4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
37 static void sum_vm_events(unsigned long *ret)
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret)
63 EXPORT_SYMBOL_GPL(all_vm_events);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu)
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
94 int calculate_pressure_threshold(struct zone *zone)
97 int watermark_distance;
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111 * Maximum threshold is 125
113 threshold = min(125, threshold);
118 int calculate_normal_threshold(struct zone *zone)
121 int mem; /* memory in 128 MB units */
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
129 * Some sample thresholds:
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158 * Maximum threshold is 125
160 threshold = min(125, threshold);
166 * Refresh the thresholds for each zone.
168 void refresh_zone_stat_thresholds(void)
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
177 threshold = calculate_normal_threshold(zone);
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
229 x = delta + __this_cpu_read(*p);
231 t = __this_cpu_read(pcp->stat_threshold);
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
237 __this_cpu_write(*p, x);
239 EXPORT_SYMBOL(__mod_zone_page_state);
242 * Optimized increment and decrement functions.
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
254 * NOTE: These functions are very performance sensitive. Change only
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
282 __inc_zone_state(page_zone(page), item);
284 EXPORT_SYMBOL(__inc_zone_page_state);
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
304 __dec_zone_state(page_zone(page), item);
306 EXPORT_SYMBOL(__dec_zone_page_state);
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
313 * mod_state() modifies the zone counter state through atomic per cpu
316 * Overstep mode specifies how overstep should handled:
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
329 z = 0; /* overflow to zone counters */
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
341 t = this_cpu_read(pcp->stat_threshold);
343 o = this_cpu_read(*p);
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
349 /* Overflow must be added to zone counters */
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
356 zone_page_state_add(z, zone, item);
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
362 mod_state(zone, item, delta, 0);
364 EXPORT_SYMBOL(mod_zone_page_state);
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
368 mod_state(zone, item, 1, 1);
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
373 mod_state(page_zone(page), item, 1, 1);
375 EXPORT_SYMBOL(inc_zone_page_state);
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
379 mod_state(page_zone(page), item, -1, -1);
381 EXPORT_SYMBOL(dec_zone_page_state);
384 * Use interrupt disable to serialize counter updates
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
395 EXPORT_SYMBOL(mod_zone_page_state);
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
416 EXPORT_SYMBOL(inc_zone_page_state);
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
426 EXPORT_SYMBOL(dec_zone_page_state);
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
434 static int fold_diff(int *diff)
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
441 atomic_long_add(diff[i], &vm_stat[i]);
448 * Update the zone counters for the current cpu.
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
461 * The function returns the number of global counters updated.
463 static int refresh_cpu_vm_stats(bool do_pagesets)
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
479 atomic_long_add(v, &zone->vm_stat[i]);
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
491 * Deal with draining the remote pageset of this
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
502 * We never drain zones local to this processor.
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
509 if (__this_cpu_dec_return(p->expire))
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
519 changes += fold_diff(global_diff);
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
528 void cpu_vm_stats_fold(int cpu)
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
537 p = per_cpu_ptr(zone->pageset, cpu);
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
550 fold_diff(global_diff);
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
576 * Must be called with interrupts disabled.
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
584 int local_nid = numa_node_id();
585 enum zone_stat_item local_stat = NUMA_LOCAL;
587 if (unlikely(flags & __GFP_OTHER_NODE)) {
588 local_stat = NUMA_OTHER;
589 local_nid = preferred_zone->node;
592 if (z->node == local_nid) {
593 __inc_zone_state(z, NUMA_HIT);
594 __inc_zone_state(z, local_stat);
596 __inc_zone_state(z, NUMA_MISS);
597 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
602 * Determine the per node value of a stat item.
