2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
108 #define HANDLE_PIN_BIT 0
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group {
169 struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
193 * (see: fix_fullness_group())
195 static const int fullness_threshold_frac = 4;
199 struct list_head fullness_list[NR_ZS_FULLNESS];
201 * Size of objects stored in this class. Must be multiple
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
210 struct zs_size_stat stats;
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 static void SetPageHugeObject(struct page *page)
216 SetPageOwnerPriv1(page);
219 static void ClearPageHugeObject(struct page *page)
221 ClearPageOwnerPriv1(page);
224 static int PageHugeObject(struct page *page)
226 return PageOwnerPriv1(page);
230 * Placed within free objects to form a singly linked list.
231 * For every zspage, zspage->freeobj gives head of this list.
233 * This must be power of 2 and less than or equal to ZS_ALIGN
239 * It's valid for non-allocated object
243 * Handle of allocated object.
245 unsigned long handle;
252 struct size_class *size_class[ZS_SIZE_CLASSES];
253 struct kmem_cache *handle_cachep;
254 struct kmem_cache *zspage_cachep;
256 atomic_long_t pages_allocated;
258 struct zs_pool_stats stats;
260 /* Compact classes */
261 struct shrinker shrinker;
263 #ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry *stat_dentry;
266 #ifdef CONFIG_COMPACTION
268 struct work_struct free_work;
274 unsigned int fullness:FULLNESS_BITS;
275 unsigned int class:CLASS_BITS + 1;
276 unsigned int isolated:ISOLATED_BITS;
277 unsigned int magic:MAGIC_VAL_BITS;
280 unsigned int freeobj;
281 struct page *first_page;
282 struct list_head list; /* fullness list */
283 #ifdef CONFIG_COMPACTION
288 struct mapping_area {
289 #ifdef CONFIG_PGTABLE_MAPPING
290 struct vm_struct *vm; /* vm area for mapping object that span pages */
292 char *vm_buf; /* copy buffer for objects that span pages */
294 char *vm_addr; /* address of kmap_atomic()'ed pages */
295 enum zs_mapmode vm_mm; /* mapping mode */
298 #ifdef CONFIG_COMPACTION
299 static int zs_register_migration(struct zs_pool *pool);
300 static void zs_unregister_migration(struct zs_pool *pool);
301 static void migrate_lock_init(struct zspage *zspage);
302 static void migrate_read_lock(struct zspage *zspage);
303 static void migrate_read_unlock(struct zspage *zspage);
304 static void kick_deferred_free(struct zs_pool *pool);
305 static void init_deferred_free(struct zs_pool *pool);
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 static int zsmalloc_mount(void) { return 0; }
309 static void zsmalloc_unmount(void) {}
310 static int zs_register_migration(struct zs_pool *pool) { return 0; }
311 static void zs_unregister_migration(struct zs_pool *pool) {}
312 static void migrate_lock_init(struct zspage *zspage) {}
313 static void migrate_read_lock(struct zspage *zspage) {}
314 static void migrate_read_unlock(struct zspage *zspage) {}
315 static void kick_deferred_free(struct zs_pool *pool) {}
316 static void init_deferred_free(struct zs_pool *pool) {}
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 static int create_cache(struct zs_pool *pool)
322 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 if (!pool->handle_cachep)
327 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 if (!pool->zspage_cachep) {
330 kmem_cache_destroy(pool->handle_cachep);
331 pool->handle_cachep = NULL;
338 static void destroy_cache(struct zs_pool *pool)
340 kmem_cache_destroy(pool->handle_cachep);
341 kmem_cache_destroy(pool->zspage_cachep);
344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
347 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 kmem_cache_free(pool->handle_cachep, (void *)handle);
355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 return kmem_cache_alloc(pool->zspage_cachep,
358 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 kmem_cache_free(pool->zspage_cachep, zspage);
366 static void record_obj(unsigned long handle, unsigned long obj)
369 * lsb of @obj represents handle lock while other bits
370 * represent object value the handle is pointing so
371 * updating shouldn't do store tearing.
373 WRITE_ONCE(*(unsigned long *)handle, obj);
380 static void *zs_zpool_create(const char *name, gfp_t gfp,
381 const struct zpool_ops *zpool_ops,
385 * Ignore global gfp flags: zs_malloc() may be invoked from
386 * different contexts and its caller must provide a valid
389 return zs_create_pool(name);
392 static void zs_zpool_destroy(void *pool)
394 zs_destroy_pool(pool);
397 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398 unsigned long *handle)
400 *handle = zs_malloc(pool, size, gfp);
401 return *handle ? 0 : -1;
403 static void zs_zpool_free(void *pool, unsigned long handle)
405 zs_free(pool, handle);
408 static void *zs_zpool_map(void *pool, unsigned long handle,
409 enum zpool_mapmode mm)
411 enum zs_mapmode zs_mm;
420 case ZPOOL_MM_RW: /* fallthru */
426 return zs_map_object(pool, handle, zs_mm);
428 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 zs_unmap_object(pool, handle);
433 static u64 zs_zpool_total_size(void *pool)
435 return zs_get_total_pages(pool) << PAGE_SHIFT;
438 static struct zpool_driver zs_zpool_driver = {
440 .owner = THIS_MODULE,
441 .create = zs_zpool_create,
442 .destroy = zs_zpool_destroy,
443 .malloc = zs_zpool_malloc,
444 .free = zs_zpool_free,
446 .unmap = zs_zpool_unmap,
447 .total_size = zs_zpool_total_size,
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456 static bool is_zspage_isolated(struct zspage *zspage)
458 return zspage->isolated;
461 static __maybe_unused int is_first_page(struct page *page)
463 return PagePrivate(page);
466 /* Protected by class->lock */
467 static inline int get_zspage_inuse(struct zspage *zspage)
469 return zspage->inuse;
472 static inline void set_zspage_inuse(struct zspage *zspage, int val)
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 zspage->inuse += val;
482 static inline struct page *get_first_page(struct zspage *zspage)
484 struct page *first_page = zspage->first_page;
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
490 static inline int get_first_obj_offset(struct page *page)
495 static inline void set_first_obj_offset(struct page *page, int offset)
497 page->units = offset;
500 static inline unsigned int get_freeobj(struct zspage *zspage)
502 return zspage->freeobj;
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 zspage->freeobj = obj;
510 static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
520 static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
