1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
10 #include <linux/error-injection.h>
14 #include "transaction.h"
15 #include "print-tree.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
27 static struct kmem_cache *btrfs_path_cachep;
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 static const struct btrfs_csums {
46 const char driver[12];
48 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52 .driver = "blake2b-256" },
56 * The leaf data grows from end-to-front in the node. this returns the address
57 * of the start of the last item, which is the stop of the leaf data stack.
59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
61 u32 nr = btrfs_header_nritems(leaf);
64 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65 return btrfs_item_offset(leaf, nr - 1);
69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
71 * @leaf: leaf that we're doing a memmove on
72 * @dst_offset: item data offset we're moving to
73 * @src_offset: item data offset were' moving from
74 * @len: length of the data we're moving
76 * Wrapper around memmove_extent_buffer() that takes into account the header on
77 * the leaf. The btrfs_item offset's start directly after the header, so we
78 * have to adjust any offsets to account for the header in the leaf. This
79 * handles that math to simplify the callers.
81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82 unsigned long dst_offset,
83 unsigned long src_offset,
86 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
91 * Copy item data from @src into @dst at the given @offset.
93 * @dst: destination leaf that we're copying into
94 * @src: source leaf that we're copying from
95 * @dst_offset: item data offset we're copying to
96 * @src_offset: item data offset were' copying from
97 * @len: length of the data we're copying
99 * Wrapper around copy_extent_buffer() that takes into account the header on
100 * the leaf. The btrfs_item offset's start directly after the header, so we
101 * have to adjust any offsets to account for the header in the leaf. This
102 * handles that math to simplify the callers.
104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105 const struct extent_buffer *src,
106 unsigned long dst_offset,
107 unsigned long src_offset, unsigned long len)
109 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110 btrfs_item_nr_offset(src, 0) + src_offset, len);
114 * Move items in a @leaf (using memmove).
116 * @dst: destination leaf for the items
117 * @dst_item: the item nr we're copying into
118 * @src_item: the item nr we're copying from
119 * @nr_items: the number of items to copy
121 * Wrapper around memmove_extent_buffer() that does the math to get the
122 * appropriate offsets into the leaf from the item numbers.
124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125 int dst_item, int src_item, int nr_items)
127 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128 btrfs_item_nr_offset(leaf, src_item),
129 nr_items * sizeof(struct btrfs_item));
133 * Copy items from @src into @dst at the given @offset.
135 * @dst: destination leaf for the items
136 * @src: source leaf for the items
137 * @dst_item: the item nr we're copying into
138 * @src_item: the item nr we're copying from
139 * @nr_items: the number of items to copy
141 * Wrapper around copy_extent_buffer() that does the math to get the
142 * appropriate offsets into the leaf from the item numbers.
144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145 const struct extent_buffer *src,
146 int dst_item, int src_item, int nr_items)
148 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149 btrfs_item_nr_offset(src, src_item),
150 nr_items * sizeof(struct btrfs_item));
153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
155 u16 t = btrfs_super_csum_type(s);
157 * csum type is validated at mount time
159 return btrfs_csums[t].size;
162 const char *btrfs_super_csum_name(u16 csum_type)
164 /* csum type is validated at mount time */
165 return btrfs_csums[csum_type].name;
169 * Return driver name if defined, otherwise the name that's also a valid driver
172 const char *btrfs_super_csum_driver(u16 csum_type)
174 /* csum type is validated at mount time */
175 return btrfs_csums[csum_type].driver[0] ?
176 btrfs_csums[csum_type].driver :
177 btrfs_csums[csum_type].name;
180 size_t __attribute_const__ btrfs_get_num_csums(void)
182 return ARRAY_SIZE(btrfs_csums);
185 struct btrfs_path *btrfs_alloc_path(void)
189 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
192 /* this also releases the path */
193 void btrfs_free_path(struct btrfs_path *p)
197 btrfs_release_path(p);
198 kmem_cache_free(btrfs_path_cachep, p);
202 * path release drops references on the extent buffers in the path
203 * and it drops any locks held by this path
205 * It is safe to call this on paths that no locks or extent buffers held.
207 noinline void btrfs_release_path(struct btrfs_path *p)
211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
219 free_extent_buffer(p->nodes[i]);
225 * We want the transaction abort to print stack trace only for errors where the
226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227 * caused by external factors.
229 bool __cold abort_should_print_stack(int errno)
241 * safely gets a reference on the root node of a tree. A lock
242 * is not taken, so a concurrent writer may put a different node
243 * at the root of the tree. See btrfs_lock_root_node for the
246 * The extent buffer returned by this has a reference taken, so
247 * it won't disappear. It may stop being the root of the tree
248 * at any time because there are no locks held.
250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
252 struct extent_buffer *eb;
256 eb = rcu_dereference(root->node);
259 * RCU really hurts here, we could free up the root node because
260 * it was COWed but we may not get the new root node yet so do
261 * the inc_not_zero dance and if it doesn't work then
262 * synchronize_rcu and try again.
264 if (atomic_inc_not_zero(&eb->refs)) {
275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276 * just get put onto a simple dirty list. Transaction walks this list to make
277 * sure they get properly updated on disk.
279 static void add_root_to_dirty_list(struct btrfs_root *root)
281 struct btrfs_fs_info *fs_info = root->fs_info;
283 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
287 spin_lock(&fs_info->trans_lock);
288 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289 /* Want the extent tree to be the last on the list */
290 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291 list_move_tail(&root->dirty_list,
292 &fs_info->dirty_cowonly_roots);
294 list_move(&root->dirty_list,
295 &fs_info->dirty_cowonly_roots);
297 spin_unlock(&fs_info->trans_lock);
301 * used by snapshot creation to make a copy of a root for a tree with
302 * a given objectid. The buffer with the new root node is returned in
303 * cow_ret, and this func returns zero on success or a negative error code.
305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct extent_buffer *buf,
308 struct extent_buffer **cow_ret, u64 new_root_objectid)
310 struct btrfs_fs_info *fs_info = root->fs_info;
311 struct extent_buffer *cow;
314 struct btrfs_disk_key disk_key;
316 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317 trans->transid != fs_info->running_transaction->transid);
318 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319 trans->transid != root->last_trans);
321 level = btrfs_header_level(buf);
323 btrfs_item_key(buf, &disk_key, 0);
325 btrfs_node_key(buf, &disk_key, 0);
327 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328 &disk_key, level, buf->start, 0,
329 BTRFS_NESTING_NEW_ROOT);
333 copy_extent_buffer_full(cow, buf);
334 btrfs_set_header_bytenr(cow, cow->start);
335 btrfs_set_header_generation(cow, trans->transid);
336 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338 BTRFS_HEADER_FLAG_RELOC);
339 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
342 btrfs_set_header_owner(cow, new_root_objectid);
344 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
346 WARN_ON(btrfs_header_generation(buf) > trans->transid);
347 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348 ret = btrfs_inc_ref(trans, root, cow, 1);
350 ret = btrfs_inc_ref(trans, root, cow, 0);
352 btrfs_tree_unlock(cow);
353 free_extent_buffer(cow);
354 btrfs_abort_transaction(trans, ret);
358 btrfs_mark_buffer_dirty(cow);
364 * check if the tree block can be shared by multiple trees
366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367 struct extent_buffer *buf)
370 * Tree blocks not in shareable trees and tree roots are never shared.
371 * If a block was allocated after the last snapshot and the block was
372 * not allocated by tree relocation, we know the block is not shared.
374 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375 buf != root->node && buf != root->commit_root &&
376 (btrfs_header_generation(buf) <=
377 btrfs_root_last_snapshot(&root->root_item) ||
378 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385 struct btrfs_root *root,
386 struct extent_buffer *buf,
387 struct extent_buffer *cow,
390 struct btrfs_fs_info *fs_info = root->fs_info;
398 * Backrefs update rules:
400 * Always use full backrefs for extent pointers in tree block
401 * allocated by tree relocation.
403 * If a shared tree block is no longer referenced by its owner
404 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405 * use full backrefs for extent pointers in tree block.
407 * If a tree block is been relocating
408 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409 * use full backrefs for extent pointers in tree block.
410 * The reason for this is some operations (such as drop tree)
411 * are only allowed for blocks use full backrefs.
414 if (btrfs_block_can_be_shared(root, buf)) {
415 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416 btrfs_header_level(buf), 1,
422 btrfs_handle_fs_error(fs_info, ret, NULL);
427 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
434 owner = btrfs_header_owner(buf);
435 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
439 if ((owner == root->root_key.objectid ||
440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442 ret = btrfs_inc_ref(trans, root, buf, 1);
446 if (root->root_key.objectid ==
447 BTRFS_TREE_RELOC_OBJECTID) {
448 ret = btrfs_dec_ref(trans, root, buf, 0);
451 ret = btrfs_inc_ref(trans, root, cow, 1);
455 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
458 if (root->root_key.objectid ==
459 BTRFS_TREE_RELOC_OBJECTID)
460 ret = btrfs_inc_ref(trans, root, cow, 1);
462 ret = btrfs_inc_ref(trans, root, cow, 0);
466 if (new_flags != 0) {
467 int level = btrfs_header_level(buf);
469 ret = btrfs_set_disk_extent_flags(trans, buf,
475 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476 if (root->root_key.objectid ==
477 BTRFS_TREE_RELOC_OBJECTID)
478 ret = btrfs_inc_ref(trans, root, cow, 1);
480 ret = btrfs_inc_ref(trans, root, cow, 0);
483 ret = btrfs_dec_ref(trans, root, buf, 1);
487 btrfs_clear_buffer_dirty(trans, buf);
494 * does the dirty work in cow of a single block. The parent block (if
495 * supplied) is updated to point to the new cow copy. The new buffer is marked
496 * dirty and returned locked. If you modify the block it needs to be marked
499 * search_start -- an allocation hint for the new block
501 * empty_size -- a hint that you plan on doing more cow. This is the size in
502 * bytes the allocator should try to find free next to the block it returns.
503 * This is just a hint and may be ignored by the allocator.
505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root,
507 struct extent_buffer *buf,
508 struct extent_buffer *parent, int parent_slot,
509 struct extent_buffer **cow_ret,
510 u64 search_start, u64 empty_size,
511 enum btrfs_lock_nesting nest)
513 struct btrfs_fs_info *fs_info = root->fs_info;
514 struct btrfs_disk_key disk_key;
515 struct extent_buffer *cow;
519 u64 parent_start = 0;
524 btrfs_assert_tree_write_locked(buf);
526 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527 trans->transid != fs_info->running_transaction->transid);
528 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529 trans->transid != root->last_trans);
531 level = btrfs_header_level(buf);
534 btrfs_item_key(buf, &disk_key, 0);
536 btrfs_node_key(buf, &disk_key, 0);
538 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539 parent_start = parent->start;
541 cow = btrfs_alloc_tree_block(trans, root, parent_start,
542 root->root_key.objectid, &disk_key, level,
543 search_start, empty_size, nest);
547 /* cow is set to blocking by btrfs_init_new_buffer */
549 copy_extent_buffer_full(cow, buf);
550 btrfs_set_header_bytenr(cow, cow->start);
551 btrfs_set_header_generation(cow, trans->transid);
552 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554 BTRFS_HEADER_FLAG_RELOC);
555 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
558 btrfs_set_header_owner(cow, root->root_key.objectid);
560 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
562 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
564 btrfs_tree_unlock(cow);
565 free_extent_buffer(cow);
566 btrfs_abort_transaction(trans, ret);
570 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
573 btrfs_tree_unlock(cow);
574 free_extent_buffer(cow);
575 btrfs_abort_transaction(trans, ret);
580 if (buf == root->node) {
581 WARN_ON(parent && parent != buf);
582 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584 parent_start = buf->start;
586 atomic_inc(&cow->refs);
587 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
589 rcu_assign_pointer(root->node, cow);
591 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592 parent_start, last_ref);
593 free_extent_buffer(buf);
594 add_root_to_dirty_list(root);
596 WARN_ON(trans->transid != btrfs_header_generation(parent));
597 btrfs_tree_mod_log_insert_key(parent, parent_slot,
598 BTRFS_MOD_LOG_KEY_REPLACE);
599 btrfs_set_node_blockptr(parent, parent_slot,
601 btrfs_set_node_ptr_generation(parent, parent_slot,
603 btrfs_mark_buffer_dirty(parent);
605 ret = btrfs_tree_mod_log_free_eb(buf);
607 btrfs_tree_unlock(cow);
608 free_extent_buffer(cow);
609 btrfs_abort_transaction(trans, ret);
613 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614 parent_start, last_ref);
617 btrfs_tree_unlock(buf);
618 free_extent_buffer_stale(buf);
619 btrfs_mark_buffer_dirty(cow);
624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct extent_buffer *buf)
628 if (btrfs_is_testing(root->fs_info))
631 /* Ensure we can see the FORCE_COW bit */
632 smp_mb__before_atomic();
635 * We do not need to cow a block if
636 * 1) this block is not created or changed in this transaction;
637 * 2) this block does not belong to TREE_RELOC tree;
638 * 3) the root is not forced COW.
