPI_DSI_FMT_RGB666:
1358 dsi->format = DSI_PFORMAT_RGB666;
1359 dsi->divider = 24 / dsi->lanes;
1361 case MIPI_DSI_FMT_RGB666_PACKED:
1362 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1363 dsi->divider = 18 / dsi->lanes;
1365 case MIPI_DSI_FMT_RGB565:
1366 dsi->format = DSI_PFORMAT_RGB565;
1367 dsi->divider = 16 / dsi->lanes;
1370 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1375 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1376 dev_err(&dsi->pdev->dev,
1377 "Only VIDEO mode panels supported currently.\n");
1381 drm_bridge_add(&dsi->bridge);
1383 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1385 drm_bridge_remove(&dsi->bridge);
1392 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1393 struct mipi_dsi_device *device)
1395 struct vc4_dsi *dsi = host_to_dsi(host);
1397 component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1398 drm_bridge_remove(&dsi->bridge);
1402 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1403 .attach = vc4_dsi_host_attach,
1404 .detach = vc4_dsi_host_detach,
1405 .transfer = vc4_dsi_host_transfer,
1408 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = {
1409 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1410 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1411 .atomic_reset = drm_atomic_helper_bridge_reset,
1412 .atomic_pre_enable = vc4_dsi_bridge_pre_enable,
1413 .atomic_enable = vc4_dsi_bridge_enable,
1414 .atomic_disable = vc4_dsi_bridge_disable,
1415 .atomic_post_disable = vc4_dsi_bridge_post_disable,
1416 .attach = vc4_dsi_bridge_attach,
1417 .mode_fixup = vc4_dsi_bridge_mode_fixup,
1420 static int vc4_dsi_late_register(struct drm_encoder *encoder)
1422 struct drm_device *drm = encoder->dev;
1423 struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1425 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1430 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1431 .late_register = vc4_dsi_late_register,
1434 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1436 .debugfs_name = "dsi1_regs",
1438 .nregs = ARRAY_SIZE(dsi1_regs),
1441 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1443 .debugfs_name = "dsi0_regs",
1445 .nregs = ARRAY_SIZE(dsi0_regs),
1448 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1450 .broken_axi_workaround = true,
1451 .debugfs_name = "dsi1_regs",
1453 .nregs = ARRAY_SIZE(dsi1_regs),
1456 static const struct of_device_id vc4_dsi_dt_match[] = {
1457 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1458 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1459 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1463 static void dsi_handle_error(struct vc4_dsi *dsi,
1464 irqreturn_t *ret, u32 stat, u32 bit,
1470 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1475 * Initial handler for port 1 where we need the reg_dma workaround.
1476 * The register DMA writes sleep, so we can't do it in the top half.
1477 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1478 * parent interrupt contrller until our interrupt thread is done.
1480 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1482 struct vc4_dsi *dsi = data;
1483 u32 stat = DSI_PORT_READ(INT_STAT);
1488 return IRQ_WAKE_THREAD;
1492 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1493 * 1 where we need the reg_dma workaround.
1495 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1497 struct vc4_dsi *dsi = data;
1498 u32 stat = DSI_PORT_READ(INT_STAT);
1499 irqreturn_t ret = IRQ_NONE;
1501 DSI_PORT_WRITE(INT_STAT, stat);
1503 dsi_handle_error(dsi, &ret, stat,
1504 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1505 dsi_handle_error(dsi, &ret, stat,
1506 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1507 dsi_handle_error(dsi, &ret, stat,
1508 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1509 dsi_handle_error(dsi, &ret, stat,
1510 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1511 dsi_handle_error(dsi, &ret, stat,
1512 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1513 dsi_handle_error(dsi, &ret, stat,
1514 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1515 dsi_handle_error(dsi, &ret, stat,
1516 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1517 dsi_handle_error(dsi, &ret, stat,
1518 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1520 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1521 DSI0_INT_CMDC_DONE_MASK) |
1522 DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1523 complete(&dsi->xfer_completion);
1525 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1526 complete(&dsi->xfer_completion);
1527 dsi->xfer_result = -ETIMEDOUT;
1535 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1536 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1540 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1542 struct device *dev = &dsi->pdev->dev;
1543 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1544 static const struct {
1554 dsi->clk_onecell = devm_kzalloc(dev,
1555 sizeof(*dsi->clk_onecell) +
1556 ARRAY_SIZE(phy_clocks) *
1557 sizeof(struct clk_hw *),
1559 if (!dsi->clk_onecell)
1561 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1563 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1564 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1565 struct clk_init_data init;
1569 snprintf(clk_name, sizeof(clk_name),
1570 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1572 /* We just use core fixed factor clock ops for the PHY
1573 * clocks. The clocks are actually gated by the
1574 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1575 * setting if we use the DDR/DDR2 clocks. However,
1576 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1577 * setting both our parent DSI PLL's rate and this
1578 * clock's rate, so it knows if DDR/DDR2 are going to
1579 * be used and could enable the gates itself.
