1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * zswap.c - zswap driver file
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
43 /*********************************
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 /* Duplicate store was encountered (rare) */
75 static u64 zswap_duplicate_entry;
77 /* Shrinker work queue */
78 static struct workqueue_struct *shrink_wq;
79 /* Pool limit was hit, we need to calm down */
80 static bool zswap_pool_reached_full;
82 /*********************************
84 **********************************/
86 #define ZSWAP_PARAM_UNSET ""
88 static int zswap_setup(void);
90 /* Enable/disable zswap */
91 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92 static int zswap_enabled_param_set(const char *,
93 const struct kernel_param *);
94 static const struct kernel_param_ops zswap_enabled_param_ops = {
95 .set = zswap_enabled_param_set,
96 .get = param_get_bool,
98 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
100 /* Crypto compressor to use */
101 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102 static int zswap_compressor_param_set(const char *,
103 const struct kernel_param *);
104 static const struct kernel_param_ops zswap_compressor_param_ops = {
105 .set = zswap_compressor_param_set,
106 .get = param_get_charp,
107 .free = param_free_charp,
109 module_param_cb(compressor, &zswap_compressor_param_ops,
110 &zswap_compressor, 0644);
112 /* Compressed storage zpool to use */
113 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115 static const struct kernel_param_ops zswap_zpool_param_ops = {
116 .set = zswap_zpool_param_set,
117 .get = param_get_charp,
118 .free = param_free_charp,
120 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
122 /* The maximum percentage of memory that the compressed pool can occupy */
123 static unsigned int zswap_max_pool_percent = 20;
124 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
126 /* The threshold for accepting new pages after the max_pool_percent was hit */
127 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
132 * Enable/disable handling same-value filled pages (enabled by default).
133 * If disabled every page is considered non-same-value filled.
135 static bool zswap_same_filled_pages_enabled = true;
136 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
139 /* Enable/disable handling non-same-value filled pages (enabled by default) */
140 static bool zswap_non_same_filled_pages_enabled = true;
141 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
144 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145 CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
148 /* Number of zpools in zswap_pool (empirically determined for scalability) */
149 #define ZSWAP_NR_ZPOOLS 32
151 /* Enable/disable memory pressure-based shrinker. */
152 static bool zswap_shrinker_enabled = IS_ENABLED(
153 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
156 /*********************************
158 **********************************/
160 struct crypto_acomp_ctx {
161 struct crypto_acomp *acomp;
162 struct acomp_req *req;
163 struct crypto_wait wait;
169 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
170 * The only case where lru_lock is not acquired while holding tree.lock is
171 * when a zswap_entry is taken off the lru for writeback, in that case it
172 * needs to be verified that it's still valid in the tree.
175 struct zpool *zpools[ZSWAP_NR_ZPOOLS];
176 struct crypto_acomp_ctx __percpu *acomp_ctx;
178 struct list_head list;
179 struct work_struct release_work;
180 struct work_struct shrink_work;
181 struct hlist_node node;
182 char tfm_name[CRYPTO_MAX_ALG_NAME];
183 struct list_lru list_lru;
184 struct mem_cgroup *next_shrink;
185 struct shrinker *shrinker;
192 * This structure contains the metadata for tracking a single compressed
195 * rbnode - links the entry into red-black tree for the appropriate swap type
196 * swpentry - associated swap entry, the offset indexes into the red-black tree
197 * refcount - the number of outstanding reference to the entry. This is needed
198 * to protect against premature freeing of the entry by code
199 * concurrent calls to load, invalidate, and writeback. The lock
200 * for the zswap_tree structure that contains the entry must
201 * be held while changing the refcount. Since the lock must
202 * be held, there is no reason to also make refcount atomic.
203 * length - the length in bytes of the compressed page data. Needed during
204 * decompression. For a same value filled page length is 0, and both
205 * pool and lru are invalid and must be ignored.
206 * pool - the zswap_pool the entry's data is in
207 * handle - zpool allocation handle that stores the compressed page data
208 * value - value of the same-value filled pages which have same content
209 * objcg - the obj_cgroup that the compressed memory is charged to
210 * lru - handle to the pool's lru used to evict pages.