640 * What is forced COW:
641 * when we create snapshot during committing the transaction,
642 * after we've finished copying src root, we must COW the shared
643 * block to ensure the metadata consistency.
645 if (btrfs_header_generation(buf) == trans->transid &&
646 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
655 * cows a single block, see __btrfs_cow_block for the real work.
656 * This version of it has extra checks so that a block isn't COWed more than
657 * once per transaction, as long as it hasn't been written yet
659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root, struct extent_buffer *buf,
661 struct extent_buffer *parent, int parent_slot,
662 struct extent_buffer **cow_ret,
663 enum btrfs_lock_nesting nest)
665 struct btrfs_fs_info *fs_info = root->fs_info;
669 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
671 "COW'ing blocks on a fs root that's being dropped");
673 if (trans->transaction != fs_info->running_transaction)
674 WARN(1, KERN_CRIT "trans %llu running %llu\n",
676 fs_info->running_transaction->transid);
678 if (trans->transid != fs_info->generation)
679 WARN(1, KERN_CRIT "trans %llu running %llu\n",
680 trans->transid, fs_info->generation);
682 if (!should_cow_block(trans, root, buf)) {
687 search_start = buf->start & ~((u64)SZ_1G - 1);
690 * Before CoWing this block for later modification, check if it's
691 * the subtree root and do the delayed subtree trace if needed.
693 * Also We don't care about the error, as it's handled internally.
695 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696 ret = __btrfs_cow_block(trans, root, buf, parent,
697 parent_slot, cow_ret, search_start, 0, nest);
699 trace_btrfs_cow_block(root, buf, *cow_ret);
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
706 * helper function for defrag to decide if two blocks pointed to by a
707 * node are actually close by
709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
711 if (blocknr < other && other - (blocknr + blocksize) < 32768)
713 if (blocknr > other && blocknr - (other + blocksize) < 32768)
718 #ifdef __LITTLE_ENDIAN
721 * Compare two keys, on little-endian the disk order is same as CPU order and
722 * we can avoid the conversion.
724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725 const struct btrfs_key *k2)
727 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
729 return btrfs_comp_cpu_keys(k1, k2);
735 * compare two keys in a memcmp fashion
737 static int comp_keys(const struct btrfs_disk_key *disk,
738 const struct btrfs_key *k2)
742 btrfs_disk_key_to_cpu(&k1, disk);
744 return btrfs_comp_cpu_keys(&k1, k2);
749 * same as comp_keys only with two btrfs_key's
751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
753 if (k1->objectid > k2->objectid)
755 if (k1->objectid < k2->objectid)
757 if (k1->type > k2->type)
759 if (k1->type < k2->type)
761 if (k1->offset > k2->offset)
763 if (k1->offset < k2->offset)
769 * this is used by the defrag code to go through all the
770 * leaves pointed to by a node and reallocate them so that
771 * disk order is close to key order
773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774 struct btrfs_root *root, struct extent_buffer *parent,
775 int start_slot, u64 *last_ret,
776 struct btrfs_key *progress)
778 struct btrfs_fs_info *fs_info = root->fs_info;
779 struct extent_buffer *cur;
781 u64 search_start = *last_ret;
789 int progress_passed = 0;
790 struct btrfs_disk_key disk_key;
792 WARN_ON(trans->transaction != fs_info->running_transaction);
793 WARN_ON(trans->transid != fs_info->generation);
795 parent_nritems = btrfs_header_nritems(parent);
796 blocksize = fs_info->nodesize;
797 end_slot = parent_nritems - 1;
799 if (parent_nritems <= 1)
802 for (i = start_slot; i <= end_slot; i++) {
805 btrfs_node_key(parent, &disk_key, i);
806 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
810 blocknr = btrfs_node_blockptr(parent, i);
812 last_block = blocknr;
815 other = btrfs_node_blockptr(parent, i - 1);
816 close = close_blocks(blocknr, other, blocksize);
818 if (!close && i < end_slot) {
819 other = btrfs_node_blockptr(parent, i + 1);
820 close = close_blocks(blocknr, other, blocksize);
823 last_block = blocknr;
827 cur = btrfs_read_node_slot(parent, i);
830 if (search_start == 0)
831 search_start = last_block;
833 btrfs_tree_lock(cur);
834 err = __btrfs_cow_block(trans, root, cur, parent, i,
837 (end_slot - i) * blocksize),
840 btrfs_tree_unlock(cur);
841 free_extent_buffer(cur);
844 search_start = cur->start;
845 last_block = cur->start;
846 *last_ret = search_start;
847 btrfs_tree_unlock(cur);
848 free_extent_buffer(cur);
854 * Search for a key in the given extent_buffer.
856 * The lower boundary for the search is specified by the slot number @first_slot.
857 * Use a value of 0 to search over the whole extent buffer.
859 * The slot in the extent buffer is returned via @slot. If the key exists in the
860 * extent buffer, then @slot will point to the slot where the key is, otherwise
861 * it points to the slot where you would insert the key.
863 * Slot may point to the total number of items (i.e. one position beyond the last
864 * key) if the key is bigger than the last key in the extent buffer.
866 int btrfs_generic_bin_search(struct extent_buffer *eb, int first_slot,
867 const struct btrfs_key *key, int *slot)
872 * Use unsigned types for the low and high slots, so that we get a more
873 * efficient division in the search loop below.
875 u32 low = first_slot;
876 u32 high = btrfs_header_nritems(eb);
878 const int key_size = sizeof(struct btrfs_disk_key);
880 if (unlikely(low > high)) {
881 btrfs_err(eb->fs_info,
882 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
883 __func__, low, high, eb->start,
884 btrfs_header_owner(eb), btrfs_header_level(eb));
888 if (btrfs_header_level(eb) == 0) {
889 p = offsetof(struct btrfs_leaf, items);
890 item_size = sizeof(struct btrfs_item);
892 p = offsetof(struct btrfs_node, ptrs);
893 item_size = sizeof(struct btrfs_key_ptr);
898 unsigned long offset;
899 struct btrfs_disk_key *tmp;
900 struct btrfs_disk_key unaligned;
903 mid = (low + high) / 2;
904 offset = p + mid * item_size;
905 oip = offset_in_page(offset);
907 if (oip + key_size <= PAGE_SIZE) {
908 const unsigned long idx = get_eb_page_index(offset);
909 char *kaddr = page_address(eb->pages[idx]);
911 oip = get_eb_offset_in_page(eb, offset);
912 tmp = (struct btrfs_disk_key *)(kaddr + oip);
914 read_extent_buffer(eb, &unaligned, offset, key_size);
918 ret = comp_keys(tmp, key);
933 static void root_add_used(struct btrfs_root *root, u32 size)
935 spin_lock(&root->accounting_lock);
936 btrfs_set_root_used(&root->root_item,
937 btrfs_root_used(&root->root_item) + size);
938 spin_unlock(&root->accounting_lock);
941 static void root_sub_used(struct btrfs_root *root, u32 size)
943 spin_lock(&root->accounting_lock);
944 btrfs_set_root_used(&root->root_item,
945 btrfs_root_used(&root->root_item) - size);
946 spin_unlock(&root->accounting_lock);
949 /* given a node and slot number, this reads the blocks it points to. The
950 * extent buffer is returned with a reference taken (but unlocked).
952 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
955 int level = btrfs_header_level(parent);
956 struct btrfs_tree_parent_check check = { 0 };
957 struct extent_buffer *eb;
959 if (slot < 0 || slot >= btrfs_header_nritems(parent))
960 return ERR_PTR(-ENOENT);
964 check.level = level - 1;
965 check.transid = btrfs_node_ptr_generation(parent, slot);
966 check.owner_root = btrfs_header_owner(parent);
967 check.has_first_key = true;
968 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
970 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
974 if (!extent_buffer_uptodate(eb)) {
975 free_extent_buffer(eb);
976 return ERR_PTR(-EIO);
983 * node level balancing, used to make sure nodes are in proper order for
984 * item deletion. We balance from the top down, so we have to make sure
985 * that a deletion won't leave an node completely empty later on.
987 static noinline int balance_level(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path, int level)
991 struct btrfs_fs_info *fs_info = root->fs_info;
992 struct extent_buffer *right = NULL;
993 struct extent_buffer *mid;
994 struct extent_buffer *left = NULL;
995 struct extent_buffer *parent = NULL;
999 int orig_slot = path->slots[level];
1004 mid = path->nodes[level];
1006 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1007 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1009 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1011 if (level < BTRFS_MAX_LEVEL - 1) {
1012 parent = path->nodes[level + 1];
1013 pslot = path->slots[level + 1];
1017 * deal with the case where there is only one pointer in the root
1018 * by promoting the node below to a root
1021 struct extent_buffer *child;
1023 if (btrfs_header_nritems(mid) != 1)
1026 /* promote the child to a root */
1027 child = btrfs_read_node_slot(mid, 0);
1028 if (IS_ERR(child)) {
1029 ret = PTR_ERR(child);
1030 btrfs_handle_fs_error(fs_info, ret, NULL);
1034 btrfs_tree_lock(child);
1035 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1038 btrfs_tree_unlock(child);
1039 free_extent_buffer(child);
1043 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1045 rcu_assign_pointer(root->node, child);
1047 add_root_to_dirty_list(root);
1048 btrfs_tree_unlock(child);
1050 path->locks[level] = 0;
1051 path->nodes[level] = NULL;
1052 btrfs_clear_buffer_dirty(trans, mid);
1053 btrfs_tree_unlock(mid);
1054 /* once for the path */
1055 free_extent_buffer(mid);
1057 root_sub_used(root, mid->len);
1058 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1059 /* once for the root ptr */
1060 free_extent_buffer_stale(mid);
1063 if (btrfs_header_nritems(mid) >
1064 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1067 left = btrfs_read_node_slot(parent, pslot - 1);
1072 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1073 wret = btrfs_cow_block(trans, root, left,
1074 parent, pslot - 1, &left,
1075 BTRFS_NESTING_LEFT_COW);
1082 right = btrfs_read_node_slot(parent, pslot + 1);
1087 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1088 wret = btrfs_cow_block(trans, root, right,
1089 parent, pslot + 1, &right,
1090 BTRFS_NESTING_RIGHT_COW);
1097 /* first, try to make some room in the middle buffer */
1099 orig_slot += btrfs_header_nritems(left);
1100 wret = push_node_left(trans, left, mid, 1);
1106 * then try to empty the right most buffer into the middle
1109 wret = push_node_left(trans, mid, right, 1);
1110 if (wret < 0 && wret != -ENOSPC)
1112 if (btrfs_header_nritems(right) == 0) {
1113 btrfs_clear_buffer_dirty(trans, right);
1114 btrfs_tree_unlock(right);
1115 del_ptr(root, path, level + 1, pslot + 1);
1116 root_sub_used(root, right->len);
1117 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1119 free_extent_buffer_stale(right);
1122 struct btrfs_disk_key right_key;
1123 btrfs_node_key(right, &right_key, 0);
1124 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1125 BTRFS_MOD_LOG_KEY_REPLACE);
1127 btrfs_set_node_key(parent, &right_key, pslot + 1);
1128 btrfs_mark_buffer_dirty(parent);
1131 if (btrfs_header_nritems(mid) == 1) {
1133 * we're not allowed to leave a node with one item in the
1134 * tree during a delete. A deletion from lower in the tree
1135 * could try to delete the only pointer in this node.
