1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #include <linux/module.h>
151 #include <linux/moduleparam.h>
152 #include <linux/kernel.h>
153 #include <linux/types.h>
154 #include <linux/slab.h>
155 #include <linux/delay.h>
156 #include <linux/init.h>
157 #include <linux/pci.h>
158 #include <linux/dma-mapping.h>
159 #include <linux/netdevice.h>
160 #include <linux/etherdevice.h>
161 #include <linux/mii.h>
162 #include <linux/if_vlan.h>
163 #include <linux/skbuff.h>
164 #include <linux/ethtool.h>
165 #include <linux/string.h>
166 #include <linux/firmware.h>
167 #include <asm/unaligned.h>
170 #define DRV_NAME "e100"
171 #define DRV_EXT "-NAPI"
172 #define DRV_VERSION "3.5.24-k2"DRV_EXT
173 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
175 #define PFX DRV_NAME ": "
177 #define E100_WATCHDOG_PERIOD (2 * HZ)
178 #define E100_NAPI_WEIGHT 16
180 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
181 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
182 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_AUTHOR(DRV_COPYRIGHT);
186 MODULE_LICENSE("GPL");
187 MODULE_VERSION(DRV_VERSION);
188 MODULE_FIRMWARE(FIRMWARE_D101M);
189 MODULE_FIRMWARE(FIRMWARE_D101S);
190 MODULE_FIRMWARE(FIRMWARE_D102E);
192 static int debug = 3;
193 static int eeprom_bad_csum_allow = 0;
194 static int use_io = 0;
195 module_param(debug, int, 0);
196 module_param(eeprom_bad_csum_allow, int, 0);
197 module_param(use_io, int, 0);
198 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
199 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
200 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
201 #define DPRINTK(nlevel, klevel, fmt, args...) \
202 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
203 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209 static struct pci_device_id e100_id_table[] = {
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 MODULE_DEVICE_TABLE(pci, e100_id_table);
257 mac_82557_D100_A = 0,
258 mac_82557_D100_B = 1,
259 mac_82557_D100_C = 2,
260 mac_82558_D101_A4 = 4,
261 mac_82558_D101_B0 = 5,
265 mac_82550_D102_C = 13,
273 phy_100a = 0x000003E0,
274 phy_100c = 0x035002A8,
275 phy_82555_tx = 0x015002A8,
276 phy_nsc_tx = 0x5C002000,
277 phy_82562_et = 0x033002A8,
278 phy_82562_em = 0x032002A8,
279 phy_82562_ek = 0x031002A8,
280 phy_82562_eh = 0x017002A8,
281 phy_82552_v = 0xd061004d,
282 phy_unknown = 0xFFFFFFFF,
285 /* CSR (Control/Status Registers) */
311 RU_UNINITIALIZED = -1,
315 stat_ack_not_ours = 0x00,
316 stat_ack_sw_gen = 0x04,
318 stat_ack_cu_idle = 0x20,
319 stat_ack_frame_rx = 0x40,
320 stat_ack_cu_cmd_done = 0x80,
321 stat_ack_not_present = 0xFF,
322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
327 irq_mask_none = 0x00,
335 ruc_load_base = 0x06,
338 cuc_dump_addr = 0x40,
339 cuc_dump_stats = 0x50,
340 cuc_load_base = 0x60,
341 cuc_dump_reset = 0x70,
345 cuc_dump_complete = 0x0000A005,
346 cuc_dump_reset_complete = 0x0000A007,
350 software_reset = 0x0000,
352 selective_reset = 0x0002,
355 enum eeprom_ctrl_lo {
363 mdi_write = 0x04000000,
364 mdi_read = 0x08000000,
365 mdi_ready = 0x10000000,
375 enum eeprom_offsets {
376 eeprom_cnfg_mdix = 0x03,
377 eeprom_phy_iface = 0x06,
379 eeprom_config_asf = 0x0D,
380 eeprom_smbus_addr = 0x90,
383 enum eeprom_cnfg_mdix {
384 eeprom_mdix_enabled = 0x0080,
387 enum eeprom_phy_iface {
400 eeprom_id_wol = 0x0020,
403 enum eeprom_config_asf {
409 cb_complete = 0x8000,
438 struct rx *next, *prev;
443 #if defined(__BIG_ENDIAN_BITFIELD)
449 /*0*/ u8 X(byte_count:6, pad0:2);
450 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
451 /*2*/ u8 adaptive_ifs;
452 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
453 term_write_cache_line:1), pad3:4);
454 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
455 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
456 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
458 rx_discard_overruns:1), rx_save_bad_frames:1);
459 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
462 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
463 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
464 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
465 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
467 /*11*/ u8 X(linear_priority:3, pad11:5);
468 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
469 /*13*/ u8 ip_addr_lo;
470 /*14*/ u8 ip_addr_hi;
471 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
473 pad15_2:1), crs_or_cdt:1);
474 /*16*/ u8 fc_delay_lo;
475 /*17*/ u8 fc_delay_hi;
476 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
477 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
478 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
480 full_duplex_force:1), full_duplex_pin:1);
481 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
482 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
483 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
487 #define E100_MAX_MULTICAST_ADDRS 64
490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
493 /* Important: keep total struct u32-aligned */
494 #define UCODE_SIZE 134
501 __le32 ucode[UCODE_SIZE];
502 struct config config;
515 __le32 dump_buffer_addr;
517 struct cb *next, *prev;
523 lb_none = 0, lb_mac = 1, lb_phy = 3,
527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
529 tx_multiple_collisions, tx_total_collisions;
530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
532 rx_short_frame_errors;
533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
534 __le16 xmt_tco_frames, rcv_tco_frames;
554 struct param_range rfds;
555 struct param_range cbs;
559 /* Begin: frequently used values: keep adjacent for cache effect */
560 u32 msg_enable ____cacheline_aligned;
561 struct net_device *netdev;
562 struct pci_dev *pdev;
563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
565 struct rx *rxs ____cacheline_aligned;
566 struct rx *rx_to_use;
567 struct rx *rx_to_clean;
568 struct rfd blank_rfd;
569 enum ru_state ru_running;
571 spinlock_t cb_lock ____cacheline_aligned;
573 struct csr __iomem *csr;
574 enum scb_cmd_lo cuc_cmd;
575 unsigned int cbs_avail;
576 struct napi_struct napi;
578 struct cb *cb_to_use;
579 struct cb *cb_to_send;
580 struct cb *cb_to_clean;
582 /* End: frequently used values: keep adjacent for cache effect */
586 promiscuous = (1 << 1),
587 multicast_all = (1 << 2),
588 wol_magic = (1 << 3),
589 ich_10h_workaround = (1 << 4),
590 } flags ____cacheline_aligned;
594 struct params params;
595 struct timer_list watchdog;
596 struct timer_list blink_timer;
597 struct mii_if_info mii;
598 struct work_struct tx_timeout_task;
599 enum loopback loopback;
604 dma_addr_t cbs_dma_addr;
610 u32 tx_single_collisions;
611 u32 tx_multiple_collisions;
616 u32 rx_fc_unsupported;
618 u32 rx_over_length_errors;
623 spinlock_t mdio_lock;
626 static inline void e100_write_flush(struct nic *nic)
628 /* Flush previous PCI writes through intermediate bridges
629 * by doing a benign read */
630 (void)ioread8(&nic->csr->scb.status);
633 static void e100_enable_irq(struct nic *nic)
637 spin_lock_irqsave(&nic->cmd_lock, flags);
638 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
639 e100_write_flush(nic);
640 spin_unlock_irqrestore(&nic->cmd_lock, flags);
643 static void e100_disable_irq(struct nic *nic)
647 spin_lock_irqsave(&nic->cmd_lock, flags);
648 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
649 e100_write_flush(nic);
650 spin_unlock_irqrestore(&nic->cmd_lock, flags);
653 static void e100_hw_reset(struct nic *nic)
655 /* Put CU and RU into idle with a selective reset to get
656 * device off of PCI bus */
657 iowrite32(selective_reset, &nic->csr->port);
658 e100_write_flush(nic); udelay(20);
660 /* Now fully reset device */
661 iowrite32(software_reset, &nic->csr->port);
662 e100_write_flush(nic); udelay(20);
664 /* Mask off our interrupt line - it's unmasked after reset */
665 e100_disable_irq(nic);
668 static int e100_self_test(struct nic *nic)
670 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
672 /* Passing the self-test is a pretty good indication
673 * that the device can DMA to/from host memory */
675 nic->mem->selftest.signature = 0;
676 nic->mem->selftest.result = 0xFFFFFFFF;
678 iowrite32(selftest | dma_addr, &nic->csr->port);
679 e100_write_flush(nic);
680 /* Wait 10 msec for self-test to complete */
683 /* Interrupts are enabled after self-test */
684 e100_disable_irq(nic);
686 /* Check results of self-test */
687 if (nic->mem->selftest.result != 0) {
688 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
689 nic->mem->selftest.result);
692 if (nic->mem->selftest.signature == 0) {
693 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
700 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
702 u32 cmd_addr_data[3];
706 /* Three cmds: write/erase enable, write data, write/erase disable */
707 cmd_addr_data[0] = op_ewen << (addr_len - 2);
708 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
710 cmd_addr_data[2] = op_ewds << (addr_len - 2);
712 /* Bit-bang cmds to write word to eeprom */
713 for (j = 0; j < 3; j++) {
716 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
717 e100_write_flush(nic); udelay(4);
719 for (i = 31; i >= 0; i--) {
720 ctrl = (cmd_addr_data[j] & (1 << i)) ?