213 struct rb_node rbnode;
214 swp_entry_t swpentry;
217 struct zswap_pool *pool;
219 unsigned long handle;
222 struct obj_cgroup *objcg;
223 struct list_head lru;
227 * The tree lock in the zswap_tree struct protects a few things:
229 * - the refcount field of each entry in the tree
232 struct rb_root rbroot;
236 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
238 /* RCU-protected iteration */
239 static LIST_HEAD(zswap_pools);
240 /* protects zswap_pools list modification */
241 static DEFINE_SPINLOCK(zswap_pools_lock);
242 /* pool counter to provide unique names to zpool */
243 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
245 enum zswap_init_type {
251 static enum zswap_init_type zswap_init_state;
253 /* used to ensure the integrity of initialization */
254 static DEFINE_MUTEX(zswap_init_lock);
256 /* init completed, but couldn't create the initial pool */
257 static bool zswap_has_pool;
259 /*********************************
260 * helpers and fwd declarations
261 **********************************/
263 #define zswap_pool_debug(msg, p) \
264 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
265 zpool_get_type((p)->zpools[0]))
267 static int zswap_writeback_entry(struct zswap_entry *entry,
268 struct zswap_tree *tree);
269 static int zswap_pool_get(struct zswap_pool *pool);
270 static void zswap_pool_put(struct zswap_pool *pool);
272 static bool zswap_is_full(void)
274 return totalram_pages() * zswap_max_pool_percent / 100 <
275 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
278 static bool zswap_can_accept(void)
280 return totalram_pages() * zswap_accept_thr_percent / 100 *
281 zswap_max_pool_percent / 100 >
282 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
285 static u64 get_zswap_pool_size(struct zswap_pool *pool)
290 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
291 pool_size += zpool_get_total_size(pool->zpools[i]);
296 static void zswap_update_total_size(void)
298 struct zswap_pool *pool;
303 list_for_each_entry_rcu(pool, &zswap_pools, list)
304 total += get_zswap_pool_size(pool);
308 zswap_pool_total_size = total;
311 /* should be called under RCU */
313 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
315 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
318 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324 static inline int entry_to_nid(struct zswap_entry *entry)
326 return page_to_nid(virt_to_page(entry));
329 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
331 struct zswap_pool *pool;
333 /* lock out zswap pools list modification */
334 spin_lock(&zswap_pools_lock);
335 list_for_each_entry(pool, &zswap_pools, list) {
336 if (pool->next_shrink == memcg)
337 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
339 spin_unlock(&zswap_pools_lock);
342 /*********************************
343 * zswap entry functions
344 **********************************/
345 static struct kmem_cache *zswap_entry_cache;
347 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
349 struct zswap_entry *entry;
350 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
354 RB_CLEAR_NODE(&entry->rbnode);
358 static void zswap_entry_cache_free(struct zswap_entry *entry)
360 kmem_cache_free(zswap_entry_cache, entry);
363 /*********************************
364 * zswap lruvec functions
365 **********************************/
366 void zswap_lruvec_state_init(struct lruvec *lruvec)
368 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
371 void zswap_folio_swapin(struct folio *folio)
373 struct lruvec *lruvec;
376 lruvec = folio_lruvec(folio);
377 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
381 /*********************************
383 **********************************/
384 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
386 atomic_long_t *nr_zswap_protected;
387 unsigned long lru_size, old, new;
388 int nid = entry_to_nid(entry);
389 struct mem_cgroup *memcg;
390 struct lruvec *lruvec;
393 * Note that it is safe to use rcu_read_lock() here, even in the face of
394 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
395 * used in list_lru lookup, only two scenarios are possible:
397 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
398 * new entry will be reparented to memcg's parent's list_lru.
399 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
400 * new entry will be added directly to memcg's parent's list_lru.
402 * Similar reasoning holds for list_lru_del() and list_lru_putback().
405 memcg = mem_cgroup_from_entry(entry);
406 /* will always succeed */
407 list_lru_add(list_lru, &entry->lru, nid, memcg);
409 /* Update the protection area */
410 lru_size = list_lru_count_one(list_lru, nid, memcg);
411 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
412 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
413 old = atomic_long_inc_return(nr_zswap_protected);
415 * Decay to avoid overflow and adapt to changing workloads.
416 * This is based on LRU reclaim cost decaying heuristics.
419 new = old > lru_size / 4 ? old / 2 : old;
420 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
424 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
426 int nid = entry_to_nid(entry);
427 struct mem_cgroup *memcg;
430 memcg = mem_cgroup_from_entry(entry);
431 /* will always succeed */
432 list_lru_del(list_lru, &entry->lru, nid, memcg);
436 static void zswap_lru_putback(struct list_lru *list_lru,
437 struct zswap_entry *entry)
439 int nid = entry_to_nid(entry);
440 spinlock_t *lock = &list_lru->node[nid].lock;
441 struct mem_cgroup *memcg;
442 struct lruvec *lruvec;
445 memcg = mem_cgroup_from_entry(entry);
447 /* we cannot use list_lru_add here, because it increments node's lru count */
448 list_lru_putback(list_lru, &entry->lru, nid, memcg);
451 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
452 /* increment the protection area to account for the LRU rotation. */
453 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
457 /*********************************
459 **********************************/
460 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
462 struct rb_node *node = root->rb_node;
463 struct zswap_entry *entry;
464 pgoff_t entry_offset;
467 entry = rb_entry(node, struct zswap_entry, rbnode);
468 entry_offset = swp_offset(entry->swpentry);
469 if (entry_offset > offset)
470 node = node->rb_left;
471 else if (entry_offset < offset)
472 node = node->rb_right;
480 * In the case that a entry with the same offset is found, a pointer to
481 * the existing entry is stored in dupentry and the function returns -EEXIST
483 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
484 struct zswap_entry **dupentry)
486 struct rb_node **link = &root->rb_node, *parent = NULL;
487 struct zswap_entry *myentry;
488 pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
492 myentry = rb_entry(parent, struct zswap_entry, rbnode);
493 myentry_offset = swp_offset(myentry->swpentry);
494 if (myentry_offset > entry_offset)
495 link = &(*link)->rb_left;
496 else if (myentry_offset < entry_offset)
497 link = &(*link)->rb_right;
503 rb_link_node(&entry->rbnode, parent, link);
504 rb_insert_color(&entry->rbnode, root);
508 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
510 if (!RB_EMPTY_NODE(&entry->rbnode)) {
511 rb_erase(&entry->rbnode, root);
512 RB_CLEAR_NODE(&entry->rbnode);
518 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
522 if (ZSWAP_NR_ZPOOLS > 1)
523 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
525 return entry->pool->zpools[i];
529 * Carries out the common pattern of freeing and entry's zpool allocation,
530 * freeing the entry itself, and decrementing the number of stored pages.