1136 * So, pull some keys from the left.
1137 * There has to be a left pointer at this point because
1138 * otherwise we would have pulled some pointers from the
1143 btrfs_handle_fs_error(fs_info, ret, NULL);
1146 wret = balance_node_right(trans, mid, left);
1152 wret = push_node_left(trans, left, mid, 1);
1158 if (btrfs_header_nritems(mid) == 0) {
1159 btrfs_clear_buffer_dirty(trans, mid);
1160 btrfs_tree_unlock(mid);
1161 del_ptr(root, path, level + 1, pslot);
1162 root_sub_used(root, mid->len);
1163 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1164 free_extent_buffer_stale(mid);
1167 /* update the parent key to reflect our changes */
1168 struct btrfs_disk_key mid_key;
1169 btrfs_node_key(mid, &mid_key, 0);
1170 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1171 BTRFS_MOD_LOG_KEY_REPLACE);
1173 btrfs_set_node_key(parent, &mid_key, pslot);
1174 btrfs_mark_buffer_dirty(parent);
1177 /* update the path */
1179 if (btrfs_header_nritems(left) > orig_slot) {
1180 atomic_inc(&left->refs);
1181 /* left was locked after cow */
1182 path->nodes[level] = left;
1183 path->slots[level + 1] -= 1;
1184 path->slots[level] = orig_slot;
1186 btrfs_tree_unlock(mid);
1187 free_extent_buffer(mid);
1190 orig_slot -= btrfs_header_nritems(left);
1191 path->slots[level] = orig_slot;
1194 /* double check we haven't messed things up */
1196 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1200 btrfs_tree_unlock(right);
1201 free_extent_buffer(right);
1204 if (path->nodes[level] != left)
1205 btrfs_tree_unlock(left);
1206 free_extent_buffer(left);
1211 /* Node balancing for insertion. Here we only split or push nodes around
1212 * when they are completely full. This is also done top down, so we
1213 * have to be pessimistic.
1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path, int level)
1219 struct btrfs_fs_info *fs_info = root->fs_info;
1220 struct extent_buffer *right = NULL;
1221 struct extent_buffer *mid;
1222 struct extent_buffer *left = NULL;
1223 struct extent_buffer *parent = NULL;
1227 int orig_slot = path->slots[level];
1232 mid = path->nodes[level];
1233 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1235 if (level < BTRFS_MAX_LEVEL - 1) {
1236 parent = path->nodes[level + 1];
1237 pslot = path->slots[level + 1];
1243 left = btrfs_read_node_slot(parent, pslot - 1);
1247 /* first, try to make some room in the middle buffer */
1251 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1253 left_nr = btrfs_header_nritems(left);
1254 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1257 ret = btrfs_cow_block(trans, root, left, parent,
1259 BTRFS_NESTING_LEFT_COW);
1263 wret = push_node_left(trans, left, mid, 0);
1269 struct btrfs_disk_key disk_key;
1270 orig_slot += left_nr;
1271 btrfs_node_key(mid, &disk_key, 0);
1272 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1273 BTRFS_MOD_LOG_KEY_REPLACE);
1275 btrfs_set_node_key(parent, &disk_key, pslot);
1276 btrfs_mark_buffer_dirty(parent);
1277 if (btrfs_header_nritems(left) > orig_slot) {
1278 path->nodes[level] = left;
1279 path->slots[level + 1] -= 1;
1280 path->slots[level] = orig_slot;
1281 btrfs_tree_unlock(mid);
1282 free_extent_buffer(mid);
1285 btrfs_header_nritems(left);
1286 path->slots[level] = orig_slot;
1287 btrfs_tree_unlock(left);
1288 free_extent_buffer(left);
1292 btrfs_tree_unlock(left);
1293 free_extent_buffer(left);
1295 right = btrfs_read_node_slot(parent, pslot + 1);
1300 * then try to empty the right most buffer into the middle
1305 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1307 right_nr = btrfs_header_nritems(right);
1308 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1311 ret = btrfs_cow_block(trans, root, right,
1313 &right, BTRFS_NESTING_RIGHT_COW);
1317 wret = balance_node_right(trans, right, mid);
1323 struct btrfs_disk_key disk_key;
1325 btrfs_node_key(right, &disk_key, 0);
1326 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1327 BTRFS_MOD_LOG_KEY_REPLACE);
1329 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1330 btrfs_mark_buffer_dirty(parent);
1332 if (btrfs_header_nritems(mid) <= orig_slot) {
1333 path->nodes[level] = right;
1334 path->slots[level + 1] += 1;
1335 path->slots[level] = orig_slot -
1336 btrfs_header_nritems(mid);
1337 btrfs_tree_unlock(mid);
1338 free_extent_buffer(mid);
1340 btrfs_tree_unlock(right);
1341 free_extent_buffer(right);
1345 btrfs_tree_unlock(right);
1346 free_extent_buffer(right);
1352 * readahead one full node of leaves, finding things that are close
1353 * to the block in 'slot', and triggering ra on them.
1355 static void reada_for_search(struct btrfs_fs_info *fs_info,
1356 struct btrfs_path *path,
1357 int level, int slot, u64 objectid)
1359 struct extent_buffer *node;
1360 struct btrfs_disk_key disk_key;
1370 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1373 if (!path->nodes[level])
1376 node = path->nodes[level];
1379 * Since the time between visiting leaves is much shorter than the time
1380 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1381 * much IO at once (possibly random).
1383 if (path->reada == READA_FORWARD_ALWAYS) {
1385 nread_max = node->fs_info->nodesize;
1387 nread_max = SZ_128K;
1392 search = btrfs_node_blockptr(node, slot);
1393 blocksize = fs_info->nodesize;
1394 if (path->reada != READA_FORWARD_ALWAYS) {
1395 struct extent_buffer *eb;
1397 eb = find_extent_buffer(fs_info, search);
1399 free_extent_buffer(eb);
1406 nritems = btrfs_header_nritems(node);
1410 if (path->reada == READA_BACK) {
1414 } else if (path->reada == READA_FORWARD ||
1415 path->reada == READA_FORWARD_ALWAYS) {
1420 if (path->reada == READA_BACK && objectid) {
1421 btrfs_node_key(node, &disk_key, nr);
1422 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1425 search = btrfs_node_blockptr(node, nr);
1426 if (path->reada == READA_FORWARD_ALWAYS ||
1427 (search <= target && target - search <= 65536) ||
1428 (search > target && search - target <= 65536)) {
1429 btrfs_readahead_node_child(node, nr);
1433 if (nread > nread_max || nscan > 32)
1438 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1440 struct extent_buffer *parent;
1444 parent = path->nodes[level + 1];
1448 nritems = btrfs_header_nritems(parent);
1449 slot = path->slots[level + 1];
1452 btrfs_readahead_node_child(parent, slot - 1);
1453 if (slot + 1 < nritems)
1454 btrfs_readahead_node_child(parent, slot + 1);
1459 * when we walk down the tree, it is usually safe to unlock the higher layers
1460 * in the tree. The exceptions are when our path goes through slot 0, because
1461 * operations on the tree might require changing key pointers higher up in the
1464 * callers might also have set path->keep_locks, which tells this code to keep
1465 * the lock if the path points to the last slot in the block. This is part of
1466 * walking through the tree, and selecting the next slot in the higher block.
1468 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1469 * if lowest_unlock is 1, level 0 won't be unlocked
1471 static noinline void unlock_up(struct btrfs_path *path, int level,
1472 int lowest_unlock, int min_write_lock_level,
1473 int *write_lock_level)
1476 int skip_level = level;
1477 bool check_skip = true;
1479 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1480 if (!path->nodes[i])
1482 if (!path->locks[i])
1486 if (path->slots[i] == 0) {
1491 if (path->keep_locks) {
1494 nritems = btrfs_header_nritems(path->nodes[i]);
1495 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1502 if (i >= lowest_unlock && i > skip_level) {
1504 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1506 if (write_lock_level &&
1507 i > min_write_lock_level &&
1508 i <= *write_lock_level) {
1509 *write_lock_level = i - 1;
1516 * Helper function for btrfs_search_slot() and other functions that do a search
1517 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1518 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1519 * its pages from disk.
1521 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1522 * whole btree search, starting again from the current root node.
1525 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1526 struct extent_buffer **eb_ret, int level, int slot,
1527 const struct btrfs_key *key)
1529 struct btrfs_fs_info *fs_info = root->fs_info;
1530 struct btrfs_tree_parent_check check = { 0 };
1533 struct extent_buffer *tmp;
1538 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1539 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1540 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1541 parent_level = btrfs_header_level(*eb_ret);
1542 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1543 check.has_first_key = true;
1544 check.level = parent_level - 1;
1545 check.transid = gen;
1546 check.owner_root = root->root_key.objectid;
1549 * If we need to read an extent buffer from disk and we are holding locks
1550 * on upper level nodes, we unlock all the upper nodes before reading the
1551 * extent buffer, and then return -EAGAIN to the caller as it needs to
1552 * restart the search. We don't release the lock on the current level
1553 * because we need to walk this node to figure out which blocks to read.
1555 tmp = find_extent_buffer(fs_info, blocknr);
1557 if (p->reada == READA_FORWARD_ALWAYS)
1558 reada_for_search(fs_info, p, level, slot, key->objectid);
1560 /* first we do an atomic uptodate check */
1561 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1563 * Do extra check for first_key, eb can be stale due to
1564 * being cached, read from scrub, or have multiple
1565 * parents (shared tree blocks).
