]> Git Repo - linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge branch 'psmouse' into next
[linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <soc/tegra/pmc.h>
18
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 #include "hub.h"
23 #include "plane.h"
24
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
28
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30 {
31         stats->frames = 0;
32         stats->vblank = 0;
33         stats->underflow = 0;
34         stats->overflow = 0;
35 }
36
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39 {
40         u32 value;
41
42         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43         value = tegra_dc_readl(dc, offset);
44         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45
46         return value;
47 }
48
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50                                               unsigned int offset)
51 {
52         if (offset >= 0x500 && offset <= 0x638) {
53                 offset = 0x000 + (offset - 0x500);
54                 return plane->offset + offset;
55         }
56
57         if (offset >= 0x700 && offset <= 0x719) {
58                 offset = 0x180 + (offset - 0x700);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x800 && offset <= 0x839) {
63                 offset = 0x1c0 + (offset - 0x800);
64                 return plane->offset + offset;
65         }
66
67         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68
69         return plane->offset + offset;
70 }
71
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73                                     unsigned int offset)
74 {
75         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76 }
77
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79                                       unsigned int offset)
80 {
81         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82 }
83
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85 {
86         struct device_node *np = dc->dev->of_node;
87         struct of_phandle_iterator it;
88         int err;
89
90         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91                 if (it.node == dev->of_node)
92                         return true;
93
94         return false;
95 }
96
97 /*
98  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100  * Latching happens mmediately if the display controller is in STOP mode or
101  * on the next frame boundary otherwise.
102  *
103  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106  * into the ACTIVE copy, either immediately if the display controller is in
107  * STOP mode, or at the next frame boundary otherwise.
108  */
109 void tegra_dc_commit(struct tegra_dc *dc)
110 {
111         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113 }
114
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116                                   unsigned int bpp)
117 {
118         fixed20_12 outf = dfixed_init(out);
119         fixed20_12 inf = dfixed_init(in);
120         u32 dda_inc;
121         int max;
122
123         if (v)
124                 max = 15;
125         else {
126                 switch (bpp) {
127                 case 2:
128                         max = 8;
129                         break;
130
131                 default:
132                         WARN_ON_ONCE(1);
133                         /* fallthrough */
134                 case 4:
135                         max = 4;
136                         break;
137                 }
138         }
139
140         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141         inf.full -= dfixed_const(1);
142
143         dda_inc = dfixed_div(inf, outf);
144         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145
146         return dda_inc;
147 }
148
149 static inline u32 compute_initial_dda(unsigned int in)
150 {
151         fixed20_12 inf = dfixed_init(in);
152         return dfixed_frac(inf);
153 }
154
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156 {
157         u32 background[3] = {
158                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161         };
162         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163                          BLEND_COLOR_KEY_NONE;
164         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165         struct tegra_plane_state *state;
166         unsigned int i;
167
168         state = to_tegra_plane_state(plane->base.state);
169
170         /* alpha contribution is 1 minus sum of overlapping windows */
171         for (i = 0; i < 3; i++) {
172                 if (state->dependent[i])
173                         background[i] |= BLEND_CONTROL_DEPENDENT;
174         }
175
176         /* enable alpha blending if pixel format has an alpha component */
177         if (!state->opaque)
178                 foreground |= BLEND_CONTROL_ALPHA;
179
180         /*
181          * Disable blending and assume Window A is the bottom-most window,
182          * Window C is the top-most window and Window B is in the middle.
183          */
184         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
185         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
186
187         switch (plane->index) {
188         case 0:
189                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
190                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
191                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
192                 break;
193
194         case 1:
195                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
196                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
197                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
198                 break;
199
200         case 2:
201                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
202                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
203                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
204                 break;
205         }
206 }
207
208 static void tegra_plane_setup_blending(struct tegra_plane *plane,
209                                        const struct tegra_dc_window *window)
210 {
211         u32 value;
212
213         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
214                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
215                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
216         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
217
218         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
219                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
220                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
221         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
222
223         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
224         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
225 }
226
227 static void tegra_dc_setup_window(struct tegra_plane *plane,
228                                   const struct tegra_dc_window *window)
229 {
230         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
231         struct tegra_dc *dc = plane->dc;
232         bool yuv, planar;
233         u32 value;
234
235         /*
236          * For YUV planar modes, the number of bytes per pixel takes into
237          * account only the luma component and therefore is 1.
238          */
239         yuv = tegra_plane_format_is_yuv(window->format, &planar);
240         if (!yuv)
241                 bpp = window->bits_per_pixel / 8;
242         else
243                 bpp = planar ? 1 : 2;
244
245         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
246         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
247
248         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
249         tegra_plane_writel(plane, value, DC_WIN_POSITION);
250
251         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
252         tegra_plane_writel(plane, value, DC_WIN_SIZE);
253
254         h_offset = window->src.x * bpp;
255         v_offset = window->src.y;
256         h_size = window->src.w * bpp;
257         v_size = window->src.h;
258
259         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
260         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
261
262         /*
263          * For DDA computations the number of bytes per pixel for YUV planar
264          * modes needs to take into account all Y, U and V components.
265          */
266         if (yuv && planar)
267                 bpp = 2;
268
269         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
270         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
271
272         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
273         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
274
275         h_dda = compute_initial_dda(window->src.x);
276         v_dda = compute_initial_dda(window->src.y);
277
278         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
279         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
280
281         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
282         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
283
284         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
285
286         if (yuv && planar) {
287                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
288                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
289                 value = window->stride[1] << 16 | window->stride[0];
290                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
291         } else {
292                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
293         }
294
295         if (window->bottom_up)
296                 v_offset += window->src.h - 1;
297
298         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
299         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
300
301         if (dc->soc->supports_block_linear) {
302                 unsigned long height = window->tiling.value;
303
304                 switch (window->tiling.mode) {
305                 case TEGRA_BO_TILING_MODE_PITCH:
306                         value = DC_WINBUF_SURFACE_KIND_PITCH;
307                         break;
308
309                 case TEGRA_BO_TILING_MODE_TILED:
310                         value = DC_WINBUF_SURFACE_KIND_TILED;
311                         break;
312
313                 case TEGRA_BO_TILING_MODE_BLOCK:
314                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
315                                 DC_WINBUF_SURFACE_KIND_BLOCK;
316                         break;
317                 }
318
319                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
320         } else {
321                 switch (window->tiling.mode) {
322                 case TEGRA_BO_TILING_MODE_PITCH:
323                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
324                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
325                         break;
326
327                 case TEGRA_BO_TILING_MODE_TILED:
328                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
329                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
330                         break;
331
332                 case TEGRA_BO_TILING_MODE_BLOCK:
333                         /*
334                          * No need to handle this here because ->atomic_check
335                          * will already have filtered it out.
