2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
58 /* Only called for hugetlbfs pages, hence can ignore THP */
59 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
62 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63 unsigned long address, unsigned pdshift, unsigned pshift)
65 struct kmem_cache *cachep;
68 #ifdef CONFIG_PPC_FSL_BOOK3E
70 int num_hugepd = 1 << (pshift - pdshift);
71 cachep = hugepte_cache;
73 cachep = PGT_CACHE(pdshift - pshift);
76 new = kmem_cache_zalloc(cachep, GFP_KERNEL);
78 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
85 * Make sure other cpus find the hugepd set only after a
86 * properly initialized page table is visible to them.
87 * For more details look for comment in __pte_alloc().
91 spin_lock(&mm->page_table_lock);
92 #ifdef CONFIG_PPC_FSL_BOOK3E
94 * We have multiple higher-level entries that point to the same
95 * actual pte location. Fill in each as we go and backtrack on error.
96 * We need all of these so the DTLB pgtable walk code can find the
97 * right higher-level entry without knowing if it's a hugepage or not.
99 for (i = 0; i < num_hugepd; i++, hpdp++) {
100 if (unlikely(!hugepd_none(*hpdp)))
103 /* We use the old format for PPC_FSL_BOOK3E */
104 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
106 /* If we bailed from the for loop early, an error occurred, clean up */
107 if (i < num_hugepd) {
108 for (i = i - 1 ; i >= 0; i--, hpdp--)
110 kmem_cache_free(cachep, new);
113 if (!hugepd_none(*hpdp))
114 kmem_cache_free(cachep, new);
116 #ifdef CONFIG_PPC_BOOK3S_64
117 hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
119 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
123 spin_unlock(&mm->page_table_lock);
128 * These macros define how to determine which level of the page table holds
131 #ifdef CONFIG_PPC_FSL_BOOK3E
132 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
133 #define HUGEPD_PUD_SHIFT PUD_SHIFT
135 #define HUGEPD_PGD_SHIFT PUD_SHIFT
136 #define HUGEPD_PUD_SHIFT PMD_SHIFT
139 #ifdef CONFIG_PPC_BOOK3S_64
141 * At this point we do the placement change only for BOOK3S 64. This would
142 * possibly work on other subarchs.
144 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
149 hugepd_t *hpdp = NULL;
150 unsigned pshift = __ffs(sz);
151 unsigned pdshift = PGDIR_SHIFT;
154 pg = pgd_offset(mm, addr);
156 if (pshift == PGDIR_SHIFT)
159 else if (pshift > PUD_SHIFT)
161 * We need to use hugepd table
163 hpdp = (hugepd_t *)pg;
166 pu = pud_alloc(mm, pg, addr);
167 if (pshift == PUD_SHIFT)
169 else if (pshift > PMD_SHIFT)
170 hpdp = (hugepd_t *)pu;
173 pm = pmd_alloc(mm, pu, addr);
174 if (pshift == PMD_SHIFT)
178 hpdp = (hugepd_t *)pm;
184 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
186 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
189 return hugepte_offset(*hpdp, addr, pdshift);
194 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
199 hugepd_t *hpdp = NULL;
200 unsigned pshift = __ffs(sz);
201 unsigned pdshift = PGDIR_SHIFT;
205 pg = pgd_offset(mm, addr);
207 if (pshift >= HUGEPD_PGD_SHIFT) {
208 hpdp = (hugepd_t *)pg;
211 pu = pud_alloc(mm, pg, addr);
212 if (pshift >= HUGEPD_PUD_SHIFT) {
213 hpdp = (hugepd_t *)pu;
216 pm = pmd_alloc(mm, pu, addr);
217 hpdp = (hugepd_t *)pm;
224 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
226 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
229 return hugepte_offset(*hpdp, addr, pdshift);
233 #ifdef CONFIG_PPC_FSL_BOOK3E
234 /* Build list of addresses of gigantic pages. This function is used in early
235 * boot before the buddy allocator is setup.
