1 // SPDX-License-Identifier: GPL-2.0-only
3 * efi.c - EFI subsystem
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
25 #include <linux/kexec.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/reboot.h>
29 #include <linux/slab.h>
30 #include <linux/acpi.h>
31 #include <linux/ucs2_string.h>
32 #include <linux/memblock.h>
33 #include <linux/security.h>
35 #include <asm/early_ioremap.h>
37 struct efi __read_mostly efi = {
38 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .esrt = EFI_INVALID_TABLE_ADDR,
44 .tpm_log = EFI_INVALID_TABLE_ADDR,
45 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
46 #ifdef CONFIG_LOAD_UEFI_KEYS
47 .mokvar_table = EFI_INVALID_TABLE_ADDR,
52 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
53 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
54 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
56 struct mm_struct efi_mm = {
58 .mm_users = ATOMIC_INIT(2),
59 .mm_count = ATOMIC_INIT(1),
60 .write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq),
61 MMAP_LOCK_INITIALIZER(efi_mm)
62 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
63 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
64 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
67 struct workqueue_struct *efi_rts_wq;
69 static bool disable_runtime;
70 static int __init setup_noefi(char *arg)
72 disable_runtime = true;
75 early_param("noefi", setup_noefi);
77 bool efi_runtime_disabled(void)
79 return disable_runtime;
82 bool __pure __efi_soft_reserve_enabled(void)
84 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
87 static int __init parse_efi_cmdline(char *str)
90 pr_warn("need at least one option\n");
94 if (parse_option_str(str, "debug"))
95 set_bit(EFI_DBG, &efi.flags);
97 if (parse_option_str(str, "noruntime"))
98 disable_runtime = true;
100 if (parse_option_str(str, "nosoftreserve"))
101 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
105 early_param("efi", parse_efi_cmdline);
107 struct kobject *efi_kobj;
110 * Let's not leave out systab information that snuck into
112 * Note, do not add more fields in systab sysfs file as it breaks sysfs
113 * one value per file rule!
115 static ssize_t systab_show(struct kobject *kobj,
116 struct kobj_attribute *attr, char *buf)
123 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
124 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
125 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
126 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
128 * If both SMBIOS and SMBIOS3 entry points are implemented, the
129 * SMBIOS3 entry point shall be preferred, so we list it first to
130 * let applications stop parsing after the first match.
132 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
133 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
134 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
135 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
137 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
138 str = efi_systab_show_arch(str);
143 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
145 static ssize_t fw_platform_size_show(struct kobject *kobj,
146 struct kobj_attribute *attr, char *buf)
148 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
151 extern __weak struct kobj_attribute efi_attr_fw_vendor;
152 extern __weak struct kobj_attribute efi_attr_runtime;
153 extern __weak struct kobj_attribute efi_attr_config_table;
154 static struct kobj_attribute efi_attr_fw_platform_size =
155 __ATTR_RO(fw_platform_size);
157 static struct attribute *efi_subsys_attrs[] = {
158 &efi_attr_systab.attr,
159 &efi_attr_fw_platform_size.attr,
160 &efi_attr_fw_vendor.attr,
161 &efi_attr_runtime.attr,
162 &efi_attr_config_table.attr,
166 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
172 static const struct attribute_group efi_subsys_attr_group = {
173 .attrs = efi_subsys_attrs,
174 .is_visible = efi_attr_is_visible,
177 static struct efivars generic_efivars;
178 static struct efivar_operations generic_ops;
180 static int generic_ops_register(void)
182 generic_ops.get_variable = efi.get_variable;
183 generic_ops.get_next_variable = efi.get_next_variable;
184 generic_ops.query_variable_store = efi_query_variable_store;
186 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
187 generic_ops.set_variable = efi.set_variable;
188 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
190 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
193 static void generic_ops_unregister(void)
195 efivars_unregister(&generic_efivars);
198 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
199 #define EFIVAR_SSDT_NAME_MAX 16
200 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
201 static int __init efivar_ssdt_setup(char *str)
203 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
208 if (strlen(str) < sizeof(efivar_ssdt))
209 memcpy(efivar_ssdt, str, strlen(str));
211 pr_warn("efivar_ssdt: name too long: %s\n", str);
214 __setup("efivar_ssdt=", efivar_ssdt_setup);
216 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