532 static void zswap_free_entry(struct zswap_entry *entry)
535 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
536 obj_cgroup_put(entry->objcg);
539 atomic_dec(&zswap_same_filled_pages);
541 zswap_lru_del(&entry->pool->list_lru, entry);
542 zpool_free(zswap_find_zpool(entry), entry->handle);
543 atomic_dec(&entry->pool->nr_stored);
544 zswap_pool_put(entry->pool);
546 zswap_entry_cache_free(entry);
547 atomic_dec(&zswap_stored_pages);
548 zswap_update_total_size();
551 /* caller must hold the tree lock */
552 static void zswap_entry_get(struct zswap_entry *entry)
557 /* caller must hold the tree lock
558 * remove from the tree and free it, if nobody reference the entry
560 static void zswap_entry_put(struct zswap_tree *tree,
561 struct zswap_entry *entry)
563 int refcount = --entry->refcount;
565 WARN_ON_ONCE(refcount < 0);
567 WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
568 zswap_free_entry(entry);
572 /* caller must hold the tree lock */
573 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
576 struct zswap_entry *entry;
578 entry = zswap_rb_search(root, offset);
580 zswap_entry_get(entry);
585 /*********************************
587 **********************************/
588 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
589 spinlock_t *lock, void *arg);
591 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
592 struct shrink_control *sc)
594 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
595 unsigned long shrink_ret, nr_protected, lru_size;
596 struct zswap_pool *pool = shrinker->private_data;
597 bool encountered_page_in_swapcache = false;
599 if (!zswap_shrinker_enabled) {
605 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
606 lru_size = list_lru_shrink_count(&pool->list_lru, sc);
609 * Abort if we are shrinking into the protected region.
611 * This short-circuiting is necessary because if we have too many multiple
612 * concurrent reclaimers getting the freeable zswap object counts at the
613 * same time (before any of them made reasonable progress), the total
614 * number of reclaimed objects might be more than the number of unprotected
615 * objects (i.e the reclaimers will reclaim into the protected area of the
618 if (nr_protected >= lru_size - sc->nr_to_scan) {
623 shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
624 &encountered_page_in_swapcache);
626 if (encountered_page_in_swapcache)
629 return shrink_ret ? shrink_ret : SHRINK_STOP;
632 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
633 struct shrink_control *sc)
635 struct zswap_pool *pool = shrinker->private_data;
636 struct mem_cgroup *memcg = sc->memcg;
637 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
638 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
640 if (!zswap_shrinker_enabled)
643 #ifdef CONFIG_MEMCG_KMEM
644 mem_cgroup_flush_stats(memcg);
645 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
646 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
648 /* use pool stats instead of memcg stats */
649 nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
650 nr_stored = atomic_read(&pool->nr_stored);
657 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
658 nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
660 * Subtract the lru size by an estimate of the number of pages
661 * that should be protected.
663 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
666 * Scale the number of freeable pages by the memory saving factor.
667 * This ensures that the better zswap compresses memory, the fewer
668 * pages we will evict to swap (as it will otherwise incur IO for
669 * relatively small memory saving).
671 return mult_frac(nr_freeable, nr_backing, nr_stored);
674 static void zswap_alloc_shrinker(struct zswap_pool *pool)
677 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
681 pool->shrinker->private_data = pool;
682 pool->shrinker->scan_objects = zswap_shrinker_scan;
683 pool->shrinker->count_objects = zswap_shrinker_count;
684 pool->shrinker->batch = 0;
685 pool->shrinker->seeks = DEFAULT_SEEKS;
688 /*********************************
690 **********************************/
691 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
693 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
694 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
695 struct crypto_acomp *acomp;
696 struct acomp_req *req;
699 mutex_init(&acomp_ctx->mutex);
701 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
702 if (!acomp_ctx->buffer)
705 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
707 pr_err("could not alloc crypto acomp %s : %ld\n",
708 pool->tfm_name, PTR_ERR(acomp));
709 ret = PTR_ERR(acomp);
712 acomp_ctx->acomp = acomp;
714 req = acomp_request_alloc(acomp_ctx->acomp);
716 pr_err("could not alloc crypto acomp_request %s\n",
721 acomp_ctx->req = req;
723 crypto_init_wait(&acomp_ctx->wait);
725 * if the backend of acomp is async zip, crypto_req_done() will wakeup
726 * crypto_wait_req(); if the backend of acomp is scomp, the callback
727 * won't be called, crypto_wait_req() will return without blocking.
729 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
730 crypto_req_done, &acomp_ctx->wait);
735 crypto_free_acomp(acomp_ctx->acomp);
737 kfree(acomp_ctx->buffer);
741 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
743 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
744 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
746 if (!IS_ERR_OR_NULL(acomp_ctx)) {
747 if (!IS_ERR_OR_NULL(acomp_ctx->req))
748 acomp_request_free(acomp_ctx->req);
749 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
750 crypto_free_acomp(acomp_ctx->acomp);
751 kfree(acomp_ctx->buffer);
757 /*********************************
759 **********************************/
761 static struct zswap_pool *__zswap_pool_current(void)
763 struct zswap_pool *pool;
765 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
766 WARN_ONCE(!pool && zswap_has_pool,
767 "%s: no page storage pool!\n", __func__);
772 static struct zswap_pool *zswap_pool_current(void)
774 assert_spin_locked(&zswap_pools_lock);
776 return __zswap_pool_current();
779 static struct zswap_pool *zswap_pool_current_get(void)
781 struct zswap_pool *pool;
785 pool = __zswap_pool_current();
786 if (!zswap_pool_get(pool))
794 static struct zswap_pool *zswap_pool_last_get(void)
796 struct zswap_pool *pool, *last = NULL;
800 list_for_each_entry_rcu(pool, &zswap_pools, list)
802 WARN_ONCE(!last && zswap_has_pool,
803 "%s: no page storage pool!\n", __func__);
804 if (!zswap_pool_get(last))
812 /* type and compressor must be null-terminated */
813 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
815 struct zswap_pool *pool;
817 assert_spin_locked(&zswap_pools_lock);
819 list_for_each_entry_rcu(pool, &zswap_pools, list) {
820 if (strcmp(pool->tfm_name, compressor))
822 /* all zpools share the same type */
823 if (strcmp(zpool_get_type(pool->zpools[0]), type))
825 /* if we can't get it, it's about to be destroyed */
826 if (!zswap_pool_get(pool))
835 * If the entry is still valid in the tree, drop the initial ref and remove it
836 * from the tree. This function must be called with an additional ref held,
837 * otherwise it may race with another invalidation freeing the entry.