604 unsigned long node_page_state(int node, enum zone_stat_item item)
606 struct zone *zones = NODE_DATA(node)->node_zones;
608 unsigned long count = 0;
610 for (i = 0; i < MAX_NR_ZONES; i++)
611 count += zone_page_state(zones + i, item);
618 #ifdef CONFIG_COMPACTION
620 struct contig_page_info {
621 unsigned long free_pages;
622 unsigned long free_blocks_total;
623 unsigned long free_blocks_suitable;
627 * Calculate the number of free pages in a zone, how many contiguous
628 * pages are free and how many are large enough to satisfy an allocation of
629 * the target size. Note that this function makes no attempt to estimate
630 * how many suitable free blocks there *might* be if MOVABLE pages were
631 * migrated. Calculating that is possible, but expensive and can be
632 * figured out from userspace
634 static void fill_contig_page_info(struct zone *zone,
635 unsigned int suitable_order,
636 struct contig_page_info *info)
640 info->free_pages = 0;
641 info->free_blocks_total = 0;
642 info->free_blocks_suitable = 0;
644 for (order = 0; order < MAX_ORDER; order++) {
645 unsigned long blocks;
647 /* Count number of free blocks */
648 blocks = zone->free_area[order].nr_free;
649 info->free_blocks_total += blocks;
651 /* Count free base pages */
652 info->free_pages += blocks << order;
654 /* Count the suitable free blocks */
655 if (order >= suitable_order)
656 info->free_blocks_suitable += blocks <<
657 (order - suitable_order);
662 * A fragmentation index only makes sense if an allocation of a requested
663 * size would fail. If that is true, the fragmentation index indicates
664 * whether external fragmentation or a lack of memory was the problem.
665 * The value can be used to determine if page reclaim or compaction
668 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
670 unsigned long requested = 1UL << order;
672 if (!info->free_blocks_total)
675 /* Fragmentation index only makes sense when a request would fail */
676 if (info->free_blocks_suitable)
680 * Index is between 0 and 1 so return within 3 decimal places
682 * 0 => allocation would fail due to lack of memory
683 * 1 => allocation would fail due to fragmentation
685 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688 /* Same as __fragmentation index but allocs contig_page_info on stack */
689 int fragmentation_index(struct zone *zone, unsigned int order)
691 struct contig_page_info info;
693 fill_contig_page_info(zone, order, &info);
694 return __fragmentation_index(order, &info);
698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
699 #ifdef CONFIG_ZONE_DMA
700 #define TEXT_FOR_DMA(xx) xx "_dma",
702 #define TEXT_FOR_DMA(xx)
705 #ifdef CONFIG_ZONE_DMA32
706 #define TEXT_FOR_DMA32(xx) xx "_dma32",
708 #define TEXT_FOR_DMA32(xx)
711 #ifdef CONFIG_HIGHMEM
712 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
714 #define TEXT_FOR_HIGHMEM(xx)
717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 TEXT_FOR_HIGHMEM(xx) xx "_movable",
720 const char * const vmstat_text[] = {
721 /* enum zone_stat_item countes */
735 "nr_slab_reclaimable",
736 "nr_slab_unreclaimable",
737 "nr_page_table_pages",
742 "nr_vmscan_immediate_reclaim",
759 "workingset_refault",
760 "workingset_activate",
761 "workingset_nodereclaim",
762 "nr_anon_transparent_hugepages",
765 /* enum writeback_stat_item counters */
766 "nr_dirty_threshold",
767 "nr_dirty_background_threshold",
769 #ifdef CONFIG_VM_EVENT_COUNTERS
770 /* enum vm_event_item counters */
776 TEXTS_FOR_ZONES("pgalloc")
786 TEXTS_FOR_ZONES("pgrefill")
787 TEXTS_FOR_ZONES("pgsteal_kswapd")
788 TEXTS_FOR_ZONES("pgsteal_direct")
789 TEXTS_FOR_ZONES("pgscan_kswapd")
790 TEXTS_FOR_ZONES("pgscan_direct")
791 "pgscan_direct_throttle",
794 "zone_reclaim_failed",
799 "kswapd_low_wmark_hit_quickly",
800 "kswapd_high_wmark_hit_quickly",
809 #ifdef CONFIG_NUMA_BALANCING
811 "numa_huge_pte_updates",
813 "numa_hint_faults_local",
814 "numa_pages_migrated",
816 #ifdef CONFIG_MIGRATION
820 #ifdef CONFIG_COMPACTION
821 "compact_migrate_scanned",
822 "compact_free_scanned",
827 "compact_daemon_wake",
830 #ifdef CONFIG_HUGETLB_PAGE
831 "htlb_buddy_alloc_success",
832 "htlb_buddy_alloc_fail",
834 "unevictable_pgs_culled",
835 "unevictable_pgs_scanned",
836 "unevictable_pgs_rescued",
837 "unevictable_pgs_mlocked",
838 "unevictable_pgs_munlocked",
839 "unevictable_pgs_cleared",
840 "unevictable_pgs_stranded",
842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 "thp_fault_fallback",