217 unsigned long name_size, void *data)
219 struct efivar_entry *entry;
220 struct list_head *list = data;
221 char utf8_name[EFIVAR_SSDT_NAME_MAX];
222 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
224 ucs2_as_utf8(utf8_name, name, limit - 1);
225 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
228 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
232 memcpy(entry->var.VariableName, name, name_size);
233 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
235 efivar_entry_add(entry, list);
240 static __init int efivar_ssdt_load(void)
243 struct efivar_entry *entry, *aux;
251 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
253 list_for_each_entry_safe(entry, aux, &entries, list) {
254 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
255 &entry->var.VendorGuid);
257 list_del(&entry->list);
259 ret = efivar_entry_size(entry, &size);
261 pr_err("failed to get var size\n");
265 data = kmalloc(size, GFP_KERNEL);
271 ret = efivar_entry_get(entry, NULL, &size, data);
273 pr_err("failed to get var data\n");
277 ret = acpi_load_table(data, NULL);
279 pr_err("failed to load table: %d\n", ret);
295 static inline int efivar_ssdt_load(void) { return 0; }
298 #ifdef CONFIG_DEBUG_FS
300 #define EFI_DEBUGFS_MAX_BLOBS 32
302 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
304 static void __init efi_debugfs_init(void)
306 struct dentry *efi_debugfs;
307 efi_memory_desc_t *md;
309 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
312 efi_debugfs = debugfs_create_dir("efi", NULL);
313 if (IS_ERR_OR_NULL(efi_debugfs))
316 for_each_efi_memory_desc(md) {
318 case EFI_BOOT_SERVICES_CODE:
319 snprintf(name, sizeof(name), "boot_services_code%d",
320 type_count[md->type]++);
322 case EFI_BOOT_SERVICES_DATA:
323 snprintf(name, sizeof(name), "boot_services_data%d",
324 type_count[md->type]++);
330 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
331 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
332 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
336 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
337 debugfs_blob[i].data = memremap(md->phys_addr,
338 debugfs_blob[i].size,
340 if (!debugfs_blob[i].data)
343 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
348 static inline void efi_debugfs_init(void) {}
352 * We register the efi subsystem with the firmware subsystem and the
353 * efivars subsystem with the efi subsystem, if the system was booted with
356 static int __init efisubsys_init(void)
360 if (!efi_enabled(EFI_RUNTIME_SERVICES))
361 efi.runtime_supported_mask = 0;
363 if (!efi_enabled(EFI_BOOT))
366 if (efi.runtime_supported_mask) {
368 * Since we process only one efi_runtime_service() at a time, an
369 * ordered workqueue (which creates only one execution context)
370 * should suffice for all our needs.
372 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
374 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
375 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
376 efi.runtime_supported_mask = 0;
381 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
382 platform_device_register_simple("rtc-efi", 0, NULL, 0);
384 /* We register the efi directory at /sys/firmware/efi */
385 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
387 pr_err("efi: Firmware registration failed.\n");
388 destroy_workqueue(efi_rts_wq);
392 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
393 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
394 error = generic_ops_register();
398 platform_device_register_simple("efivars", 0, NULL, 0);
401 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
403 pr_err("efi: Sysfs attribute export failed with error %d.\n",
408 error = efi_runtime_map_init(efi_kobj);
410 goto err_remove_group;
412 /* and the standard mountpoint for efivarfs */
413 error = sysfs_create_mount_point(efi_kobj, "efivars");
415 pr_err("efivars: Subsystem registration failed.\n");
416 goto err_remove_group;
419 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
425 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
427 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
428 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
429 generic_ops_unregister();
431 kobject_put(efi_kobj);
432 destroy_workqueue(efi_rts_wq);
436 subsys_initcall(efisubsys_init);
439 * Find the efi memory descriptor for a given physical address. Given a
440 * physical address, determine if it exists within an EFI Memory Map entry,
441 * and if so, populate the supplied memory descriptor with the appropriate
444 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
446 efi_memory_desc_t *md;
448 if (!efi_enabled(EFI_MEMMAP)) {
449 pr_err_once("EFI_MEMMAP is not enabled.\n");
454 pr_err_once("out_md is null.\n");
458 for_each_efi_memory_desc(md) {
462 size = md->num_pages << EFI_PAGE_SHIFT;
463 end = md->phys_addr + size;
464 if (phys_addr >= md->phys_addr && phys_addr < end) {
465 memcpy(out_md, md, sizeof(*out_md));
473 * Calculate the highest address of an efi memory descriptor.