1567 if (btrfs_verify_level_key(tmp,
1568 parent_level - 1, &check.first_key, gen)) {
1569 free_extent_buffer(tmp);
1577 free_extent_buffer(tmp);
1582 btrfs_unlock_up_safe(p, level + 1);
1584 /* now we're allowed to do a blocking uptodate check */
1585 ret = btrfs_read_extent_buffer(tmp, &check);
1587 free_extent_buffer(tmp);
1588 btrfs_release_path(p);
1591 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1592 free_extent_buffer(tmp);
1593 btrfs_release_path(p);
1601 } else if (p->nowait) {
1606 btrfs_unlock_up_safe(p, level + 1);
1612 if (p->reada != READA_NONE)
1613 reada_for_search(fs_info, p, level, slot, key->objectid);
1615 tmp = read_tree_block(fs_info, blocknr, &check);
1617 btrfs_release_path(p);
1618 return PTR_ERR(tmp);
1621 * If the read above didn't mark this buffer up to date,
1622 * it will never end up being up to date. Set ret to EIO now
1623 * and give up so that our caller doesn't loop forever
1626 if (!extent_buffer_uptodate(tmp))
1633 free_extent_buffer(tmp);
1634 btrfs_release_path(p);
1641 * helper function for btrfs_search_slot. This does all of the checks
1642 * for node-level blocks and does any balancing required based on
1645 * If no extra work was required, zero is returned. If we had to
1646 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1650 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1651 struct btrfs_root *root, struct btrfs_path *p,
1652 struct extent_buffer *b, int level, int ins_len,
1653 int *write_lock_level)
1655 struct btrfs_fs_info *fs_info = root->fs_info;
1658 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1659 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1661 if (*write_lock_level < level + 1) {
1662 *write_lock_level = level + 1;
1663 btrfs_release_path(p);
1667 reada_for_balance(p, level);
1668 ret = split_node(trans, root, p, level);
1670 b = p->nodes[level];
1671 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1672 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1674 if (*write_lock_level < level + 1) {
1675 *write_lock_level = level + 1;
1676 btrfs_release_path(p);
1680 reada_for_balance(p, level);
1681 ret = balance_level(trans, root, p, level);
1685 b = p->nodes[level];
1687 btrfs_release_path(p);
1690 BUG_ON(btrfs_header_nritems(b) == 1);
1695 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1696 u64 iobjectid, u64 ioff, u8 key_type,
1697 struct btrfs_key *found_key)
1700 struct btrfs_key key;
1701 struct extent_buffer *eb;
1706 key.type = key_type;
1707 key.objectid = iobjectid;
1710 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1714 eb = path->nodes[0];
1715 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1716 ret = btrfs_next_leaf(fs_root, path);
1719 eb = path->nodes[0];
1722 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1723 if (found_key->type != key.type ||
1724 found_key->objectid != key.objectid)
1730 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1731 struct btrfs_path *p,
1732 int write_lock_level)
1734 struct extent_buffer *b;
1738 if (p->search_commit_root) {
1739 b = root->commit_root;
1740 atomic_inc(&b->refs);
1741 level = btrfs_header_level(b);
1743 * Ensure that all callers have set skip_locking when
1744 * p->search_commit_root = 1.
1746 ASSERT(p->skip_locking == 1);
1751 if (p->skip_locking) {
1752 b = btrfs_root_node(root);
1753 level = btrfs_header_level(b);
1757 /* We try very hard to do read locks on the root */
1758 root_lock = BTRFS_READ_LOCK;
1761 * If the level is set to maximum, we can skip trying to get the read
1764 if (write_lock_level < BTRFS_MAX_LEVEL) {
1766 * We don't know the level of the root node until we actually
1767 * have it read locked
1770 b = btrfs_try_read_lock_root_node(root);
1774 b = btrfs_read_lock_root_node(root);
1776 level = btrfs_header_level(b);
1777 if (level > write_lock_level)
1780 /* Whoops, must trade for write lock */
1781 btrfs_tree_read_unlock(b);
1782 free_extent_buffer(b);
1785 b = btrfs_lock_root_node(root);
1786 root_lock = BTRFS_WRITE_LOCK;
1788 /* The level might have changed, check again */
1789 level = btrfs_header_level(b);
1793 * The root may have failed to write out at some point, and thus is no
1794 * longer valid, return an error in this case.
1796 if (!extent_buffer_uptodate(b)) {
1798 btrfs_tree_unlock_rw(b, root_lock);
1799 free_extent_buffer(b);
1800 return ERR_PTR(-EIO);
1803 p->nodes[level] = b;
1804 if (!p->skip_locking)
1805 p->locks[level] = root_lock;
1807 * Callers are responsible for dropping b's references.
1813 * Replace the extent buffer at the lowest level of the path with a cloned
1814 * version. The purpose is to be able to use it safely, after releasing the
1815 * commit root semaphore, even if relocation is happening in parallel, the
1816 * transaction used for relocation is committed and the extent buffer is
1817 * reallocated in the next transaction.
1819 * This is used in a context where the caller does not prevent transaction
1820 * commits from happening, either by holding a transaction handle or holding
1821 * some lock, while it's doing searches through a commit root.
1822 * At the moment it's only used for send operations.
1824 static int finish_need_commit_sem_search(struct btrfs_path *path)
1826 const int i = path->lowest_level;
1827 const int slot = path->slots[i];
1828 struct extent_buffer *lowest = path->nodes[i];
1829 struct extent_buffer *clone;
1831 ASSERT(path->need_commit_sem);
1836 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1838 clone = btrfs_clone_extent_buffer(lowest);
1842 btrfs_release_path(path);
1843 path->nodes[i] = clone;
1844 path->slots[i] = slot;
1849 static inline int search_for_key_slot(struct extent_buffer *eb,
1850 int search_low_slot,
1851 const struct btrfs_key *key,
1856 * If a previous call to btrfs_bin_search() on a parent node returned an
1857 * exact match (prev_cmp == 0), we can safely assume the target key will
1858 * always be at slot 0 on lower levels, since each key pointer
1859 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1860 * subtree it points to. Thus we can skip searching lower levels.
1862 if (prev_cmp == 0) {
1867 return btrfs_generic_bin_search(eb, search_low_slot, key, slot);
1870 static int search_leaf(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 const struct btrfs_key *key,
1873 struct btrfs_path *path,
1877 struct extent_buffer *leaf = path->nodes[0];
1878 int leaf_free_space = -1;
1879 int search_low_slot = 0;
1881 bool do_bin_search = true;
1884 * If we are doing an insertion, the leaf has enough free space and the
1885 * destination slot for the key is not slot 0, then we can unlock our
1886 * write lock on the parent, and any other upper nodes, before doing the
1887 * binary search on the leaf (with search_for_key_slot()), allowing other
1888 * tasks to lock the parent and any other upper nodes.
1892 * Cache the leaf free space, since we will need it later and it
1893 * will not change until then.
1895 leaf_free_space = btrfs_leaf_free_space(leaf);
1898 * !path->locks[1] means we have a single node tree, the leaf is
1899 * the root of the tree.
1901 if (path->locks[1] && leaf_free_space >= ins_len) {
1902 struct btrfs_disk_key first_key;
1904 ASSERT(btrfs_header_nritems(leaf) > 0);
1905 btrfs_item_key(leaf, &first_key, 0);
1908 * Doing the extra comparison with the first key is cheap,
1909 * taking into account that the first key is very likely
1910 * already in a cache line because it immediately follows
1911 * the extent buffer's header and we have recently accessed
1912 * the header's level field.
1914 ret = comp_keys(&first_key, key);
1917 * The first key is smaller than the key we want
1918 * to insert, so we are safe to unlock all upper
1919 * nodes and we have to do the binary search.
1921 * We do use btrfs_unlock_up_safe() and not
1922 * unlock_up() because the later does not unlock
1923 * nodes with a slot of 0 - we can safely unlock
1924 * any node even if its slot is 0 since in this
1925 * case the key does not end up at slot 0 of the
1926 * leaf and there's no need to split the leaf.
1928 btrfs_unlock_up_safe(path, 1);
1929 search_low_slot = 1;
1932 * The first key is >= then the key we want to
1933 * insert, so we can skip the binary search as
1934 * the target key will be at slot 0.
1936 * We can not unlock upper nodes when the key is
1937 * less than the first key, because we will need
1938 * to update the key at slot 0 of the parent node
1939 * and possibly of other upper nodes too.
1940 * If the key matches the first key, then we can
1941 * unlock all the upper nodes, using
1942 * btrfs_unlock_up_safe() instead of unlock_up()
1946 btrfs_unlock_up_safe(path, 1);
1948 * ret is already 0 or 1, matching the result of
1949 * a btrfs_bin_search() call, so there is no need
1952 do_bin_search = false;
1958 if (do_bin_search) {
1959 ret = search_for_key_slot(leaf, search_low_slot, key,
1960 prev_cmp, &path->slots[0]);
1967 * Item key already exists. In this case, if we are allowed to
1968 * insert the item (for example, in dir_item case, item key
1969 * collision is allowed), it will be merged with the original
1970 * item. Only the item size grows, no new btrfs item will be
1971 * added. If search_for_extension is not set, ins_len already
1972 * accounts the size btrfs_item, deduct it here so leaf space
1973 * check will be correct.
1975 if (ret == 0 && !path->search_for_extension) {
1976 ASSERT(ins_len >= sizeof(struct btrfs_item));
1977 ins_len -= sizeof(struct btrfs_item);
1980 ASSERT(leaf_free_space >= 0);
1982 if (leaf_free_space < ins_len) {
1985 err = split_leaf(trans, root, key, path, ins_len,
1988 if (WARN_ON(err > 0))
1999 * btrfs_search_slot - look for a key in a tree and perform necessary
2000 * modifications to preserve tree invariants.
2002 * @trans: Handle of transaction, used when modifying the tree
2003 * @p: Holds all btree nodes along the search path
2004 * @root: The root node of the tree
2005 * @key: The key we are looking for
2006 * @ins_len: Indicates purpose of search:
2007 * >0 for inserts it's size of item inserted (*)
2009 * 0 for plain searches, not modifying the tree
2011 * (*) If size of item inserted doesn't include
2012 * sizeof(struct btrfs_item), then p->search_for_extension must
2014 * @cow: boolean should CoW operations be performed. Must always be 1
2015 * when modifying the tree.
2017 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2018 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2020 * If @key is found, 0 is returned and you can find the item in the leaf level
2021 * of the path (level 0)
2023 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2024 * points to the slot where it should be inserted
2026 * If an error is encountered while searching the tree a negative error number
2029 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2030 const struct btrfs_key *key, struct btrfs_path *p,
2031 int ins_len, int cow)
2033 struct btrfs_fs_info *fs_info = root->fs_info;
2034 struct extent_buffer *b;
2039 int lowest_unlock = 1;
2040 /* everything at write_lock_level or lower must be write locked */
2041 int write_lock_level = 0;
2042 u8 lowest_level = 0;
2043 int min_write_lock_level;
2048 lowest_level = p->lowest_level;
2049 WARN_ON(lowest_level && ins_len > 0);
2050 WARN_ON(p->nodes[0] != NULL);
2051 BUG_ON(!cow && ins_len);
2054 * For now only allow nowait for read only operations. There's no
2055 * strict reason why we can't, we just only need it for reads so it's
2056 * only implemented for reads.
2058 ASSERT(!p->nowait || !cow);
2063 /* when we are removing items, we might have to go up to level
2064 * two as we update tree pointers Make sure we keep write
2065 * for those levels as well
2067 write_lock_level = 2;
2068 } else if (ins_len > 0) {
2070 * for inserting items, make sure we have a write lock on
2071 * level 1 so we can update keys
2073 write_lock_level = 1;
2077 write_lock_level = -1;
2079 if (cow && (p->keep_locks || p->lowest_level))
2080 write_lock_level = BTRFS_MAX_LEVEL;
2082 min_write_lock_level = write_lock_level;
2084 if (p->need_commit_sem) {
2085 ASSERT(p->search_commit_root);
2087 if (!down_read_trylock(&fs_info->commit_root_sem))
2090 down_read(&fs_info->commit_root_sem);
2096 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2105 level = btrfs_header_level(b);
2108 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2111 * if we don't really need to cow this block
2112 * then we don't want to set the path blocking,
2113 * so we test it here
2115 if (!should_cow_block(trans, root, b))
2119 * must have write locks on this node and the
2122 if (level > write_lock_level ||
2123 (level + 1 > write_lock_level &&
2124 level + 1 < BTRFS_MAX_LEVEL &&
2125 p->nodes[level + 1])) {
2126 write_lock_level = level + 1;
2127 btrfs_release_path(p);
2132 err = btrfs_cow_block(trans, root, b, NULL, 0,
2136 err = btrfs_cow_block(trans, root, b,
2137 p->nodes[level + 1],
2138 p->slots[level + 1], &b,
2146 p->nodes[level] = b;
2149 * we have a lock on b and as long as we aren't changing
2150 * the tree, there is no way to for the items in b to change.