839 static void zswap_invalidate_entry(struct zswap_tree *tree,
840 struct zswap_entry *entry)
842 if (zswap_rb_erase(&tree->rbroot, entry))
843 zswap_entry_put(tree, entry);
846 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
847 spinlock_t *lock, void *arg)
849 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
850 bool *encountered_page_in_swapcache = (bool *)arg;
851 struct zswap_tree *tree;
853 enum lru_status ret = LRU_REMOVED_RETRY;
854 int writeback_result;
857 * Once the lru lock is dropped, the entry might get freed. The
858 * swpoffset is copied to the stack, and entry isn't deref'd again
859 * until the entry is verified to still be alive in the tree.
861 swpoffset = swp_offset(entry->swpentry);
862 tree = zswap_trees[swp_type(entry->swpentry)];
863 list_lru_isolate(l, item);
865 * It's safe to drop the lock here because we return either
866 * LRU_REMOVED_RETRY or LRU_RETRY.
870 /* Check for invalidate() race */
871 spin_lock(&tree->lock);
872 if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
875 /* Hold a reference to prevent a free during writeback */
876 zswap_entry_get(entry);
877 spin_unlock(&tree->lock);
879 writeback_result = zswap_writeback_entry(entry, tree);
881 spin_lock(&tree->lock);
882 if (writeback_result) {
883 zswap_reject_reclaim_fail++;
884 zswap_lru_putback(&entry->pool->list_lru, entry);
888 * Encountering a page already in swap cache is a sign that we are shrinking
889 * into the warmer region. We should terminate shrinking (if we're in the dynamic
892 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
894 *encountered_page_in_swapcache = true;
899 zswap_written_back_pages++;
902 count_objcg_event(entry->objcg, ZSWPWB);
904 count_vm_event(ZSWPWB);
906 * Writeback started successfully, the page now belongs to the
907 * swapcache. Drop the entry from zswap - unless invalidate already
908 * took it out while we had the tree->lock released for IO.
910 zswap_invalidate_entry(tree, entry);
913 /* Drop local reference */
914 zswap_entry_put(tree, entry);
916 spin_unlock(&tree->lock);
921 static int shrink_memcg(struct mem_cgroup *memcg)
923 struct zswap_pool *pool;
927 * Skip zombies because their LRUs are reparented and we would be
928 * reclaiming from the parent instead of the dead memcg.
930 if (memcg && !mem_cgroup_online(memcg))
933 pool = zswap_pool_current_get();
937 for_each_node_state(nid, N_NORMAL_MEMORY) {
938 unsigned long nr_to_walk = 1;
940 shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
941 &shrink_memcg_cb, NULL, &nr_to_walk);
943 zswap_pool_put(pool);
944 return shrunk ? 0 : -EAGAIN;
947 static void shrink_worker(struct work_struct *w)
949 struct zswap_pool *pool = container_of(w, typeof(*pool),
951 struct mem_cgroup *memcg;
952 int ret, failures = 0;
954 /* global reclaim will select cgroup in a round-robin fashion. */
956 spin_lock(&zswap_pools_lock);
957 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
958 memcg = pool->next_shrink;
961 * We need to retry if we have gone through a full round trip, or if we
962 * got an offline memcg (or else we risk undoing the effect of the
963 * zswap memcg offlining cleanup callback). This is not catastrophic
964 * per se, but it will keep the now offlined memcg hostage for a while.
966 * Note that if we got an online memcg, we will keep the extra
967 * reference in case the original reference obtained by mem_cgroup_iter
968 * is dropped by the zswap memcg offlining callback, ensuring that the
969 * memcg is not killed when we are reclaiming.