722 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
723 e100_write_flush(nic); udelay(4);
725 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
726 e100_write_flush(nic); udelay(4);
728 /* Wait 10 msec for cmd to complete */
732 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
733 e100_write_flush(nic); udelay(4);
737 /* General technique stolen from the eepro100 driver - very clever */
738 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
745 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
748 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
749 e100_write_flush(nic); udelay(4);
751 /* Bit-bang to read word from eeprom */
752 for (i = 31; i >= 0; i--) {
753 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
754 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
755 e100_write_flush(nic); udelay(4);
757 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
758 e100_write_flush(nic); udelay(4);
760 /* Eeprom drives a dummy zero to EEDO after receiving
761 * complete address. Use this to adjust addr_len. */
762 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
763 if (!(ctrl & eedo) && i > 16) {
764 *addr_len -= (i - 16);
768 data = (data << 1) | (ctrl & eedo ? 1 : 0);
772 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
773 e100_write_flush(nic); udelay(4);
775 return cpu_to_le16(data);
778 /* Load entire EEPROM image into driver cache and validate checksum */
779 static int e100_eeprom_load(struct nic *nic)
781 u16 addr, addr_len = 8, checksum = 0;
783 /* Try reading with an 8-bit addr len to discover actual addr len */
784 e100_eeprom_read(nic, &addr_len, 0);
785 nic->eeprom_wc = 1 << addr_len;
787 for (addr = 0; addr < nic->eeprom_wc; addr++) {
788 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
789 if (addr < nic->eeprom_wc - 1)
790 checksum += le16_to_cpu(nic->eeprom[addr]);
793 /* The checksum, stored in the last word, is calculated such that
794 * the sum of words should be 0xBABA */
795 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
796 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
797 if (!eeprom_bad_csum_allow)
804 /* Save (portion of) driver EEPROM cache to device and update checksum */
805 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
807 u16 addr, addr_len = 8, checksum = 0;
809 /* Try reading with an 8-bit addr len to discover actual addr len */
810 e100_eeprom_read(nic, &addr_len, 0);
811 nic->eeprom_wc = 1 << addr_len;
813 if (start + count >= nic->eeprom_wc)
816 for (addr = start; addr < start + count; addr++)
817 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
819 /* The checksum, stored in the last word, is calculated such that
820 * the sum of words should be 0xBABA */
821 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
822 checksum += le16_to_cpu(nic->eeprom[addr]);
823 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
824 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
825 nic->eeprom[nic->eeprom_wc - 1]);
830 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
831 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
832 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
838 spin_lock_irqsave(&nic->cmd_lock, flags);
840 /* Previous command is accepted when SCB clears */
841 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
842 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
845 if (unlikely(i > E100_WAIT_SCB_FAST))
848 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
853 if (unlikely(cmd != cuc_resume))
854 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
855 iowrite8(cmd, &nic->csr->scb.cmd_lo);
858 spin_unlock_irqrestore(&nic->cmd_lock, flags);
863 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
864 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
870 spin_lock_irqsave(&nic->cb_lock, flags);
872 if (unlikely(!nic->cbs_avail)) {
878 nic->cb_to_use = cb->next;
882 if (unlikely(!nic->cbs_avail))
885 cb_prepare(nic, cb, skb);
887 /* Order is important otherwise we'll be in a race with h/w:
888 * set S-bit in current first, then clear S-bit in previous. */
889 cb->command |= cpu_to_le16(cb_s);
891 cb->prev->command &= cpu_to_le16(~cb_s);
893 while (nic->cb_to_send != nic->cb_to_use) {
894 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
895 nic->cb_to_send->dma_addr))) {
896 /* Ok, here's where things get sticky. It's
897 * possible that we can't schedule the command
898 * because the controller is too busy, so
899 * let's just queue the command and try again
900 * when another command is scheduled. */
901 if (err == -ENOSPC) {
903 schedule_work(&nic->tx_timeout_task);
907 nic->cuc_cmd = cuc_resume;
908 nic->cb_to_send = nic->cb_to_send->next;
913 spin_unlock_irqrestore(&nic->cb_lock, flags);
918 static int mdio_read(struct net_device *netdev, int addr, int reg)
920 struct nic *nic = netdev_priv(netdev);
921 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
924 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
926 struct nic *nic = netdev_priv(netdev);
928 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
931 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
932 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
940 * Stratus87247: we shouldn't be writing the MDI control
941 * register until the Ready bit shows True. Also, since
942 * manipulation of the MDI control registers is a multi-step
943 * procedure it should be done under lock.
945 spin_lock_irqsave(&nic->mdio_lock, flags);
946 for (i = 100; i; --i) {
947 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
952 printk("e100.mdio_ctrl(%s) won't go Ready\n",
954 spin_unlock_irqrestore(&nic->mdio_lock, flags);
955 return 0; /* No way to indicate timeout error */
957 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
959 for (i = 0; i < 100; i++) {
961 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
964 spin_unlock_irqrestore(&nic->mdio_lock, flags);
966 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
967 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
968 return (u16)data_out;
971 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
972 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
978 if ((reg == MII_BMCR) && (dir == mdi_write)) {
979 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
980 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
984 * Workaround Si issue where sometimes the part will not
985 * autoneg to 100Mbps even when advertised.
987 if (advert & ADVERTISE_100FULL)
988 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
989 else if (advert & ADVERTISE_100HALF)
990 data |= BMCR_SPEED100;
993 return mdio_ctrl_hw(nic, addr, dir, reg, data);
996 /* Fully software-emulated mdio_ctrl() function for cards without
997 * MII-compliant PHYs.
998 * For now, this is mainly geared towards 80c24 support; in case of further
999 * requirements for other types (i82503, ...?) either extend this mechanism
1000 * or split it, whichever is cleaner.
1002 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1008 /* might need to allocate a netdev_priv'ed register array eventually
1009 * to be able to record state changes, but for now
1010 * some fully hardcoded register handling ought to be ok I guess. */
1012 if (dir == mdi_read) {
1015 /* Auto-negotiation, right? */
1016 return BMCR_ANENABLE |
1019 return BMSR_LSTATUS /* for mii_link_ok() */ |
1023 /* 80c24 is a "combo card" PHY, right? */
1024 return ADVERTISE_10HALF |
1028 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1029 dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1036 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1037 dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1042 static inline int e100_phy_supports_mii(struct nic *nic)
1044 /* for now, just check it by comparing whether we
1045 are using MII software emulation.