2151 * It is safe to drop the lock on our parent before we
2152 * go through the expensive btree search on b.
2154 * If we're inserting or deleting (ins_len != 0), then we might
2155 * be changing slot zero, which may require changing the parent.
2156 * So, we can't drop the lock until after we know which slot
2157 * we're operating on.
2159 if (!ins_len && !p->keep_locks) {
2162 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2163 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2170 ASSERT(write_lock_level >= 1);
2172 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2173 if (!p->search_for_split)
2174 unlock_up(p, level, lowest_unlock,
2175 min_write_lock_level, NULL);
2179 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2184 if (ret && slot > 0) {
2188 p->slots[level] = slot;
2189 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2197 b = p->nodes[level];
2198 slot = p->slots[level];
2201 * Slot 0 is special, if we change the key we have to update
2202 * the parent pointer which means we must have a write lock on
2205 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2206 write_lock_level = level + 1;
2207 btrfs_release_path(p);
2211 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2214 if (level == lowest_level) {
2220 err = read_block_for_search(root, p, &b, level, slot, key);
2228 if (!p->skip_locking) {
2229 level = btrfs_header_level(b);
2231 btrfs_maybe_reset_lockdep_class(root, b);
2233 if (level <= write_lock_level) {
2235 p->locks[level] = BTRFS_WRITE_LOCK;
2238 if (!btrfs_try_tree_read_lock(b)) {
2239 free_extent_buffer(b);
2244 btrfs_tree_read_lock(b);
2246 p->locks[level] = BTRFS_READ_LOCK;
2248 p->nodes[level] = b;
2253 if (ret < 0 && !p->skip_release_on_error)
2254 btrfs_release_path(p);
2256 if (p->need_commit_sem) {
2259 ret2 = finish_need_commit_sem_search(p);
2260 up_read(&fs_info->commit_root_sem);
2267 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2270 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2271 * current state of the tree together with the operations recorded in the tree
2272 * modification log to search for the key in a previous version of this tree, as
2273 * denoted by the time_seq parameter.
2275 * Naturally, there is no support for insert, delete or cow operations.
2277 * The resulting path and return value will be set up as if we called
2278 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2280 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2281 struct btrfs_path *p, u64 time_seq)
2283 struct btrfs_fs_info *fs_info = root->fs_info;
2284 struct extent_buffer *b;
2289 int lowest_unlock = 1;
2290 u8 lowest_level = 0;
2292 lowest_level = p->lowest_level;
2293 WARN_ON(p->nodes[0] != NULL);
2296 if (p->search_commit_root) {
2298 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2302 b = btrfs_get_old_root(root, time_seq);
2307 level = btrfs_header_level(b);
2308 p->locks[level] = BTRFS_READ_LOCK;
2313 level = btrfs_header_level(b);
2314 p->nodes[level] = b;
2317 * we have a lock on b and as long as we aren't changing
2318 * the tree, there is no way to for the items in b to change.
2319 * It is safe to drop the lock on our parent before we
2320 * go through the expensive btree search on b.
2322 btrfs_unlock_up_safe(p, level + 1);
2324 ret = btrfs_bin_search(b, key, &slot);
2329 p->slots[level] = slot;
2330 unlock_up(p, level, lowest_unlock, 0, NULL);
2334 if (ret && slot > 0) {
2338 p->slots[level] = slot;
2339 unlock_up(p, level, lowest_unlock, 0, NULL);
2341 if (level == lowest_level) {
2347 err = read_block_for_search(root, p, &b, level, slot, key);
2355 level = btrfs_header_level(b);
2356 btrfs_tree_read_lock(b);
2357 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2362 p->locks[level] = BTRFS_READ_LOCK;
2363 p->nodes[level] = b;
2368 btrfs_release_path(p);
2374 * helper to use instead of search slot if no exact match is needed but
2375 * instead the next or previous item should be returned.
2376 * When find_higher is true, the next higher item is returned, the next lower
2378 * When return_any and find_higher are both true, and no higher item is found,
2379 * return the next lower instead.
2380 * When return_any is true and find_higher is false, and no lower item is found,
2381 * return the next higher instead.
2382 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2385 int btrfs_search_slot_for_read(struct btrfs_root *root,
2386 const struct btrfs_key *key,
2387 struct btrfs_path *p, int find_higher,
2391 struct extent_buffer *leaf;
2394 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2398 * a return value of 1 means the path is at the position where the
2399 * item should be inserted. Normally this is the next bigger item,
2400 * but in case the previous item is the last in a leaf, path points
2401 * to the first free slot in the previous leaf, i.e. at an invalid
2407 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2408 ret = btrfs_next_leaf(root, p);
2414 * no higher item found, return the next
2419 btrfs_release_path(p);
2423 if (p->slots[0] == 0) {
2424 ret = btrfs_prev_leaf(root, p);
2429 if (p->slots[0] == btrfs_header_nritems(leaf))
2436 * no lower item found, return the next
2441 btrfs_release_path(p);
2451 * Execute search and call btrfs_previous_item to traverse backwards if the item
2454 * Return 0 if found, 1 if not found and < 0 if error.
2456 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2457 struct btrfs_path *path)
2461 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2463 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2466 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472 * Search for a valid slot for the given path.
2474 * @root: The root node of the tree.
2475 * @key: Will contain a valid item if found.
2476 * @path: The starting point to validate the slot.
2478 * Return: 0 if the item is valid
2482 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2483 struct btrfs_path *path)
2487 const int slot = path->slots[0];
2488 const struct extent_buffer *leaf = path->nodes[0];
2490 /* This is where we start walking the path. */
2491 if (slot >= btrfs_header_nritems(leaf)) {
2493 * If we've reached the last slot in this leaf we need
2494 * to go to the next leaf and reset the path.
2496 ret = btrfs_next_leaf(root, path);
2501 /* Store the found, valid item in @key. */
2502 btrfs_item_key_to_cpu(leaf, key, slot);
2509 * adjust the pointers going up the tree, starting at level
2510 * making sure the right key of each node is points to 'key'.
2511 * This is used after shifting pointers to the left, so it stops
2512 * fixing up pointers when a given leaf/node is not in slot 0 of the
2516 static void fixup_low_keys(struct btrfs_path *path,
2517 struct btrfs_disk_key *key, int level)
2520 struct extent_buffer *t;
2523 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2524 int tslot = path->slots[i];
2526 if (!path->nodes[i])
2529 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2530 BTRFS_MOD_LOG_KEY_REPLACE);
2532 btrfs_set_node_key(t, key, tslot);
2533 btrfs_mark_buffer_dirty(path->nodes[i]);
2542 * This function isn't completely safe. It's the caller's responsibility
2543 * that the new key won't break the order
2545 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2546 struct btrfs_path *path,
2547 const struct btrfs_key *new_key)
2549 struct btrfs_disk_key disk_key;
2550 struct extent_buffer *eb;
2553 eb = path->nodes[0];
2554 slot = path->slots[0];
2556 btrfs_item_key(eb, &disk_key, slot - 1);
2557 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2559 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2560 slot, btrfs_disk_key_objectid(&disk_key),
2561 btrfs_disk_key_type(&disk_key),
2562 btrfs_disk_key_offset(&disk_key),
2563 new_key->objectid, new_key->type,
2565 btrfs_print_leaf(eb);
2569 if (slot < btrfs_header_nritems(eb) - 1) {
2570 btrfs_item_key(eb, &disk_key, slot + 1);
2571 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2573 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2574 slot, btrfs_disk_key_objectid(&disk_key),
2575 btrfs_disk_key_type(&disk_key),
2576 btrfs_disk_key_offset(&disk_key),
2577 new_key->objectid, new_key->type,
2579 btrfs_print_leaf(eb);
2584 btrfs_cpu_key_to_disk(&disk_key, new_key);
2585 btrfs_set_item_key(eb, &disk_key, slot);
2586 btrfs_mark_buffer_dirty(eb);
2588 fixup_low_keys(path, &disk_key, 1);
2592 * Check key order of two sibling extent buffers.
2594 * Return true if something is wrong.
2595 * Return false if everything is fine.
2597 * Tree-checker only works inside one tree block, thus the following
2598 * corruption can not be detected by tree-checker:
2600 * Leaf @left | Leaf @right
2601 * --------------------------------------------------------------
2602 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2604 * Key f6 in leaf @left itself is valid, but not valid when the next
2605 * key in leaf @right is 7.
2606 * This can only be checked at tree block merge time.
2607 * And since tree checker has ensured all key order in each tree block
2608 * is correct, we only need to bother the last key of @left and the first
2611 static bool check_sibling_keys(struct extent_buffer *left,
2612 struct extent_buffer *right)
2614 struct btrfs_key left_last;
2615 struct btrfs_key right_first;
2616 int level = btrfs_header_level(left);
2617 int nr_left = btrfs_header_nritems(left);
2618 int nr_right = btrfs_header_nritems(right);
2620 /* No key to check in one of the tree blocks */
2621 if (!nr_left || !nr_right)
2625 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2626 btrfs_node_key_to_cpu(right, &right_first, 0);
2628 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2629 btrfs_item_key_to_cpu(right, &right_first, 0);
2632 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2633 btrfs_crit(left->fs_info,
2634 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2635 left_last.objectid, left_last.type,
2636 left_last.offset, right_first.objectid,
2637 right_first.type, right_first.offset);
2644 * try to push data from one node into the next node left in the
2647 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2648 * error, and > 0 if there was no room in the left hand block.
2650 static int push_node_left(struct btrfs_trans_handle *trans,
2651 struct extent_buffer *dst,
2652 struct extent_buffer *src, int empty)
2654 struct btrfs_fs_info *fs_info = trans->fs_info;
2660 src_nritems = btrfs_header_nritems(src);
2661 dst_nritems = btrfs_header_nritems(dst);
2662 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2663 WARN_ON(btrfs_header_generation(src) != trans->transid);
2664 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2666 if (!empty && src_nritems <= 8)
2669 if (push_items <= 0)
2673 push_items = min(src_nritems, push_items);
2674 if (push_items < src_nritems) {
2675 /* leave at least 8 pointers in the node if
2676 * we aren't going to empty it
2678 if (src_nritems - push_items < 8) {
2679 if (push_items <= 8)
2685 push_items = min(src_nritems - 8, push_items);
2687 /* dst is the left eb, src is the middle eb */
2688 if (check_sibling_keys(dst, src)) {
2690 btrfs_abort_transaction(trans, ret);
2693 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2695 btrfs_abort_transaction(trans, ret);
2698 copy_extent_buffer(dst, src,
2699 btrfs_node_key_ptr_offset(dst, dst_nritems),
2700 btrfs_node_key_ptr_offset(src, 0),
2701 push_items * sizeof(struct btrfs_key_ptr));
2703 if (push_items < src_nritems) {
2705 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2706 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2708 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2709 btrfs_node_key_ptr_offset(src, push_items),
2710 (src_nritems - push_items) *
2711 sizeof(struct btrfs_key_ptr));
2713 btrfs_set_header_nritems(src, src_nritems - push_items);
2714 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2715 btrfs_mark_buffer_dirty(src);
2716 btrfs_mark_buffer_dirty(dst);
2722 * try to push data from one node into the next node right in the
2725 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2726 * error, and > 0 if there was no room in the right hand block.