972 spin_unlock(&zswap_pools_lock);
973 if (++failures == MAX_RECLAIM_RETRIES)
979 if (!mem_cgroup_tryget_online(memcg)) {
980 /* drop the reference from mem_cgroup_iter() */
981 mem_cgroup_iter_break(NULL, memcg);
982 pool->next_shrink = NULL;
983 spin_unlock(&zswap_pools_lock);
985 if (++failures == MAX_RECLAIM_RETRIES)
990 spin_unlock(&zswap_pools_lock);
992 ret = shrink_memcg(memcg);
993 /* drop the extra reference */
994 mem_cgroup_put(memcg);
998 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1003 } while (!zswap_can_accept());
1004 zswap_pool_put(pool);
1007 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1010 struct zswap_pool *pool;
1011 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1012 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1015 if (!zswap_has_pool) {
1016 /* if either are unset, pool initialization failed, and we
1017 * need both params to be set correctly before trying to
1020 if (!strcmp(type, ZSWAP_PARAM_UNSET))
1022 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1026 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1030 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1031 /* unique name for each pool specifically required by zsmalloc */
1032 snprintf(name, 38, "zswap%x",
1033 atomic_inc_return(&zswap_pools_count));
1035 pool->zpools[i] = zpool_create_pool(type, name, gfp);
1036 if (!pool->zpools[i]) {
1037 pr_err("%s zpool not available\n", type);
1041 pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1043 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1045 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1046 if (!pool->acomp_ctx) {
1047 pr_err("percpu alloc failed\n");
1051 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1056 zswap_alloc_shrinker(pool);
1057 if (!pool->shrinker)
1060 pr_debug("using %s compressor\n", pool->tfm_name);
1062 /* being the current pool takes 1 ref; this func expects the
1063 * caller to always add the new pool as the current pool
1065 kref_init(&pool->kref);
1066 INIT_LIST_HEAD(&pool->list);
1067 if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1069 shrinker_register(pool->shrinker);
1070 INIT_WORK(&pool->shrink_work, shrink_worker);
1071 atomic_set(&pool->nr_stored, 0);
1073 zswap_pool_debug("created", pool);
1078 list_lru_destroy(&pool->list_lru);
1079 shrinker_free(pool->shrinker);
1081 if (pool->acomp_ctx)
1082 free_percpu(pool->acomp_ctx);
1084 zpool_destroy_pool(pool->zpools[i]);
1089 static struct zswap_pool *__zswap_pool_create_fallback(void)
1091 bool has_comp, has_zpool;
1093 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1094 if (!has_comp && strcmp(zswap_compressor,
1095 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1096 pr_err("compressor %s not available, using default %s\n",
1097 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1098 param_free_charp(&zswap_compressor);
1099 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1100 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1103 pr_err("default compressor %s not available\n",
1105 param_free_charp(&zswap_compressor);
1106 zswap_compressor = ZSWAP_PARAM_UNSET;
1109 has_zpool = zpool_has_pool(zswap_zpool_type);
1110 if (!has_zpool && strcmp(zswap_zpool_type,
1111 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1112 pr_err("zpool %s not available, using default %s\n",
1113 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1114 param_free_charp(&zswap_zpool_type);
1115 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1116 has_zpool = zpool_has_pool(zswap_zpool_type);
1119 pr_err("default zpool %s not available\n",
1121 param_free_charp(&zswap_zpool_type);
1122 zswap_zpool_type = ZSWAP_PARAM_UNSET;
1125 if (!has_comp || !has_zpool)
1128 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1131 static void zswap_pool_destroy(struct zswap_pool *pool)
1135 zswap_pool_debug("destroying", pool);
1137 shrinker_free(pool->shrinker);
1138 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1139 free_percpu(pool->acomp_ctx);
1140 list_lru_destroy(&pool->list_lru);
1142 spin_lock(&zswap_pools_lock);
1143 mem_cgroup_iter_break(NULL, pool->next_shrink);
1144 pool->next_shrink = NULL;
1145 spin_unlock(&zswap_pools_lock);
1147 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1148 zpool_destroy_pool(pool->zpools[i]);
1152 static int __must_check zswap_pool_get(struct zswap_pool *pool)
1157 return kref_get_unless_zero(&pool->kref);
1160 static void __zswap_pool_release(struct work_struct *work)
1162 struct zswap_pool *pool = container_of(work, typeof(*pool),
1167 /* nobody should have been able to get a kref... */
1168 WARN_ON(kref_get_unless_zero(&pool->kref));
1170 /* pool is now off zswap_pools list and has no references. */
1171 zswap_pool_destroy(pool);
1174 static void __zswap_pool_empty(struct kref *kref)
1176 struct zswap_pool *pool;
1178 pool = container_of(kref, typeof(*pool), kref);
1180 spin_lock(&zswap_pools_lock);
1182 WARN_ON(pool == zswap_pool_current());
1184 list_del_rcu(&pool->list);
1186 INIT_WORK(&pool->release_work, __zswap_pool_release);
1187 schedule_work(&pool->release_work);
1189 spin_unlock(&zswap_pools_lock);
1192 static void zswap_pool_put(struct zswap_pool *pool)
1194 kref_put(&pool->kref, __zswap_pool_empty);
1197 /*********************************
1199 **********************************/
1201 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1203 /* no change required */
1204 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1209 /* val must be a null-terminated string */
1210 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1211 char *type, char *compressor)
1213 struct zswap_pool *pool, *put_pool = NULL;
1214 char *s = strstrip((char *)val);
1216 bool new_pool = false;
1218 mutex_lock(&zswap_init_lock);
1219 switch (zswap_init_state) {
1221 /* if this is load-time (pre-init) param setting,
1222 * don't create a pool; that's done during init.
1224 ret = param_set_charp(s, kp);
1226 case ZSWAP_INIT_SUCCEED:
1227 new_pool = zswap_pool_changed(s, kp);
1229 case ZSWAP_INIT_FAILED:
1230 pr_err("can't set param, initialization failed\n");
1233 mutex_unlock(&zswap_init_lock);
1235 /* no need to create a new pool, return directly */
1240 if (!zpool_has_pool(s)) {
1241 pr_err("zpool %s not available\n", s);
1245 } else if (!compressor) {
1246 if (!crypto_has_acomp(s, 0, 0)) {
1247 pr_err("compressor %s not available\n", s);
1256 spin_lock(&zswap_pools_lock);
1258 pool = zswap_pool_find_get(type, compressor);
1260 zswap_pool_debug("using existing", pool);
1261 WARN_ON(pool == zswap_pool_current());
1262 list_del_rcu(&pool->list);
1265 spin_unlock(&zswap_pools_lock);
1268 pool = zswap_pool_create(type, compressor);
1271 ret = param_set_charp(s, kp);
1275 spin_lock(&zswap_pools_lock);
1278 put_pool = zswap_pool_current();
1279 list_add_rcu(&pool->list, &zswap_pools);
1280 zswap_has_pool = true;
1282 /* add the possibly pre-existing pool to the end of the pools
1283 * list; if it's new (and empty) then it'll be removed and
1284 * destroyed by the put after we drop the lock
1286 list_add_tail_rcu(&pool->list, &zswap_pools);
1290 spin_unlock(&zswap_pools_lock);
1292 if (!zswap_has_pool && !pool) {
1293 /* if initial pool creation failed, and this pool creation also
1294 * failed, maybe both compressor and zpool params were bad.