1582 fix->div = phy_clocks[i].div;
1583 fix->hw.init = &init;
1585 memset(&init, 0, sizeof(init));
1586 init.parent_names = &parent_name;
1587 init.num_parents = 1;
1588 init.name = clk_name;
1589 init.ops = &clk_fixed_factor_ops;
1591 ret = devm_clk_hw_register(dev, &fix->hw);
1595 dsi->clk_onecell->hws[i] = &fix->hw;
1598 return of_clk_add_hw_provider(dev->of_node,
1599 of_clk_hw_onecell_get,
1603 static void vc4_dsi_dma_mem_release(void *ptr)
1605 struct vc4_dsi *dsi = ptr;
1606 struct device *dev = &dsi->pdev->dev;
1608 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1609 dsi->reg_dma_mem = NULL;
1612 static void vc4_dsi_dma_chan_release(void *ptr)
1614 struct vc4_dsi *dsi = ptr;
1616 dma_release_channel(dsi->reg_dma_chan);
1617 dsi->reg_dma_chan = NULL;
1620 static void vc4_dsi_release(struct kref *kref)
1622 struct vc4_dsi *dsi =
1623 container_of(kref, struct vc4_dsi, kref);
1628 static void vc4_dsi_get(struct vc4_dsi *dsi)
1630 kref_get(&dsi->kref);
1633 static void vc4_dsi_put(struct vc4_dsi *dsi)
1635 kref_put(&dsi->kref, &vc4_dsi_release);
1638 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1640 struct vc4_dsi *dsi = ptr;
1645 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1647 struct platform_device *pdev = to_platform_device(dev);
1648 struct drm_device *drm = dev_get_drvdata(master);
1649 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1650 struct drm_encoder *encoder = &dsi->encoder.base;
1655 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1659 dsi->variant = of_device_get_match_data(dev);
1661 dsi->encoder.type = dsi->variant->port ?
1662 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1664 dsi->regs = vc4_ioremap_regs(pdev, 0);
1665 if (IS_ERR(dsi->regs))
1666 return PTR_ERR(dsi->regs);
1668 dsi->regset.base = dsi->regs;
1669 dsi->regset.regs = dsi->variant->regs;
1670 dsi->regset.nregs = dsi->variant->nregs;
1672 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1673 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1674 DSI_PORT_READ(ID), DSI_ID_VALUE);
1678 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1679 * writes from the ARM. It does handle writes from the DMA engine,
1680 * so set up a channel for talking to it.
1682 if (dsi->variant->broken_axi_workaround) {
1683 dma_cap_mask_t dma_mask;
1685 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1686 &dsi->reg_dma_paddr,
1688 if (!dsi->reg_dma_mem) {
1689 DRM_ERROR("Failed to get DMA memory\n");
1693 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1697 dma_cap_zero(dma_mask);
1698 dma_cap_set(DMA_MEMCPY, dma_mask);
1700 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1701 if (IS_ERR(dsi->reg_dma_chan)) {
1702 ret = PTR_ERR(dsi->reg_dma_chan);
1703 if (ret != -EPROBE_DEFER)
1704 DRM_ERROR("Failed to get DMA channel: %d\n",
1709 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1713 /* Get the physical address of the device's registers. The
1714 * struct resource for the regs gives us the bus address
1717 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1721 init_completion(&dsi->xfer_completion);
1722 /* At startup enable error-reporting interrupts and nothing else. */
1723 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1724 /* Clear any existing interrupt state. */
1725 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1727 if (dsi->reg_dma_mem)
1728 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1729 vc4_dsi_irq_defer_to_thread_handler,
1730 vc4_dsi_irq_handler,
1734 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1735 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1737 if (ret != -EPROBE_DEFER)
1738 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1742 dsi->escape_clock = devm_clk_get(dev, "escape");
1743 if (IS_ERR(dsi->escape_clock)) {
1744 ret = PTR_ERR(dsi->escape_clock);
1745 if (ret != -EPROBE_DEFER)
1746 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1750 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1751 if (IS_ERR(dsi->pll_phy_clock)) {
1752 ret = PTR_ERR(dsi->pll_phy_clock);
1753 if (ret != -EPROBE_DEFER)
1754 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1758 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1759 if (IS_ERR(dsi->pixel_clock)) {
1760 ret = PTR_ERR(dsi->pixel_clock);
1761 if (ret != -EPROBE_DEFER)
1762 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1766 dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1767 if (IS_ERR(dsi->out_bridge))
1768 return PTR_ERR(dsi->out_bridge);
1770 /* The esc clock rate is supposed to always be 100Mhz. */
1771 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1773 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1777 ret = vc4_dsi_init_phy_clocks(dsi);
1781 ret = drmm_encoder_init(drm, encoder,
1782 &vc4_dsi_encoder_funcs,
1783 DRM_MODE_ENCODER_DSI,
1788 ret = devm_pm_runtime_enable(dev);
1792 ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
1799 static const struct component_ops vc4_dsi_ops = {
1800 .bind = vc4_dsi_bind,
1803 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1805 struct device *dev = &pdev->dev;
1806 struct vc4_dsi *dsi;
1808 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1811 dev_set_drvdata(dev, dsi);
1813 kref_init(&dsi->kref);
1816 dsi->bridge.funcs = &vc4_dsi_bridge_funcs;
1818 dsi->bridge.of_node = dev->of_node;
1820 dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
1821 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1822 dsi->dsi_host.dev = dev;
1823 mipi_dsi_host_register(&dsi->dsi_host);
1828 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1830 struct device *dev = &pdev->dev;
1831 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1833 mipi_dsi_host_unregister(&dsi->dsi_host);
1839 struct platform_driver vc4_dsi_driver = {
1840 .probe = vc4_dsi_dev_probe,
1841 .remove = vc4_dsi_dev_remove,
1844 .of_match_table = vc4_dsi_dt_match,