535 static int get_size_class_index(int size)
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
550 class->stats.objs[type] += cnt;
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
557 class->stats.objs[type] -= cnt;
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
564 return class->stats.objs[type];
567 #ifdef CONFIG_ZSMALLOC_STAT
569 static void __init zs_stat_init(void)
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
581 static void __exit zs_stat_exit(void)
583 debugfs_remove_recursive(zs_stat_root);
586 static unsigned long zs_can_compact(struct size_class *class);
588 static int zs_stats_size_show(struct seq_file *s, void *v)
591 struct zs_pool *pool = s->private;
592 struct size_class *class;
594 unsigned long class_almost_full, class_almost_empty;
595 unsigned long obj_allocated, obj_used, pages_used, freeable;
596 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
598 unsigned long total_freeable = 0;
600 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
601 "class", "size", "almost_full", "almost_empty",
602 "obj_allocated", "obj_used", "pages_used",
603 "pages_per_zspage", "freeable");
605 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
606 class = pool->size_class[i];
608 if (class->index != i)
611 spin_lock(&class->lock);
612 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615 obj_used = zs_stat_get(class, OBJ_USED);
616 freeable = zs_can_compact(class);
617 spin_unlock(&class->lock);
619 objs_per_zspage = class->objs_per_zspage;
620 pages_used = obj_allocated / objs_per_zspage *
621 class->pages_per_zspage;
623 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624 " %10lu %10lu %16d %8lu\n",
625 i, class->size, class_almost_full, class_almost_empty,
626 obj_allocated, obj_used, pages_used,
627 class->pages_per_zspage, freeable);
629 total_class_almost_full += class_almost_full;
630 total_class_almost_empty += class_almost_empty;
631 total_objs += obj_allocated;
632 total_used_objs += obj_used;
633 total_pages += pages_used;
634 total_freeable += freeable;
638 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
639 "Total", "", total_class_almost_full,
640 total_class_almost_empty, total_objs,
641 total_used_objs, total_pages, "", total_freeable);
646 static int zs_stats_size_open(struct inode *inode, struct file *file)
648 return single_open(file, zs_stats_size_show, inode->i_private);
651 static const struct file_operations zs_stat_size_ops = {
652 .open = zs_stats_size_open,
655 .release = single_release,
658 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
660 struct dentry *entry;
663 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
667 entry = debugfs_create_dir(name, zs_stat_root);
669 pr_warn("debugfs dir <%s> creation failed\n", name);
672 pool->stat_dentry = entry;
674 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
675 pool->stat_dentry, pool, &zs_stat_size_ops);
677 pr_warn("%s: debugfs file entry <%s> creation failed\n",
679 debugfs_remove_recursive(pool->stat_dentry);
680 pool->stat_dentry = NULL;
684 static void zs_pool_stat_destroy(struct zs_pool *pool)
686 debugfs_remove_recursive(pool->stat_dentry);
689 #else /* CONFIG_ZSMALLOC_STAT */
690 static void __init zs_stat_init(void)
694 static void __exit zs_stat_exit(void)
698 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
702 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
709 * For each size class, zspages are divided into different groups
710 * depending on how "full" they are. This was done so that we could
711 * easily find empty or nearly empty zspages when we try to shrink
712 * the pool (not yet implemented). This function returns fullness
713 * status of the given page.
715 static enum fullness_group get_fullness_group(struct size_class *class,
716 struct zspage *zspage)
718 int inuse, objs_per_zspage;
719 enum fullness_group fg;
721 inuse = get_zspage_inuse(zspage);
722 objs_per_zspage = class->objs_per_zspage;
726 else if (inuse == objs_per_zspage)
728 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
729 fg = ZS_ALMOST_EMPTY;
737 * Each size class maintains various freelists and zspages are assigned
738 * to one of these freelists based on the number of live objects they
739 * have. This functions inserts the given zspage into the freelist
740 * identified by <class, fullness_group>.
742 static void insert_zspage(struct size_class *class,
743 struct zspage *zspage,
744 enum fullness_group fullness)
748 zs_stat_inc(class, fullness, 1);
749 head = list_first_entry_or_null(&class->fullness_list[fullness],
750 struct zspage, list);
752 * We want to see more ZS_FULL pages and less almost empty/full.
753 * Put pages with higher ->inuse first.
756 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
757 list_add(&zspage->list, &head->list);
761 list_add(&zspage->list, &class->fullness_list[fullness]);
765 * This function removes the given zspage from the freelist identified
766 * by <class, fullness_group>.
768 static void remove_zspage(struct size_class *class,
769 struct zspage *zspage,
770 enum fullness_group fullness)
772 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
773 VM_BUG_ON(is_zspage_isolated(zspage));
775 list_del_init(&zspage->list);
776 zs_stat_dec(class, fullness, 1);
780 * Each size class maintains zspages in different fullness groups depending
781 * on the number of live objects they contain. When allocating or freeing
782 * objects, the fullness status of the page can change, say, from ALMOST_FULL
783 * to ALMOST_EMPTY when freeing an object. This function checks if such
784 * a status change has occurred for the given page and accordingly moves the
785 * page from the freelist of the old fullness group to that of the new
788 static enum fullness_group fix_fullness_group(struct size_class *class,
789 struct zspage *zspage)
792 enum fullness_group currfg, newfg;
794 get_zspage_mapping(zspage, &class_idx, &currfg);
795 newfg = get_fullness_group(class, zspage);
799 if (!is_zspage_isolated(zspage)) {
800 remove_zspage(class, zspage, currfg);
801 insert_zspage(class, zspage, newfg);
804 set_zspage_mapping(zspage, class_idx, newfg);
811 * We have to decide on how many pages to link together
812 * to form a zspage for each size class. This is important
813 * to reduce wastage due to unusable space left at end of
814 * each zspage which is given as:
815 * wastage = Zp % class_size
816 * usage = Zp - wastage
817 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
819 * For example, for size class of 3/8 * PAGE_SIZE, we should
820 * link together 3 PAGE_SIZE sized pages to form a zspage
821 * since then we can perfectly fit in 8 such objects.