2728 * this will only push up to 1/2 the contents of the left node over
2730 static int balance_node_right(struct btrfs_trans_handle *trans,
2731 struct extent_buffer *dst,
2732 struct extent_buffer *src)
2734 struct btrfs_fs_info *fs_info = trans->fs_info;
2741 WARN_ON(btrfs_header_generation(src) != trans->transid);
2742 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2744 src_nritems = btrfs_header_nritems(src);
2745 dst_nritems = btrfs_header_nritems(dst);
2746 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2747 if (push_items <= 0)
2750 if (src_nritems < 4)
2753 max_push = src_nritems / 2 + 1;
2754 /* don't try to empty the node */
2755 if (max_push >= src_nritems)
2758 if (max_push < push_items)
2759 push_items = max_push;
2761 /* dst is the right eb, src is the middle eb */
2762 if (check_sibling_keys(src, dst)) {
2764 btrfs_abort_transaction(trans, ret);
2767 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2769 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2770 btrfs_node_key_ptr_offset(dst, 0),
2772 sizeof(struct btrfs_key_ptr));
2774 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2777 btrfs_abort_transaction(trans, ret);
2780 copy_extent_buffer(dst, src,
2781 btrfs_node_key_ptr_offset(dst, 0),
2782 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2783 push_items * sizeof(struct btrfs_key_ptr));
2785 btrfs_set_header_nritems(src, src_nritems - push_items);
2786 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2788 btrfs_mark_buffer_dirty(src);
2789 btrfs_mark_buffer_dirty(dst);
2795 * helper function to insert a new root level in the tree.
2796 * A new node is allocated, and a single item is inserted to
2797 * point to the existing root
2799 * returns zero on success or < 0 on failure.
2801 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *root,
2803 struct btrfs_path *path, int level)
2805 struct btrfs_fs_info *fs_info = root->fs_info;
2807 struct extent_buffer *lower;
2808 struct extent_buffer *c;
2809 struct extent_buffer *old;
2810 struct btrfs_disk_key lower_key;
2813 BUG_ON(path->nodes[level]);
2814 BUG_ON(path->nodes[level-1] != root->node);
2816 lower = path->nodes[level-1];
2818 btrfs_item_key(lower, &lower_key, 0);
2820 btrfs_node_key(lower, &lower_key, 0);
2822 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2823 &lower_key, level, root->node->start, 0,
2824 BTRFS_NESTING_NEW_ROOT);
2828 root_add_used(root, fs_info->nodesize);
2830 btrfs_set_header_nritems(c, 1);
2831 btrfs_set_node_key(c, &lower_key, 0);
2832 btrfs_set_node_blockptr(c, 0, lower->start);
2833 lower_gen = btrfs_header_generation(lower);
2834 WARN_ON(lower_gen != trans->transid);
2836 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2838 btrfs_mark_buffer_dirty(c);
2841 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2843 rcu_assign_pointer(root->node, c);
2845 /* the super has an extra ref to root->node */
2846 free_extent_buffer(old);
2848 add_root_to_dirty_list(root);
2849 atomic_inc(&c->refs);
2850 path->nodes[level] = c;
2851 path->locks[level] = BTRFS_WRITE_LOCK;
2852 path->slots[level] = 0;
2857 * worker function to insert a single pointer in a node.
2858 * the node should have enough room for the pointer already
2860 * slot and level indicate where you want the key to go, and
2861 * blocknr is the block the key points to.
2863 static void insert_ptr(struct btrfs_trans_handle *trans,
2864 struct btrfs_path *path,
2865 struct btrfs_disk_key *key, u64 bytenr,
2866 int slot, int level)
2868 struct extent_buffer *lower;
2872 BUG_ON(!path->nodes[level]);
2873 btrfs_assert_tree_write_locked(path->nodes[level]);
2874 lower = path->nodes[level];
2875 nritems = btrfs_header_nritems(lower);
2876 BUG_ON(slot > nritems);
2877 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2878 if (slot != nritems) {
2880 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2881 slot, nritems - slot);
2884 memmove_extent_buffer(lower,
2885 btrfs_node_key_ptr_offset(lower, slot + 1),
2886 btrfs_node_key_ptr_offset(lower, slot),
2887 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2890 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2891 BTRFS_MOD_LOG_KEY_ADD);
2894 btrfs_set_node_key(lower, key, slot);
2895 btrfs_set_node_blockptr(lower, slot, bytenr);
2896 WARN_ON(trans->transid == 0);
2897 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2898 btrfs_set_header_nritems(lower, nritems + 1);
2899 btrfs_mark_buffer_dirty(lower);
2903 * split the node at the specified level in path in two.
2904 * The path is corrected to point to the appropriate node after the split
2906 * Before splitting this tries to make some room in the node by pushing
2907 * left and right, if either one works, it returns right away.
2909 * returns 0 on success and < 0 on failure
2911 static noinline int split_node(struct btrfs_trans_handle *trans,
2912 struct btrfs_root *root,
2913 struct btrfs_path *path, int level)
2915 struct btrfs_fs_info *fs_info = root->fs_info;
2916 struct extent_buffer *c;
2917 struct extent_buffer *split;
2918 struct btrfs_disk_key disk_key;
2923 c = path->nodes[level];
2924 WARN_ON(btrfs_header_generation(c) != trans->transid);
2925 if (c == root->node) {
2927 * trying to split the root, lets make a new one
2929 * tree mod log: We don't log_removal old root in
2930 * insert_new_root, because that root buffer will be kept as a
2931 * normal node. We are going to log removal of half of the
2932 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2933 * holding a tree lock on the buffer, which is why we cannot
2934 * race with other tree_mod_log users.
2936 ret = insert_new_root(trans, root, path, level + 1);
2940 ret = push_nodes_for_insert(trans, root, path, level);
2941 c = path->nodes[level];
2942 if (!ret && btrfs_header_nritems(c) <
2943 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949 c_nritems = btrfs_header_nritems(c);
2950 mid = (c_nritems + 1) / 2;
2951 btrfs_node_key(c, &disk_key, mid);
2953 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2954 &disk_key, level, c->start, 0,
2955 BTRFS_NESTING_SPLIT);
2957 return PTR_ERR(split);
2959 root_add_used(root, fs_info->nodesize);
2960 ASSERT(btrfs_header_level(c) == level);
2962 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2964 btrfs_abort_transaction(trans, ret);
2967 copy_extent_buffer(split, c,
2968 btrfs_node_key_ptr_offset(split, 0),
2969 btrfs_node_key_ptr_offset(c, mid),
2970 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2971 btrfs_set_header_nritems(split, c_nritems - mid);
2972 btrfs_set_header_nritems(c, mid);
2974 btrfs_mark_buffer_dirty(c);
2975 btrfs_mark_buffer_dirty(split);
2977 insert_ptr(trans, path, &disk_key, split->start,
2978 path->slots[level + 1] + 1, level + 1);
2980 if (path->slots[level] >= mid) {
2981 path->slots[level] -= mid;
2982 btrfs_tree_unlock(c);
2983 free_extent_buffer(c);
2984 path->nodes[level] = split;
2985 path->slots[level + 1] += 1;
2987 btrfs_tree_unlock(split);
2988 free_extent_buffer(split);
2994 * how many bytes are required to store the items in a leaf. start
2995 * and nr indicate which items in the leaf to check. This totals up the
2996 * space used both by the item structs and the item data
2998 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3001 int nritems = btrfs_header_nritems(l);
3002 int end = min(nritems, start + nr) - 1;
3006 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3007 data_len = data_len - btrfs_item_offset(l, end);
3008 data_len += sizeof(struct btrfs_item) * nr;
3009 WARN_ON(data_len < 0);
3014 * The space between the end of the leaf items and
3015 * the start of the leaf data. IOW, how much room
3016 * the leaf has left for both items and data
3018 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3020 struct btrfs_fs_info *fs_info = leaf->fs_info;
3021 int nritems = btrfs_header_nritems(leaf);
3024 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3027 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3029 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3030 leaf_space_used(leaf, 0, nritems), nritems);
3036 * min slot controls the lowest index we're willing to push to the
3037 * right. We'll push up to and including min_slot, but no lower
3039 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3040 struct btrfs_path *path,
3041 int data_size, int empty,
3042 struct extent_buffer *right,
3043 int free_space, u32 left_nritems,
3046 struct btrfs_fs_info *fs_info = right->fs_info;
3047 struct extent_buffer *left = path->nodes[0];
3048 struct extent_buffer *upper = path->nodes[1];
3049 struct btrfs_map_token token;
3050 struct btrfs_disk_key disk_key;
3063 nr = max_t(u32, 1, min_slot);
3065 if (path->slots[0] >= left_nritems)
3066 push_space += data_size;
3068 slot = path->slots[1];
3069 i = left_nritems - 1;
3071 if (!empty && push_items > 0) {
3072 if (path->slots[0] > i)
3074 if (path->slots[0] == i) {
3075 int space = btrfs_leaf_free_space(left);
3077 if (space + push_space * 2 > free_space)
3082 if (path->slots[0] == i)
3083 push_space += data_size;
3085 this_item_size = btrfs_item_size(left, i);
3086 if (this_item_size + sizeof(struct btrfs_item) +
3087 push_space > free_space)
3091 push_space += this_item_size + sizeof(struct btrfs_item);
3097 if (push_items == 0)
3100 WARN_ON(!empty && push_items == left_nritems);
3102 /* push left to right */
3103 right_nritems = btrfs_header_nritems(right);
3105 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3106 push_space -= leaf_data_end(left);
3108 /* make room in the right data area */
3109 data_end = leaf_data_end(right);
3110 memmove_leaf_data(right, data_end - push_space, data_end,
3111 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3113 /* copy from the left data area */
3114 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3115 leaf_data_end(left), push_space);
3117 memmove_leaf_items(right, push_items, 0, right_nritems);
3119 /* copy the items from left to right */
3120 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3122 /* update the item pointers */
3123 btrfs_init_map_token(&token, right);
3124 right_nritems += push_items;
3125 btrfs_set_header_nritems(right, right_nritems);
3126 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3127 for (i = 0; i < right_nritems; i++) {
3128 push_space -= btrfs_token_item_size(&token, i);
3129 btrfs_set_token_item_offset(&token, i, push_space);
3132 left_nritems -= push_items;
3133 btrfs_set_header_nritems(left, left_nritems);
3136 btrfs_mark_buffer_dirty(left);
3138 btrfs_clear_buffer_dirty(trans, left);
3140 btrfs_mark_buffer_dirty(right);
3142 btrfs_item_key(right, &disk_key, 0);
3143 btrfs_set_node_key(upper, &disk_key, slot + 1);
3144 btrfs_mark_buffer_dirty(upper);
3146 /* then fixup the leaf pointer in the path */
3147 if (path->slots[0] >= left_nritems) {
3148 path->slots[0] -= left_nritems;
3149 if (btrfs_header_nritems(path->nodes[0]) == 0)
3150 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3151 btrfs_tree_unlock(path->nodes[0]);
3152 free_extent_buffer(path->nodes[0]);
3153 path->nodes[0] = right;
3154 path->slots[1] += 1;
3156 btrfs_tree_unlock(right);
3157 free_extent_buffer(right);
3162 btrfs_tree_unlock(right);
3163 free_extent_buffer(right);
3168 * push some data in the path leaf to the right, trying to free up at
3169 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3171 * returns 1 if the push failed because the other node didn't have enough
3172 * room, 0 if everything worked out and < 0 if there were major errors.
3174 * this will push starting from min_slot to the end of the leaf. It won't
3175 * push any slot lower than min_slot
3177 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3178 *root, struct btrfs_path *path,
3179 int min_data_size, int data_size,
3180 int empty, u32 min_slot)
3182 struct extent_buffer *left = path->nodes[0];
3183 struct extent_buffer *right;
3184 struct extent_buffer *upper;
3190 if (!path->nodes[1])
3193 slot = path->slots[1];
3194 upper = path->nodes[1];
3195 if (slot >= btrfs_header_nritems(upper) - 1)
3198 btrfs_assert_tree_write_locked(path->nodes[1]);
3200 right = btrfs_read_node_slot(upper, slot + 1);
3202 * slot + 1 is not valid or we fail to read the right node,
3203 * no big deal, just return.