1295 * Allow changing this param, so pool creation will succeed
1296 * when the other param is changed. We already verified this
1297 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1300 ret = param_set_charp(s, kp);
1303 /* drop the ref from either the old current pool,
1304 * or the new pool we failed to add
1307 zswap_pool_put(put_pool);
1312 static int zswap_compressor_param_set(const char *val,
1313 const struct kernel_param *kp)
1315 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1318 static int zswap_zpool_param_set(const char *val,
1319 const struct kernel_param *kp)
1321 return __zswap_param_set(val, kp, NULL, zswap_compressor);
1324 static int zswap_enabled_param_set(const char *val,
1325 const struct kernel_param *kp)
1329 /* if this is load-time (pre-init) param setting, only set param. */
1330 if (system_state != SYSTEM_RUNNING)
1331 return param_set_bool(val, kp);
1333 mutex_lock(&zswap_init_lock);
1334 switch (zswap_init_state) {
1339 case ZSWAP_INIT_SUCCEED:
1340 if (!zswap_has_pool)
1341 pr_err("can't enable, no pool configured\n");
1343 ret = param_set_bool(val, kp);
1345 case ZSWAP_INIT_FAILED:
1346 pr_err("can't enable, initialization failed\n");
1348 mutex_unlock(&zswap_init_lock);
1353 static void __zswap_load(struct zswap_entry *entry, struct page *page)
1355 struct zpool *zpool = zswap_find_zpool(entry);
1356 struct scatterlist input, output;
1357 struct crypto_acomp_ctx *acomp_ctx;
1360 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1361 mutex_lock(&acomp_ctx->mutex);
1363 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1364 if (!zpool_can_sleep_mapped(zpool)) {
1365 memcpy(acomp_ctx->buffer, src, entry->length);
1366 src = acomp_ctx->buffer;
1367 zpool_unmap_handle(zpool, entry->handle);
1370 sg_init_one(&input, src, entry->length);
1371 sg_init_table(&output, 1);
1372 sg_set_page(&output, page, PAGE_SIZE, 0);
1373 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1374 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1375 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1376 mutex_unlock(&acomp_ctx->mutex);
1378 if (zpool_can_sleep_mapped(zpool))
1379 zpool_unmap_handle(zpool, entry->handle);
1382 /*********************************
1384 **********************************/
1386 * Attempts to free an entry by adding a folio to the swap cache,
1387 * decompressing the entry data into the folio, and issuing a
1388 * bio write to write the folio back to the swap device.
1390 * This can be thought of as a "resumed writeback" of the folio
1391 * to the swap device. We are basically resuming the same swap
1392 * writeback path that was intercepted with the zswap_store()
1393 * in the first place. After the folio has been decompressed into
1394 * the swap cache, the compressed version stored by zswap can be
1397 static int zswap_writeback_entry(struct zswap_entry *entry,
1398 struct zswap_tree *tree)
1400 swp_entry_t swpentry = entry->swpentry;
1401 struct folio *folio;
1402 struct mempolicy *mpol;
1403 bool folio_was_allocated;
1404 struct writeback_control wbc = {
1405 .sync_mode = WB_SYNC_NONE,
1408 /* try to allocate swap cache folio */
1409 mpol = get_task_policy(current);
1410 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1411 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1416 * Found an existing folio, we raced with load/swapin. We generally
1417 * writeback cold folios from zswap, and swapin means the folio just
1418 * became hot. Skip this folio and let the caller find another one.
1420 if (!folio_was_allocated) {
1426 * folio is locked, and the swapcache is now secured against
1427 * concurrent swapping to and from the slot. Verify that the
1428 * swap entry hasn't been invalidated and recycled behind our
1429 * backs (our zswap_entry reference doesn't prevent that), to
1430 * avoid overwriting a new swap folio with old compressed data.
1432 spin_lock(&tree->lock);
1433 if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1434 spin_unlock(&tree->lock);
1435 delete_from_swap_cache(folio);
1438 spin_unlock(&tree->lock);
1440 __zswap_load(entry, &folio->page);
1442 /* folio is up to date */
1443 folio_mark_uptodate(folio);
1445 /* move it to the tail of the inactive list after end_writeback */
1446 folio_set_reclaim(folio);
1448 /* start writeback */
1449 __swap_writepage(folio, &wbc);
1455 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1457 unsigned long *page;
1459 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1461 page = (unsigned long *)ptr;
1464 if (val != page[last_pos])
1467 for (pos = 1; pos < last_pos; pos++) {
1468 if (val != page[pos])
1477 static void zswap_fill_page(void *ptr, unsigned long value)
1479 unsigned long *page;
1481 page = (unsigned long *)ptr;
1482 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1485 bool zswap_store(struct folio *folio)
1487 swp_entry_t swp = folio->swap;
1488 int type = swp_type(swp);
1489 pgoff_t offset = swp_offset(swp);
1490 struct page *page = &folio->page;
1491 struct zswap_tree *tree = zswap_trees[type];
1492 struct zswap_entry *entry, *dupentry;
1493 struct scatterlist input, output;
1494 struct crypto_acomp_ctx *acomp_ctx;
1495 struct obj_cgroup *objcg = NULL;
1496 struct mem_cgroup *memcg = NULL;
1497 struct zswap_pool *pool;
1498 struct zpool *zpool;
1499 unsigned int dlen = PAGE_SIZE;
1500 unsigned long handle, value;
1506 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1507 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1509 /* Large folios aren't supported */
1510 if (folio_test_large(folio))
1513 if (!zswap_enabled || !tree)
1517 * If this is a duplicate, it must be removed before attempting to store
1518 * it, otherwise, if the store fails the old page won't be removed from
1519 * the tree, and it might be written back overriding the new data.