823 static int get_pages_per_zspage(int class_size)
825 int i, max_usedpc = 0;
826 /* zspage order which gives maximum used size per KB */
827 int max_usedpc_order = 1;
829 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
833 zspage_size = i * PAGE_SIZE;
834 waste = zspage_size % class_size;
835 usedpc = (zspage_size - waste) * 100 / zspage_size;
837 if (usedpc > max_usedpc) {
839 max_usedpc_order = i;
843 return max_usedpc_order;
846 static struct zspage *get_zspage(struct page *page)
848 struct zspage *zspage = (struct zspage *)page->private;
850 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
854 static struct page *get_next_page(struct page *page)
856 if (unlikely(PageHugeObject(page)))
859 return page->freelist;
863 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
864 * @page: page object resides in zspage
865 * @obj_idx: object index
867 static void obj_to_location(unsigned long obj, struct page **page,
868 unsigned int *obj_idx)
870 obj >>= OBJ_TAG_BITS;
871 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
872 *obj_idx = (obj & OBJ_INDEX_MASK);
876 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
877 * @page: page object resides in zspage
878 * @obj_idx: object index
880 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
884 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
885 obj |= obj_idx & OBJ_INDEX_MASK;
886 obj <<= OBJ_TAG_BITS;
891 static unsigned long handle_to_obj(unsigned long handle)
893 return *(unsigned long *)handle;
896 static unsigned long obj_to_head(struct page *page, void *obj)
898 if (unlikely(PageHugeObject(page))) {
899 VM_BUG_ON_PAGE(!is_first_page(page), page);
902 return *(unsigned long *)obj;
905 static inline int testpin_tag(unsigned long handle)
907 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
910 static inline int trypin_tag(unsigned long handle)
912 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
915 static void pin_tag(unsigned long handle)
917 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 static void unpin_tag(unsigned long handle)
922 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 static void reset_page(struct page *page)
927 __ClearPageMovable(page);
928 ClearPagePrivate(page);
929 set_page_private(page, 0);
930 page_mapcount_reset(page);
931 ClearPageHugeObject(page);
932 page->freelist = NULL;
936 * To prevent zspage destroy during migration, zspage freeing should
937 * hold locks of all pages in the zspage.
939 void lock_zspage(struct zspage *zspage)
941 struct page *page = get_first_page(zspage);
945 } while ((page = get_next_page(page)) != NULL);
948 int trylock_zspage(struct zspage *zspage)
950 struct page *cursor, *fail;
952 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
953 get_next_page(cursor)) {
954 if (!trylock_page(cursor)) {
962 for (cursor = get_first_page(zspage); cursor != fail; cursor =
963 get_next_page(cursor))
969 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
970 struct zspage *zspage)
972 struct page *page, *next;
973 enum fullness_group fg;
974 unsigned int class_idx;
976 get_zspage_mapping(zspage, &class_idx, &fg);
978 assert_spin_locked(&class->lock);
980 VM_BUG_ON(get_zspage_inuse(zspage));
981 VM_BUG_ON(fg != ZS_EMPTY);
983 next = page = get_first_page(zspage);
985 VM_BUG_ON_PAGE(!PageLocked(page), page);
986 next = get_next_page(page);
989 dec_zone_page_state(page, NR_ZSPAGES);
992 } while (page != NULL);
994 cache_free_zspage(pool, zspage);
996 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
997 atomic_long_sub(class->pages_per_zspage,
998 &pool->pages_allocated);
1001 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1002 struct zspage *zspage)
1004 VM_BUG_ON(get_zspage_inuse(zspage));
1005 VM_BUG_ON(list_empty(&zspage->list));
1007 if (!trylock_zspage(zspage)) {
1008 kick_deferred_free(pool);
1012 remove_zspage(class, zspage, ZS_EMPTY);
1013 __free_zspage(pool, class, zspage);
1016 /* Initialize a newly allocated zspage */
1017 static void init_zspage(struct size_class *class, struct zspage *zspage)
1019 unsigned int freeobj = 1;
1020 unsigned long off = 0;
1021 struct page *page = get_first_page(zspage);
1024 struct page *next_page;
1025 struct link_free *link;
1028 set_first_obj_offset(page, off);
1030 vaddr = kmap_atomic(page);
1031 link = (struct link_free *)vaddr + off / sizeof(*link);
1033 while ((off += class->size) < PAGE_SIZE) {
1034 link->next = freeobj++ << OBJ_TAG_BITS;
1035 link += class->size / sizeof(*link);
1039 * We now come to the last (full or partial) object on this
1040 * page, which must point to the first object on the next
1043 next_page = get_next_page(page);
1045 link->next = freeobj++ << OBJ_TAG_BITS;
1048 * Reset OBJ_TAG_BITS bit to last link to tell
1049 * whether it's allocated object or not.
1051 link->next = -1UL << OBJ_TAG_BITS;
1053 kunmap_atomic(vaddr);
1058 set_freeobj(zspage, 0);
1061 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1062 struct page *pages[])
1066 struct page *prev_page = NULL;
1067 int nr_pages = class->pages_per_zspage;
1070 * Allocate individual pages and link them together as:
1071 * 1. all pages are linked together using page->freelist
1072 * 2. each sub-page point to zspage using page->private
1074 * we set PG_private to identify the first page (i.e. no other sub-page
1075 * has this flag set).