3208 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3210 free_space = btrfs_leaf_free_space(right);
3211 if (free_space < data_size)
3214 ret = btrfs_cow_block(trans, root, right, upper,
3215 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3219 left_nritems = btrfs_header_nritems(left);
3220 if (left_nritems == 0)
3223 if (check_sibling_keys(left, right)) {
3225 btrfs_tree_unlock(right);
3226 free_extent_buffer(right);
3229 if (path->slots[0] == left_nritems && !empty) {
3230 /* Key greater than all keys in the leaf, right neighbor has
3231 * enough room for it and we're not emptying our leaf to delete
3232 * it, therefore use right neighbor to insert the new item and
3233 * no need to touch/dirty our left leaf. */
3234 btrfs_tree_unlock(left);
3235 free_extent_buffer(left);
3236 path->nodes[0] = right;
3242 return __push_leaf_right(trans, path, min_data_size, empty, right,
3243 free_space, left_nritems, min_slot);
3245 btrfs_tree_unlock(right);
3246 free_extent_buffer(right);
3251 * push some data in the path leaf to the left, trying to free up at
3252 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3254 * max_slot can put a limit on how far into the leaf we'll push items. The
3255 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3258 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3259 struct btrfs_path *path, int data_size,
3260 int empty, struct extent_buffer *left,
3261 int free_space, u32 right_nritems,
3264 struct btrfs_fs_info *fs_info = left->fs_info;
3265 struct btrfs_disk_key disk_key;
3266 struct extent_buffer *right = path->nodes[0];
3270 u32 old_left_nritems;
3274 u32 old_left_item_size;
3275 struct btrfs_map_token token;
3278 nr = min(right_nritems, max_slot);
3280 nr = min(right_nritems - 1, max_slot);
3282 for (i = 0; i < nr; i++) {
3283 if (!empty && push_items > 0) {
3284 if (path->slots[0] < i)
3286 if (path->slots[0] == i) {
3287 int space = btrfs_leaf_free_space(right);
3289 if (space + push_space * 2 > free_space)
3294 if (path->slots[0] == i)
3295 push_space += data_size;
3297 this_item_size = btrfs_item_size(right, i);
3298 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3303 push_space += this_item_size + sizeof(struct btrfs_item);
3306 if (push_items == 0) {
3310 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3312 /* push data from right to left */
3313 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3315 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3316 btrfs_item_offset(right, push_items - 1);
3318 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3319 btrfs_item_offset(right, push_items - 1), push_space);
3320 old_left_nritems = btrfs_header_nritems(left);
3321 BUG_ON(old_left_nritems <= 0);
3323 btrfs_init_map_token(&token, left);
3324 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3325 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3328 ioff = btrfs_token_item_offset(&token, i);
3329 btrfs_set_token_item_offset(&token, i,
3330 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3332 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3334 /* fixup right node */
3335 if (push_items > right_nritems)
3336 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3339 if (push_items < right_nritems) {
3340 push_space = btrfs_item_offset(right, push_items - 1) -
3341 leaf_data_end(right);
3342 memmove_leaf_data(right,
3343 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3344 leaf_data_end(right), push_space);
3346 memmove_leaf_items(right, 0, push_items,
3347 btrfs_header_nritems(right) - push_items);
3350 btrfs_init_map_token(&token, right);
3351 right_nritems -= push_items;
3352 btrfs_set_header_nritems(right, right_nritems);
3353 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3354 for (i = 0; i < right_nritems; i++) {
3355 push_space = push_space - btrfs_token_item_size(&token, i);
3356 btrfs_set_token_item_offset(&token, i, push_space);
3359 btrfs_mark_buffer_dirty(left);
3361 btrfs_mark_buffer_dirty(right);
3363 btrfs_clear_buffer_dirty(trans, right);
3365 btrfs_item_key(right, &disk_key, 0);
3366 fixup_low_keys(path, &disk_key, 1);
3368 /* then fixup the leaf pointer in the path */
3369 if (path->slots[0] < push_items) {
3370 path->slots[0] += old_left_nritems;
3371 btrfs_tree_unlock(path->nodes[0]);
3372 free_extent_buffer(path->nodes[0]);
3373 path->nodes[0] = left;
3374 path->slots[1] -= 1;
3376 btrfs_tree_unlock(left);
3377 free_extent_buffer(left);
3378 path->slots[0] -= push_items;
3380 BUG_ON(path->slots[0] < 0);
3383 btrfs_tree_unlock(left);
3384 free_extent_buffer(left);
3389 * push some data in the path leaf to the left, trying to free up at
3390 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3392 * max_slot can put a limit on how far into the leaf we'll push items. The
3393 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3396 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3397 *root, struct btrfs_path *path, int min_data_size,
3398 int data_size, int empty, u32 max_slot)
3400 struct extent_buffer *right = path->nodes[0];
3401 struct extent_buffer *left;
3407 slot = path->slots[1];
3410 if (!path->nodes[1])
3413 right_nritems = btrfs_header_nritems(right);
3414 if (right_nritems == 0)
3417 btrfs_assert_tree_write_locked(path->nodes[1]);
3419 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3421 * slot - 1 is not valid or we fail to read the left node,
3422 * no big deal, just return.
3427 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3429 free_space = btrfs_leaf_free_space(left);
3430 if (free_space < data_size) {
3435 ret = btrfs_cow_block(trans, root, left,
3436 path->nodes[1], slot - 1, &left,
3437 BTRFS_NESTING_LEFT_COW);
3439 /* we hit -ENOSPC, but it isn't fatal here */
3445 if (check_sibling_keys(left, right)) {
3449 return __push_leaf_left(trans, path, min_data_size, empty, left,
3450 free_space, right_nritems, max_slot);
3452 btrfs_tree_unlock(left);
3453 free_extent_buffer(left);
3458 * split the path's leaf in two, making sure there is at least data_size
3459 * available for the resulting leaf level of the path.
3461 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3462 struct btrfs_path *path,
3463 struct extent_buffer *l,
3464 struct extent_buffer *right,
3465 int slot, int mid, int nritems)
3467 struct btrfs_fs_info *fs_info = trans->fs_info;
3471 struct btrfs_disk_key disk_key;
3472 struct btrfs_map_token token;
3474 nritems = nritems - mid;
3475 btrfs_set_header_nritems(right, nritems);
3476 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3478 copy_leaf_items(right, l, 0, mid, nritems);
3480 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3481 leaf_data_end(l), data_copy_size);
3483 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3485 btrfs_init_map_token(&token, right);
3486 for (i = 0; i < nritems; i++) {
3489 ioff = btrfs_token_item_offset(&token, i);
3490 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3493 btrfs_set_header_nritems(l, mid);
3494 btrfs_item_key(right, &disk_key, 0);
3495 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3497 btrfs_mark_buffer_dirty(right);
3498 btrfs_mark_buffer_dirty(l);
3499 BUG_ON(path->slots[0] != slot);
3502 btrfs_tree_unlock(path->nodes[0]);
3503 free_extent_buffer(path->nodes[0]);
3504 path->nodes[0] = right;
3505 path->slots[0] -= mid;
3506 path->slots[1] += 1;
3508 btrfs_tree_unlock(right);
3509 free_extent_buffer(right);
3512 BUG_ON(path->slots[0] < 0);
3516 * double splits happen when we need to insert a big item in the middle
3517 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3518 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3521 * We avoid this by trying to push the items on either side of our target
3522 * into the adjacent leaves. If all goes well we can avoid the double split
3525 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root,
3527 struct btrfs_path *path,
3534 int space_needed = data_size;
3536 slot = path->slots[0];
3537 if (slot < btrfs_header_nritems(path->nodes[0]))
3538 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3541 * try to push all the items after our slot into the
3544 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3551 nritems = btrfs_header_nritems(path->nodes[0]);
3553 * our goal is to get our slot at the start or end of a leaf. If
3554 * we've done so we're done
3556 if (path->slots[0] == 0 || path->slots[0] == nritems)
3559 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3562 /* try to push all the items before our slot into the next leaf */
3563 slot = path->slots[0];
3564 space_needed = data_size;
3566 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3567 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3580 * split the path's leaf in two, making sure there is at least data_size
3581 * available for the resulting leaf level of the path.
3583 * returns 0 if all went well and < 0 on failure.
3585 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *root,
3587 const struct btrfs_key *ins_key,
3588 struct btrfs_path *path, int data_size,
3591 struct btrfs_disk_key disk_key;
3592 struct extent_buffer *l;
3596 struct extent_buffer *right;
3597 struct btrfs_fs_info *fs_info = root->fs_info;
3601 int num_doubles = 0;
3602 int tried_avoid_double = 0;
3605 slot = path->slots[0];
3606 if (extend && data_size + btrfs_item_size(l, slot) +
3607 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3610 /* first try to make some room by pushing left and right */
3611 if (data_size && path->nodes[1]) {
3612 int space_needed = data_size;
3614 if (slot < btrfs_header_nritems(l))
3615 space_needed -= btrfs_leaf_free_space(l);
3617 wret = push_leaf_right(trans, root, path, space_needed,
3618 space_needed, 0, 0);
3622 space_needed = data_size;
3624 space_needed -= btrfs_leaf_free_space(l);
3625 wret = push_leaf_left(trans, root, path, space_needed,
3626 space_needed, 0, (u32)-1);
3632 /* did the pushes work? */
3633 if (btrfs_leaf_free_space(l) >= data_size)
3637 if (!path->nodes[1]) {
3638 ret = insert_new_root(trans, root, path, 1);
3645 slot = path->slots[0];
3646 nritems = btrfs_header_nritems(l);
3647 mid = (nritems + 1) / 2;
3651 leaf_space_used(l, mid, nritems - mid) + data_size >
3652 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3653 if (slot >= nritems) {
3657 if (mid != nritems &&
3658 leaf_space_used(l, mid, nritems - mid) +
3659 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3660 if (data_size && !tried_avoid_double)
3661 goto push_for_double;
3667 if (leaf_space_used(l, 0, mid) + data_size >
3668 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3669 if (!extend && data_size && slot == 0) {
3671 } else if ((extend || !data_size) && slot == 0) {
3675 if (mid != nritems &&
3676 leaf_space_used(l, mid, nritems - mid) +
3677 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3678 if (data_size && !tried_avoid_double)
3679 goto push_for_double;
3687 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3689 btrfs_item_key(l, &disk_key, mid);
3692 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3693 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3694 * subclasses, which is 8 at the time of this patch, and we've maxed it
3695 * out. In the future we could add a
3696 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3697 * use BTRFS_NESTING_NEW_ROOT.
3699 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3700 &disk_key, 0, l->start, 0,
3701 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3702 BTRFS_NESTING_SPLIT);
3704 return PTR_ERR(right);
3706 root_add_used(root, fs_info->nodesize);
3710 btrfs_set_header_nritems(right, 0);
3711 insert_ptr(trans, path, &disk_key,
3712 right->start, path->slots[1] + 1, 1);
3713 btrfs_tree_unlock(path->nodes[0]);
3714 free_extent_buffer(path->nodes[0]);
3715 path->nodes[0] = right;
3717 path->slots[1] += 1;
3719 btrfs_set_header_nritems(right, 0);
3720 insert_ptr(trans, path, &disk_key,
3721 right->start, path->slots[1], 1);
3722 btrfs_tree_unlock(path->nodes[0]);
3723 free_extent_buffer(path->nodes[0]);
3724 path->nodes[0] = right;
3726 if (path->slots[1] == 0)
3727 fixup_low_keys(path, &disk_key, 1);
3730 * We create a new leaf 'right' for the required ins_len and
3731 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3732 * the content of ins_len to 'right'.