1047 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1050 static void e100_get_defaults(struct nic *nic)
1052 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1053 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1055 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1056 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1057 if (nic->mac == mac_unknown)
1058 nic->mac = mac_82557_D100_A;
1060 nic->params.rfds = rfds;
1061 nic->params.cbs = cbs;
1063 /* Quadwords to DMA into FIFO before starting frame transmit */
1064 nic->tx_threshold = 0xE0;
1066 /* no interrupt for every tx completion, delay = 256us if not 557 */
1067 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1068 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1070 /* Template for a freshly allocated RFD */
1071 nic->blank_rfd.command = 0;
1072 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1073 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1076 nic->mii.phy_id_mask = 0x1F;
1077 nic->mii.reg_num_mask = 0x1F;
1078 nic->mii.dev = nic->netdev;
1079 nic->mii.mdio_read = mdio_read;
1080 nic->mii.mdio_write = mdio_write;
1083 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1085 struct config *config = &cb->u.config;
1086 u8 *c = (u8 *)config;
1088 cb->command = cpu_to_le16(cb_config);
1090 memset(config, 0, sizeof(struct config));
1092 config->byte_count = 0x16; /* bytes in this struct */
1093 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1094 config->direct_rx_dma = 0x1; /* reserved */
1095 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1096 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1097 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1098 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1099 if (e100_phy_supports_mii(nic))
1100 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1101 config->pad10 = 0x6;
1102 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1103 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1104 config->ifs = 0x6; /* x16 = inter frame spacing */
1105 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1106 config->pad15_1 = 0x1;
1107 config->pad15_2 = 0x1;
1108 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1109 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1110 config->tx_padding = 0x1; /* 1=pad short frames */
1111 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1112 config->pad18 = 0x1;
1113 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1114 config->pad20_1 = 0x1F;
1115 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1116 config->pad21_1 = 0x5;
1118 config->adaptive_ifs = nic->adaptive_ifs;
1119 config->loopback = nic->loopback;
1121 if (nic->mii.force_media && nic->mii.full_duplex)
1122 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1124 if (nic->flags & promiscuous || nic->loopback) {
1125 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1126 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1127 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1130 if (nic->flags & multicast_all)
1131 config->multicast_all = 0x1; /* 1=accept, 0=no */
1133 /* disable WoL when up */
1134 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1135 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1137 if (nic->mac >= mac_82558_D101_A4) {
1138 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1139 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1140 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1141 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1142 if (nic->mac >= mac_82559_D101M) {
1143 config->tno_intr = 0x1; /* TCO stats enable */
1144 /* Enable TCO in extended config */
1145 if (nic->mac >= mac_82551_10) {
1146 config->byte_count = 0x20; /* extended bytes */
1147 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1150 config->standard_stat_counter = 0x0;
1154 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1155 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1156 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1157 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1158 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1159 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1162 /*************************************************************************
1163 * CPUSaver parameters
1165 * All CPUSaver parameters are 16-bit literals that are part of a
1166 * "move immediate value" instruction. By changing the value of
1167 * the literal in the instruction before the code is loaded, the
1168 * driver can change the algorithm.
1170 * INTDELAY - This loads the dead-man timer with its initial value.
1171 * When this timer expires the interrupt is asserted, and the
1172 * timer is reset each time a new packet is received. (see
1173 * BUNDLEMAX below to set the limit on number of chained packets)
1174 * The current default is 0x600 or 1536. Experiments show that
1175 * the value should probably stay within the 0x200 - 0x1000.
1178 * This sets the maximum number of frames that will be bundled. In
1179 * some situations, such as the TCP windowing algorithm, it may be
1180 * better to limit the growth of the bundle size than let it go as
1181 * high as it can, because that could cause too much added latency.
1182 * The default is six, because this is the number of packets in the
1183 * default TCP window size. A value of 1 would make CPUSaver indicate
1184 * an interrupt for every frame received. If you do not want to put
1185 * a limit on the bundle size, set this value to xFFFF.
1188 * This contains a bit-mask describing the minimum size frame that
1189 * will be bundled. The default masks the lower 7 bits, which means
1190 * that any frame less than 128 bytes in length will not be bundled,
1191 * but will instead immediately generate an interrupt. This does
1192 * not affect the current bundle in any way. Any frame that is 128
1193 * bytes or large will be bundled normally. This feature is meant
1194 * to provide immediate indication of ACK frames in a TCP environment.
1195 * Customers were seeing poor performance when a machine with CPUSaver
1196 * enabled was sending but not receiving. The delay introduced when
1197 * the ACKs were received was enough to reduce total throughput, because
1198 * the sender would sit idle until the ACK was finally seen.
1200 * The current default is 0xFF80, which masks out the lower 7 bits.
1201 * This means that any frame which is x7F (127) bytes or smaller
1202 * will cause an immediate interrupt. Because this value must be a
1203 * bit mask, there are only a few valid values that can be used. To
1204 * turn this feature off, the driver can write the value xFFFF to the
1205 * lower word of this instruction (in the same way that the other
1206 * parameters are used). Likewise, a value of 0xF800 (2047) would
1207 * cause an interrupt to be generated for every frame, because all
1208 * standard Ethernet frames are <= 2047 bytes in length.
1209 *************************************************************************/
1211 /* if you wish to disable the ucode functionality, while maintaining the
1212 * workarounds it provides, set the following defines to:
1217 #define BUNDLESMALL 1
1218 #define BUNDLEMAX (u16)6
1219 #define INTDELAY (u16)1536 /* 0x600 */
1221 /* Initialize firmware */
1222 static const struct firmware *e100_request_firmware(struct nic *nic)
1224 const char *fw_name;
1225 const struct firmware *fw;
1226 u8 timer, bundle, min_size;
1229 /* do not load u-code for ICH devices */
1230 if (nic->flags & ich)
1233 /* Search for ucode match against h/w revision */
1234 if (nic->mac == mac_82559_D101M)
1235 fw_name = FIRMWARE_D101M;
1236 else if (nic->mac == mac_82559_D101S)
1237 fw_name = FIRMWARE_D101S;
1238 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1239 fw_name = FIRMWARE_D102E;
1240 else /* No ucode on other devices */
1243 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1245 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1247 return ERR_PTR(err);
1249 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1250 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1251 if (fw->size != UCODE_SIZE * 4 + 3) {
1252 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1254 release_firmware(fw);
1255 return ERR_PTR(-EINVAL);
1258 /* Read timer, bundle and min_size from end of firmware blob */
1259 timer = fw->data[UCODE_SIZE * 4];
1260 bundle = fw->data[UCODE_SIZE * 4 + 1];
1261 min_size = fw->data[UCODE_SIZE * 4 + 2];
1263 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1264 min_size >= UCODE_SIZE) {
1266 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1267 fw_name, timer, bundle, min_size);
1268 release_firmware(fw);
1269 return ERR_PTR(-EINVAL);
1271 /* OK, firmware is validated and ready to use... */
1275 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1276 struct sk_buff *skb)
1278 const struct firmware *fw = (void *)skb;
1279 u8 timer, bundle, min_size;
1281 /* It's not a real skb; we just abused the fact that e100_exec_cb
1282 will pass it through to here... */
1285 /* firmware is stored as little endian already */
1286 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1288 /* Read timer, bundle and min_size from end of firmware blob */
1289 timer = fw->data[UCODE_SIZE * 4];
1290 bundle = fw->data[UCODE_SIZE * 4 + 1];
1291 min_size = fw->data[UCODE_SIZE * 4 + 2];
1293 /* Insert user-tunable settings in cb->u.ucode */
1294 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1295 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1296 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1297 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1298 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1299 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1301 cb->command = cpu_to_le16(cb_ucode | cb_el);
1304 static inline int e100_load_ucode_wait(struct nic *nic)
1306 const struct firmware *fw;
1307 int err = 0, counter = 50;
1308 struct cb *cb = nic->cb_to_clean;
1310 fw = e100_request_firmware(nic);
1311 /* If it's NULL, then no ucode is required */
1312 if (!fw || IS_ERR(fw))
1315 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1316 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1318 /* must restart cuc */
1319 nic->cuc_cmd = cuc_start;
1321 /* wait for completion */
1322 e100_write_flush(nic);
1325 /* wait for possibly (ouch) 500ms */
1326 while (!(cb->status & cpu_to_le16(cb_complete))) {
1328 if (!--counter) break;
1331 /* ack any interrupts, something could have been set */
1332 iowrite8(~0, &nic->csr->scb.stat_ack);
1334 /* if the command failed, or is not OK, notify and return */
1335 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1336 DPRINTK(PROBE,ERR, "ucode load failed\n");
1343 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1344 struct sk_buff *skb)
1346 cb->command = cpu_to_le16(cb_iaaddr);
1347 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1350 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1352 cb->command = cpu_to_le16(cb_dump);
1353 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1354 offsetof(struct mem, dump_buf));
1357 static int e100_phy_check_without_mii(struct nic *nic)
1362 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1365 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1366 case I82503: /* Non-MII PHY; UNTESTED! */
1367 case S80C24: /* Non-MII PHY; tested and working */
1368 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1369 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1370 * doesn't have a programming interface of any sort. The
1371 * media is sensed automatically based on how the link partner
1372 * is configured. This is, in essence, manual configuration.