1521 spin_lock(&tree->lock);
1522 dupentry = zswap_rb_search(&tree->rbroot, offset);
1524 zswap_duplicate_entry++;
1525 zswap_invalidate_entry(tree, dupentry);
1527 spin_unlock(&tree->lock);
1528 objcg = get_obj_cgroup_from_folio(folio);
1529 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1530 memcg = get_mem_cgroup_from_objcg(objcg);
1531 if (shrink_memcg(memcg)) {
1532 mem_cgroup_put(memcg);
1535 mem_cgroup_put(memcg);
1538 /* reclaim space if needed */
1539 if (zswap_is_full()) {
1540 zswap_pool_limit_hit++;
1541 zswap_pool_reached_full = true;
1545 if (zswap_pool_reached_full) {
1546 if (!zswap_can_accept())
1549 zswap_pool_reached_full = false;
1552 /* allocate entry */
1553 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1555 zswap_reject_kmemcache_fail++;
1559 if (zswap_same_filled_pages_enabled) {
1560 src = kmap_local_page(page);
1561 if (zswap_is_page_same_filled(src, &value)) {
1563 entry->swpentry = swp_entry(type, offset);
1565 entry->value = value;
1566 atomic_inc(&zswap_same_filled_pages);
1572 if (!zswap_non_same_filled_pages_enabled)
1575 /* if entry is successfully added, it keeps the reference */
1576 entry->pool = zswap_pool_current_get();
1581 memcg = get_mem_cgroup_from_objcg(objcg);
1582 if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1583 mem_cgroup_put(memcg);
1586 mem_cgroup_put(memcg);
1590 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1592 mutex_lock(&acomp_ctx->mutex);
1594 dst = acomp_ctx->buffer;
1595 sg_init_table(&input, 1);
1596 sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1599 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1600 * and hardware-accelerators may won't check the dst buffer size, so
1601 * giving the dst buffer with enough length to avoid buffer overflow.
1603 sg_init_one(&output, dst, PAGE_SIZE * 2);
1604 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1606 * it maybe looks a little bit silly that we send an asynchronous request,
1607 * then wait for its completion synchronously. This makes the process look
1608 * synchronous in fact.
1609 * Theoretically, acomp supports users send multiple acomp requests in one
1610 * acomp instance, then get those requests done simultaneously. but in this
1611 * case, zswap actually does store and load page by page, there is no
1612 * existing method to send the second page before the first page is done
1613 * in one thread doing zwap.
1614 * but in different threads running on different cpu, we have different
1615 * acomp instance, so multiple threads can do (de)compression in parallel.
1617 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1618 dlen = acomp_ctx->req->dlen;
1621 zswap_reject_compress_fail++;
1626 zpool = zswap_find_zpool(entry);
1627 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1628 if (zpool_malloc_support_movable(zpool))
1629 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1630 ret = zpool_malloc(zpool, dlen, gfp, &handle);
1631 if (ret == -ENOSPC) {
1632 zswap_reject_compress_poor++;
1636 zswap_reject_alloc_fail++;
1639 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1640 memcpy(buf, dst, dlen);
1641 zpool_unmap_handle(zpool, handle);
1642 mutex_unlock(&acomp_ctx->mutex);
1644 /* populate entry */
1645 entry->swpentry = swp_entry(type, offset);
1646 entry->handle = handle;
1647 entry->length = dlen;
1650 entry->objcg = objcg;
1652 obj_cgroup_charge_zswap(objcg, entry->length);
1653 /* Account before objcg ref is moved to tree */
1654 count_objcg_event(objcg, ZSWPOUT);
1658 spin_lock(&tree->lock);
1660 * A duplicate entry should have been removed at the beginning of this
1661 * function. Since the swap entry should be pinned, if a duplicate is
1662 * found again here it means that something went wrong in the swap
1665 while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1667 zswap_duplicate_entry++;
1668 zswap_invalidate_entry(tree, dupentry);
1670 if (entry->length) {
1671 INIT_LIST_HEAD(&entry->lru);
1672 zswap_lru_add(&entry->pool->list_lru, entry);
1673 atomic_inc(&entry->pool->nr_stored);
1675 spin_unlock(&tree->lock);
1678 atomic_inc(&zswap_stored_pages);
1679 zswap_update_total_size();
1680 count_vm_event(ZSWPOUT);
1685 mutex_unlock(&acomp_ctx->mutex);
1687 zswap_pool_put(entry->pool);
1689 zswap_entry_cache_free(entry);
1692 obj_cgroup_put(objcg);
1696 pool = zswap_pool_last_get();
1697 if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1698 zswap_pool_put(pool);
1702 bool zswap_load(struct folio *folio)
1704 swp_entry_t swp = folio->swap;
1705 int type = swp_type(swp);
1706 pgoff_t offset = swp_offset(swp);
1707 struct page *page = &folio->page;