1077 for (i = 0; i < nr_pages; i++) {
1079 set_page_private(page, (unsigned long)zspage);
1080 page->freelist = NULL;
1082 zspage->first_page = page;
1083 SetPagePrivate(page);
1084 if (unlikely(class->objs_per_zspage == 1 &&
1085 class->pages_per_zspage == 1))
1086 SetPageHugeObject(page);
1088 prev_page->freelist = page;
1095 * Allocate a zspage for the given size class
1097 static struct zspage *alloc_zspage(struct zs_pool *pool,
1098 struct size_class *class,
1102 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1103 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1108 memset(zspage, 0, sizeof(struct zspage));
1109 zspage->magic = ZSPAGE_MAGIC;
1110 migrate_lock_init(zspage);
1112 for (i = 0; i < class->pages_per_zspage; i++) {
1115 page = alloc_page(gfp);
1118 dec_zone_page_state(pages[i], NR_ZSPAGES);
1119 __free_page(pages[i]);
1121 cache_free_zspage(pool, zspage);
1125 inc_zone_page_state(page, NR_ZSPAGES);
1129 create_page_chain(class, zspage, pages);
1130 init_zspage(class, zspage);
1135 static struct zspage *find_get_zspage(struct size_class *class)
1138 struct zspage *zspage;
1140 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1141 zspage = list_first_entry_or_null(&class->fullness_list[i],
1142 struct zspage, list);
1150 #ifdef CONFIG_PGTABLE_MAPPING
1151 static inline int __zs_cpu_up(struct mapping_area *area)
1154 * Make sure we don't leak memory if a cpu UP notification
1155 * and zs_init() race and both call zs_cpu_up() on the same cpu
1159 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1165 static inline void __zs_cpu_down(struct mapping_area *area)
1168 free_vm_area(area->vm);
1172 static inline void *__zs_map_object(struct mapping_area *area,
1173 struct page *pages[2], int off, int size)
1175 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1176 area->vm_addr = area->vm->addr;
1177 return area->vm_addr + off;
1180 static inline void __zs_unmap_object(struct mapping_area *area,
1181 struct page *pages[2], int off, int size)
1183 unsigned long addr = (unsigned long)area->vm_addr;
1185 unmap_kernel_range(addr, PAGE_SIZE * 2);
1188 #else /* CONFIG_PGTABLE_MAPPING */
1190 static inline int __zs_cpu_up(struct mapping_area *area)
1193 * Make sure we don't leak memory if a cpu UP notification
1194 * and zs_init() race and both call zs_cpu_up() on the same cpu
1198 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1204 static inline void __zs_cpu_down(struct mapping_area *area)
1206 kfree(area->vm_buf);
1207 area->vm_buf = NULL;
1210 static void *__zs_map_object(struct mapping_area *area,
1211 struct page *pages[2], int off, int size)
1215 char *buf = area->vm_buf;
1217 /* disable page faults to match kmap_atomic() return conditions */
1218 pagefault_disable();
1220 /* no read fastpath */
1221 if (area->vm_mm == ZS_MM_WO)
1224 sizes[0] = PAGE_SIZE - off;
1225 sizes[1] = size - sizes[0];
1227 /* copy object to per-cpu buffer */
1228 addr = kmap_atomic(pages[0]);
1229 memcpy(buf, addr + off, sizes[0]);
1230 kunmap_atomic(addr);
1231 addr = kmap_atomic(pages[1]);
1232 memcpy(buf + sizes[0], addr, sizes[1]);
1233 kunmap_atomic(addr);
1235 return area->vm_buf;
1238 static void __zs_unmap_object(struct mapping_area *area,
1239 struct page *pages[2], int off, int size)
1245 /* no write fastpath */
1246 if (area->vm_mm == ZS_MM_RO)
1250 buf = buf + ZS_HANDLE_SIZE;
1251 size -= ZS_HANDLE_SIZE;
1252 off += ZS_HANDLE_SIZE;
1254 sizes[0] = PAGE_SIZE - off;
1255 sizes[1] = size - sizes[0];
1257 /* copy per-cpu buffer to object */
1258 addr = kmap_atomic(pages[0]);
1259 memcpy(addr + off, buf, sizes[0]);
1260 kunmap_atomic(addr);
1261 addr = kmap_atomic(pages[1]);
1262 memcpy(addr, buf + sizes[0], sizes[1]);
1263 kunmap_atomic(addr);
1266 /* enable page faults to match kunmap_atomic() return conditions */
1270 #endif /* CONFIG_PGTABLE_MAPPING */
1272 static int zs_cpu_prepare(unsigned int cpu)
1274 struct mapping_area *area;
1276 area = &per_cpu(zs_map_area, cpu);
1277 return __zs_cpu_up(area);
1280 static int zs_cpu_dead(unsigned int cpu)
1282 struct mapping_area *area;
1284 area = &per_cpu(zs_map_area, cpu);
1285 __zs_cpu_down(area);
1289 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1290 int objs_per_zspage)
1292 if (prev->pages_per_zspage == pages_per_zspage &&
1293 prev->objs_per_zspage == objs_per_zspage)
1299 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1301 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1304 unsigned long zs_get_total_pages(struct zs_pool *pool)
1306 return atomic_long_read(&pool->pages_allocated);
1308 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1311 * zs_map_object - get address of allocated object from handle.
1312 * @pool: pool from which the object was allocated
1313 * @handle: handle returned from zs_malloc
1315 * Before using an object allocated from zs_malloc, it must be mapped using
1316 * this function. When done with the object, it must be unmapped using
1319 * Only one object can be mapped per cpu at a time. There is no protection
1320 * against nested mappings.
1322 * This function returns with preemption and page faults disabled.
1324 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1327 struct zspage *zspage;
1329 unsigned long obj, off;
1330 unsigned int obj_idx;
1332 unsigned int class_idx;
1333 enum fullness_group fg;
1334 struct size_class *class;
1335 struct mapping_area *area;
1336 struct page *pages[2];
1340 * Because we use per-cpu mapping areas shared among the
1341 * pools/users, we can't allow mapping in interrupt context
1342 * because it can corrupt another users mappings.
1344 BUG_ON(in_interrupt());
1346 /* From now on, migration cannot move the object */
1349 obj = handle_to_obj(handle);
1350 obj_to_location(obj, &page, &obj_idx);
1351 zspage = get_zspage(page);
1353 /* migration cannot move any subpage in this zspage */
1354 migrate_read_lock(zspage);
1356 get_zspage_mapping(zspage, &class_idx, &fg);
1357 class = pool->size_class[class_idx];
1358 off = (class->size * obj_idx) & ~PAGE_MASK;
1360 area = &get_cpu_var(zs_map_area);
1362 if (off + class->size <= PAGE_SIZE) {
1363 /* this object is contained entirely within a page */
1364 area->vm_addr = kmap_atomic(page);
1365 ret = area->vm_addr + off;
1369 /* this object spans two pages */
1371 pages[1] = get_next_page(page);
1374 ret = __zs_map_object(area, pages, off, class->size);
1376 if (likely(!PageHugeObject(page)))
1377 ret += ZS_HANDLE_SIZE;
1381 EXPORT_SYMBOL_GPL(zs_map_object);
1383 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1385 struct zspage *zspage;
1387 unsigned long obj, off;
1388 unsigned int obj_idx;
1390 unsigned int class_idx;
1391 enum fullness_group fg;
1392 struct size_class *class;
1393 struct mapping_area *area;
1395 obj = handle_to_obj(handle);
1396 obj_to_location(obj, &page, &obj_idx);
1397 zspage = get_zspage(page);
1398 get_zspage_mapping(zspage, &class_idx, &fg);
1399 class = pool->size_class[class_idx];
1400 off = (class->size * obj_idx) & ~PAGE_MASK;
1402 area = this_cpu_ptr(&zs_map_area);
1403 if (off + class->size <= PAGE_SIZE)
1404 kunmap_atomic(area->vm_addr);
1406 struct page *pages[2];
1409 pages[1] = get_next_page(page);
1412 __zs_unmap_object(area, pages, off, class->size);
1414 put_cpu_var(zs_map_area);
1416 migrate_read_unlock(zspage);
1419 EXPORT_SYMBOL_GPL(zs_unmap_object);
1421 static unsigned long obj_malloc(struct size_class *class,
1422 struct zspage *zspage, unsigned long handle)
1424 int i, nr_page, offset;
1426 struct link_free *link;
1428 struct page *m_page;
1429 unsigned long m_offset;
1432 handle |= OBJ_ALLOCATED_TAG;
1433 obj = get_freeobj(zspage);
1435 offset = obj * class->size;
1436 nr_page = offset >> PAGE_SHIFT;
1437 m_offset = offset & ~PAGE_MASK;
1438 m_page = get_first_page(zspage);
1440 for (i = 0; i < nr_page; i++)
1441 m_page = get_next_page(m_page);
1443 vaddr = kmap_atomic(m_page);
1444 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1445 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1446 if (likely(!PageHugeObject(m_page)))
1447 /* record handle in the header of allocated chunk */
1448 link->handle = handle;
1450 /* record handle to page->index */
1451 zspage->first_page->index = handle;
1453 kunmap_atomic(vaddr);
1454 mod_zspage_inuse(zspage, 1);
1455 zs_stat_inc(class, OBJ_USED, 1);
1457 obj = location_to_obj(m_page, obj);
1464 * zs_malloc - Allocate block of given size from pool.