1374 DPRINTK(PROBE, INFO,
1375 "found MII-less i82503 or 80c24 or other PHY\n");
1377 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1378 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1380 /* these might be needed for certain MII-less cards...
1381 * nic->flags |= ich;
1382 * nic->flags |= ich_10h_workaround; */
1393 #define NCONFIG_AUTO_SWITCH 0x0080
1394 #define MII_NSC_CONG MII_RESV1
1395 #define NSC_CONG_ENABLE 0x0100
1396 #define NSC_CONG_TXREADY 0x0400
1397 #define ADVERTISE_FC_SUPPORTED 0x0400
1398 static int e100_phy_init(struct nic *nic)
1400 struct net_device *netdev = nic->netdev;
1402 u16 bmcr, stat, id_lo, id_hi, cong;
1404 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1405 for (addr = 0; addr < 32; addr++) {
1406 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1407 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1408 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1409 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1410 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1414 /* uhoh, no PHY detected: check whether we seem to be some
1415 * weird, rare variant which is *known* to not have any MII.
1416 * But do this AFTER MII checking only, since this does
1417 * lookup of EEPROM values which may easily be unreliable. */
1418 if (e100_phy_check_without_mii(nic))
1419 return 0; /* simply return and hope for the best */
1421 /* for unknown cases log a fatal error */
1423 "Failed to locate any known PHY, aborting.\n");
1427 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1429 /* Isolate all the PHY ids */
1430 for (addr = 0; addr < 32; addr++)
1431 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1432 /* Select the discovered PHY */
1433 bmcr &= ~BMCR_ISOLATE;
1434 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1437 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1438 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1439 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1440 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1442 /* Handle National tx phys */
1443 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1444 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1445 /* Disable congestion control */
1446 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1447 cong |= NSC_CONG_TXREADY;
1448 cong &= ~NSC_CONG_ENABLE;
1449 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1452 if (nic->phy == phy_82552_v) {
1453 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1455 /* assign special tweaked mdio_ctrl() function */
1456 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1458 /* Workaround Si not advertising flow-control during autoneg */
1459 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1460 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1462 /* Reset for the above changes to take effect */
1463 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1465 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1466 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1467 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1468 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1469 /* enable/disable MDI/MDI-X auto-switching. */
1470 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1471 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1477 static int e100_hw_init(struct nic *nic)
1483 DPRINTK(HW, ERR, "e100_hw_init\n");
1484 if (!in_interrupt() && (err = e100_self_test(nic)))
1487 if ((err = e100_phy_init(nic)))
1489 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1491 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1493 if ((err = e100_load_ucode_wait(nic)))
1495 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1497 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1499 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1500 nic->dma_addr + offsetof(struct mem, stats))))
1502 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1505 e100_disable_irq(nic);
1510 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1512 struct net_device *netdev = nic->netdev;
1513 struct dev_mc_list *list = netdev->mc_list;
1514 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1516 cb->command = cpu_to_le16(cb_multi);
1517 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1518 for (i = 0; list && i < count; i++, list = list->next)
1519 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1523 static void e100_set_multicast_list(struct net_device *netdev)
1525 struct nic *nic = netdev_priv(netdev);
1527 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1528 netdev->mc_count, netdev->flags);
1530 if (netdev->flags & IFF_PROMISC)
1531 nic->flags |= promiscuous;
1533 nic->flags &= ~promiscuous;
1535 if (netdev->flags & IFF_ALLMULTI ||
1536 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1537 nic->flags |= multicast_all;
1539 nic->flags &= ~multicast_all;
1541 e100_exec_cb(nic, NULL, e100_configure);
1542 e100_exec_cb(nic, NULL, e100_multi);
1545 static void e100_update_stats(struct nic *nic)
1547 struct net_device *dev = nic->netdev;
1548 struct net_device_stats *ns = &dev->stats;
1549 struct stats *s = &nic->mem->stats;
1550 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1551 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1554 /* Device's stats reporting may take several microseconds to
1555 * complete, so we're always waiting for results of the
1556 * previous command. */
1558 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1560 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1561 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1562 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1563 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1564 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1565 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1566 ns->collisions += nic->tx_collisions;
1567 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1568 le32_to_cpu(s->tx_lost_crs);
1569 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1570 nic->rx_over_length_errors;
1571 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1572 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1573 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1574 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1575 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1576 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1577 le32_to_cpu(s->rx_alignment_errors) +
1578 le32_to_cpu(s->rx_short_frame_errors) +
1579 le32_to_cpu(s->rx_cdt_errors);
1580 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1581 nic->tx_single_collisions +=
1582 le32_to_cpu(s->tx_single_collisions);
1583 nic->tx_multiple_collisions +=
1584 le32_to_cpu(s->tx_multiple_collisions);
1585 if (nic->mac >= mac_82558_D101_A4) {
1586 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1587 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1588 nic->rx_fc_unsupported +=
1589 le32_to_cpu(s->fc_rcv_unsupported);
1590 if (nic->mac >= mac_82559_D101M) {
1591 nic->tx_tco_frames +=
1592 le16_to_cpu(s->xmt_tco_frames);
1593 nic->rx_tco_frames +=
1594 le16_to_cpu(s->rcv_tco_frames);
1600 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1601 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1604 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1606 /* Adjust inter-frame-spacing (IFS) between two transmits if
1607 * we're getting collisions on a half-duplex connection. */
1609 if (duplex == DUPLEX_HALF) {
1610 u32 prev = nic->adaptive_ifs;
1611 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1613 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1614 (nic->tx_frames > min_frames)) {
1615 if (nic->adaptive_ifs < 60)
1616 nic->adaptive_ifs += 5;
1617 } else if (nic->tx_frames < min_frames) {
1618 if (nic->adaptive_ifs >= 5)
1619 nic->adaptive_ifs -= 5;
1621 if (nic->adaptive_ifs != prev)
1622 e100_exec_cb(nic, NULL, e100_configure);
1626 static void e100_watchdog(unsigned long data)
1628 struct nic *nic = (struct nic *)data;
1629 struct ethtool_cmd cmd;
1631 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1633 /* mii library handles link maintenance tasks */
1635 mii_ethtool_gset(&nic->mii, &cmd);
1637 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1638 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1640 cmd.speed == SPEED_100 ? "100" : "10",
1641 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1642 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1643 printk(KERN_INFO "e100: %s NIC Link is Down\n",
1647 mii_check_link(&nic->mii);
1649 /* Software generated interrupt to recover from (rare) Rx
1650 * allocation failure.