336                          */
337                         break;
338                 }
339
340                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
341         }
342
343         value = WIN_ENABLE;
344
345         if (yuv) {
346                 /* setup default colorspace conversion coefficients */
347                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
348                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
349                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
350                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
351                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
352                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
353                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
354                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
355
356                 value |= CSC_ENABLE;
357         } else if (window->bits_per_pixel < 24) {
358                 value |= COLOR_EXPAND;
359         }
360
361         if (window->bottom_up)
362                 value |= V_DIRECTION;
363
364         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
365
366         if (dc->soc->supports_blending)
367                 tegra_plane_setup_blending(plane, window);
368         else
369                 tegra_plane_setup_blending_legacy(plane);
370 }
371
372 static const u32 tegra20_primary_formats[] = {
373         DRM_FORMAT_ARGB4444,
374         DRM_FORMAT_ARGB1555,
375         DRM_FORMAT_RGB565,
376         DRM_FORMAT_RGBA5551,
377         DRM_FORMAT_ABGR8888,
378         DRM_FORMAT_ARGB8888,
379         /* non-native formats */
380         DRM_FORMAT_XRGB1555,
381         DRM_FORMAT_RGBX5551,
382         DRM_FORMAT_XBGR8888,
383         DRM_FORMAT_XRGB8888,
384 };
385
386 static const u32 tegra114_primary_formats[] = {
387         DRM_FORMAT_ARGB4444,
388         DRM_FORMAT_ARGB1555,
389         DRM_FORMAT_RGB565,
390         DRM_FORMAT_RGBA5551,
391         DRM_FORMAT_ABGR8888,
392         DRM_FORMAT_ARGB8888,
393         /* new on Tegra114 */
394         DRM_FORMAT_ABGR4444,
395         DRM_FORMAT_ABGR1555,
396         DRM_FORMAT_BGRA5551,
397         DRM_FORMAT_XRGB1555,
398         DRM_FORMAT_RGBX5551,
399         DRM_FORMAT_XBGR1555,
400         DRM_FORMAT_BGRX5551,
401         DRM_FORMAT_BGR565,
402         DRM_FORMAT_BGRA8888,
403         DRM_FORMAT_RGBA8888,
404         DRM_FORMAT_XRGB8888,
405         DRM_FORMAT_XBGR8888,
406 };
407
408 static const u32 tegra124_primary_formats[] = {
409         DRM_FORMAT_ARGB4444,
410         DRM_FORMAT_ARGB1555,
411         DRM_FORMAT_RGB565,
412         DRM_FORMAT_RGBA5551,
413         DRM_FORMAT_ABGR8888,
414         DRM_FORMAT_ARGB8888,
415         /* new on Tegra114 */
416         DRM_FORMAT_ABGR4444,
417         DRM_FORMAT_ABGR1555,
418         DRM_FORMAT_BGRA5551,
419         DRM_FORMAT_XRGB1555,
420         DRM_FORMAT_RGBX5551,
421         DRM_FORMAT_XBGR1555,
422         DRM_FORMAT_BGRX5551,
423         DRM_FORMAT_BGR565,
424         DRM_FORMAT_BGRA8888,
425         DRM_FORMAT_RGBA8888,
426         DRM_FORMAT_XRGB8888,
427         DRM_FORMAT_XBGR8888,
428         /* new on Tegra124 */
429         DRM_FORMAT_RGBX8888,
430         DRM_FORMAT_BGRX8888,
431 };
432
433 static int tegra_plane_atomic_check(struct drm_plane *plane,
434                                     struct drm_plane_state *state)
435 {
436         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
437         struct tegra_bo_tiling *tiling = &plane_state->tiling;
438         struct tegra_plane *tegra = to_tegra_plane(plane);
439         struct tegra_dc *dc = to_tegra_dc(state->crtc);
440         unsigned int format;
441         int err;
442
443         /* no need for further checks if the plane is being disabled */
444         if (!state->crtc)
445                 return 0;
446
447         err = tegra_plane_format(state->fb->format->format, &format,
448                                  &plane_state->swap);
449         if (err < 0)
450                 return err;
451
452         /*
453          * Tegra20 and Tegra30 are special cases here because they support
454          * only variants of specific formats with an alpha component, but not
455          * the corresponding opaque formats. However, the opaque formats can
456          * be emulated by disabling alpha blending for the plane.
457          */
458         if (!dc->soc->supports_blending) {
459                 if (!tegra_plane_format_has_alpha(format)) {
460                         err = tegra_plane_format_get_alpha(format, &format);
461                         if (err < 0)
462                                 return err;
463
464                         plane_state->opaque = true;
465                 } else {
466                         plane_state->opaque = false;
467                 }
468
469                 tegra_plane_check_dependent(tegra, plane_state);
470         }
471
472         plane_state->format = format;
473
474         err = tegra_fb_get_tiling(state->fb, tiling);
475         if (err < 0)
476                 return err;
477
478         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
479             !dc->soc->supports_block_linear) {
480                 DRM_ERROR("hardware doesn't support block linear mode\n");
481                 return -EINVAL;
482         }
483
484         /*
485          * Tegra doesn't support different strides for U and V planes so we
486          * error out if the user tries to display a framebuffer with such a
487          * configuration.
488          */
489         if (state->fb->format->num_planes > 2) {
490                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
491                         DRM_ERROR("unsupported UV-plane configuration\n");
492                         return -EINVAL;
493                 }
494         }
495
496         err = tegra_plane_state_add(tegra, state);
497         if (err < 0)
498                 return err;
499
500         return 0;
501 }
502
503 static void tegra_plane_atomic_disable(struct drm_plane *plane,
504                                        struct drm_plane_state *old_state)
505 {
506         struct tegra_plane *p = to_tegra_plane(plane);
507         u32 value;
508
509         /* rien ne va plus */
510         if (!old_state || !old_state->crtc)
511                 return;
512
513         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
514         value &= ~WIN_ENABLE;
515         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
516 }
517
518 static void tegra_plane_atomic_update(struct drm_plane *plane,
519                                       struct drm_plane_state *old_state)
520 {
521         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
522         struct drm_framebuffer *fb = plane->state->fb;
523         struct tegra_plane *p = to_tegra_plane(plane);
524         struct tegra_dc_window window;
525         unsigned int i;
526
527         /* rien ne va plus */
528         if (!plane->state->crtc || !plane->state->fb)
529                 return;
530
531         if (!plane->state->visible)
532                 return tegra_plane_atomic_disable(plane, old_state);
533
534         memset(&window, 0, sizeof(window));
535         window.src.x = plane->state->src.x1 >> 16;
536         window.src.y = plane->state->src.y1 >> 16;
537         window.src.w = drm_rect_width(&plane->state->src) >> 16;
538         window.src.h = drm_rect_height(&plane->state->src) >> 16;
539         window.dst.x = plane->state->dst.x1;
540         window.dst.y = plane->state->dst.y1;
541         window.dst.w = drm_rect_width(&plane->state->dst);
542         window.dst.h = drm_rect_height(&plane->state->dst);
543         window.bits_per_pixel = fb->format->cpp[0] * 8;
544         window.bottom_up = tegra_fb_is_bottom_up(fb);
545
546         /* copy from state */
547         window.zpos = plane->state->normalized_zpos;
548         window.tiling = state->tiling;
549         window.format = state->format;
550         window.swap = state->swap;
551
552         for (i = 0; i < fb->format->num_planes; i++) {
553                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
554
555                 window.base[i] = bo->paddr + fb->offsets[i];
556
557                 /*
558                  * Tegra uses a shared stride for UV planes. Framebuffers are
559                  * already checked for this in the tegra_plane_atomic_check()
560                  * function, so it's safe to ignore the V-plane pitch here.
561                  */
562                 if (i < 2)
563                         window.stride[i] = fb->pitches[i];
564         }
565
566         tegra_dc_setup_window(p, &window);
567 }
568
569 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
570         .atomic_check = tegra_plane_atomic_check,
571         .atomic_disable = tegra_plane_atomic_disable,
572         .atomic_update = tegra_plane_atomic_update,
573 };
574
575 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
576 {
577         /*
578          * Ideally this would use drm_crtc_mask(), but that would require the
579          * CRTC to already be in the mode_config's list of CRTCs. However, it
580          * will only be added to that list in the drm_crtc_init_with_planes()
581          * (in tegra_dc_init()), which in turn requires registration of these
582          * planes. So we have ourselves a nice little chicken and egg problem
583          * here.
584          *
585          * We work around this by manually creating the mask from the number
586          * of CRTCs that have been registered, and should therefore always be
587          * the same as drm_crtc_index() after registration.