845 "thp_collapse_alloc",
846 "thp_collapse_alloc_failed",
848 "thp_split_page_failed",
849 "thp_deferred_split_page",
851 "thp_zero_page_alloc",
852 "thp_zero_page_alloc_failed",
854 #ifdef CONFIG_MEMORY_BALLOON
857 #ifdef CONFIG_BALLOON_COMPACTION
860 #endif /* CONFIG_MEMORY_BALLOON */
861 #ifdef CONFIG_DEBUG_TLBFLUSH
863 "nr_tlb_remote_flush",
864 "nr_tlb_remote_flush_received",
865 #endif /* CONFIG_SMP */
866 "nr_tlb_local_flush_all",
867 "nr_tlb_local_flush_one",
868 #endif /* CONFIG_DEBUG_TLBFLUSH */
870 #ifdef CONFIG_DEBUG_VM_VMACACHE
871 "vmacache_find_calls",
872 "vmacache_find_hits",
873 "vmacache_full_flushes",
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
880 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
881 defined(CONFIG_PROC_FS)
882 static void *frag_start(struct seq_file *m, loff_t *pos)
887 for (pgdat = first_online_pgdat();
889 pgdat = next_online_pgdat(pgdat))
895 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
897 pg_data_t *pgdat = (pg_data_t *)arg;
900 return next_online_pgdat(pgdat);
903 static void frag_stop(struct seq_file *m, void *arg)
907 /* Walk all the zones in a node and print using a callback */
908 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
909 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
912 struct zone *node_zones = pgdat->node_zones;
915 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
916 if (!populated_zone(zone))
919 spin_lock_irqsave(&zone->lock, flags);
920 print(m, pgdat, zone);
921 spin_unlock_irqrestore(&zone->lock, flags);
926 #ifdef CONFIG_PROC_FS
927 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
932 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
933 for (order = 0; order < MAX_ORDER; ++order)
934 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
939 * This walks the free areas for each zone.
941 static int frag_show(struct seq_file *m, void *arg)
943 pg_data_t *pgdat = (pg_data_t *)arg;
944 walk_zones_in_node(m, pgdat, frag_show_print);
948 static void pagetypeinfo_showfree_print(struct seq_file *m,
949 pg_data_t *pgdat, struct zone *zone)
953 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
954 seq_printf(m, "Node %4d, zone %8s, type %12s ",
957 migratetype_names[mtype]);
958 for (order = 0; order < MAX_ORDER; ++order) {
959 unsigned long freecount = 0;
960 struct free_area *area;
961 struct list_head *curr;
963 area = &(zone->free_area[order]);
965 list_for_each(curr, &area->free_list[mtype])
967 seq_printf(m, "%6lu ", freecount);
973 /* Print out the free pages at each order for each migatetype */
974 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
977 pg_data_t *pgdat = (pg_data_t *)arg;
980 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
981 for (order = 0; order < MAX_ORDER; ++order)
982 seq_printf(m, "%6d ", order);
985 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
990 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
991 pg_data_t *pgdat, struct zone *zone)
995 unsigned long start_pfn = zone->zone_start_pfn;
996 unsigned long end_pfn = zone_end_pfn(zone);
997 unsigned long count[MIGRATE_TYPES] = { 0, };
999 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002 if (!pfn_valid(pfn))
1005 page = pfn_to_page(pfn);
1007 /* Watch for unexpected holes punched in the memmap */
1008 if (!memmap_valid_within(pfn, page, zone))
1011 if (page_zone(page) != zone)
1014 mtype = get_pageblock_migratetype(page);
1016 if (mtype < MIGRATE_TYPES)
1021 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1022 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1023 seq_printf(m, "%12lu ", count[mtype]);
1027 /* Print out the free pages at each order for each migratetype */
1028 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1031 pg_data_t *pgdat = (pg_data_t *)arg;
1033 seq_printf(m, "\n%-23s", "Number of blocks type ");
1034 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1035 seq_printf(m, "%12s ", migratetype_names[mtype]);
1037 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1042 #ifdef CONFIG_PAGE_OWNER
1043 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1048 struct page_ext *page_ext;
1049 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1050 unsigned long end_pfn = pfn + zone->spanned_pages;
1051 unsigned long count[MIGRATE_TYPES] = { 0, };
1052 int pageblock_mt, page_mt;
1055 /* Scan block by block. First and last block may be incomplete */