1465 * @pool: pool to allocate from
1466 * @size: size of block to allocate
1467 * @gfp: gfp flags when allocating object
1469 * On success, handle to the allocated object is returned,
1471 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1473 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1475 unsigned long handle, obj;
1476 struct size_class *class;
1477 enum fullness_group newfg;
1478 struct zspage *zspage;
1480 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1483 handle = cache_alloc_handle(pool, gfp);
1487 /* extra space in chunk to keep the handle */
1488 size += ZS_HANDLE_SIZE;
1489 class = pool->size_class[get_size_class_index(size)];
1491 spin_lock(&class->lock);
1492 zspage = find_get_zspage(class);
1493 if (likely(zspage)) {
1494 obj = obj_malloc(class, zspage, handle);
1495 /* Now move the zspage to another fullness group, if required */
1496 fix_fullness_group(class, zspage);
1497 record_obj(handle, obj);
1498 spin_unlock(&class->lock);
1503 spin_unlock(&class->lock);
1505 zspage = alloc_zspage(pool, class, gfp);
1507 cache_free_handle(pool, handle);
1511 spin_lock(&class->lock);
1512 obj = obj_malloc(class, zspage, handle);
1513 newfg = get_fullness_group(class, zspage);
1514 insert_zspage(class, zspage, newfg);
1515 set_zspage_mapping(zspage, class->index, newfg);
1516 record_obj(handle, obj);
1517 atomic_long_add(class->pages_per_zspage,
1518 &pool->pages_allocated);
1519 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1521 /* We completely set up zspage so mark them as movable */
1522 SetZsPageMovable(pool, zspage);
1523 spin_unlock(&class->lock);
1527 EXPORT_SYMBOL_GPL(zs_malloc);
1529 static void obj_free(struct size_class *class, unsigned long obj)
1531 struct link_free *link;
1532 struct zspage *zspage;
1533 struct page *f_page;
1534 unsigned long f_offset;
1535 unsigned int f_objidx;
1538 obj &= ~OBJ_ALLOCATED_TAG;
1539 obj_to_location(obj, &f_page, &f_objidx);
1540 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1541 zspage = get_zspage(f_page);
1543 vaddr = kmap_atomic(f_page);
1545 /* Insert this object in containing zspage's freelist */
1546 link = (struct link_free *)(vaddr + f_offset);
1547 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1548 kunmap_atomic(vaddr);
1549 set_freeobj(zspage, f_objidx);
1550 mod_zspage_inuse(zspage, -1);
1551 zs_stat_dec(class, OBJ_USED, 1);
1554 void zs_free(struct zs_pool *pool, unsigned long handle)
1556 struct zspage *zspage;
1557 struct page *f_page;
1559 unsigned int f_objidx;
1561 struct size_class *class;
1562 enum fullness_group fullness;
1565 if (unlikely(!handle))
1569 obj = handle_to_obj(handle);
1570 obj_to_location(obj, &f_page, &f_objidx);
1571 zspage = get_zspage(f_page);
1573 migrate_read_lock(zspage);
1575 get_zspage_mapping(zspage, &class_idx, &fullness);
1576 class = pool->size_class[class_idx];
1578 spin_lock(&class->lock);
1579 obj_free(class, obj);
1580 fullness = fix_fullness_group(class, zspage);
1581 if (fullness != ZS_EMPTY) {
1582 migrate_read_unlock(zspage);
1586 isolated = is_zspage_isolated(zspage);
1587 migrate_read_unlock(zspage);
1588 /* If zspage is isolated, zs_page_putback will free the zspage */
1589 if (likely(!isolated))
1590 free_zspage(pool, class, zspage);
1593 spin_unlock(&class->lock);
1595 cache_free_handle(pool, handle);
1597 EXPORT_SYMBOL_GPL(zs_free);
1599 static void zs_object_copy(struct size_class *class, unsigned long dst,
1602 struct page *s_page, *d_page;
1603 unsigned int s_objidx, d_objidx;
1604 unsigned long s_off, d_off;
1605 void *s_addr, *d_addr;
1606 int s_size, d_size, size;
1609 s_size = d_size = class->size;
1611 obj_to_location(src, &s_page, &s_objidx);
1612 obj_to_location(dst, &d_page, &d_objidx);
1614 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1615 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1617 if (s_off + class->size > PAGE_SIZE)
1618 s_size = PAGE_SIZE - s_off;
1620 if (d_off + class->size > PAGE_SIZE)
1621 d_size = PAGE_SIZE - d_off;
1623 s_addr = kmap_atomic(s_page);
1624 d_addr = kmap_atomic(d_page);
1627 size = min(s_size, d_size);
1628 memcpy(d_addr + d_off, s_addr + s_off, size);
1631 if (written == class->size)
1639 if (s_off >= PAGE_SIZE) {
1640 kunmap_atomic(d_addr);
1641 kunmap_atomic(s_addr);
1642 s_page = get_next_page(s_page);
1643 s_addr = kmap_atomic(s_page);
1644 d_addr = kmap_atomic(d_page);
1645 s_size = class->size - written;
1649 if (d_off >= PAGE_SIZE) {
1650 kunmap_atomic(d_addr);
1651 d_page = get_next_page(d_page);
1652 d_addr = kmap_atomic(d_page);
1653 d_size = class->size - written;
1658 kunmap_atomic(d_addr);
1659 kunmap_atomic(s_addr);
1663 * Find alloced object in zspage from index object and
1666 static unsigned long find_alloced_obj(struct size_class *class,
1667 struct page *page, int *obj_idx)
1671 int index = *obj_idx;
1672 unsigned long handle = 0;
1673 void *addr = kmap_atomic(page);
1675 offset = get_first_obj_offset(page);
1676 offset += class->size * index;
1678 while (offset < PAGE_SIZE) {
1679 head = obj_to_head(page, addr + offset);
1680 if (head & OBJ_ALLOCATED_TAG) {
1681 handle = head & ~OBJ_ALLOCATED_TAG;
1682 if (trypin_tag(handle))
1687 offset += class->size;
1691 kunmap_atomic(addr);
1698 struct zs_compact_control {