588          */
589         return 1 << drm->mode_config.num_crtc;
590 }
591
592 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
593                                                     struct tegra_dc *dc)
594 {
595         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
596         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
597         struct tegra_plane *plane;
598         unsigned int num_formats;
599         const u32 *formats;
600         int err;
601
602         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
603         if (!plane)
604                 return ERR_PTR(-ENOMEM);
605
606         /* Always use window A as primary window */
607         plane->offset = 0xa00;
608         plane->index = 0;
609         plane->dc = dc;
610
611         num_formats = dc->soc->num_primary_formats;
612         formats = dc->soc->primary_formats;
613
614         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
615                                        &tegra_plane_funcs, formats,
616                                        num_formats, NULL, type, NULL);
617         if (err < 0) {
618                 kfree(plane);
619                 return ERR_PTR(err);
620         }
621
622         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
623
624         if (dc->soc->supports_blending)
625                 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
626
627         return &plane->base;
628 }
629
630 static const u32 tegra_cursor_plane_formats[] = {
631         DRM_FORMAT_RGBA8888,
632 };
633
634 static int tegra_cursor_atomic_check(struct drm_plane *plane,
635                                      struct drm_plane_state *state)
636 {
637         struct tegra_plane *tegra = to_tegra_plane(plane);
638         int err;
639
640         /* no need for further checks if the plane is being disabled */
641         if (!state->crtc)
642                 return 0;
643
644         /* scaling not supported for cursor */
645         if ((state->src_w >> 16 != state->crtc_w) ||
646             (state->src_h >> 16 != state->crtc_h))
647                 return -EINVAL;
648
649         /* only square cursors supported */
650         if (state->src_w != state->src_h)
651                 return -EINVAL;
652
653         if (state->crtc_w != 32 && state->crtc_w != 64 &&
654             state->crtc_w != 128 && state->crtc_w != 256)
655                 return -EINVAL;
656
657         err = tegra_plane_state_add(tegra, state);
658         if (err < 0)
659                 return err;
660
661         return 0;
662 }
663
664 static void tegra_cursor_atomic_update(struct drm_plane *plane,
665                                        struct drm_plane_state *old_state)
666 {
667         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
668         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
669         struct drm_plane_state *state = plane->state;
670         u32 value = CURSOR_CLIP_DISPLAY;
671
672         /* rien ne va plus */
673         if (!plane->state->crtc || !plane->state->fb)
674                 return;
675
676         switch (state->crtc_w) {
677         case 32:
678                 value |= CURSOR_SIZE_32x32;
679                 break;
680
681         case 64:
682                 value |= CURSOR_SIZE_64x64;
683                 break;
684
685         case 128:
686                 value |= CURSOR_SIZE_128x128;
687                 break;
688
689         case 256:
690                 value |= CURSOR_SIZE_256x256;
691                 break;
692
693         default:
694                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
695                      state->crtc_h);
696                 return;
697         }
698
699         value |= (bo->paddr >> 10) & 0x3fffff;
700         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
701
702 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
703         value = (bo->paddr >> 32) & 0x3;
704         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
705 #endif
706
707         /* enable cursor and set blend mode */
708         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
709         value |= CURSOR_ENABLE;
710         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
711
712         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
713         value &= ~CURSOR_DST_BLEND_MASK;
714         value &= ~CURSOR_SRC_BLEND_MASK;
715         value |= CURSOR_MODE_NORMAL;
716         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
717         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
718         value |= CURSOR_ALPHA;
719         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
720
721         /* position the cursor */
722         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
723         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
724 }
725
726 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
727                                         struct drm_plane_state *old_state)
728 {
729         struct tegra_dc *dc;
730         u32 value;
731
732         /* rien ne va plus */
733         if (!old_state || !old_state->crtc)
734                 return;
735
736         dc = to_tegra_dc(old_state->crtc);
737
738         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
739         value &= ~CURSOR_ENABLE;
740         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
741 }
742
743 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
744         .atomic_check = tegra_cursor_atomic_check,
745         .atomic_update = tegra_cursor_atomic_update,
746         .atomic_disable = tegra_cursor_atomic_disable,
747 };
748
749 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
750                                                       struct tegra_dc *dc)
751 {
752         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
753         struct tegra_plane *plane;
754         unsigned int num_formats;
755         const u32 *formats;
756         int err;
757
758         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
759         if (!plane)
760                 return ERR_PTR(-ENOMEM);
761
762         /*
763          * This index is kind of fake. The cursor isn't a regular plane, but
764          * its update and activation request bits in DC_CMD_STATE_CONTROL do
765          * use the same programming. Setting this fake index here allows the
766          * code in tegra_add_plane_state() to do the right thing without the
767          * need to special-casing the cursor plane.
768          */
769         plane->index = 6;
770         plane->dc = dc;
771
772         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
773         formats = tegra_cursor_plane_formats;
774
775         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
776                                        &tegra_plane_funcs, formats,
777                                        num_formats, NULL,
778                                        DRM_PLANE_TYPE_CURSOR, NULL);
779         if (err < 0) {
780                 kfree(plane);
781                 return ERR_PTR(err);
782         }
783
784         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
785
786         return &plane->base;
787 }
788
789 static const u32 tegra20_overlay_formats[] = {
790         DRM_FORMAT_ARGB4444,
791         DRM_FORMAT_ARGB1555,
792         DRM_FORMAT_RGB565,
793         DRM_FORMAT_RGBA5551,
794         DRM_FORMAT_ABGR8888,
795         DRM_FORMAT_ARGB8888,
796         /* non-native formats */
797         DRM_FORMAT_XRGB1555,
798         DRM_FORMAT_RGBX5551,
799         DRM_FORMAT_XBGR8888,
800         DRM_FORMAT_XRGB8888,
801         /* planar formats */
802         DRM_FORMAT_UYVY,
803         DRM_FORMAT_YUYV,
804         DRM_FORMAT_YUV420,
805         DRM_FORMAT_YUV422,
806 };
807
808 static const u32 tegra114_overlay_formats[] = {
809         DRM_FORMAT_ARGB4444,
810         DRM_FORMAT_ARGB1555,
811         DRM_FORMAT_RGB565,
812         DRM_FORMAT_RGBA5551,
813         DRM_FORMAT_ABGR8888,
814         DRM_FORMAT_ARGB8888,
815         /* new on Tegra114 */
816         DRM_FORMAT_ABGR4444,
817         DRM_FORMAT_ABGR1555,
818         DRM_FORMAT_BGRA5551,
819         DRM_FORMAT_XRGB1555,
820         DRM_FORMAT_RGBX5551,
821         DRM_FORMAT_XBGR1555,
822         DRM_FORMAT_BGRX5551,
823         DRM_FORMAT_BGR565,
824         DRM_FORMAT_BGRA8888,
825         DRM_FORMAT_RGBA8888,
826         DRM_FORMAT_XRGB8888,
827         DRM_FORMAT_XBGR8888,
828         /* planar formats */
829         DRM_FORMAT_UYVY,
830         DRM_FORMAT_YUYV,
831         DRM_FORMAT_YUV420,
832         DRM_FORMAT_YUV422,
833 };
834
835 static const u32 tegra124_overlay_formats[] = {
836         DRM_FORMAT_ARGB4444,
837         DRM_FORMAT_ARGB1555,
838         DRM_FORMAT_RGB565,
839         DRM_FORMAT_RGBA5551,
840         DRM_FORMAT_ABGR8888,
841         DRM_FORMAT_ARGB8888,
842         /* new on Tegra114 */
843         DRM_FORMAT_ABGR4444,
844         DRM_FORMAT_ABGR1555,
845         DRM_FORMAT_BGRA5551,
846         DRM_FORMAT_XRGB1555,
847         DRM_FORMAT_RGBX5551,
848         DRM_FORMAT_XBGR1555,
849         DRM_FORMAT_BGRX5551,
850         DRM_FORMAT_BGR565,
851         DRM_FORMAT_BGRA8888,
852         DRM_FORMAT_RGBA8888,
853         DRM_FORMAT_XRGB8888,
854         DRM_FORMAT_XBGR8888,
855         /* new on Tegra124 */
856         DRM_FORMAT_RGBX8888,
857         DRM_FORMAT_BGRX8888,
858         /* planar formats */
859         DRM_FORMAT_UYVY,
860         DRM_FORMAT_YUYV,
861         DRM_FORMAT_YUV420,
862         DRM_FORMAT_YUV422,
863 };
864
865 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
866                                                        struct tegra_dc *dc,
867                                                        unsigned int index)
868 {
869         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
870         struct tegra_plane *plane;
871         unsigned int num_formats;
872         const u32 *formats;
873         int err;
874
875         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876         if (!plane)
877                 return ERR_PTR(-ENOMEM);
878
879         plane->offset = 0xa00 + 0x200 * index;
880         plane->index = index;
881         plane->dc = dc;
882
883         num_formats = dc->soc->num_overlay_formats;
884         formats = dc->soc->overlay_formats;
885
886         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
887                                        &tegra_plane_funcs, formats,
888                                        num_formats, NULL,
889                                        DRM_PLANE_TYPE_OVERLAY, NULL);
890         if (err < 0) {
891                 kfree(plane);
892                 return ERR_PTR(err);
893         }
894
895         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
896
897         if (dc->soc->supports_blending)
898                 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
899
900         return &plane->base;
901 }
902
903 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
904                                                     struct tegra_dc *dc)
905 {
906         struct drm_plane *plane, *primary = NULL;
907         unsigned int i, j;
908
909         for (i = 0; i < dc->soc->num_wgrps; i++) {
910                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
911
912                 if (wgrp->dc == dc->pipe) {
913                         for (j = 0; j < wgrp->num_windows; j++) {
914                                 unsigned int index = wgrp->windows[j];
915
916                                 plane = tegra_shared_plane_create(drm, dc,
917                                                                   wgrp->index,
918                                                                   index);
919                                 if (IS_ERR(plane))
920                                         return plane;
921
922                                 /*
923                                  * Choose the first shared plane owned by this
924                                  * head as the primary plane.