1651 * Unfortunately have to use a spinlock to not re-enable interrupts
1652 * accidentally, due to hardware that shares a register between the
1653 * interrupt mask bit and the SW Interrupt generation bit */
1654 spin_lock_irq(&nic->cmd_lock);
1655 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1656 e100_write_flush(nic);
1657 spin_unlock_irq(&nic->cmd_lock);
1659 e100_update_stats(nic);
1660 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1662 if (nic->mac <= mac_82557_D100_C)
1663 /* Issue a multicast command to workaround a 557 lock up */
1664 e100_set_multicast_list(nic->netdev);
1666 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1667 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1668 nic->flags |= ich_10h_workaround;
1670 nic->flags &= ~ich_10h_workaround;
1672 mod_timer(&nic->watchdog,
1673 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1676 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1677 struct sk_buff *skb)
1679 cb->command = nic->tx_command;
1680 /* interrupt every 16 packets regardless of delay */
1681 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1682 cb->command |= cpu_to_le16(cb_i);
1683 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1684 cb->u.tcb.tcb_byte_count = 0;
1685 cb->u.tcb.threshold = nic->tx_threshold;
1686 cb->u.tcb.tbd_count = 1;
1687 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1688 skb->data, skb->len, PCI_DMA_TODEVICE));
1689 /* check for mapping failure? */
1690 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1693 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1695 struct nic *nic = netdev_priv(netdev);
1698 if (nic->flags & ich_10h_workaround) {
1699 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1700 Issue a NOP command followed by a 1us delay before
1701 issuing the Tx command. */
1702 if (e100_exec_cmd(nic, cuc_nop, 0))
1703 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1707 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1711 /* We queued the skb, but now we're out of space. */
1712 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1713 netif_stop_queue(netdev);
1716 /* This is a hard error - log it. */
1717 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1718 netif_stop_queue(netdev);
1719 return NETDEV_TX_BUSY;
1722 netdev->trans_start = jiffies;
1723 return NETDEV_TX_OK;
1726 static int e100_tx_clean(struct nic *nic)
1728 struct net_device *dev = nic->netdev;
1732 spin_lock(&nic->cb_lock);
1734 /* Clean CBs marked complete */
1735 for (cb = nic->cb_to_clean;
1736 cb->status & cpu_to_le16(cb_complete);
1737 cb = nic->cb_to_clean = cb->next) {
1738 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1739 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1742 if (likely(cb->skb != NULL)) {
1743 dev->stats.tx_packets++;
1744 dev->stats.tx_bytes += cb->skb->len;
1746 pci_unmap_single(nic->pdev,
1747 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1748 le16_to_cpu(cb->u.tcb.tbd.size),
1750 dev_kfree_skb_any(cb->skb);
1758 spin_unlock(&nic->cb_lock);
1760 /* Recover from running out of Tx resources in xmit_frame */
1761 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1762 netif_wake_queue(nic->netdev);
1767 static void e100_clean_cbs(struct nic *nic)
1770 while (nic->cbs_avail != nic->params.cbs.count) {
1771 struct cb *cb = nic->cb_to_clean;
1773 pci_unmap_single(nic->pdev,
1774 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1775 le16_to_cpu(cb->u.tcb.tbd.size),
1777 dev_kfree_skb(cb->skb);
1779 nic->cb_to_clean = nic->cb_to_clean->next;
1782 pci_free_consistent(nic->pdev,
1783 sizeof(struct cb) * nic->params.cbs.count,
1784 nic->cbs, nic->cbs_dma_addr);
1788 nic->cuc_cmd = cuc_start;
1789 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1793 static int e100_alloc_cbs(struct nic *nic)
1796 unsigned int i, count = nic->params.cbs.count;
1798 nic->cuc_cmd = cuc_start;
1799 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1802 nic->cbs = pci_alloc_consistent(nic->pdev,
1803 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1807 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1808 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1809 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1811 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1812 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1813 ((i+1) % count) * sizeof(struct cb));
1817 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1818 nic->cbs_avail = count;
1823 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1825 if (!nic->rxs) return;
1826 if (RU_SUSPENDED != nic->ru_running) return;
1828 /* handle init time starts */
1829 if (!rx) rx = nic->rxs;
1831 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1833 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1834 nic->ru_running = RU_RUNNING;
1838 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1839 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1841 if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1844 /* Align, init, and map the RFD. */
1845 skb_reserve(rx->skb, NET_IP_ALIGN);
1846 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1847 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1848 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1850 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1851 dev_kfree_skb_any(rx->skb);
1857 /* Link the RFD to end of RFA by linking previous RFD to
1858 * this one. We are safe to touch the previous RFD because
1859 * it is protected by the before last buffer's el bit being set */
1860 if (rx->prev->skb) {
1861 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1862 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1863 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1864 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1870 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1871 unsigned int *work_done, unsigned int work_to_do)
1873 struct net_device *dev = nic->netdev;
1874 struct sk_buff *skb = rx->skb;
1875 struct rfd *rfd = (struct rfd *)skb->data;
1876 u16 rfd_status, actual_size;
1878 if (unlikely(work_done && *work_done >= work_to_do))
1881 /* Need to sync before taking a peek at cb_complete bit */
1882 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1883 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1884 rfd_status = le16_to_cpu(rfd->status);
1886 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1888 /* If data isn't ready, nothing to indicate */
1889 if (unlikely(!(rfd_status & cb_complete))) {
1890 /* If the next buffer has the el bit, but we think the receiver
1891 * is still running, check to see if it really stopped while
1892 * we had interrupts off.
1893 * This allows for a fast restart without re-enabling
1895 if ((le16_to_cpu(rfd->command) & cb_el) &&
1896 (RU_RUNNING == nic->ru_running))
1898 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1899 nic->ru_running = RU_SUSPENDED;
1900 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1902 PCI_DMA_BIDIRECTIONAL);
1906 /* Get actual data size */
1907 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1908 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1909 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1912 pci_unmap_single(nic->pdev, rx->dma_addr,
1913 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1915 /* If this buffer has the el bit, but we think the receiver
1916 * is still running, check to see if it really stopped while
1917 * we had interrupts off.
1918 * This allows for a fast restart without re-enabling interrupts.
1919 * This can happen when the RU sees the size change but also sees
1920 * the el bit set. */
1921 if ((le16_to_cpu(rfd->command) & cb_el) &&
1922 (RU_RUNNING == nic->ru_running)) {
1924 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1925 nic->ru_running = RU_SUSPENDED;
1928 /* Pull off the RFD and put the actual data (minus eth hdr) */
1929 skb_reserve(skb, sizeof(struct rfd));
1930 skb_put(skb, actual_size);
1931 skb->protocol = eth_type_trans(skb, nic->netdev);
1933 if (unlikely(!(rfd_status & cb_ok))) {
1934 /* Don't indicate if hardware indicates errors */
1935 dev_kfree_skb_any(skb);
1936 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1937 /* Don't indicate oversized frames */
1938 nic->rx_over_length_errors++;
1939 dev_kfree_skb_any(skb);
1941 dev->stats.rx_packets++;
1942 dev->stats.rx_bytes += actual_size;
1943 netif_receive_skb(skb);
1953 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1954 unsigned int work_to_do)
1957 int restart_required = 0, err = 0;
1958 struct rx *old_before_last_rx, *new_before_last_rx;
1959 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1961 /* Indicate newly arrived packets */
1962 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1963 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1964 /* Hit quota or no more to clean */
1965 if (-EAGAIN == err || -ENODATA == err)
1970 /* On EAGAIN, hit quota so have more work to do, restart once
1971 * cleanup is complete.
1972 * Else, are we already rnr? then pay attention!!! this ensures that
1973 * the state machine progression never allows a start with a
1974 * partially cleaned list, avoiding a race between hardware
1975 * and rx_to_clean when in NAPI mode */
1976 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1977 restart_required = 1;
1979 old_before_last_rx = nic->rx_to_use->prev->prev;
1980 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1982 /* Alloc new skbs to refill list */
1983 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1984 if (unlikely(e100_rx_alloc_skb(nic, rx)))
1985 break; /* Better luck next time (see watchdog) */
1988 new_before_last_rx = nic->rx_to_use->prev->prev;
1989 if (new_before_last_rx != old_before_last_rx) {
1990 /* Set the el-bit on the buffer that is before the last buffer.
1991 * This lets us update the next pointer on the last buffer
1992 * without worrying about hardware touching it.
1993 * We set the size to 0 to prevent hardware from touching this
1995 * When the hardware hits the before last buffer with el-bit
1996 * and size of 0, it will RNR interrupt, the RUS will go into
1997 * the No Resources state. It will not complete nor write to
1999 new_before_last_rfd =
2000 (struct rfd *)new_before_last_rx->skb->data;
2001 new_before_last_rfd->size = 0;
2002 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2003 pci_dma_sync_single_for_device(nic->pdev,
2004 new_before_last_rx->dma_addr, sizeof(struct rfd),
2005 PCI_DMA_BIDIRECTIONAL);
2007 /* Now that we have a new stopping point, we can clear the old
2008 * stopping point. We must sync twice to get the proper
2009 * ordering on the hardware side of things. */
2010 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2011 pci_dma_sync_single_for_device(nic->pdev,
2012 old_before_last_rx->dma_addr, sizeof(struct rfd),
2013 PCI_DMA_BIDIRECTIONAL);
2014 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2015 pci_dma_sync_single_for_device(nic->pdev,
2016 old_before_last_rx->dma_addr, sizeof(struct rfd),
2017 PCI_DMA_BIDIRECTIONAL);
2020 if (restart_required) {
2022 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2023 e100_start_receiver(nic, nic->rx_to_clean);
2029 static void e100_rx_clean_list(struct nic *nic)
2032 unsigned int i, count = nic->params.rfds.count;
2034 nic->ru_running = RU_UNINITIALIZED;
2037 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2039 pci_unmap_single(nic->pdev, rx->dma_addr,
2040 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2041 dev_kfree_skb(rx->skb);
2048 nic->rx_to_use = nic->rx_to_clean = NULL;
2051 static int e100_rx_alloc_list(struct nic *nic)
2054 unsigned int i, count = nic->params.rfds.count;
2055 struct rfd *before_last;
2057 nic->rx_to_use = nic->rx_to_clean = NULL;
2058 nic->ru_running = RU_UNINITIALIZED;
2060 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2063 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2064 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2065 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2066 if (e100_rx_alloc_skb(nic, rx)) {
2067 e100_rx_clean_list(nic);
2071 /* Set the el-bit on the buffer that is before the last buffer.