1056 pfn = zone->zone_start_pfn;
1059 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1060 * a zone boundary, it will be double counted between zones. This does
1061 * not matter as the mixed block count will still be correct
1063 for (; pfn < end_pfn; ) {
1064 if (!pfn_valid(pfn)) {
1065 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1069 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1070 block_end_pfn = min(block_end_pfn, end_pfn);
1072 page = pfn_to_page(pfn);
1073 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1075 for (; pfn < block_end_pfn; pfn++) {
1076 if (!pfn_valid_within(pfn))
1079 page = pfn_to_page(pfn);
1081 if (page_zone(page) != zone)
1084 if (PageBuddy(page)) {
1085 pfn += (1UL << page_order(page)) - 1;
1089 if (PageReserved(page))
1092 page_ext = lookup_page_ext(page);
1094 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1097 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1098 if (pageblock_mt != page_mt) {
1099 if (is_migrate_cma(pageblock_mt))
1100 count[MIGRATE_MOVABLE]++;
1102 count[pageblock_mt]++;
1104 pfn = block_end_pfn;
1107 pfn += (1UL << page_ext->order) - 1;
1112 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1113 for (i = 0; i < MIGRATE_TYPES; i++)
1114 seq_printf(m, "%12lu ", count[i]);
1117 #endif /* CONFIG_PAGE_OWNER */
1120 * Print out the number of pageblocks for each migratetype that contain pages
1121 * of other types. This gives an indication of how well fallbacks are being
1122 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1123 * to determine what is going on
1125 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1127 #ifdef CONFIG_PAGE_OWNER
1130 if (!static_branch_unlikely(&page_owner_inited))
1133 drain_all_pages(NULL);
1135 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1136 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1137 seq_printf(m, "%12s ", migratetype_names[mtype]);
1140 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1141 #endif /* CONFIG_PAGE_OWNER */
1145 * This prints out statistics in relation to grouping pages by mobility.
1146 * It is expensive to collect so do not constantly read the file.
1148 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1150 pg_data_t *pgdat = (pg_data_t *)arg;
1152 /* check memoryless node */
1153 if (!node_state(pgdat->node_id, N_MEMORY))
1156 seq_printf(m, "Page block order: %d\n", pageblock_order);
1157 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1159 pagetypeinfo_showfree(m, pgdat);
1160 pagetypeinfo_showblockcount(m, pgdat);
1161 pagetypeinfo_showmixedcount(m, pgdat);
1166 static const struct seq_operations fragmentation_op = {
1167 .start = frag_start,
1173 static int fragmentation_open(struct inode *inode, struct file *file)
1175 return seq_open(file, &fragmentation_op);
1178 static const struct file_operations fragmentation_file_operations = {
1179 .open = fragmentation_open,
1181 .llseek = seq_lseek,
1182 .release = seq_release,
1185 static const struct seq_operations pagetypeinfo_op = {
1186 .start = frag_start,
1189 .show = pagetypeinfo_show,
1192 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1194 return seq_open(file, &pagetypeinfo_op);
1197 static const struct file_operations pagetypeinfo_file_ops = {
1198 .open = pagetypeinfo_open,
1200 .llseek = seq_lseek,
1201 .release = seq_release,
1204 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1208 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1218 zone_page_state(zone, NR_FREE_PAGES),
1219 min_wmark_pages(zone),
1220 low_wmark_pages(zone),
1221 high_wmark_pages(zone),
1222 zone_page_state(zone, NR_PAGES_SCANNED),
1223 zone->spanned_pages,
1224 zone->present_pages,
1225 zone->managed_pages);
1227 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1228 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1229 zone_page_state(zone, i));
1232 "\n protection: (%ld",
1233 zone->lowmem_reserve[0]);
1234 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1235 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1239 for_each_online_cpu(i) {
1240 struct per_cpu_pageset *pageset;
1242 pageset = per_cpu_ptr(zone->pageset, i);
1251 pageset->pcp.batch);
1253 seq_printf(m, "\n vm stats threshold: %d",
1254 pageset->stat_threshold);
1258 "\n all_unreclaimable: %u"
1260 "\n inactive_ratio: %u",
1261 !zone_reclaimable(zone),
1262 zone->zone_start_pfn,
1263 zone->inactive_ratio);
1268 * Output information about zones in @pgdat.