925                                  */
926                                 if (!primary) {
927                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
928                                         primary = plane;
929                                 }
930                         }
931                 }
932         }
933
934         return primary;
935 }
936
937 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
938                                              struct tegra_dc *dc)
939 {
940         struct drm_plane *planes[2], *primary;
941         unsigned int i;
942         int err;
943
944         primary = tegra_primary_plane_create(drm, dc);
945         if (IS_ERR(primary))
946                 return primary;
947
948         for (i = 0; i < 2; i++) {
949                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
950                 if (IS_ERR(planes[i])) {
951                         err = PTR_ERR(planes[i]);
952
953                         while (i--)
954                                 tegra_plane_funcs.destroy(planes[i]);
955
956                         tegra_plane_funcs.destroy(primary);
957                         return ERR_PTR(err);
958                 }
959         }
960
961         return primary;
962 }
963
964 static void tegra_dc_destroy(struct drm_crtc *crtc)
965 {
966         drm_crtc_cleanup(crtc);
967 }
968
969 static void tegra_crtc_reset(struct drm_crtc *crtc)
970 {
971         struct tegra_dc_state *state;
972
973         if (crtc->state)
974                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
975
976         kfree(crtc->state);
977         crtc->state = NULL;
978
979         state = kzalloc(sizeof(*state), GFP_KERNEL);
980         if (state) {
981                 crtc->state = &state->base;
982                 crtc->state->crtc = crtc;
983         }
984
985         drm_crtc_vblank_reset(crtc);
986 }
987
988 static struct drm_crtc_state *
989 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
990 {
991         struct tegra_dc_state *state = to_dc_state(crtc->state);
992         struct tegra_dc_state *copy;
993
994         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
995         if (!copy)
996                 return NULL;
997
998         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
999         copy->clk = state->clk;
1000         copy->pclk = state->pclk;
1001         copy->div = state->div;
1002         copy->planes = state->planes;
1003
1004         return &copy->base;
1005 }
1006
1007 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1008                                             struct drm_crtc_state *state)
1009 {
1010         __drm_atomic_helper_crtc_destroy_state(state);
1011         kfree(state);
1012 }
1013
1014 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1015
1016 static const struct debugfs_reg32 tegra_dc_regs[] = {
1017         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1018         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1019         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1020         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1021         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1022         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1023         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1024         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1025         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1026         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1027         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1028         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1029         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1030         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1031         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1032         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1033         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1034         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1035         DEBUGFS_REG32(DC_CMD_INT_MASK),
1036         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1037         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1038         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1039         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1040         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1041         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1042         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1043         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1044         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1045         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1046         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1047         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1048         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1049         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1050         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1051         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1052         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1053         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1054         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1055         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1056         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1057         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1058         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1059         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1060         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1061         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1062         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1063         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1064         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1065         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1066         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1067         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1068         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1069         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1070         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1071         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1072         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1073         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1074         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1075         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1076         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1077         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1078         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1079         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1080         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1081         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1082         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1083         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1084         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1085         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1086         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1087         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1088         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1089         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1090         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1091         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1092         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1093         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1094         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1095         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1096         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1097         DEBUGFS_REG32(DC_DISP_ACTIVE),
1098         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1099         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1100         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1101         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1102         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1103         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1104         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1105         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1106         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1107         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1108         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1109         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1110         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1111         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1112         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1113         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1114         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1115         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1116         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1117         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1118         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1119         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1120         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1121         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1122         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1123         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1124         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1125         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1126         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1127         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1128         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1129         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1130         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1131         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1132         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1133         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1134         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1135         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1136         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1137         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1138         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1139         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1140         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1141         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1142         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1143         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1144         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1145         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1146         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1147         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1148         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1149         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1150         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1151         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1152         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1153         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1154         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1155         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1156         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1157         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1158         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1159         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1160         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1161         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1162         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1163         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1164         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1165         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1166         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1167         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1168         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1169         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1170         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1171         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1172         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1173         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1174         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1175         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1176         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1177         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1178         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1179         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1180         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1181         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1182         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1183         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1184         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1185         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1186         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1187         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1188         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1189         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1190         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1191         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1192         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1193         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1194         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1195         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1196         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1197         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1198         DEBUGFS_REG32(DC_WIN_POSITION),