2072 * This lets us update the next pointer on the last buffer without
2073 * worrying about hardware touching it.
2074 * We set the size to 0 to prevent hardware from touching this buffer.
2075 * When the hardware hits the before last buffer with el-bit and size
2076 * of 0, it will RNR interrupt, the RU will go into the No Resources
2077 * state. It will not complete nor write to this buffer. */
2078 rx = nic->rxs->prev->prev;
2079 before_last = (struct rfd *)rx->skb->data;
2080 before_last->command |= cpu_to_le16(cb_el);
2081 before_last->size = 0;
2082 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2083 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2085 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2086 nic->ru_running = RU_SUSPENDED;
2091 static irqreturn_t e100_intr(int irq, void *dev_id)
2093 struct net_device *netdev = dev_id;
2094 struct nic *nic = netdev_priv(netdev);
2095 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2097 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
2099 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2100 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2103 /* Ack interrupt(s) */
2104 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2106 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2107 if (stat_ack & stat_ack_rnr)
2108 nic->ru_running = RU_SUSPENDED;
2110 if (likely(napi_schedule_prep(&nic->napi))) {
2111 e100_disable_irq(nic);
2112 __napi_schedule(&nic->napi);
2118 static int e100_poll(struct napi_struct *napi, int budget)
2120 struct nic *nic = container_of(napi, struct nic, napi);
2121 unsigned int work_done = 0;
2123 e100_rx_clean(nic, &work_done, budget);
2126 /* If budget not fully consumed, exit the polling mode */
2127 if (work_done < budget) {
2128 napi_complete(napi);
2129 e100_enable_irq(nic);
2135 #ifdef CONFIG_NET_POLL_CONTROLLER
2136 static void e100_netpoll(struct net_device *netdev)
2138 struct nic *nic = netdev_priv(netdev);
2140 e100_disable_irq(nic);
2141 e100_intr(nic->pdev->irq, netdev);
2143 e100_enable_irq(nic);
2147 static int e100_set_mac_address(struct net_device *netdev, void *p)
2149 struct nic *nic = netdev_priv(netdev);
2150 struct sockaddr *addr = p;
2152 if (!is_valid_ether_addr(addr->sa_data))
2153 return -EADDRNOTAVAIL;
2155 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2156 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2161 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2163 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2165 netdev->mtu = new_mtu;
2169 static int e100_asf(struct nic *nic)
2171 /* ASF can be enabled from eeprom */
2172 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2173 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2174 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2175 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2178 static int e100_up(struct nic *nic)
2182 if ((err = e100_rx_alloc_list(nic)))
2184 if ((err = e100_alloc_cbs(nic)))
2185 goto err_rx_clean_list;
2186 if ((err = e100_hw_init(nic)))
2188 e100_set_multicast_list(nic->netdev);
2189 e100_start_receiver(nic, NULL);
2190 mod_timer(&nic->watchdog, jiffies);
2191 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2192 nic->netdev->name, nic->netdev)))
2194 netif_wake_queue(nic->netdev);
2195 napi_enable(&nic->napi);
2196 /* enable ints _after_ enabling poll, preventing a race between
2197 * disable ints+schedule */
2198 e100_enable_irq(nic);
2202 del_timer_sync(&nic->watchdog);
2204 e100_clean_cbs(nic);
2206 e100_rx_clean_list(nic);
2210 static void e100_down(struct nic *nic)
2212 /* wait here for poll to complete */
2213 napi_disable(&nic->napi);
2214 netif_stop_queue(nic->netdev);
2216 free_irq(nic->pdev->irq, nic->netdev);
2217 del_timer_sync(&nic->watchdog);
2218 netif_carrier_off(nic->netdev);
2219 e100_clean_cbs(nic);
2220 e100_rx_clean_list(nic);
2223 static void e100_tx_timeout(struct net_device *netdev)
2225 struct nic *nic = netdev_priv(netdev);
2227 /* Reset outside of interrupt context, to avoid request_irq
2228 * in interrupt context */
2229 schedule_work(&nic->tx_timeout_task);
2232 static void e100_tx_timeout_task(struct work_struct *work)
2234 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2235 struct net_device *netdev = nic->netdev;
2237 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2238 ioread8(&nic->csr->scb.status));
2239 e100_down(netdev_priv(netdev));
2240 e100_up(netdev_priv(netdev));
2243 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2246 struct sk_buff *skb;
2248 /* Use driver resources to perform internal MAC or PHY
2249 * loopback test. A single packet is prepared and transmitted
2250 * in loopback mode, and the test passes if the received
2251 * packet compares byte-for-byte to the transmitted packet. */
2253 if ((err = e100_rx_alloc_list(nic)))
2255 if ((err = e100_alloc_cbs(nic)))
2258 /* ICH PHY loopback is broken so do MAC loopback instead */
2259 if (nic->flags & ich && loopback_mode == lb_phy)
2260 loopback_mode = lb_mac;
2262 nic->loopback = loopback_mode;
2263 if ((err = e100_hw_init(nic)))
2264 goto err_loopback_none;
2266 if (loopback_mode == lb_phy)
2267 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2270 e100_start_receiver(nic, NULL);
2272 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2274 goto err_loopback_none;
2276 skb_put(skb, ETH_DATA_LEN);
2277 memset(skb->data, 0xFF, ETH_DATA_LEN);
2278 e100_xmit_frame(skb, nic->netdev);
2282 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2283 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2285 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2286 skb->data, ETH_DATA_LEN))
2290 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2291 nic->loopback = lb_none;
2292 e100_clean_cbs(nic);
2295 e100_rx_clean_list(nic);
2299 #define MII_LED_CONTROL 0x1B
2300 #define E100_82552_LED_OVERRIDE 0x19
2301 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2302 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2303 static void e100_blink_led(unsigned long data)
2305 struct nic *nic = (struct nic *)data;
2312 u16 led_reg = MII_LED_CONTROL;
2314 if (nic->phy == phy_82552_v) {
2315 led_reg = E100_82552_LED_OVERRIDE;
2317 nic->leds = (nic->leds == E100_82552_LED_ON) ?