1270 static int zoneinfo_show(struct seq_file *m, void *arg)
1272 pg_data_t *pgdat = (pg_data_t *)arg;
1273 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1277 static const struct seq_operations zoneinfo_op = {
1278 .start = frag_start, /* iterate over all zones. The same as in
1282 .show = zoneinfo_show,
1285 static int zoneinfo_open(struct inode *inode, struct file *file)
1287 return seq_open(file, &zoneinfo_op);
1290 static const struct file_operations proc_zoneinfo_file_operations = {
1291 .open = zoneinfo_open,
1293 .llseek = seq_lseek,
1294 .release = seq_release,
1297 enum writeback_stat_item {
1299 NR_DIRTY_BG_THRESHOLD,
1300 NR_VM_WRITEBACK_STAT_ITEMS,
1303 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1306 int i, stat_items_size;
1308 if (*pos >= ARRAY_SIZE(vmstat_text))
1310 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1311 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1313 #ifdef CONFIG_VM_EVENT_COUNTERS
1314 stat_items_size += sizeof(struct vm_event_state);
1317 v = kmalloc(stat_items_size, GFP_KERNEL);
1320 return ERR_PTR(-ENOMEM);
1321 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1322 v[i] = global_page_state(i);
1323 v += NR_VM_ZONE_STAT_ITEMS;
1325 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1326 v + NR_DIRTY_THRESHOLD);
1327 v += NR_VM_WRITEBACK_STAT_ITEMS;
1329 #ifdef CONFIG_VM_EVENT_COUNTERS
1331 v[PGPGIN] /= 2; /* sectors -> kbytes */
1334 return (unsigned long *)m->private + *pos;
1337 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1340 if (*pos >= ARRAY_SIZE(vmstat_text))
1342 return (unsigned long *)m->private + *pos;
1345 static int vmstat_show(struct seq_file *m, void *arg)
1347 unsigned long *l = arg;
1348 unsigned long off = l - (unsigned long *)m->private;
1350 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1354 static void vmstat_stop(struct seq_file *m, void *arg)
1360 static const struct seq_operations vmstat_op = {
1361 .start = vmstat_start,
1362 .next = vmstat_next,
1363 .stop = vmstat_stop,
1364 .show = vmstat_show,
1367 static int vmstat_open(struct inode *inode, struct file *file)
1369 return seq_open(file, &vmstat_op);
1372 static const struct file_operations proc_vmstat_file_operations = {
1373 .open = vmstat_open,
1375 .llseek = seq_lseek,
1376 .release = seq_release,
1378 #endif /* CONFIG_PROC_FS */
1381 static struct workqueue_struct *vmstat_wq;
1382 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1383 int sysctl_stat_interval __read_mostly = HZ;
1384 static cpumask_var_t cpu_stat_off;
1386 #ifdef CONFIG_PROC_FS
1387 static void refresh_vm_stats(struct work_struct *work)
1389 refresh_cpu_vm_stats(true);
1392 int vmstat_refresh(struct ctl_table *table, int write,
1393 void __user *buffer, size_t *lenp, loff_t *ppos)
1400 * The regular update, every sysctl_stat_interval, may come later
1401 * than expected: leaving a significant amount in per_cpu buckets.
1402 * This is particularly misleading when checking a quantity of HUGE
1403 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1404 * which can equally be echo'ed to or cat'ted from (by root),
1405 * can be used to update the stats just before reading them.
1407 * Oh, and since global_page_state() etc. are so careful to hide
1408 * transiently negative values, report an error here if any of
1409 * the stats is negative, so we know to go looking for imbalance.