1199         DEBUGFS_REG32(DC_WIN_SIZE),
1200         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1201         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1202         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1203         DEBUGFS_REG32(DC_WIN_DDA_INC),
1204         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1205         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1206         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1207         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1208         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1209         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1210         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1211         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1212         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1213         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1214         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1215         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1216         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1217         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1218         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1219         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1220         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1221         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1222         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1223         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1224         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1225         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1226         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1227         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1228         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1229 };
1230
1231 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1232 {
1233         struct drm_info_node *node = s->private;
1234         struct tegra_dc *dc = node->info_ent->data;
1235         unsigned int i;
1236         int err = 0;
1237
1238         drm_modeset_lock(&dc->base.mutex, NULL);
1239
1240         if (!dc->base.state->active) {
1241                 err = -EBUSY;
1242                 goto unlock;
1243         }
1244
1245         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1246                 unsigned int offset = tegra_dc_regs[i].offset;
1247
1248                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1249                            offset, tegra_dc_readl(dc, offset));
1250         }
1251
1252 unlock:
1253         drm_modeset_unlock(&dc->base.mutex);
1254         return err;
1255 }
1256
1257 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1258 {
1259         struct drm_info_node *node = s->private;
1260         struct tegra_dc *dc = node->info_ent->data;
1261         int err = 0;
1262         u32 value;
1263
1264         drm_modeset_lock(&dc->base.mutex, NULL);
1265
1266         if (!dc->base.state->active) {
1267                 err = -EBUSY;
1268                 goto unlock;
1269         }
1270
1271         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1272         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1273         tegra_dc_commit(dc);
1274
1275         drm_crtc_wait_one_vblank(&dc->base);
1276         drm_crtc_wait_one_vblank(&dc->base);
1277
1278         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1279         seq_printf(s, "%08x\n", value);
1280
1281         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1282
1283 unlock:
1284         drm_modeset_unlock(&dc->base.mutex);
1285         return err;
1286 }
1287
1288 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1289 {
1290         struct drm_info_node *node = s->private;
1291         struct tegra_dc *dc = node->info_ent->data;
1292
1293         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1294         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1295         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1296         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1297
1298         return 0;
1299 }
1300
1301 static struct drm_info_list debugfs_files[] = {
1302         { "regs", tegra_dc_show_regs, 0, NULL },
1303         { "crc", tegra_dc_show_crc, 0, NULL },
1304         { "stats", tegra_dc_show_stats, 0, NULL },
1305 };
1306
1307 static int tegra_dc_late_register(struct drm_crtc *crtc)
1308 {
1309         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1310         struct drm_minor *minor = crtc->dev->primary;
1311         struct dentry *root;
1312         struct tegra_dc *dc = to_tegra_dc(crtc);
1313         int err;
1314
1315 #ifdef CONFIG_DEBUG_FS
1316         root = crtc->debugfs_entry;
1317 #else
1318         root = NULL;
1319 #endif
1320
1321         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1322                                     GFP_KERNEL);
1323         if (!dc->debugfs_files)
1324                 return -ENOMEM;
1325
1326         for (i = 0; i < count; i++)
1327                 dc->debugfs_files[i].data = dc;
1328
1329         err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1330         if (err < 0)
1331                 goto free;
1332
1333         return 0;
1334
1335 free:
1336         kfree(dc->debugfs_files);
1337         dc->debugfs_files = NULL;
1338
1339         return err;
1340 }
1341
1342 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1343 {
1344         unsigned int count = ARRAY_SIZE(debugfs_files);
1345         struct drm_minor *minor = crtc->dev->primary;
1346         struct tegra_dc *dc = to_tegra_dc(crtc);
1347
1348         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1349         kfree(dc->debugfs_files);
1350         dc->debugfs_files = NULL;
1351 }
1352
1353 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1354 {
1355         struct tegra_dc *dc = to_tegra_dc(crtc);
1356
1357         /* XXX vblank syncpoints don't work with nvdisplay yet */
1358         if (dc->syncpt && !dc->soc->has_nvdisplay)
1359                 return host1x_syncpt_read(dc->syncpt);
1360
1361         /* fallback to software emulated VBLANK counter */
1362         return drm_crtc_vblank_count(&dc->base);
1363 }
1364
1365 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1366 {
1367         struct tegra_dc *dc = to_tegra_dc(crtc);
1368         u32 value;
1369
1370         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1371         value |= VBLANK_INT;
1372         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1373
1374         return 0;
1375 }
1376
1377 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1378 {
1379         struct tegra_dc *dc = to_tegra_dc(crtc);
1380         u32 value;
1381
1382         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1383         value &= ~VBLANK_INT;
1384         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1385 }
1386
1387 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1388         .page_flip = drm_atomic_helper_page_flip,
1389         .set_config = drm_atomic_helper_set_config,
1390         .destroy = tegra_dc_destroy,
1391         .reset = tegra_crtc_reset,
1392         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1393         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1394         .late_register = tegra_dc_late_register,
1395         .early_unregister = tegra_dc_early_unregister,
1396         .get_vblank_counter = tegra_dc_get_vblank_counter,
1397         .enable_vblank = tegra_dc_enable_vblank,
1398         .disable_vblank = tegra_dc_disable_vblank,
1399 };
1400
1401 static int tegra_dc_set_timings(struct tegra_dc *dc,
1402                                 struct drm_display_mode *mode)
1403 {
1404         unsigned int h_ref_to_sync = 1;
1405         unsigned int v_ref_to_sync = 1;
1406         unsigned long value;
1407
1408         if (!dc->soc->has_nvdisplay) {
1409                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1410
1411                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1412                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1413         }
1414
1415         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1416                 ((mode->hsync_end - mode->hsync_start) <<  0);
1417         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1418
1419         value = ((mode->vtotal - mode->vsync_end) << 16) |
1420                 ((mode->htotal - mode->hsync_end) <<  0);
1421         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1422
1423         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1424                 ((mode->hsync_start - mode->hdisplay) <<  0);
1425         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1426
1427         value = (mode->vdisplay << 16) | mode->hdisplay;
1428         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1429
1430         return 0;
1431 }
1432
1433 /**
1434  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1435  *     state
1436  * @dc: display controller
1437  * @crtc_state: CRTC atomic state
1438  * @clk: parent clock for display controller
1439  * @pclk: pixel clock
1440  * @div: shift clock divider
1441  *
1442  * Returns:
1443  * 0 on success or a negative error-code on failure.
1444  */
1445 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1446                                struct drm_crtc_state *crtc_state,
1447                                struct clk *clk, unsigned long pclk,
1448                                unsigned int div)
1449 {
1450         struct tegra_dc_state *state = to_dc_state(crtc_state);
1451
1452         if (!clk_has_parent(dc->clk, clk))
1453                 return -EINVAL;
1454
1455         state->clk = clk;
1456         state->pclk = pclk;
1457         state->div = div;
1458
1459         return 0;
1460 }
1461
1462 static void tegra_dc_commit_state(struct tegra_dc *dc,
1463                                   struct tegra_dc_state *state)
1464 {
1465         u32 value;
1466         int err;
1467
1468         err = clk_set_parent(dc->clk, state->clk);
1469         if (err < 0)
1470                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1471
1472         /*
1473          * Outputs may not want to change the parent clock rate. This is only
1474          * relevant to Tegra20 where only a single display PLL is available.
1475          * Since that PLL would typically be used for HDMI, an internal LVDS
1476          * panel would need to be driven by some other clock such as PLL_P
1477          * which is shared with other peripherals. Changing the clock rate
1478          * should therefore be avoided.
1479          */
1480         if (state->pclk > 0) {
1481                 err = clk_set_rate(state->clk, state->pclk);
1482                 if (err < 0)
1483                         dev_err(dc->dev,
1484                                 "failed to set clock rate to %lu Hz\n",
1485                                 state->pclk);
1486         }
1487
1488         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1489                       state->div);
1490         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1491
1492         if (!dc->soc->has_nvdisplay) {
1493                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1494                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1495         }
1496
1497         err = clk_set_rate(dc->clk, state->pclk);
1498         if (err < 0)
1499                 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1500                         dc->clk, state->pclk, err);
1501 }
1502
1503 static void tegra_dc_stop(struct tegra_dc *dc)
1504 {
1505         u32 value;
1506
1507         /* stop the display controller */
1508         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1509         value &= ~DISP_CTRL_MODE_MASK;
1510         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1511
1512         tegra_dc_commit(dc);
1513 }
1514
1515 static bool tegra_dc_idle(struct tegra_dc *dc)
1516 {
1517         u32 value;
1518
1519         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1520
1521         return (value & DISP_CTRL_MODE_MASK) == 0;
1522 }
1523
1524 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1525 {
1526         timeout = jiffies + msecs_to_jiffies(timeout);
1527
1528         while (time_before(jiffies, timeout)) {
1529                 if (tegra_dc_idle(dc))
1530                         return 0;
1531
1532                 usleep_range(1000, 2000);
1533         }
1534
1535         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1536         return -ETIMEDOUT;
1537 }
1538
1539 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1540                                       struct drm_crtc_state *old_state)
1541 {
1542         struct tegra_dc *dc = to_tegra_dc(crtc);
1543         u32 value;
1544
1545         if (!tegra_dc_idle(dc)) {
1546                 tegra_dc_stop(dc);
1547
1548                 /*
1549                  * Ignore the return value, there isn't anything useful to do
1550                  * in case this fails.