1699 /* Source spage for migration which could be a subpage of zspage */
1700 struct page *s_page;
1701 /* Destination page for migration which should be a first page
1703 struct page *d_page;
1704 /* Starting object index within @s_page which used for live object
1705 * in the subpage. */
1709 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1710 struct zs_compact_control *cc)
1712 unsigned long used_obj, free_obj;
1713 unsigned long handle;
1714 struct page *s_page = cc->s_page;
1715 struct page *d_page = cc->d_page;
1716 int obj_idx = cc->obj_idx;
1720 handle = find_alloced_obj(class, s_page, &obj_idx);
1722 s_page = get_next_page(s_page);
1729 /* Stop if there is no more space */
1730 if (zspage_full(class, get_zspage(d_page))) {
1736 used_obj = handle_to_obj(handle);
1737 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1738 zs_object_copy(class, free_obj, used_obj);
1741 * record_obj updates handle's value to free_obj and it will
1742 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1743 * breaks synchronization using pin_tag(e,g, zs_free) so
1744 * let's keep the lock bit.
1746 free_obj |= BIT(HANDLE_PIN_BIT);
1747 record_obj(handle, free_obj);
1749 obj_free(class, used_obj);
1752 /* Remember last position in this iteration */
1753 cc->s_page = s_page;
1754 cc->obj_idx = obj_idx;
1759 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1762 struct zspage *zspage;
1763 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1766 fg[0] = ZS_ALMOST_FULL;
1767 fg[1] = ZS_ALMOST_EMPTY;
1770 for (i = 0; i < 2; i++) {
1771 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1772 struct zspage, list);
1774 VM_BUG_ON(is_zspage_isolated(zspage));
1775 remove_zspage(class, zspage, fg[i]);
1784 * putback_zspage - add @zspage into right class's fullness list
1785 * @class: destination class
1786 * @zspage: target page
1788 * Return @zspage's fullness_group
1790 static enum fullness_group putback_zspage(struct size_class *class,
1791 struct zspage *zspage)
1793 enum fullness_group fullness;
1795 VM_BUG_ON(is_zspage_isolated(zspage));
1797 fullness = get_fullness_group(class, zspage);
1798 insert_zspage(class, zspage, fullness);
1799 set_zspage_mapping(zspage, class->index, fullness);
1804 #ifdef CONFIG_COMPACTION
1805 static struct dentry *zs_mount(struct file_system_type *fs_type,
1806 int flags, const char *dev_name, void *data)
1808 static const struct dentry_operations ops = {
1809 .d_dname = simple_dname,
1812 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1815 static struct file_system_type zsmalloc_fs = {
1818 .kill_sb = kill_anon_super,
1821 static int zsmalloc_mount(void)
1825 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1826 if (IS_ERR(zsmalloc_mnt))
1827 ret = PTR_ERR(zsmalloc_mnt);
1832 static void zsmalloc_unmount(void)
1834 kern_unmount(zsmalloc_mnt);
1837 static void migrate_lock_init(struct zspage *zspage)
1839 rwlock_init(&zspage->lock);
1842 static void migrate_read_lock(struct zspage *zspage)
1844 read_lock(&zspage->lock);
1847 static void migrate_read_unlock(struct zspage *zspage)
1849 read_unlock(&zspage->lock);
1852 static void migrate_write_lock(struct zspage *zspage)
1854 write_lock(&zspage->lock);
1857 static void migrate_write_unlock(struct zspage *zspage)
1859 write_unlock(&zspage->lock);
1862 /* Number of isolated subpage for *page migration* in this zspage */
1863 static void inc_zspage_isolation(struct zspage *zspage)
1868 static void dec_zspage_isolation(struct zspage *zspage)
1873 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1874 struct page *newpage, struct page *oldpage)
1877 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1880 page = get_first_page(zspage);
1882 if (page == oldpage)
1883 pages[idx] = newpage;
1887 } while ((page = get_next_page(page)) != NULL);
1889 create_page_chain(class, zspage, pages);
1890 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1891 if (unlikely(PageHugeObject(oldpage)))
1892 newpage->index = oldpage->index;
1893 __SetPageMovable(newpage, page_mapping(oldpage));
1896 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1898 struct zs_pool *pool;
1899 struct size_class *class;
1901 enum fullness_group fullness;
1902 struct zspage *zspage;
1903 struct address_space *mapping;
1906 * Page is locked so zspage couldn't be destroyed. For detail, look at
1907 * lock_zspage in free_zspage.
1909 VM_BUG_ON_PAGE(!PageMovable(page), page);
1910 VM_BUG_ON_PAGE(PageIsolated(page), page);
1912 zspage = get_zspage(page);
1915 * Without class lock, fullness could be stale while class_idx is okay
1916 * because class_idx is constant unless page is freed so we should get
1917 * fullness again under class lock.
1919 get_zspage_mapping(zspage, &class_idx, &fullness);
1920 mapping = page_mapping(page);
1921 pool = mapping->private_data;
1922 class = pool->size_class[class_idx];
1924 spin_lock(&class->lock);
1925 if (get_zspage_inuse(zspage) == 0) {
1926 spin_unlock(&class->lock);
1930 /* zspage is isolated for object migration */
1931 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1932 spin_unlock(&class->lock);
1937 * If this is first time isolation for the zspage, isolate zspage from
1938 * size_class to prevent further object allocation from the zspage.