2318 E100_82552_LED_OFF : E100_82552_LED_ON;
2320 nic->leds = (nic->leds & led_on) ? led_off :
2321 (nic->mac < mac_82559_D101M) ? led_on_557 :
2324 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2325 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2328 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2330 struct nic *nic = netdev_priv(netdev);
2331 return mii_ethtool_gset(&nic->mii, cmd);
2334 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2336 struct nic *nic = netdev_priv(netdev);
2339 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2340 err = mii_ethtool_sset(&nic->mii, cmd);
2341 e100_exec_cb(nic, NULL, e100_configure);
2346 static void e100_get_drvinfo(struct net_device *netdev,
2347 struct ethtool_drvinfo *info)
2349 struct nic *nic = netdev_priv(netdev);
2350 strcpy(info->driver, DRV_NAME);
2351 strcpy(info->version, DRV_VERSION);
2352 strcpy(info->fw_version, "N/A");
2353 strcpy(info->bus_info, pci_name(nic->pdev));
2356 #define E100_PHY_REGS 0x1C
2357 static int e100_get_regs_len(struct net_device *netdev)
2359 struct nic *nic = netdev_priv(netdev);
2360 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2363 static void e100_get_regs(struct net_device *netdev,
2364 struct ethtool_regs *regs, void *p)
2366 struct nic *nic = netdev_priv(netdev);
2370 regs->version = (1 << 24) | nic->pdev->revision;
2371 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2372 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2373 ioread16(&nic->csr->scb.status);
2374 for (i = E100_PHY_REGS; i >= 0; i--)
2375 buff[1 + E100_PHY_REGS - i] =
2376 mdio_read(netdev, nic->mii.phy_id, i);
2377 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2378 e100_exec_cb(nic, NULL, e100_dump);
2380 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2381 sizeof(nic->mem->dump_buf));
2384 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2386 struct nic *nic = netdev_priv(netdev);
2387 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2388 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2391 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2393 struct nic *nic = netdev_priv(netdev);
2395 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2396 !device_can_wakeup(&nic->pdev->dev))
2400 nic->flags |= wol_magic;
2402 nic->flags &= ~wol_magic;
2404 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2406 e100_exec_cb(nic, NULL, e100_configure);
2411 static u32 e100_get_msglevel(struct net_device *netdev)
2413 struct nic *nic = netdev_priv(netdev);
2414 return nic->msg_enable;
2417 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2419 struct nic *nic = netdev_priv(netdev);
2420 nic->msg_enable = value;
2423 static int e100_nway_reset(struct net_device *netdev)
2425 struct nic *nic = netdev_priv(netdev);
2426 return mii_nway_restart(&nic->mii);
2429 static u32 e100_get_link(struct net_device *netdev)
2431 struct nic *nic = netdev_priv(netdev);
2432 return mii_link_ok(&nic->mii);
2435 static int e100_get_eeprom_len(struct net_device *netdev)
2437 struct nic *nic = netdev_priv(netdev);
2438 return nic->eeprom_wc << 1;
2441 #define E100_EEPROM_MAGIC 0x1234
2442 static int e100_get_eeprom(struct net_device *netdev,
2443 struct ethtool_eeprom *eeprom, u8 *bytes)
2445 struct nic *nic = netdev_priv(netdev);
2447 eeprom->magic = E100_EEPROM_MAGIC;
2448 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2453 static int e100_set_eeprom(struct net_device *netdev,
2454 struct ethtool_eeprom *eeprom, u8 *bytes)
2456 struct nic *nic = netdev_priv(netdev);
2458 if (eeprom->magic != E100_EEPROM_MAGIC)
2461 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2463 return e100_eeprom_save(nic, eeprom->offset >> 1,
2464 (eeprom->len >> 1) + 1);
2467 static void e100_get_ringparam(struct net_device *netdev,
2468 struct ethtool_ringparam *ring)
2470 struct nic *nic = netdev_priv(netdev);
2471 struct param_range *rfds = &nic->params.rfds;
2472 struct param_range *cbs = &nic->params.cbs;
2474 ring->rx_max_pending = rfds->max;
2475 ring->tx_max_pending = cbs->max;
2476 ring->rx_mini_max_pending = 0;
2477 ring->rx_jumbo_max_pending = 0;
2478 ring->rx_pending = rfds->count;
2479 ring->tx_pending = cbs->count;
2480 ring->rx_mini_pending = 0;
2481 ring->rx_jumbo_pending = 0;
2484 static int e100_set_ringparam(struct net_device *netdev,
2485 struct ethtool_ringparam *ring)
2487 struct nic *nic = netdev_priv(netdev);
2488 struct param_range *rfds = &nic->params.rfds;
2489 struct param_range *cbs = &nic->params.cbs;
2491 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2494 if (netif_running(netdev))
2496 rfds->count = max(ring->rx_pending, rfds->min);
2497 rfds->count = min(rfds->count, rfds->max);
2498 cbs->count = max(ring->tx_pending, cbs->min);
2499 cbs->count = min(cbs->count, cbs->max);
2500 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2501 rfds->count, cbs->count);
2502 if (netif_running(netdev))
2508 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2509 "Link test (on/offline)",
2510 "Eeprom test (on/offline)",
2511 "Self test (offline)",
2512 "Mac loopback (offline)",
2513 "Phy loopback (offline)",
2515 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2517 static void e100_diag_test(struct net_device *netdev,
2518 struct ethtool_test *test, u64 *data)
2520 struct ethtool_cmd cmd;
2521 struct nic *nic = netdev_priv(netdev);
2524 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2525 data[0] = !mii_link_ok(&nic->mii);
2526 data[1] = e100_eeprom_load(nic);
2527 if (test->flags & ETH_TEST_FL_OFFLINE) {
2529 /* save speed, duplex & autoneg settings */
2530 err = mii_ethtool_gset(&nic->mii, &cmd);
2532 if (netif_running(netdev))
2534 data[2] = e100_self_test(nic);
2535 data[3] = e100_loopback_test(nic, lb_mac);
2536 data[4] = e100_loopback_test(nic, lb_phy);
2538 /* restore speed, duplex & autoneg settings */
2539 err = mii_ethtool_sset(&nic->mii, &cmd);
2541 if (netif_running(netdev))
2544 for (i = 0; i < E100_TEST_LEN; i++)
2545 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2547 msleep_interruptible(4 * 1000);
2550 static int e100_phys_id(struct net_device *netdev, u32 data)
2552 struct nic *nic = netdev_priv(netdev);
2553 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2556 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2557 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2558 mod_timer(&nic->blink_timer, jiffies);
2559 msleep_interruptible(data * 1000);
2560 del_timer_sync(&nic->blink_timer);
2561 mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2566 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2567 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2568 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2569 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2570 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2571 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2572 "tx_heartbeat_errors", "tx_window_errors",
2573 /* device-specific stats */
2574 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2575 "tx_flow_control_pause", "rx_flow_control_pause",
2576 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2578 #define E100_NET_STATS_LEN 21
2579 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2581 static int e100_get_sset_count(struct net_device *netdev, int sset)
2585 return E100_TEST_LEN;
2587 return E100_STATS_LEN;
2593 static void e100_get_ethtool_stats(struct net_device *netdev,
2594 struct ethtool_stats *stats, u64 *data)
2596 struct nic *nic = netdev_priv(netdev);
2599 for (i = 0; i < E100_NET_STATS_LEN; i++)
2600 data[i] = ((unsigned long *)&netdev->stats)[i];
2602 data[i++] = nic->tx_deferred;
2603 data[i++] = nic->tx_single_collisions;
2604 data[i++] = nic->tx_multiple_collisions;
2605 data[i++] = nic->tx_fc_pause;
2606 data[i++] = nic->rx_fc_pause;
2607 data[i++] = nic->rx_fc_unsupported;
2608 data[i++] = nic->tx_tco_frames;
2609 data[i++] = nic->rx_tco_frames;
2612 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2614 switch (stringset) {
2616 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2619 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2624 static const struct ethtool_ops e100_ethtool_ops = {
2625 .get_settings = e100_get_settings,
2626 .set_settings = e100_set_settings,
2627 .get_drvinfo = e100_get_drvinfo,
2628 .get_regs_len = e100_get_regs_len,
2629 .get_regs = e100_get_regs,
2630 .get_wol = e100_get_wol,
2631 .set_wol = e100_set_wol,
2632 .get_msglevel = e100_get_msglevel,
2633 .set_msglevel = e100_set_msglevel,
2634 .nway_reset = e100_nway_reset,
2635 .get_link = e100_get_link,
2636 .get_eeprom_len = e100_get_eeprom_len,
2637 .get_eeprom = e100_get_eeprom,
2638 .set_eeprom = e100_set_eeprom,
2639 .get_ringparam = e100_get_ringparam,
2640 .set_ringparam = e100_set_ringparam,
2641 .self_test = e100_diag_test,
2642 .get_strings = e100_get_strings,
2643 .phys_id = e100_phys_id,
2644 .get_ethtool_stats = e100_get_ethtool_stats,
2645 .get_sset_count = e100_get_sset_count,
2648 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2650 struct nic *nic = netdev_priv(netdev);
2652 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2655 static int e100_alloc(struct nic *nic)
2657 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2659 return nic->mem ? 0 : -ENOMEM;
2662 static void e100_free(struct nic *nic)
2665 pci_free_consistent(nic->pdev, sizeof(struct mem),
2666 nic->mem, nic->dma_addr);
2671 static int e100_open(struct net_device *netdev)
2673 struct nic *nic = netdev_priv(netdev);
2676 netif_carrier_off(netdev);