1551                  */
1552                 tegra_dc_wait_idle(dc, 100);
1553         }
1554
1555         /*
1556          * This should really be part of the RGB encoder driver, but clearing
1557          * these bits has the side-effect of stopping the display controller.
1558          * When that happens no VBLANK interrupts will be raised. At the same
1559          * time the encoder is disabled before the display controller, so the
1560          * above code is always going to timeout waiting for the controller
1561          * to go idle.
1562          *
1563          * Given the close coupling between the RGB encoder and the display
1564          * controller doing it here is still kind of okay. None of the other
1565          * encoder drivers require these bits to be cleared.
1566          *
1567          * XXX: Perhaps given that the display controller is switched off at
1568          * this point anyway maybe clearing these bits isn't even useful for
1569          * the RGB encoder?
1570          */
1571         if (dc->rgb) {
1572                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1573                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1574                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1575                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1576         }
1577
1578         tegra_dc_stats_reset(&dc->stats);
1579         drm_crtc_vblank_off(crtc);
1580
1581         spin_lock_irq(&crtc->dev->event_lock);
1582
1583         if (crtc->state->event) {
1584                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1585                 crtc->state->event = NULL;
1586         }
1587
1588         spin_unlock_irq(&crtc->dev->event_lock);
1589
1590         pm_runtime_put_sync(dc->dev);
1591 }
1592
1593 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1594                                      struct drm_crtc_state *old_state)
1595 {
1596         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1597         struct tegra_dc_state *state = to_dc_state(crtc->state);
1598         struct tegra_dc *dc = to_tegra_dc(crtc);
1599         u32 value;
1600
1601         pm_runtime_get_sync(dc->dev);
1602
1603         /* initialize display controller */
1604         if (dc->syncpt) {
1605                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1606
1607                 if (dc->soc->has_nvdisplay)
1608                         enable = 1 << 31;
1609                 else
1610                         enable = 1 << 8;
1611
1612                 value = SYNCPT_CNTRL_NO_STALL;
1613                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1614
1615                 value = enable | syncpt;
1616                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1617         }
1618
1619         if (dc->soc->has_nvdisplay) {
1620                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1621                         DSC_OBUF_UF_INT;
1622                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1623
1624                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1625                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1626                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1627                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1628                         VBLANK_INT | FRAME_END_INT;
1629                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1630
1631                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1632                         FRAME_END_INT;
1633                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1634
1635                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1636                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1637
1638                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1639         } else {
1640                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1641                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1642                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1643
1644                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1645                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1646                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1647
1648                 /* initialize timer */
1649                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1650                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1651                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1652
1653                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1654                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1655                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1656
1657                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1658                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1659                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1660
1661                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1662                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1663                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1664         }
1665
1666         if (dc->soc->supports_background_color)
1667                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1668         else
1669                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1670
1671         /* apply PLL and pixel clock changes */
1672         tegra_dc_commit_state(dc, state);
1673
1674         /* program display mode */
1675         tegra_dc_set_timings(dc, mode);
1676
1677         /* interlacing isn't supported yet, so disable it */
1678         if (dc->soc->supports_interlacing) {
1679                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1680                 value &= ~INTERLACE_ENABLE;
1681                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1682         }
1683
1684         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1685         value &= ~DISP_CTRL_MODE_MASK;
1686         value |= DISP_CTRL_MODE_C_DISPLAY;
1687         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1688
1689         if (!dc->soc->has_nvdisplay) {
1690                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1691                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1692                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1693                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1694         }
1695
1696         /* enable underflow reporting and display red for missing pixels */
1697         if (dc->soc->has_nvdisplay) {
1698                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1699                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1700         }
1701
1702         tegra_dc_commit(dc);
1703
1704         drm_crtc_vblank_on(crtc);
1705 }
1706
1707 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1708                                    struct drm_crtc_state *state)
1709 {
1710         struct tegra_atomic_state *s = to_tegra_atomic_state(state->state);
1711         struct tegra_dc_state *tegra = to_dc_state(state);
1712
1713         /*
1714          * The display hub display clock needs to be fed by the display clock
1715          * with the highest frequency to ensure proper functioning of all the
1716          * displays.
1717          *
1718          * Note that this isn't used before Tegra186, but it doesn't hurt and
1719          * conditionalizing it would make the code less clean.
1720          */
1721         if (state->active) {
1722                 if (!s->clk_disp || tegra->pclk > s->rate) {
1723                         s->dc = to_tegra_dc(crtc);
1724                         s->clk_disp = s->dc->clk;
1725                         s->rate = tegra->pclk;
1726                 }
1727         }
1728
1729         return 0;
1730 }
1731
1732 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1733                                     struct drm_crtc_state *old_crtc_state)
1734 {
1735         unsigned long flags;
1736
1737         if (crtc->state->event) {
1738                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1739
1740                 if (drm_crtc_vblank_get(crtc) != 0)
1741                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1742                 else
1743                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1744
1745                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1746
1747                 crtc->state->event = NULL;
1748         }
1749 }
1750
1751 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1752                                     struct drm_crtc_state *old_crtc_state)
1753 {
1754         struct tegra_dc_state *state = to_dc_state(crtc->state);
1755         struct tegra_dc *dc = to_tegra_dc(crtc);
1756         u32 value;
1757
1758         value = state->planes << 8 | GENERAL_UPDATE;
1759         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1760         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1761
1762         value = state->planes | GENERAL_ACT_REQ;
1763         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1764         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1765 }
1766
1767 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1768         .atomic_check = tegra_crtc_atomic_check,
1769         .atomic_begin = tegra_crtc_atomic_begin,
1770         .atomic_flush = tegra_crtc_atomic_flush,
1771         .atomic_enable = tegra_crtc_atomic_enable,
1772         .atomic_disable = tegra_crtc_atomic_disable,
1773 };
1774
1775 static irqreturn_t tegra_dc_irq(int irq, void *data)
1776 {
1777         struct tegra_dc *dc = data;
1778         unsigned long status;
1779
1780         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1781         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1782
1783         if (status & FRAME_END_INT) {
1784                 /*
1785                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1786                 */
1787                 dc->stats.frames++;
1788         }
1789
1790         if (status & VBLANK_INT) {
1791                 /*
1792                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1793                 */
1794                 drm_crtc_handle_vblank(&dc->base);
1795                 dc->stats.vblank++;
1796         }
1797
1798         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1799                 /*
1800                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1801                 */
1802                 dc->stats.underflow++;
1803         }
1804
1805         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1806                 /*
1807                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1808                 */
1809                 dc->stats.overflow++;
1810         }
1811
1812         if (status & HEAD_UF_INT) {
1813                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1814                 dc->stats.underflow++;
1815         }
1816
1817         return IRQ_HANDLED;
1818 }
1819
1820 static int tegra_dc_init(struct host1x_client *client)
1821 {
1822         struct drm_device *drm = dev_get_drvdata(client->parent);
1823         struct iommu_group *group = iommu_group_get(client->dev);
1824         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1825         struct tegra_dc *dc = host1x_client_to_dc(client);
1826         struct tegra_drm *tegra = drm->dev_private;
1827         struct drm_plane *primary = NULL;
1828         struct drm_plane *cursor = NULL;
1829         int err;
1830
1831         dc->syncpt = host1x_syncpt_request(client, flags);
1832         if (!dc->syncpt)
1833                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1834
1835         if (group && tegra->domain) {
1836                 if (group != tegra->group) {
1837                         err = iommu_attach_group(tegra->domain, group);
1838                         if (err < 0) {
1839                                 dev_err(dc->dev,
1840                                         "failed to attach to domain: %d\n",
1841                                         err);
1842                                 return err;
1843                         }
1844
1845                         tegra->group = group;
1846                 }
1847
1848                 dc->domain = tegra->domain;
1849         }
1850
1851         if (dc->soc->wgrps)
1852                 primary = tegra_dc_add_shared_planes(drm, dc);
1853         else
1854                 primary = tegra_dc_add_planes(drm, dc);
1855
1856         if (IS_ERR(primary)) {
1857                 err = PTR_ERR(primary);
1858                 goto cleanup;
1859         }
1860
1861         if (dc->soc->supports_cursor) {
1862                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1863                 if (IS_ERR(cursor)) {
1864                         err = PTR_ERR(cursor);
1865                         goto cleanup;
1866                 }
1867         }
1868
1869         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1870                                         &tegra_crtc_funcs, NULL);
1871         if (err < 0)
1872                 goto cleanup;
1873
1874         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1875
1876         /*
1877          * Keep track of the minimum pitch alignment across all display
1878          * controllers.