237 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
239 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
245 gpage_freearray[idx].nr_gpages = number_of_pages;
247 for (i = 0; i < number_of_pages; i++) {
248 gpage_freearray[idx].gpage_list[i] = addr;
254 * Moves the gigantic page addresses from the temporary list to the
255 * huge_boot_pages list.
257 int alloc_bootmem_huge_page(struct hstate *hstate)
259 struct huge_bootmem_page *m;
260 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
261 int nr_gpages = gpage_freearray[idx].nr_gpages;
266 #ifdef CONFIG_HIGHMEM
268 * If gpages can be in highmem we can't use the trick of storing the
269 * data structure in the page; allocate space for this
271 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
272 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
274 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
277 list_add(&m->list, &huge_boot_pages);
278 gpage_freearray[idx].nr_gpages = nr_gpages;
279 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
285 * Scan the command line hugepagesz= options for gigantic pages; store those in
286 * a list that we use to allocate the memory once all options are parsed.
289 unsigned long gpage_npages[MMU_PAGE_COUNT];
291 static int __init do_gpage_early_setup(char *param, char *val,
292 const char *unused, void *arg)
294 static phys_addr_t size;
295 unsigned long npages;
298 * The hugepagesz and hugepages cmdline options are interleaved. We
299 * use the size variable to keep track of whether or not this was done
300 * properly and skip over instances where it is incorrect. Other
301 * command-line parsing code will issue warnings, so we don't need to.
304 if ((strcmp(param, "default_hugepagesz") == 0) ||
305 (strcmp(param, "hugepagesz") == 0)) {
306 size = memparse(val, NULL);
307 } else if (strcmp(param, "hugepages") == 0) {
309 if (sscanf(val, "%lu", &npages) <= 0)
311 if (npages > MAX_NUMBER_GPAGES) {
312 pr_warn("MMU: %lu pages requested for page "
313 "size %llu KB, limiting to "
314 __stringify(MAX_NUMBER_GPAGES) "\n",
315 npages, size / 1024);
316 npages = MAX_NUMBER_GPAGES;
318 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
327 * This function allocates physical space for pages that are larger than the
328 * buddy allocator can handle. We want to allocate these in highmem because
329 * the amount of lowmem is limited. This means that this function MUST be
330 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
331 * allocate to grab highmem.
333 void __init reserve_hugetlb_gpages(void)
335 static __initdata char cmdline[COMMAND_LINE_SIZE];
336 phys_addr_t size, base;
339 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
340 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
341 NULL, &do_gpage_early_setup);
344 * Walk gpage list in reverse, allocating larger page sizes first.
345 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
346 * When we reach the point in the list where pages are no longer
347 * considered gpages, we're done.
349 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
350 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
352 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
355 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
356 base = memblock_alloc_base(size * gpage_npages[i], size,
357 MEMBLOCK_ALLOC_ANYWHERE);
358 add_gpage(base, size, gpage_npages[i]);
362 #else /* !PPC_FSL_BOOK3E */
364 /* Build list of addresses of gigantic pages. This function is used in early
365 * boot before the buddy allocator is setup.
367 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
371 while (number_of_pages > 0) {
372 gpage_freearray[nr_gpages] = addr;
379 /* Moves the gigantic page addresses from the temporary list to the
380 * huge_boot_pages list.