475 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
477 u64 size = md->num_pages << EFI_PAGE_SHIFT;
478 u64 end = md->phys_addr + size;
482 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
485 * efi_mem_reserve - Reserve an EFI memory region
486 * @addr: Physical address to reserve
487 * @size: Size of reservation
489 * Mark a region as reserved from general kernel allocation and
490 * prevent it being released by efi_free_boot_services().
492 * This function should be called drivers once they've parsed EFI
493 * configuration tables to figure out where their data lives, e.g.
496 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
498 if (!memblock_is_region_reserved(addr, size))
499 memblock_reserve(addr, size);
502 * Some architectures (x86) reserve all boot services ranges
503 * until efi_free_boot_services() because of buggy firmware
504 * implementations. This means the above memblock_reserve() is
505 * superfluous on x86 and instead what it needs to do is
506 * ensure the @start, @size is not freed.
508 efi_arch_mem_reserve(addr, size);
511 static const efi_config_table_type_t common_tables[] __initconst = {
512 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
513 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
514 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
515 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
516 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
517 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
518 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
519 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
520 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
521 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
522 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
523 #ifdef CONFIG_EFI_RCI2_TABLE
524 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
526 #ifdef CONFIG_LOAD_UEFI_KEYS
527 {LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" },
532 static __init int match_config_table(const efi_guid_t *guid,
534 const efi_config_table_type_t *table_types)
538 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
539 if (!efi_guidcmp(*guid, table_types[i].guid)) {
540 *(table_types[i].ptr) = table;
541 if (table_types[i].name[0])
543 table_types[i].name, table);
551 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
553 const efi_config_table_type_t *arch_tables)
555 const efi_config_table_64_t *tbl64 = (void *)config_tables;
556 const efi_config_table_32_t *tbl32 = (void *)config_tables;
557 const efi_guid_t *guid;
562 for (i = 0; i < count; i++) {
563 if (!IS_ENABLED(CONFIG_X86)) {
564 guid = &config_tables[i].guid;
565 table = (unsigned long)config_tables[i].table;
566 } else if (efi_enabled(EFI_64BIT)) {
567 guid = &tbl64[i].guid;
568 table = tbl64[i].table;
570 if (IS_ENABLED(CONFIG_X86_32) &&
571 tbl64[i].table > U32_MAX) {
573 pr_err("Table located above 4GB, disabling EFI.\n");
577 guid = &tbl32[i].guid;
578 table = tbl32[i].table;
581 if (!match_config_table(guid, table, common_tables) && arch_tables)
582 match_config_table(guid, table, arch_tables);
585 set_bit(EFI_CONFIG_TABLES, &efi.flags);
587 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
588 struct linux_efi_random_seed *seed;
591 seed = early_memremap(efi_rng_seed, sizeof(*seed));
593 size = READ_ONCE(seed->size);
594 early_memunmap(seed, sizeof(*seed));
596 pr_err("Could not map UEFI random seed!\n");
599 seed = early_memremap(efi_rng_seed,
600 sizeof(*seed) + size);
602 pr_notice("seeding entropy pool\n");
603 add_bootloader_randomness(seed->bits, size);
604 early_memunmap(seed, sizeof(*seed) + size);
606 pr_err("Could not map UEFI random seed!\n");
611 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
614 efi_tpm_eventlog_init();
616 if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
617 unsigned long prsv = mem_reserve;
620 struct linux_efi_memreserve *rsv;
624 * Just map a full page: that is what we will get
625 * anyway, and it permits us to map the entire entry
626 * before knowing its size.