1879          */
1880         if (dc->soc->pitch_align > tegra->pitch_align)
1881                 tegra->pitch_align = dc->soc->pitch_align;
1882
1883         err = tegra_dc_rgb_init(drm, dc);
1884         if (err < 0 && err != -ENODEV) {
1885                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1886                 goto cleanup;
1887         }
1888
1889         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1890                                dev_name(dc->dev), dc);
1891         if (err < 0) {
1892                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1893                         err);
1894                 goto cleanup;
1895         }
1896
1897         return 0;
1898
1899 cleanup:
1900         if (!IS_ERR_OR_NULL(cursor))
1901                 drm_plane_cleanup(cursor);
1902
1903         if (!IS_ERR(primary))
1904                 drm_plane_cleanup(primary);
1905
1906         if (group && tegra->domain) {
1907                 iommu_detach_group(tegra->domain, group);
1908                 dc->domain = NULL;
1909         }
1910
1911         return err;
1912 }
1913
1914 static int tegra_dc_exit(struct host1x_client *client)
1915 {
1916         struct iommu_group *group = iommu_group_get(client->dev);
1917         struct tegra_dc *dc = host1x_client_to_dc(client);
1918         int err;
1919
1920         devm_free_irq(dc->dev, dc->irq, dc);
1921
1922         err = tegra_dc_rgb_exit(dc);
1923         if (err) {
1924                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1925                 return err;
1926         }
1927
1928         if (group && dc->domain) {
1929                 iommu_detach_group(dc->domain, group);
1930                 dc->domain = NULL;
1931         }
1932
1933         host1x_syncpt_free(dc->syncpt);
1934
1935         return 0;
1936 }
1937
1938 static const struct host1x_client_ops dc_client_ops = {
1939         .init = tegra_dc_init,
1940         .exit = tegra_dc_exit,
1941 };
1942
1943 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1944         .supports_background_color = false,
1945         .supports_interlacing = false,
1946         .supports_cursor = false,
1947         .supports_block_linear = false,
1948         .supports_blending = false,
1949         .pitch_align = 8,
1950         .has_powergate = false,
1951         .coupled_pm = true,
1952         .has_nvdisplay = false,
1953         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1954         .primary_formats = tegra20_primary_formats,
1955         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1956         .overlay_formats = tegra20_overlay_formats,
1957 };
1958
1959 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1960         .supports_background_color = false,
1961         .supports_interlacing = false,
1962         .supports_cursor = false,
1963         .supports_block_linear = false,
1964         .supports_blending = false,
1965         .pitch_align = 8,
1966         .has_powergate = false,
1967         .coupled_pm = false,
1968         .has_nvdisplay = false,
1969         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1970         .primary_formats = tegra20_primary_formats,
1971         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1972         .overlay_formats = tegra20_overlay_formats,
1973 };
1974
1975 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1976         .supports_background_color = false,
1977         .supports_interlacing = false,
1978         .supports_cursor = false,
1979         .supports_block_linear = false,
1980         .supports_blending = false,
1981         .pitch_align = 64,
1982         .has_powergate = true,
1983         .coupled_pm = false,
1984         .has_nvdisplay = false,
1985         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
1986         .primary_formats = tegra114_primary_formats,
1987         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
1988         .overlay_formats = tegra114_overlay_formats,
1989 };
1990
1991 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1992         .supports_background_color = true,
1993         .supports_interlacing = true,
1994         .supports_cursor = true,
1995         .supports_block_linear = true,
1996         .supports_blending = true,
1997         .pitch_align = 64,
1998         .has_powergate = true,
1999         .coupled_pm = false,
2000         .has_nvdisplay = false,
2001         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2002         .primary_formats = tegra114_primary_formats,
2003         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2004         .overlay_formats = tegra114_overlay_formats,
2005 };
2006
2007 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2008         .supports_background_color = true,
2009         .supports_interlacing = true,
2010         .supports_cursor = true,
2011         .supports_block_linear = true,
2012         .supports_blending = true,
2013         .pitch_align = 64,
2014         .has_powergate = true,
2015         .coupled_pm = false,
2016         .has_nvdisplay = false,
2017         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2018         .primary_formats = tegra114_primary_formats,
2019         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2020         .overlay_formats = tegra114_overlay_formats,
2021 };
2022
2023 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2024         {
2025                 .index = 0,
2026                 .dc = 0,
2027                 .windows = (const unsigned int[]) { 0 },
2028                 .num_windows = 1,
2029         }, {
2030                 .index = 1,
2031                 .dc = 1,
2032                 .windows = (const unsigned int[]) { 1 },
2033                 .num_windows = 1,
2034         }, {
2035                 .index = 2,
2036                 .dc = 1,
2037                 .windows = (const unsigned int[]) { 2 },
2038                 .num_windows = 1,
2039         }, {
2040                 .index = 3,
2041                 .dc = 2,
2042                 .windows = (const unsigned int[]) { 3 },
2043                 .num_windows = 1,
2044         }, {
2045                 .index = 4,
2046                 .dc = 2,
2047                 .windows = (const unsigned int[]) { 4 },
2048                 .num_windows = 1,
2049         }, {
2050                 .index = 5,
2051                 .dc = 2,
2052                 .windows = (const unsigned int[]) { 5 },
2053                 .num_windows = 1,
2054         },
2055 };
2056
2057 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2058         .supports_background_color = true,
2059         .supports_interlacing = true,
2060         .supports_cursor = true,
2061         .supports_block_linear = true,
2062         .supports_blending = true,
2063         .pitch_align = 64,
2064         .has_powergate = false,
2065         .coupled_pm = false,
2066         .has_nvdisplay = true,
2067         .wgrps = tegra186_dc_wgrps,
2068         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2069 };
2070
2071 static const struct of_device_id tegra_dc_of_match[] = {
2072         {
2073                 .compatible = "nvidia,tegra186-dc",
2074                 .data = &tegra186_dc_soc_info,
2075         }, {
2076                 .compatible = "nvidia,tegra210-dc",
2077                 .data = &tegra210_dc_soc_info,
2078         }, {
2079                 .compatible = "nvidia,tegra124-dc",
2080                 .data = &tegra124_dc_soc_info,
2081         }, {
2082                 .compatible = "nvidia,tegra114-dc",
2083                 .data = &tegra114_dc_soc_info,
2084         }, {
2085                 .compatible = "nvidia,tegra30-dc",
2086                 .data = &tegra30_dc_soc_info,
2087         }, {
2088                 .compatible = "nvidia,tegra20-dc",
2089                 .data = &tegra20_dc_soc_info,
2090         }, {
2091                 /* sentinel */
2092         }
2093 };
2094 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2095
2096 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2097 {
2098         struct device_node *np;
2099         u32 value = 0;
2100         int err;
2101
2102         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2103         if (err < 0) {
2104                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2105
2106                 /*
2107                  * If the nvidia,head property isn't present, try to find the
2108                  * correct head number by looking up the position of this
2109                  * display controller's node within the device tree. Assuming
2110                  * that the nodes are ordered properly in the DTS file and
2111                  * that the translation into a flattened device tree blob
2112                  * preserves that ordering this will actually yield the right
2113                  * head number.