382 int alloc_bootmem_huge_page(struct hstate *hstate)
384 struct huge_bootmem_page *m;
387 m = phys_to_virt(gpage_freearray[--nr_gpages]);
388 gpage_freearray[nr_gpages] = 0;
389 list_add(&m->list, &huge_boot_pages);
395 #ifdef CONFIG_PPC_FSL_BOOK3E
396 #define HUGEPD_FREELIST_SIZE \
397 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
399 struct hugepd_freelist {
405 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
407 static void hugepd_free_rcu_callback(struct rcu_head *head)
409 struct hugepd_freelist *batch =
410 container_of(head, struct hugepd_freelist, rcu);
413 for (i = 0; i < batch->index; i++)
414 kmem_cache_free(hugepte_cache, batch->ptes[i]);
416 free_page((unsigned long)batch);
419 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
421 struct hugepd_freelist **batchp;
423 batchp = &get_cpu_var(hugepd_freelist_cur);
425 if (atomic_read(&tlb->mm->mm_users) < 2 ||
426 cpumask_equal(mm_cpumask(tlb->mm),
427 cpumask_of(smp_processor_id()))) {
428 kmem_cache_free(hugepte_cache, hugepte);
429 put_cpu_var(hugepd_freelist_cur);
433 if (*batchp == NULL) {
434 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
435 (*batchp)->index = 0;
438 (*batchp)->ptes[(*batchp)->index++] = hugepte;
439 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
440 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
443 put_cpu_var(hugepd_freelist_cur);
447 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
448 unsigned long start, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
451 pte_t *hugepte = hugepd_page(*hpdp);
454 unsigned long pdmask = ~((1UL << pdshift) - 1);
455 unsigned int num_hugepd = 1;
457 #ifdef CONFIG_PPC_FSL_BOOK3E
458 /* Note: On fsl the hpdp may be the first of several */
459 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
461 unsigned int shift = hugepd_shift(*hpdp);
472 if (end - 1 > ceiling - 1)
475 for (i = 0; i < num_hugepd; i++, hpdp++)
478 #ifdef CONFIG_PPC_FSL_BOOK3E
479 hugepd_free(tlb, hugepte);
481 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
485 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
495 pmd = pmd_offset(pud, addr);
496 next = pmd_addr_end(addr, end);
497 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
499 * if it is not hugepd pointer, we should already find
502 WARN_ON(!pmd_none_or_clear_bad(pmd));
505 #ifdef CONFIG_PPC_FSL_BOOK3E
507 * Increment next by the size of the huge mapping since
508 * there may be more than one entry at this level for a
509 * single hugepage, but all of them point to
510 * the same kmem cache that holds the hugepte.
512 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
514 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
515 addr, next, floor, ceiling);
516 } while (addr = next, addr != end);
526 if (end - 1 > ceiling - 1)
529 pmd = pmd_offset(pud, start);
531 pmd_free_tlb(tlb, pmd, start);
532 mm_dec_nr_pmds(tlb->mm);
535 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
536 unsigned long addr, unsigned long end,
537 unsigned long floor, unsigned long ceiling)
545 pud = pud_offset(pgd, addr);
546 next = pud_addr_end(addr, end);
547 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
548 if (pud_none_or_clear_bad(pud))
550 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
553 #ifdef CONFIG_PPC_FSL_BOOK3E
555 * Increment next by the size of the huge mapping since
556 * there may be more than one entry at this level for a
557 * single hugepage, but all of them point to
558 * the same kmem cache that holds the hugepte.
560 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
562 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
563 addr, next, floor, ceiling);
565 } while (addr = next, addr != end);
571 ceiling &= PGDIR_MASK;
575 if (end - 1 > ceiling - 1)
578 pud = pud_offset(pgd, start);
580 pud_free_tlb(tlb, pud, start);
584 * This function frees user-level page tables of a process.
586 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
594 * Because there are a number of different possible pagetable
595 * layouts for hugepage ranges, we limit knowledge of how
596 * things should be laid out to the allocation path
597 * (huge_pte_alloc(), above). Everything else works out the
598 * structure as it goes from information in the hugepd
599 * pointers. That means that we can't here use the
600 * optimization used in the normal page free_pgd_range(), of
601 * checking whether we're actually covering a large enough
602 * range to have to do anything at the top level of the walk
603 * instead of at the bottom.
605 * To make sense of this, you should probably go read the big
606 * block comment at the top of the normal free_pgd_range(),
611 next = pgd_addr_end(addr, end);
612 pgd = pgd_offset(tlb->mm, addr);
613 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
614 if (pgd_none_or_clear_bad(pgd))
616 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
618 #ifdef CONFIG_PPC_FSL_BOOK3E
620 * Increment next by the size of the huge mapping since
621 * there may be more than one entry at the pgd level
622 * for a single hugepage, but all of them point to the
623 * same kmem cache that holds the hugepte.
625 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
627 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
628 addr, next, floor, ceiling);
630 } while (addr = next, addr != end);
634 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
635 * To prevent hugepage split, disable irq.