1411 err = schedule_on_each_cpu(refresh_vm_stats);
1414 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1415 val = atomic_long_read(&vm_stat[i]);
1418 case NR_ALLOC_BATCH:
1419 case NR_PAGES_SCANNED:
1421 * These are often seen to go negative in
1422 * recent kernels, but not to go permanently
1423 * negative. Whilst it would be nicer not to
1424 * have exceptions, rooting them out would be
1425 * another task, of rather low priority.
1429 pr_warn("%s: %s %ld\n",
1430 __func__, vmstat_text[i], val);
1444 #endif /* CONFIG_PROC_FS */
1446 static void vmstat_update(struct work_struct *w)
1448 if (refresh_cpu_vm_stats(true)) {
1450 * Counters were updated so we expect more updates
1451 * to occur in the future. Keep on running the
1452 * update worker thread.
1453 * If we were marked on cpu_stat_off clear the flag
1454 * so that vmstat_shepherd doesn't schedule us again.
1456 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1458 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1459 this_cpu_ptr(&vmstat_work),
1460 round_jiffies_relative(sysctl_stat_interval));
1464 * We did not update any counters so the app may be in
1465 * a mode where it does not cause counter updates.
1466 * We may be uselessly running vmstat_update.
1467 * Defer the checking for differentials to the
1468 * shepherd thread on a different processor.
1470 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1475 * Switch off vmstat processing and then fold all the remaining differentials
1476 * until the diffs stay at zero. The function is used by NOHZ and can only be
1477 * invoked when tick processing is not active.
1480 * Check if the diffs for a certain cpu indicate that
1481 * an update is needed.
1483 static bool need_update(int cpu)
1487 for_each_populated_zone(zone) {
1488 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1490 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1492 * The fast way of checking if there are any vmstat diffs.
1493 * This works because the diffs are byte sized items.
1495 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1502 void quiet_vmstat(void)
1504 if (system_state != SYSTEM_RUNNING)
1508 * If we are already in hands of the shepherd then there
1509 * is nothing for us to do here.
1511 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1514 if (!need_update(smp_processor_id()))
1518 * Just refresh counters and do not care about the pending delayed
1519 * vmstat_update. It doesn't fire that often to matter and canceling
1520 * it would be too expensive from this path.
1521 * vmstat_shepherd will take care about that for us.
1523 refresh_cpu_vm_stats(false);
1528 * Shepherd worker thread that checks the
1529 * differentials of processors that have their worker
1530 * threads for vm statistics updates disabled because of
1533 static void vmstat_shepherd(struct work_struct *w);
1535 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1537 static void vmstat_shepherd(struct work_struct *w)
1542 /* Check processors whose vmstat worker threads have been disabled */
1543 for_each_cpu(cpu, cpu_stat_off) {
1544 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1546 if (need_update(cpu)) {
1547 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1548 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1551 * Cancel the work if quiet_vmstat has put this
1552 * cpu on cpu_stat_off because the work item might
1553 * be still scheduled
1555 cancel_delayed_work(dw);
1560 schedule_delayed_work(&shepherd,
1561 round_jiffies_relative(sysctl_stat_interval));
1564 static void __init start_shepherd_timer(void)
1568 for_each_possible_cpu(cpu)
1569 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1572 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1574 cpumask_copy(cpu_stat_off, cpu_online_mask);
1576 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1577 schedule_delayed_work(&shepherd,
1578 round_jiffies_relative(sysctl_stat_interval));
1581 static void vmstat_cpu_dead(int node)
1586 for_each_online_cpu(cpu)
1587 if (cpu_to_node(cpu) == node)
1590 node_clear_state(node, N_CPU);
1596 * Use the cpu notifier to insure that the thresholds are recalculated
1599 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1600 unsigned long action,
1603 long cpu = (long)hcpu;
1607 case CPU_ONLINE_FROZEN:
1608 refresh_zone_stat_thresholds();
1609 node_set_state(cpu_to_node(cpu), N_CPU);
1610 cpumask_set_cpu(cpu, cpu_stat_off);
1612 case CPU_DOWN_PREPARE:
1613 case CPU_DOWN_PREPARE_FROZEN:
1614 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1615 cpumask_clear_cpu(cpu, cpu_stat_off);
1617 case CPU_DOWN_FAILED:
1618 case CPU_DOWN_FAILED_FROZEN:
1619 cpumask_set_cpu(cpu, cpu_stat_off);
1622 case CPU_DEAD_FROZEN:
1623 refresh_zone_stat_thresholds();
1624 vmstat_cpu_dead(cpu_to_node(cpu));
1632 static struct notifier_block vmstat_notifier =
1633 { &vmstat_cpuup_callback, NULL, 0 };
1636 static int __init setup_vmstat(void)
1639 cpu_notifier_register_begin();
1640 __register_cpu_notifier(&vmstat_notifier);
1642 start_shepherd_timer();
1643 cpu_notifier_register_done();
1645 #ifdef CONFIG_PROC_FS
1646 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1647 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1648 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1649 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1653 module_init(setup_vmstat)
1655 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1658 * Return an index indicating how much of the available free memory is
1659 * unusable for an allocation of the requested size.