1940 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 get_zspage_mapping(zspage, &class_idx, &fullness);
1942 remove_zspage(class, zspage, fullness);
1945 inc_zspage_isolation(zspage);
1946 spin_unlock(&class->lock);
1951 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1952 struct page *page, enum migrate_mode mode)
1954 struct zs_pool *pool;
1955 struct size_class *class;
1957 enum fullness_group fullness;
1958 struct zspage *zspage;
1960 void *s_addr, *d_addr, *addr;
1962 unsigned long handle, head;
1963 unsigned long old_obj, new_obj;
1964 unsigned int obj_idx;
1968 * We cannot support the _NO_COPY case here, because copy needs to
1969 * happen under the zs lock, which does not work with
1970 * MIGRATE_SYNC_NO_COPY workflow.
1972 if (mode == MIGRATE_SYNC_NO_COPY)
1975 VM_BUG_ON_PAGE(!PageMovable(page), page);
1976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1978 zspage = get_zspage(page);
1980 /* Concurrent compactor cannot migrate any subpage in zspage */
1981 migrate_write_lock(zspage);
1982 get_zspage_mapping(zspage, &class_idx, &fullness);
1983 pool = mapping->private_data;
1984 class = pool->size_class[class_idx];
1985 offset = get_first_obj_offset(page);
1987 spin_lock(&class->lock);
1988 if (!get_zspage_inuse(zspage)) {
1990 * Set "offset" to end of the page so that every loops
1991 * skips unnecessary object scanning.
1997 s_addr = kmap_atomic(page);
1998 while (pos < PAGE_SIZE) {
1999 head = obj_to_head(page, s_addr + pos);
2000 if (head & OBJ_ALLOCATED_TAG) {
2001 handle = head & ~OBJ_ALLOCATED_TAG;
2002 if (!trypin_tag(handle))
2009 * Here, any user cannot access all objects in the zspage so let's move.
2011 d_addr = kmap_atomic(newpage);
2012 memcpy(d_addr, s_addr, PAGE_SIZE);
2013 kunmap_atomic(d_addr);
2015 for (addr = s_addr + offset; addr < s_addr + pos;
2016 addr += class->size) {
2017 head = obj_to_head(page, addr);
2018 if (head & OBJ_ALLOCATED_TAG) {
2019 handle = head & ~OBJ_ALLOCATED_TAG;
2020 if (!testpin_tag(handle))
2023 old_obj = handle_to_obj(handle);
2024 obj_to_location(old_obj, &dummy, &obj_idx);
2025 new_obj = (unsigned long)location_to_obj(newpage,
2027 new_obj |= BIT(HANDLE_PIN_BIT);
2028 record_obj(handle, new_obj);
2032 replace_sub_page(class, zspage, newpage, page);
2035 dec_zspage_isolation(zspage);
2038 * Page migration is done so let's putback isolated zspage to
2039 * the list if @page is final isolated subpage in the zspage.
2041 if (!is_zspage_isolated(zspage))
2042 putback_zspage(class, zspage);
2048 ret = MIGRATEPAGE_SUCCESS;
2050 for (addr = s_addr + offset; addr < s_addr + pos;
2051 addr += class->size) {
2052 head = obj_to_head(page, addr);
2053 if (head & OBJ_ALLOCATED_TAG) {
2054 handle = head & ~OBJ_ALLOCATED_TAG;
2055 if (!testpin_tag(handle))
2060 kunmap_atomic(s_addr);
2061 spin_unlock(&class->lock);
2062 migrate_write_unlock(zspage);
2067 void zs_page_putback(struct page *page)
2069 struct zs_pool *pool;
2070 struct size_class *class;
2072 enum fullness_group fg;
2073 struct address_space *mapping;
2074 struct zspage *zspage;
2076 VM_BUG_ON_PAGE(!PageMovable(page), page);
2077 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2079 zspage = get_zspage(page);
2080 get_zspage_mapping(zspage, &class_idx, &fg);
2081 mapping = page_mapping(page);
2082 pool = mapping->private_data;
2083 class = pool->size_class[class_idx];
2085 spin_lock(&class->lock);
2086 dec_zspage_isolation(zspage);
2087 if (!is_zspage_isolated(zspage)) {
2088 fg = putback_zspage(class, zspage);
2090 * Due to page_lock, we cannot free zspage immediately
2094 schedule_work(&pool->free_work);
2096 spin_unlock(&class->lock);
2099 const struct address_space_operations zsmalloc_aops = {
2100 .isolate_page = zs_page_isolate,
2101 .migratepage = zs_page_migrate,
2102 .putback_page = zs_page_putback,
2105 static int zs_register_migration(struct zs_pool *pool)
2107 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2108 if (IS_ERR(pool->inode)) {
2113 pool->inode->i_mapping->private_data = pool;
2114 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2118 static void zs_unregister_migration(struct zs_pool *pool)
2120 flush_work(&pool->free_work);
2125 * Caller should hold page_lock of all pages in the zspage
2126 * In here, we cannot use zspage meta data.
2128 static void async_free_zspage(struct work_struct *work)
2131 struct size_class *class;
2132 unsigned int class_idx;
2133 enum fullness_group fullness;
2134 struct zspage *zspage, *tmp;
2135 LIST_HEAD(free_pages);
2136 struct zs_pool *pool = container_of(work, struct zs_pool,
2139 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2140 class = pool->size_class[i];
2141 if (class->index != i)
2144 spin_lock(&class->lock);
2145 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2146 spin_unlock(&class->lock);
2150 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2151 list_del(&zspage->list);
2152 lock_zspage(zspage);
2154 get_zspage_mapping(zspage, &class_idx, &fullness);
2155 VM_BUG_ON(fullness != ZS_EMPTY);
2156 class = pool->size_class[class_idx];
2157 spin_lock(&class->lock);
2158 __free_zspage(pool, pool->size_class[class_idx], zspage);
2159 spin_unlock(&class->lock);
2163 static void kick_deferred_free(struct zs_pool *pool)
2165 schedule_work(&pool->free_work);
2168 static void init_deferred_free(struct zs_pool *pool)
2170 INIT_WORK(&pool->free_work, async_free_zspage);
2173 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2175 struct page *page = get_first_page(zspage);
2178 WARN_ON(!trylock_page(page));
2179 __SetPageMovable(page, pool->inode->i_mapping);
2181 } while ((page = get_next_page(page)) != NULL);
2187 * Based on the number of unused allocated objects calculate
2188 * and return the number of pages that we can free.