638 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
643 unsigned long mask, flags;
644 struct page *page = ERR_PTR(-EINVAL);
646 local_irq_save(flags);
647 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
650 pte = READ_ONCE(*ptep);
652 * Verify it is a huge page else bail.
653 * Transparent hugepages are handled by generic code. We can skip them
656 if (!shift || is_thp)
659 if (!pte_present(pte)) {
663 mask = (1UL << shift) - 1;
664 page = pte_page(pte);
666 page += (address & mask) / PAGE_SIZE;
669 local_irq_restore(flags);
674 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
675 pmd_t *pmd, int write)
682 follow_huge_pud(struct mm_struct *mm, unsigned long address,
683 pud_t *pud, int write)
689 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
692 unsigned long __boundary = (addr + sz) & ~(sz-1);
693 return (__boundary - 1 < end - 1) ? __boundary : end;
696 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
697 unsigned long end, int write, struct page **pages, int *nr)
700 unsigned long sz = 1UL << hugepd_shift(hugepd);
703 ptep = hugepte_offset(hugepd, addr, pdshift);
705 next = hugepte_addr_end(addr, end, sz);
706 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
708 } while (ptep++, addr = next, addr != end);
713 #ifdef CONFIG_PPC_MM_SLICES
714 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
715 unsigned long len, unsigned long pgoff,
718 struct hstate *hstate = hstate_file(file);
719 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
722 return radix__hugetlb_get_unmapped_area(file, addr, len,
724 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
728 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
730 #ifdef CONFIG_PPC_MM_SLICES
731 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
732 /* With radix we don't use slice, so derive it from vma*/
733 if (!radix_enabled())
734 return 1UL << mmu_psize_to_shift(psize);
736 if (!is_vm_hugetlb_page(vma))
739 return huge_page_size(hstate_vma(vma));
742 static inline bool is_power_of_4(unsigned long x)
744 if (is_power_of_2(x))
745 return (__ilog2(x) % 2) ? false : true;
749 static int __init add_huge_page_size(unsigned long long size)
751 int shift = __ffs(size);
754 /* Check that it is a page size supported by the hardware and
755 * that it fits within pagetable and slice limits. */
756 #ifdef CONFIG_PPC_FSL_BOOK3E
757 if ((size < PAGE_SIZE) || !is_power_of_4(size))
760 if (!is_power_of_2(size)
761 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
765 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
768 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
770 /* Return if huge page size has already been setup */
771 if (size_to_hstate(size))
774 hugetlb_add_hstate(shift - PAGE_SHIFT);
779 static int __init hugepage_setup_sz(char *str)
781 unsigned long long size;
783 size = memparse(str, &str);
785 if (add_huge_page_size(size) != 0) {
787 pr_err("Invalid huge page size specified(%llu)\n", size);
792 __setup("hugepagesz=", hugepage_setup_sz);
794 #ifdef CONFIG_PPC_FSL_BOOK3E
795 struct kmem_cache *hugepte_cache;
796 static int __init hugetlbpage_init(void)
800 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
803 if (!mmu_psize_defs[psize].shift)
806 shift = mmu_psize_to_shift(psize);
808 /* Don't treat normal page sizes as huge... */
809 if (shift != PAGE_SHIFT)
810 if (add_huge_page_size(1ULL << shift) < 0)
815 * Create a kmem cache for hugeptes. The bottom bits in the pte have
816 * size information encoded in them, so align them to allow this
818 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
819 HUGEPD_SHIFT_MASK + 1, 0, NULL);
820 if (hugepte_cache == NULL)
821 panic("%s: Unable to create kmem cache for hugeptes\n",
824 /* Default hpage size = 4M */
825 if (mmu_psize_defs[MMU_PAGE_4M].shift)
826 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
828 panic("%s: Unable to set default huge page size\n", __func__);
834 static int __init hugetlbpage_init(void)
838 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
841 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
845 if (!mmu_psize_defs[psize].shift)
848 shift = mmu_psize_to_shift(psize);
850 if (add_huge_page_size(1ULL << shift) < 0)
853 if (shift < PMD_SHIFT)
855 else if (shift < PUD_SHIFT)
858 pdshift = PGDIR_SHIFT;
860 * if we have pdshift and shift value same, we don't
861 * use pgt cache for hugepd.