2114                  *
2115                  * If those assumptions don't hold, this will still work for
2116                  * cases where only a single display controller is used.
2117                  */
2118                 for_each_matching_node(np, tegra_dc_of_match) {
2119                         if (np == dc->dev->of_node) {
2120                                 of_node_put(np);
2121                                 break;
2122                         }
2123
2124                         value++;
2125                 }
2126         }
2127
2128         dc->pipe = value;
2129
2130         return 0;
2131 }
2132
2133 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2134 {
2135         struct tegra_dc *dc = dev_get_drvdata(dev);
2136         unsigned int pipe = (unsigned long)data;
2137
2138         return dc->pipe == pipe;
2139 }
2140
2141 static int tegra_dc_couple(struct tegra_dc *dc)
2142 {
2143         /*
2144          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2145          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2146          * POWER_CONTROL registers during CRTC enabling.
2147          */
2148         if (dc->soc->coupled_pm && dc->pipe == 1) {
2149                 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2150                 struct device_link *link;
2151                 struct device *partner;
2152
2153                 partner = driver_find_device(dc->dev->driver, NULL, 0,
2154                                              tegra_dc_match_by_pipe);
2155                 if (!partner)
2156                         return -EPROBE_DEFER;
2157
2158                 link = device_link_add(dc->dev, partner, flags);
2159                 if (!link) {
2160                         dev_err(dc->dev, "failed to link controllers\n");
2161                         return -EINVAL;
2162                 }
2163
2164                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2165         }
2166
2167         return 0;
2168 }
2169
2170 static int tegra_dc_probe(struct platform_device *pdev)
2171 {
2172         struct resource *regs;
2173         struct tegra_dc *dc;
2174         int err;
2175
2176         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2177         if (!dc)
2178                 return -ENOMEM;
2179
2180         dc->soc = of_device_get_match_data(&pdev->dev);
2181
2182         INIT_LIST_HEAD(&dc->list);
2183         dc->dev = &pdev->dev;
2184
2185         err = tegra_dc_parse_dt(dc);
2186         if (err < 0)
2187                 return err;
2188
2189         err = tegra_dc_couple(dc);
2190         if (err < 0)
2191                 return err;
2192
2193         dc->clk = devm_clk_get(&pdev->dev, NULL);
2194         if (IS_ERR(dc->clk)) {
2195                 dev_err(&pdev->dev, "failed to get clock\n");
2196                 return PTR_ERR(dc->clk);
2197         }
2198
2199         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2200         if (IS_ERR(dc->rst)) {
2201                 dev_err(&pdev->dev, "failed to get reset\n");
2202                 return PTR_ERR(dc->rst);
2203         }
2204
2205         /* assert reset and disable clock */
2206         err = clk_prepare_enable(dc->clk);
2207         if (err < 0)
2208                 return err;
2209
2210         usleep_range(2000, 4000);
2211
2212         err = reset_control_assert(dc->rst);
2213         if (err < 0)
2214                 return err;
2215
2216         usleep_range(2000, 4000);
2217
2218         clk_disable_unprepare(dc->clk);
2219
2220         if (dc->soc->has_powergate) {
2221                 if (dc->pipe == 0)
2222                         dc->powergate = TEGRA_POWERGATE_DIS;
2223                 else
2224                         dc->powergate = TEGRA_POWERGATE_DISB;
2225
2226                 tegra_powergate_power_off(dc->powergate);
2227         }
2228
2229         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2230         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2231         if (IS_ERR(dc->regs))
2232                 return PTR_ERR(dc->regs);
2233
2234         dc->irq = platform_get_irq(pdev, 0);
2235         if (dc->irq < 0) {
2236                 dev_err(&pdev->dev, "failed to get IRQ\n");
2237                 return -ENXIO;
2238         }
2239
2240         err = tegra_dc_rgb_probe(dc);
2241         if (err < 0 && err != -ENODEV) {
2242                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2243                 return err;
2244         }
2245
2246         platform_set_drvdata(pdev, dc);
2247         pm_runtime_enable(&pdev->dev);
2248
2249         INIT_LIST_HEAD(&dc->client.list);
2250         dc->client.ops = &dc_client_ops;
2251         dc->client.dev = &pdev->dev;
2252
2253         err = host1x_client_register(&dc->client);
2254         if (err < 0) {
2255                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2256                         err);
2257                 return err;
2258         }
2259
2260         return 0;
2261 }
2262
2263 static int tegra_dc_remove(struct platform_device *pdev)
2264 {
2265         struct tegra_dc *dc = platform_get_drvdata(pdev);
2266         int err;
2267
2268         err = host1x_client_unregister(&dc->client);
2269         if (err < 0) {
2270                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2271                         err);
2272                 return err;
2273         }
2274
2275         err = tegra_dc_rgb_remove(dc);
2276         if (err < 0) {
2277                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2278                 return err;
2279         }
2280
2281         pm_runtime_disable(&pdev->dev);
2282
2283         return 0;
2284 }
2285
2286 #ifdef CONFIG_PM
2287 static int tegra_dc_suspend(struct device *dev)
2288 {
2289         struct tegra_dc *dc = dev_get_drvdata(dev);
2290         int err;
2291
2292         err = reset_control_assert(dc->rst);
2293         if (err < 0) {
2294                 dev_err(dev, "failed to assert reset: %d\n", err);
2295                 return err;
2296         }
2297
2298         if (dc->soc->has_powergate)
2299                 tegra_powergate_power_off(dc->powergate);
2300
2301         clk_disable_unprepare(dc->clk);
2302
2303         return 0;
2304 }
2305
2306 static int tegra_dc_resume(struct device *dev)
2307 {
2308         struct tegra_dc *dc = dev_get_drvdata(dev);
2309         int err;
2310
2311         if (dc->soc->has_powergate) {
2312                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2313                                                         dc->rst);
2314                 if (err < 0) {
2315                         dev_err(dev, "failed to power partition: %d\n", err);
2316                         return err;
2317                 }
2318         } else {
2319                 err = clk_prepare_enable(dc->clk);
2320                 if (err < 0) {
2321                         dev_err(dev, "failed to enable clock: %d\n", err);
2322                         return err;
2323                 }
2324
2325                 err = reset_control_deassert(dc->rst);
2326                 if (err < 0) {
2327                         dev_err(dev, "failed to deassert reset: %d\n", err);
2328                         return err;
2329                 }
2330         }
2331
2332         return 0;
2333 }
2334 #endif
2335
2336 static const struct dev_pm_ops tegra_dc_pm_ops = {
2337         SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2338 };
2339
2340 struct platform_driver tegra_dc_driver = {
2341         .driver = {
2342                 .name = "tegra-dc",
2343                 .of_match_table = tegra_dc_of_match,
2344                 .pm = &tegra_dc_pm_ops,
2345         },
2346         .probe = tegra_dc_probe,
2347         .remove = tegra_dc_remove,
2348 };
This page took 0.171105 seconds and 4 git commands to generate.