2190 static unsigned long zs_can_compact(struct size_class *class)
2192 unsigned long obj_wasted;
2193 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2194 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2196 if (obj_allocated <= obj_used)
2199 obj_wasted = obj_allocated - obj_used;
2200 obj_wasted /= class->objs_per_zspage;
2202 return obj_wasted * class->pages_per_zspage;
2205 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2207 struct zs_compact_control cc;
2208 struct zspage *src_zspage;
2209 struct zspage *dst_zspage = NULL;
2211 spin_lock(&class->lock);
2212 while ((src_zspage = isolate_zspage(class, true))) {
2214 if (!zs_can_compact(class))
2218 cc.s_page = get_first_page(src_zspage);
2220 while ((dst_zspage = isolate_zspage(class, false))) {
2221 cc.d_page = get_first_page(dst_zspage);
2223 * If there is no more space in dst_page, resched
2224 * and see if anyone had allocated another zspage.
2226 if (!migrate_zspage(pool, class, &cc))
2229 putback_zspage(class, dst_zspage);
2232 /* Stop if we couldn't find slot */
2233 if (dst_zspage == NULL)
2236 putback_zspage(class, dst_zspage);
2237 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2238 free_zspage(pool, class, src_zspage);
2239 pool->stats.pages_compacted += class->pages_per_zspage;
2241 spin_unlock(&class->lock);
2243 spin_lock(&class->lock);
2247 putback_zspage(class, src_zspage);
2249 spin_unlock(&class->lock);
2252 unsigned long zs_compact(struct zs_pool *pool)
2255 struct size_class *class;
2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2258 class = pool->size_class[i];
2261 if (class->index != i)
2263 __zs_compact(pool, class);
2266 return pool->stats.pages_compacted;
2268 EXPORT_SYMBOL_GPL(zs_compact);
2270 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2272 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2274 EXPORT_SYMBOL_GPL(zs_pool_stats);
2276 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2277 struct shrink_control *sc)
2279 unsigned long pages_freed;
2280 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2283 pages_freed = pool->stats.pages_compacted;
2285 * Compact classes and calculate compaction delta.
2286 * Can run concurrently with a manually triggered
2287 * (by user) compaction.
2289 pages_freed = zs_compact(pool) - pages_freed;
2291 return pages_freed ? pages_freed : SHRINK_STOP;
2294 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2295 struct shrink_control *sc)
2298 struct size_class *class;
2299 unsigned long pages_to_free = 0;
2300 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2303 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2304 class = pool->size_class[i];
2307 if (class->index != i)
2310 pages_to_free += zs_can_compact(class);
2313 return pages_to_free;
2316 static void zs_unregister_shrinker(struct zs_pool *pool)
2318 unregister_shrinker(&pool->shrinker);
2321 static int zs_register_shrinker(struct zs_pool *pool)
2323 pool->shrinker.scan_objects = zs_shrinker_scan;
2324 pool->shrinker.count_objects = zs_shrinker_count;
2325 pool->shrinker.batch = 0;
2326 pool->shrinker.seeks = DEFAULT_SEEKS;
2328 return register_shrinker(&pool->shrinker);
2332 * zs_create_pool - Creates an allocation pool to work from.
2333 * @name: pool name to be created
2335 * This function must be called before anything when using
2336 * the zsmalloc allocator.
2338 * On success, a pointer to the newly created pool is returned,
2341 struct zs_pool *zs_create_pool(const char *name)
2344 struct zs_pool *pool;
2345 struct size_class *prev_class = NULL;
2347 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2351 init_deferred_free(pool);
2353 pool->name = kstrdup(name, GFP_KERNEL);
2357 if (create_cache(pool))
2361 * Iterate reversely, because, size of size_class that we want to use
2362 * for merging should be larger or equal to current size.
2364 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2366 int pages_per_zspage;
2367 int objs_per_zspage;
2368 struct size_class *class;
2371 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2372 if (size > ZS_MAX_ALLOC_SIZE)
2373 size = ZS_MAX_ALLOC_SIZE;
2374 pages_per_zspage = get_pages_per_zspage(size);
2375 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2378 * size_class is used for normal zsmalloc operation such
2379 * as alloc/free for that size. Although it is natural that we
2380 * have one size_class for each size, there is a chance that we
2381 * can get more memory utilization if we use one size_class for
2382 * many different sizes whose size_class have same
2383 * characteristics. So, we makes size_class point to
2384 * previous size_class if possible.
2387 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2388 pool->size_class[i] = prev_class;
2393 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2399 class->pages_per_zspage = pages_per_zspage;
2400 class->objs_per_zspage = objs_per_zspage;
2401 spin_lock_init(&class->lock);
2402 pool->size_class[i] = class;
2403 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2405 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2410 /* debug only, don't abort if it fails */
2411 zs_pool_stat_create(pool, name);
2413 if (zs_register_migration(pool))
2417 * Not critical since shrinker is only used to trigger internal
2418 * defragmentation of the pool which is pretty optional thing. If
2419 * registration fails we still can use the pool normally and user can
2420 * trigger compaction manually. Thus, ignore return code.
2422 zs_register_shrinker(pool);
2427 zs_destroy_pool(pool);
2430 EXPORT_SYMBOL_GPL(zs_create_pool);
2432 void zs_destroy_pool(struct zs_pool *pool)
2436 zs_unregister_shrinker(pool);
2437 zs_unregister_migration(pool);
2438 zs_pool_stat_destroy(pool);
2440 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2442 struct size_class *class = pool->size_class[i];
2447 if (class->index != i)
2450 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2451 if (!list_empty(&class->fullness_list[fg])) {
2452 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2459 destroy_cache(pool);
2463 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2465 static int __init zs_init(void)
2469 ret = zsmalloc_mount();
2473 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2474 zs_cpu_prepare, zs_cpu_dead);
2479 zpool_register_driver(&zs_zpool_driver);
2492 static void __exit zs_exit(void)
2495 zpool_unregister_driver(&zs_zpool_driver);
2498 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2503 module_init(zs_init);
2504 module_exit(zs_exit);
2506 MODULE_LICENSE("Dual BSD/GPL");