628 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
631 pr_err("Could not map UEFI memreserve entry!\n");
635 rsv = (void *)(p + prsv % PAGE_SIZE);
637 /* reserve the entry itself */
638 memblock_reserve(prsv,
639 struct_size(rsv, entry, rsv->size));
641 for (i = 0; i < atomic_read(&rsv->count); i++) {
642 memblock_reserve(rsv->entry[i].base,
647 early_memunmap(p, PAGE_SIZE);
651 if (rt_prop != EFI_INVALID_TABLE_ADDR) {
652 efi_rt_properties_table_t *tbl;
654 tbl = early_memremap(rt_prop, sizeof(*tbl));
656 efi.runtime_supported_mask &= tbl->runtime_services_supported;
657 early_memunmap(tbl, sizeof(*tbl));
664 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
665 int min_major_version)
667 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
668 pr_err("System table signature incorrect!\n");
672 if ((systab_hdr->revision >> 16) < min_major_version)
673 pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
674 systab_hdr->revision >> 16,
675 systab_hdr->revision & 0xffff,
682 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
685 const efi_char16_t *ret;
687 ret = early_memremap_ro(fw_vendor, size);
689 pr_err("Could not map the firmware vendor!\n");
693 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
695 early_memunmap((void *)fw_vendor, size);
698 #define map_fw_vendor(p, s) __va(p)
699 #define unmap_fw_vendor(v, s)
702 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
703 unsigned long fw_vendor)
705 char vendor[100] = "unknown";
706 const efi_char16_t *c16;
709 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
711 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
715 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
718 pr_info("EFI v%u.%.02u by %s\n",
719 systab_hdr->revision >> 16,
720 systab_hdr->revision & 0xffff,
724 static __initdata char memory_type_name[][13] = {
742 char * __init efi_md_typeattr_format(char *buf, size_t size,
743 const efi_memory_desc_t *md)
750 if (md->type >= ARRAY_SIZE(memory_type_name))
751 type_len = snprintf(pos, size, "[type=%u", md->type);
753 type_len = snprintf(pos, size, "[%-*s",
754 (int)(sizeof(memory_type_name[0]) - 1),
755 memory_type_name[md->type]);
756 if (type_len >= size)
762 attr = md->attribute;
763 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
764 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
765 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
766 EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
767 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
768 snprintf(pos, size, "|attr=0x%016llx]",
769 (unsigned long long)attr);
772 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
773 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
774 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
775 attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "",
776 attr & EFI_MEMORY_SP ? "SP" : "",
777 attr & EFI_MEMORY_NV ? "NV" : "",
778 attr & EFI_MEMORY_XP ? "XP" : "",
779 attr & EFI_MEMORY_RP ? "RP" : "",
780 attr & EFI_MEMORY_WP ? "WP" : "",
781 attr & EFI_MEMORY_RO ? "RO" : "",
782 attr & EFI_MEMORY_UCE ? "UCE" : "",
783 attr & EFI_MEMORY_WB ? "WB" : "",
784 attr & EFI_MEMORY_WT ? "WT" : "",
785 attr & EFI_MEMORY_WC ? "WC" : "",
786 attr & EFI_MEMORY_UC ? "UC" : "");
791 * IA64 has a funky EFI memory map that doesn't work the same way as
792 * other architectures.
796 * efi_mem_attributes - lookup memmap attributes for physical address
797 * @phys_addr: the physical address to lookup
799 * Search in the EFI memory map for the region covering
800 * @phys_addr. Returns the EFI memory attributes if the region
801 * was found in the memory map, 0 otherwise.
803 u64 efi_mem_attributes(unsigned long phys_addr)
805 efi_memory_desc_t *md;
807 if (!efi_enabled(EFI_MEMMAP))
810 for_each_efi_memory_desc(md) {
811 if ((md->phys_addr <= phys_addr) &&
812 (phys_addr < (md->phys_addr +
813 (md->num_pages << EFI_PAGE_SHIFT))))
814 return md->attribute;
820 * efi_mem_type - lookup memmap type for physical address
821 * @phys_addr: the physical address to lookup
823 * Search in the EFI memory map for the region covering @phys_addr.