1661 static int unusable_free_index(unsigned int order,
1662 struct contig_page_info *info)
1664 /* No free memory is interpreted as all free memory is unusable */
1665 if (info->free_pages == 0)
1669 * Index should be a value between 0 and 1. Return a value to 3
1672 * 0 => no fragmentation
1673 * 1 => high fragmentation
1675 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1679 static void unusable_show_print(struct seq_file *m,
1680 pg_data_t *pgdat, struct zone *zone)
1684 struct contig_page_info info;
1686 seq_printf(m, "Node %d, zone %8s ",
1689 for (order = 0; order < MAX_ORDER; ++order) {
1690 fill_contig_page_info(zone, order, &info);
1691 index = unusable_free_index(order, &info);
1692 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1699 * Display unusable free space index
1701 * The unusable free space index measures how much of the available free
1702 * memory cannot be used to satisfy an allocation of a given size and is a
1703 * value between 0 and 1. The higher the value, the more of free memory is
1704 * unusable and by implication, the worse the external fragmentation is. This
1705 * can be expressed as a percentage by multiplying by 100.
1707 static int unusable_show(struct seq_file *m, void *arg)
1709 pg_data_t *pgdat = (pg_data_t *)arg;
1711 /* check memoryless node */
1712 if (!node_state(pgdat->node_id, N_MEMORY))
1715 walk_zones_in_node(m, pgdat, unusable_show_print);
1720 static const struct seq_operations unusable_op = {
1721 .start = frag_start,
1724 .show = unusable_show,
1727 static int unusable_open(struct inode *inode, struct file *file)
1729 return seq_open(file, &unusable_op);
1732 static const struct file_operations unusable_file_ops = {
1733 .open = unusable_open,
1735 .llseek = seq_lseek,
1736 .release = seq_release,
1739 static void extfrag_show_print(struct seq_file *m,
1740 pg_data_t *pgdat, struct zone *zone)
1745 /* Alloc on stack as interrupts are disabled for zone walk */
1746 struct contig_page_info info;
1748 seq_printf(m, "Node %d, zone %8s ",
1751 for (order = 0; order < MAX_ORDER; ++order) {
1752 fill_contig_page_info(zone, order, &info);
1753 index = __fragmentation_index(order, &info);
1754 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1761 * Display fragmentation index for orders that allocations would fail for
1763 static int extfrag_show(struct seq_file *m, void *arg)
1765 pg_data_t *pgdat = (pg_data_t *)arg;
1767 walk_zones_in_node(m, pgdat, extfrag_show_print);
1772 static const struct seq_operations extfrag_op = {
1773 .start = frag_start,
1776 .show = extfrag_show,
1779 static int extfrag_open(struct inode *inode, struct file *file)
1781 return seq_open(file, &extfrag_op);
1784 static const struct file_operations extfrag_file_ops = {
1785 .open = extfrag_open,
1787 .llseek = seq_lseek,
1788 .release = seq_release,
1791 static int __init extfrag_debug_init(void)
1793 struct dentry *extfrag_debug_root;
1795 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1796 if (!extfrag_debug_root)
1799 if (!debugfs_create_file("unusable_index", 0444,
1800 extfrag_debug_root, NULL, &unusable_file_ops))
1803 if (!debugfs_create_file("extfrag_index", 0444,
1804 extfrag_debug_root, NULL, &extfrag_file_ops))
1809 debugfs_remove_recursive(extfrag_debug_root);
1813 module_init(extfrag_debug_init);