1708 struct zswap_tree *tree = zswap_trees[type];
1709 struct zswap_entry *entry;
1712 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1715 spin_lock(&tree->lock);
1716 entry = zswap_entry_find_get(&tree->rbroot, offset);
1718 spin_unlock(&tree->lock);
1721 spin_unlock(&tree->lock);
1724 __zswap_load(entry, page);
1726 dst = kmap_local_page(page);
1727 zswap_fill_page(dst, entry->value);
1731 count_vm_event(ZSWPIN);
1733 count_objcg_event(entry->objcg, ZSWPIN);
1735 spin_lock(&tree->lock);
1736 if (zswap_exclusive_loads_enabled) {
1737 zswap_invalidate_entry(tree, entry);
1738 folio_mark_dirty(folio);
1739 } else if (entry->length) {
1740 zswap_lru_del(&entry->pool->list_lru, entry);
1741 zswap_lru_add(&entry->pool->list_lru, entry);
1743 zswap_entry_put(tree, entry);
1744 spin_unlock(&tree->lock);
1749 void zswap_invalidate(int type, pgoff_t offset)
1751 struct zswap_tree *tree = zswap_trees[type];
1752 struct zswap_entry *entry;
1755 spin_lock(&tree->lock);
1756 entry = zswap_rb_search(&tree->rbroot, offset);
1758 /* entry was written back */
1759 spin_unlock(&tree->lock);
1762 zswap_invalidate_entry(tree, entry);
1763 spin_unlock(&tree->lock);
1766 void zswap_swapon(int type)
1768 struct zswap_tree *tree;
1770 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1772 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1776 tree->rbroot = RB_ROOT;
1777 spin_lock_init(&tree->lock);
1778 zswap_trees[type] = tree;
1781 void zswap_swapoff(int type)
1783 struct zswap_tree *tree = zswap_trees[type];
1784 struct zswap_entry *entry, *n;
1789 /* walk the tree and free everything */
1790 spin_lock(&tree->lock);
1791 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1792 zswap_free_entry(entry);
1793 tree->rbroot = RB_ROOT;
1794 spin_unlock(&tree->lock);
1796 zswap_trees[type] = NULL;
1799 /*********************************
1801 **********************************/
1802 #ifdef CONFIG_DEBUG_FS
1803 #include <linux/debugfs.h>
1805 static struct dentry *zswap_debugfs_root;
1807 static int zswap_debugfs_init(void)
1809 if (!debugfs_initialized())
1812 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1814 debugfs_create_u64("pool_limit_hit", 0444,
1815 zswap_debugfs_root, &zswap_pool_limit_hit);
1816 debugfs_create_u64("reject_reclaim_fail", 0444,
1817 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1818 debugfs_create_u64("reject_alloc_fail", 0444,
1819 zswap_debugfs_root, &zswap_reject_alloc_fail);
1820 debugfs_create_u64("reject_kmemcache_fail", 0444,
1821 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1822 debugfs_create_u64("reject_compress_fail", 0444,
1823 zswap_debugfs_root, &zswap_reject_compress_fail);
1824 debugfs_create_u64("reject_compress_poor", 0444,
1825 zswap_debugfs_root, &zswap_reject_compress_poor);
1826 debugfs_create_u64("written_back_pages", 0444,
1827 zswap_debugfs_root, &zswap_written_back_pages);
1828 debugfs_create_u64("duplicate_entry", 0444,
1829 zswap_debugfs_root, &zswap_duplicate_entry);
1830 debugfs_create_u64("pool_total_size", 0444,
1831 zswap_debugfs_root, &zswap_pool_total_size);
1832 debugfs_create_atomic_t("stored_pages", 0444,
1833 zswap_debugfs_root, &zswap_stored_pages);
1834 debugfs_create_atomic_t("same_filled_pages", 0444,
1835 zswap_debugfs_root, &zswap_same_filled_pages);
1840 static int zswap_debugfs_init(void)
1846 /*********************************
1847 * module init and exit
1848 **********************************/
1849 static int zswap_setup(void)
1851 struct zswap_pool *pool;
1854 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1855 if (!zswap_entry_cache) {
1856 pr_err("entry cache creation failed\n");
1860 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1861 "mm/zswap_pool:prepare",
1862 zswap_cpu_comp_prepare,
1863 zswap_cpu_comp_dead);
1867 pool = __zswap_pool_create_fallback();
1869 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1870 zpool_get_type(pool->zpools[0]));
1871 list_add(&pool->list, &zswap_pools);
1872 zswap_has_pool = true;
1874 pr_err("pool creation failed\n");
1875 zswap_enabled = false;
1878 shrink_wq = create_workqueue("zswap-shrink");
1882 if (zswap_debugfs_init())
1883 pr_warn("debugfs initialization failed\n");
1884 zswap_init_state = ZSWAP_INIT_SUCCEED;
1889 zswap_pool_destroy(pool);
1891 kmem_cache_destroy(zswap_entry_cache);
1893 /* if built-in, we aren't unloaded on failure; don't allow use */
1894 zswap_init_state = ZSWAP_INIT_FAILED;
1895 zswap_enabled = false;
1899 static int __init zswap_init(void)
1903 return zswap_setup();
1905 /* must be late so crypto has time to come up */
1906 late_initcall(zswap_init);
1909 MODULE_DESCRIPTION("Compressed cache for swap pages");