863 if (pdshift != shift) {
864 pgtable_cache_add(pdshift - shift, NULL);
865 if (!PGT_CACHE(pdshift - shift))
866 panic("hugetlbpage_init(): could not create "
867 "pgtable cache for %d bit pagesize\n", shift);
871 /* Set default large page size. Currently, we pick 16M or 1M
872 * depending on what is available
874 if (mmu_psize_defs[MMU_PAGE_16M].shift)
875 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
876 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
877 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
878 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
879 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
885 arch_initcall(hugetlbpage_init);
887 void flush_dcache_icache_hugepage(struct page *page)
892 BUG_ON(!PageCompound(page));
894 for (i = 0; i < (1UL << compound_order(page)); i++) {
895 if (!PageHighMem(page)) {
896 __flush_dcache_icache(page_address(page+i));
898 start = kmap_atomic(page+i);
899 __flush_dcache_icache(start);
900 kunmap_atomic(start);
905 #endif /* CONFIG_HUGETLB_PAGE */
908 * We have 4 cases for pgds and pmds:
909 * (1) invalid (all zeroes)
910 * (2) pointer to next table, as normal; bottom 6 bits == 0
911 * (3) leaf pte for huge page _PAGE_PTE set
912 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
914 * So long as we atomically load page table pointers we are safe against teardown,
915 * we can follow the address down to the the page and take a ref on it.
916 * This function need to be called with interrupts disabled. We use this variant
917 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
920 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
921 bool *is_thp, unsigned *shift)
927 hugepd_t *hpdp = NULL;
928 unsigned pdshift = PGDIR_SHIFT;
936 pgdp = pgdir + pgd_index(ea);
937 pgd = READ_ONCE(*pgdp);
939 * Always operate on the local stack value. This make sure the
940 * value don't get updated by a parallel THP split/collapse,
941 * page fault or a page unmap. The return pte_t * is still not
942 * stable. So should be checked there for above conditions.
946 else if (pgd_huge(pgd)) {
947 ret_pte = (pte_t *) pgdp;
949 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
950 hpdp = (hugepd_t *)&pgd;
953 * Even if we end up with an unmap, the pgtable will not
954 * be freed, because we do an rcu free and here we are
958 pudp = pud_offset(&pgd, ea);
959 pud = READ_ONCE(*pudp);
963 else if (pud_huge(pud)) {
964 ret_pte = (pte_t *) pudp;
966 } else if (is_hugepd(__hugepd(pud_val(pud))))
967 hpdp = (hugepd_t *)&pud;
970 pmdp = pmd_offset(&pud, ea);
971 pmd = READ_ONCE(*pmdp);
973 * A hugepage collapse is captured by pmd_none, because
974 * it mark the pmd none and do a hpte invalidate.
979 if (pmd_trans_huge(pmd)) {
982 ret_pte = (pte_t *) pmdp;
987 ret_pte = (pte_t *) pmdp;
989 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
990 hpdp = (hugepd_t *)&pmd;
992 return pte_offset_kernel(&pmd, ea);
998 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
999 pdshift = hugepd_shift(*hpdp);
1005 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1007 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1008 unsigned long end, int write, struct page **pages, int *nr)
1011 unsigned long pte_end;
1012 struct page *head, *page;
1016 pte_end = (addr + sz) & ~(sz-1);
1020 pte = READ_ONCE(*ptep);
1021 mask = _PAGE_PRESENT | _PAGE_READ;
1023 mask |= _PAGE_WRITE;
1025 if ((pte_val(pte) & mask) != mask)
1028 /* hugepages are never "special" */
1029 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1032 head = pte_page(pte);
1034 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1036 VM_BUG_ON(compound_head(page) != head);
1041 } while (addr += PAGE_SIZE, addr != end);
1043 if (!page_cache_add_speculative(head, refs)) {
1048 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1049 /* Could be optimized better */