824 * Returns the EFI memory type if the region was found in the memory
825 * map, -EINVAL otherwise.
827 int efi_mem_type(unsigned long phys_addr)
829 const efi_memory_desc_t *md;
831 if (!efi_enabled(EFI_MEMMAP))
834 for_each_efi_memory_desc(md) {
835 if ((md->phys_addr <= phys_addr) &&
836 (phys_addr < (md->phys_addr +
837 (md->num_pages << EFI_PAGE_SHIFT))))
844 int efi_status_to_err(efi_status_t status)
852 case EFI_INVALID_PARAMETER:
855 case EFI_OUT_OF_RESOURCES:
858 case EFI_DEVICE_ERROR:
861 case EFI_WRITE_PROTECTED:
864 case EFI_SECURITY_VIOLATION:
880 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
881 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
883 static int __init efi_memreserve_map_root(void)
885 if (mem_reserve == EFI_INVALID_TABLE_ADDR)
888 efi_memreserve_root = memremap(mem_reserve,
889 sizeof(*efi_memreserve_root),
891 if (WARN_ON_ONCE(!efi_memreserve_root))
896 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
898 struct resource *res, *parent;
901 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
905 res->name = "reserved";
906 res->flags = IORESOURCE_MEM;
908 res->end = addr + size - 1;
910 /* we expect a conflict with a 'System RAM' region */
911 parent = request_resource_conflict(&iomem_resource, res);
912 ret = parent ? request_resource(parent, res) : 0;
915 * Given that efi_mem_reserve_iomem() can be called at any
916 * time, only call memblock_reserve() if the architecture
917 * keeps the infrastructure around.
919 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
920 memblock_reserve(addr, size);
925 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
927 struct linux_efi_memreserve *rsv;
931 if (efi_memreserve_root == (void *)ULONG_MAX)
934 if (!efi_memreserve_root) {
935 rc = efi_memreserve_map_root();
940 /* first try to find a slot in an existing linked list entry */
941 for (prsv = efi_memreserve_root->next; prsv; ) {
942 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
943 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
944 if (index < rsv->size) {
945 rsv->entry[index].base = addr;
946 rsv->entry[index].size = size;
949 return efi_mem_reserve_iomem(addr, size);
955 /* no slot found - allocate a new linked list entry */
956 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
960 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
962 free_page((unsigned long)rsv);
967 * The memremap() call above assumes that a linux_efi_memreserve entry
968 * never crosses a page boundary, so let's ensure that this remains true
969 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
970 * using SZ_4K explicitly in the size calculation below.
972 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
973 atomic_set(&rsv->count, 1);
974 rsv->entry[0].base = addr;
975 rsv->entry[0].size = size;
977 spin_lock(&efi_mem_reserve_persistent_lock);
978 rsv->next = efi_memreserve_root->next;
979 efi_memreserve_root->next = __pa(rsv);
980 spin_unlock(&efi_mem_reserve_persistent_lock);
982 return efi_mem_reserve_iomem(addr, size);
985 static int __init efi_memreserve_root_init(void)
987 if (efi_memreserve_root)
989 if (efi_memreserve_map_root())
990 efi_memreserve_root = (void *)ULONG_MAX;
993 early_initcall(efi_memreserve_root_init);
996 static int update_efi_random_seed(struct notifier_block *nb,
997 unsigned long code, void *unused)
999 struct linux_efi_random_seed *seed;
1002 if (!kexec_in_progress)
1005 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1007 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1010 pr_err("Could not map UEFI random seed!\n");
1013 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1017 get_random_bytes(seed->bits, seed->size);
1020 pr_err("Could not map UEFI random seed!\n");
1026 static struct notifier_block efi_random_seed_nb = {
1027 .notifier_call = update_efi_random_seed,
1030 static int __init register_update_efi_random_seed(void)
1032 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1034 return register_reboot_notifier(&efi_random_seed_nb);
1036 late_initcall(register_update_efi_random_seed);