2677 if ((err = e100_up(nic)))
2678 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2682 static int e100_close(struct net_device *netdev)
2684 e100_down(netdev_priv(netdev));
2688 static const struct net_device_ops e100_netdev_ops = {
2689 .ndo_open = e100_open,
2690 .ndo_stop = e100_close,
2691 .ndo_start_xmit = e100_xmit_frame,
2692 .ndo_validate_addr = eth_validate_addr,
2693 .ndo_set_multicast_list = e100_set_multicast_list,
2694 .ndo_set_mac_address = e100_set_mac_address,
2695 .ndo_change_mtu = e100_change_mtu,
2696 .ndo_do_ioctl = e100_do_ioctl,
2697 .ndo_tx_timeout = e100_tx_timeout,
2698 #ifdef CONFIG_NET_POLL_CONTROLLER
2699 .ndo_poll_controller = e100_netpoll,
2703 static int __devinit e100_probe(struct pci_dev *pdev,
2704 const struct pci_device_id *ent)
2706 struct net_device *netdev;
2710 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2711 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2712 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2716 netdev->netdev_ops = &e100_netdev_ops;
2717 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2718 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2719 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2721 nic = netdev_priv(netdev);
2722 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2723 nic->netdev = netdev;
2725 nic->msg_enable = (1 << debug) - 1;
2726 nic->mdio_ctrl = mdio_ctrl_hw;
2727 pci_set_drvdata(pdev, netdev);
2729 if ((err = pci_enable_device(pdev))) {
2730 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2731 goto err_out_free_dev;
2734 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2735 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2736 "base address, aborting.\n");
2738 goto err_out_disable_pdev;
2741 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2742 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2743 goto err_out_disable_pdev;
2746 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2747 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2748 goto err_out_free_res;
2751 SET_NETDEV_DEV(netdev, &pdev->dev);
2754 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2756 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2758 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2760 goto err_out_free_res;
2763 if (ent->driver_data)
2768 e100_get_defaults(nic);
2770 /* locks must be initialized before calling hw_reset */
2771 spin_lock_init(&nic->cb_lock);
2772 spin_lock_init(&nic->cmd_lock);
2773 spin_lock_init(&nic->mdio_lock);
2775 /* Reset the device before pci_set_master() in case device is in some
2776 * funky state and has an interrupt pending - hint: we don't have the
2777 * interrupt handler registered yet. */
2780 pci_set_master(pdev);
2782 init_timer(&nic->watchdog);
2783 nic->watchdog.function = e100_watchdog;
2784 nic->watchdog.data = (unsigned long)nic;
2785 init_timer(&nic->blink_timer);
2786 nic->blink_timer.function = e100_blink_led;
2787 nic->blink_timer.data = (unsigned long)nic;
2789 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2791 if ((err = e100_alloc(nic))) {
2792 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2793 goto err_out_iounmap;
2796 if ((err = e100_eeprom_load(nic)))
2801 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2802 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2803 if (!is_valid_ether_addr(netdev->perm_addr)) {
2804 if (!eeprom_bad_csum_allow) {
2805 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2806 "EEPROM, aborting.\n");
2810 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2811 "you MUST configure one.\n");
2815 /* Wol magic packet can be enabled from eeprom */
2816 if ((nic->mac >= mac_82558_D101_A4) &&
2817 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2818 nic->flags |= wol_magic;
2819 device_set_wakeup_enable(&pdev->dev, true);
2822 /* ack any pending wake events, disable PME */
2823 pci_pme_active(pdev, false);
2825 strcpy(netdev->name, "eth%d");
2826 if ((err = register_netdev(netdev))) {
2827 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2831 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2832 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2833 pdev->irq, netdev->dev_addr);
2840 pci_iounmap(pdev, nic->csr);
2842 pci_release_regions(pdev);
2843 err_out_disable_pdev:
2844 pci_disable_device(pdev);
2846 pci_set_drvdata(pdev, NULL);
2847 free_netdev(netdev);
2851 static void __devexit e100_remove(struct pci_dev *pdev)
2853 struct net_device *netdev = pci_get_drvdata(pdev);
2856 struct nic *nic = netdev_priv(netdev);
2857 unregister_netdev(netdev);
2859 pci_iounmap(pdev, nic->csr);
2860 free_netdev(netdev);
2861 pci_release_regions(pdev);
2862 pci_disable_device(pdev);
2863 pci_set_drvdata(pdev, NULL);
2867 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2868 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2869 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2870 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2872 struct net_device *netdev = pci_get_drvdata(pdev);
2873 struct nic *nic = netdev_priv(netdev);
2875 if (netif_running(netdev))
2877 netif_device_detach(netdev);
2879 pci_save_state(pdev);
2881 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2882 /* enable reverse auto-negotiation */
2883 if (nic->phy == phy_82552_v) {
2884 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2885 E100_82552_SMARTSPEED);
2887 mdio_write(netdev, nic->mii.phy_id,
2888 E100_82552_SMARTSPEED, smartspeed |
2889 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2891 *enable_wake = true;
2893 *enable_wake = false;
2896 pci_disable_device(pdev);
2899 static int __e100_power_off(struct pci_dev *pdev, bool wake)
2902 return pci_prepare_to_sleep(pdev);
2904 pci_wake_from_d3(pdev, false);
2905 pci_set_power_state(pdev, PCI_D3hot);
2911 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2914 __e100_shutdown(pdev, &wake);
2915 return __e100_power_off(pdev, wake);
2918 static int e100_resume(struct pci_dev *pdev)
2920 struct net_device *netdev = pci_get_drvdata(pdev);
2921 struct nic *nic = netdev_priv(netdev);
2923 pci_set_power_state(pdev, PCI_D0);
2924 pci_restore_state(pdev);
2925 /* ack any pending wake events, disable PME */
2926 pci_enable_wake(pdev, 0, 0);
2928 /* disable reverse auto-negotiation */
2929 if (nic->phy == phy_82552_v) {
2930 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2931 E100_82552_SMARTSPEED);
2933 mdio_write(netdev, nic->mii.phy_id,
2934 E100_82552_SMARTSPEED,
2935 smartspeed & ~(E100_82552_REV_ANEG));
2938 netif_device_attach(netdev);
2939 if (netif_running(netdev))
2944 #endif /* CONFIG_PM */
2946 static void e100_shutdown(struct pci_dev *pdev)
2949 __e100_shutdown(pdev, &wake);
2950 if (system_state == SYSTEM_POWER_OFF)
2951 __e100_power_off(pdev, wake);
2954 /* ------------------ PCI Error Recovery infrastructure -------------- */
2956 * e100_io_error_detected - called when PCI error is detected.
2957 * @pdev: Pointer to PCI device
2958 * @state: The current pci connection state
2960 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2962 struct net_device *netdev = pci_get_drvdata(pdev);
2963 struct nic *nic = netdev_priv(netdev);
2965 netif_device_detach(netdev);
2967 if (state == pci_channel_io_perm_failure)
2968 return PCI_ERS_RESULT_DISCONNECT;
2970 if (netif_running(netdev))
2972 pci_disable_device(pdev);
2974 /* Request a slot reset. */
2975 return PCI_ERS_RESULT_NEED_RESET;
2979 * e100_io_slot_reset - called after the pci bus has been reset.
2980 * @pdev: Pointer to PCI device
2982 * Restart the card from scratch.
2984 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2986 struct net_device *netdev = pci_get_drvdata(pdev);
2987 struct nic *nic = netdev_priv(netdev);
2989 if (pci_enable_device(pdev)) {
2990 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2991 return PCI_ERS_RESULT_DISCONNECT;
2993 pci_set_master(pdev);
2995 /* Only one device per card can do a reset */
2996 if (0 != PCI_FUNC(pdev->devfn))
2997 return PCI_ERS_RESULT_RECOVERED;
3001 return PCI_ERS_RESULT_RECOVERED;
3005 * e100_io_resume - resume normal operations
3006 * @pdev: Pointer to PCI device
3008 * Resume normal operations after an error recovery
3009 * sequence has been completed.
3011 static void e100_io_resume(struct pci_dev *pdev)
3013 struct net_device *netdev = pci_get_drvdata(pdev);
3014 struct nic *nic = netdev_priv(netdev);
3016 /* ack any pending wake events, disable PME */
3017 pci_enable_wake(pdev, 0, 0);
3019 netif_device_attach(netdev);
3020 if (netif_running(netdev)) {
3022 mod_timer(&nic->watchdog, jiffies);
3026 static struct pci_error_handlers e100_err_handler = {
3027 .error_detected = e100_io_error_detected,
3028 .slot_reset = e100_io_slot_reset,
3029 .resume = e100_io_resume,
3032 static struct pci_driver e100_driver = {
3034 .id_table = e100_id_table,
3035 .probe = e100_probe,
3036 .remove = __devexit_p(e100_remove),
3038 /* Power Management hooks */
3039 .suspend = e100_suspend,
3040 .resume = e100_resume,
3042 .shutdown = e100_shutdown,
3043 .err_handler = &e100_err_handler,
3046 static int __init e100_init_module(void)
3048 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3049 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3050 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
3052 return pci_register_driver(&e100_driver);
3055 static void __exit e100_cleanup_module(void)
3057 pci_unregister_driver(&e100_driver);
3060 module_init(e100_init_module);
3061 module_exit(e100_cleanup_module);