3737 copy_for_split(trans, path, l, right, slot, mid, nritems);
3740 BUG_ON(num_doubles != 0);
3748 push_for_double_split(trans, root, path, data_size);
3749 tried_avoid_double = 1;
3750 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3756 struct btrfs_root *root,
3757 struct btrfs_path *path, int ins_len)
3759 struct btrfs_key key;
3760 struct extent_buffer *leaf;
3761 struct btrfs_file_extent_item *fi;
3766 leaf = path->nodes[0];
3767 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3769 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3770 key.type != BTRFS_EXTENT_CSUM_KEY);
3772 if (btrfs_leaf_free_space(leaf) >= ins_len)
3775 item_size = btrfs_item_size(leaf, path->slots[0]);
3776 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3777 fi = btrfs_item_ptr(leaf, path->slots[0],
3778 struct btrfs_file_extent_item);
3779 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3781 btrfs_release_path(path);
3783 path->keep_locks = 1;
3784 path->search_for_split = 1;
3785 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3786 path->search_for_split = 0;
3793 leaf = path->nodes[0];
3794 /* if our item isn't there, return now */
3795 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3798 /* the leaf has changed, it now has room. return now */
3799 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3802 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3803 fi = btrfs_item_ptr(leaf, path->slots[0],
3804 struct btrfs_file_extent_item);
3805 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3809 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3813 path->keep_locks = 0;
3814 btrfs_unlock_up_safe(path, 1);
3817 path->keep_locks = 0;
3821 static noinline int split_item(struct btrfs_path *path,
3822 const struct btrfs_key *new_key,
3823 unsigned long split_offset)
3825 struct extent_buffer *leaf;
3826 int orig_slot, slot;
3831 struct btrfs_disk_key disk_key;
3833 leaf = path->nodes[0];
3834 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3836 orig_slot = path->slots[0];
3837 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3838 item_size = btrfs_item_size(leaf, path->slots[0]);
3840 buf = kmalloc(item_size, GFP_NOFS);
3844 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3845 path->slots[0]), item_size);
3847 slot = path->slots[0] + 1;
3848 nritems = btrfs_header_nritems(leaf);
3849 if (slot != nritems) {
3850 /* shift the items */
3851 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3854 btrfs_cpu_key_to_disk(&disk_key, new_key);
3855 btrfs_set_item_key(leaf, &disk_key, slot);
3857 btrfs_set_item_offset(leaf, slot, orig_offset);
3858 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3860 btrfs_set_item_offset(leaf, orig_slot,
3861 orig_offset + item_size - split_offset);
3862 btrfs_set_item_size(leaf, orig_slot, split_offset);
3864 btrfs_set_header_nritems(leaf, nritems + 1);
3866 /* write the data for the start of the original item */
3867 write_extent_buffer(leaf, buf,
3868 btrfs_item_ptr_offset(leaf, path->slots[0]),
3871 /* write the data for the new item */
3872 write_extent_buffer(leaf, buf + split_offset,
3873 btrfs_item_ptr_offset(leaf, slot),
3874 item_size - split_offset);
3875 btrfs_mark_buffer_dirty(leaf);
3877 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3883 * This function splits a single item into two items,
3884 * giving 'new_key' to the new item and splitting the
3885 * old one at split_offset (from the start of the item).
3887 * The path may be released by this operation. After
3888 * the split, the path is pointing to the old item. The
3889 * new item is going to be in the same node as the old one.
3891 * Note, the item being split must be smaller enough to live alone on
3892 * a tree block with room for one extra struct btrfs_item
3894 * This allows us to split the item in place, keeping a lock on the
3895 * leaf the entire time.
3897 int btrfs_split_item(struct btrfs_trans_handle *trans,
3898 struct btrfs_root *root,
3899 struct btrfs_path *path,
3900 const struct btrfs_key *new_key,
3901 unsigned long split_offset)
3904 ret = setup_leaf_for_split(trans, root, path,
3905 sizeof(struct btrfs_item));
3909 ret = split_item(path, new_key, split_offset);
3914 * make the item pointed to by the path smaller. new_size indicates
3915 * how small to make it, and from_end tells us if we just chop bytes
3916 * off the end of the item or if we shift the item to chop bytes off
3919 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3922 struct extent_buffer *leaf;
3924 unsigned int data_end;
3925 unsigned int old_data_start;
3926 unsigned int old_size;
3927 unsigned int size_diff;
3929 struct btrfs_map_token token;
3931 leaf = path->nodes[0];
3932 slot = path->slots[0];
3934 old_size = btrfs_item_size(leaf, slot);
3935 if (old_size == new_size)
3938 nritems = btrfs_header_nritems(leaf);
3939 data_end = leaf_data_end(leaf);
3941 old_data_start = btrfs_item_offset(leaf, slot);
3943 size_diff = old_size - new_size;
3946 BUG_ON(slot >= nritems);
3949 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3951 /* first correct the data pointers */
3952 btrfs_init_map_token(&token, leaf);
3953 for (i = slot; i < nritems; i++) {
3956 ioff = btrfs_token_item_offset(&token, i);
3957 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3960 /* shift the data */
3962 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3963 old_data_start + new_size - data_end);
3965 struct btrfs_disk_key disk_key;
3968 btrfs_item_key(leaf, &disk_key, slot);
3970 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3972 struct btrfs_file_extent_item *fi;
3974 fi = btrfs_item_ptr(leaf, slot,
3975 struct btrfs_file_extent_item);
3976 fi = (struct btrfs_file_extent_item *)(
3977 (unsigned long)fi - size_diff);
3979 if (btrfs_file_extent_type(leaf, fi) ==
3980 BTRFS_FILE_EXTENT_INLINE) {
3981 ptr = btrfs_item_ptr_offset(leaf, slot);
3982 memmove_extent_buffer(leaf, ptr,
3984 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3988 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3989 old_data_start - data_end);
3991 offset = btrfs_disk_key_offset(&disk_key);
3992 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3993 btrfs_set_item_key(leaf, &disk_key, slot);
3995 fixup_low_keys(path, &disk_key, 1);
3998 btrfs_set_item_size(leaf, slot, new_size);
3999 btrfs_mark_buffer_dirty(leaf);
4001 if (btrfs_leaf_free_space(leaf) < 0) {
4002 btrfs_print_leaf(leaf);
4008 * make the item pointed to by the path bigger, data_size is the added size.
4010 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4013 struct extent_buffer *leaf;
4015 unsigned int data_end;
4016 unsigned int old_data;
4017 unsigned int old_size;
4019 struct btrfs_map_token token;
4021 leaf = path->nodes[0];
4023 nritems = btrfs_header_nritems(leaf);
4024 data_end = leaf_data_end(leaf);
4026 if (btrfs_leaf_free_space(leaf) < data_size) {
4027 btrfs_print_leaf(leaf);
4030 slot = path->slots[0];
4031 old_data = btrfs_item_data_end(leaf, slot);
4034 if (slot >= nritems) {
4035 btrfs_print_leaf(leaf);
4036 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4042 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4044 /* first correct the data pointers */
4045 btrfs_init_map_token(&token, leaf);
4046 for (i = slot; i < nritems; i++) {
4049 ioff = btrfs_token_item_offset(&token, i);
4050 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4053 /* shift the data */
4054 memmove_leaf_data(leaf, data_end - data_size, data_end,
4055 old_data - data_end);
4057 data_end = old_data;
4058 old_size = btrfs_item_size(leaf, slot);
4059 btrfs_set_item_size(leaf, slot, old_size + data_size);
4060 btrfs_mark_buffer_dirty(leaf);
4062 if (btrfs_leaf_free_space(leaf) < 0) {
4063 btrfs_print_leaf(leaf);
4069 * Make space in the node before inserting one or more items.
4071 * @root: root we are inserting items to
4072 * @path: points to the leaf/slot where we are going to insert new items
4073 * @batch: information about the batch of items to insert
4075 * Main purpose is to save stack depth by doing the bulk of the work in a
4076 * function that doesn't call btrfs_search_slot
4078 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4079 const struct btrfs_item_batch *batch)
4081 struct btrfs_fs_info *fs_info = root->fs_info;
4084 unsigned int data_end;
4085 struct btrfs_disk_key disk_key;
4086 struct extent_buffer *leaf;
4088 struct btrfs_map_token token;
4092 * Before anything else, update keys in the parent and other ancestors
4093 * if needed, then release the write locks on them, so that other tasks
4094 * can use them while we modify the leaf.
4096 if (path->slots[0] == 0) {
4097 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4098 fixup_low_keys(path, &disk_key, 1);
4100 btrfs_unlock_up_safe(path, 1);
4102 leaf = path->nodes[0];
4103 slot = path->slots[0];
4105 nritems = btrfs_header_nritems(leaf);
4106 data_end = leaf_data_end(leaf);
4107 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4109 if (btrfs_leaf_free_space(leaf) < total_size) {
4110 btrfs_print_leaf(leaf);
4111 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4112 total_size, btrfs_leaf_free_space(leaf));
4116 btrfs_init_map_token(&token, leaf);
4117 if (slot != nritems) {
4118 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4120 if (old_data < data_end) {
4121 btrfs_print_leaf(leaf);
4123 "item at slot %d with data offset %u beyond data end of leaf %u",
4124 slot, old_data, data_end);
4128 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4130 /* first correct the data pointers */
4131 for (i = slot; i < nritems; i++) {
4134 ioff = btrfs_token_item_offset(&token, i);
4135 btrfs_set_token_item_offset(&token, i,
4136 ioff - batch->total_data_size);
4138 /* shift the items */
4139 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4141 /* shift the data */
4142 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4143 data_end, old_data - data_end);
4144 data_end = old_data;
4147 /* setup the item for the new data */
4148 for (i = 0; i < batch->nr; i++) {
4149 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4150 btrfs_set_item_key(leaf, &disk_key, slot + i);
4151 data_end -= batch->data_sizes[i];
4152 btrfs_set_token_item_offset(&token, slot + i, data_end);
4153 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4156 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4157 btrfs_mark_buffer_dirty(leaf);
4159 if (btrfs_leaf_free_space(leaf) < 0) {
4160 btrfs_print_leaf(leaf);
4166 * Insert a new item into a leaf.
4168 * @root: The root of the btree.
4169 * @path: A path pointing to the target leaf and slot.
4170 * @key: The key of the new item.
4171 * @data_size: The size of the data associated with the new key.
4173 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4174 struct btrfs_path *path,
4175 const struct btrfs_key *key,
4178 struct btrfs_item_batch batch;
4181 batch.data_sizes = &data_size;
4182 batch.total_data_size = data_size;
4185 setup_items_for_insert(root, path, &batch);
4189 * Given a key and some data, insert items into the tree.
4190 * This does all the path init required, making room in the tree if needed.
4192 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4193 struct btrfs_root *root,
4194 struct btrfs_path *path,
4195 const struct btrfs_item_batch *batch)
4201 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4202 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4208 slot = path->slots[0];
4211 setup_items_for_insert(root, path, batch);
4216 * Given a key and some data, insert an item into the tree.
4217 * This does all the path init required, making room in the tree if needed.
4219 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4220 const struct btrfs_key *cpu_key, void *data,
4224 struct btrfs_path *path;
4225 struct extent_buffer *leaf;
4228 path = btrfs_alloc_path();
4231 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4233 leaf = path->nodes[0];
4234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4235 write_extent_buffer(leaf, data, ptr, data_size);
4236 btrfs_mark_buffer_dirty(leaf);
4238 btrfs_free_path(path);
4243 * This function duplicates an item, giving 'new_key' to the new item.
4244 * It guarantees both items live in the same tree leaf and the new item is
4245 * contiguous with the original item.
4247 * This allows us to split a file extent in place, keeping a lock on the leaf
4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251 struct btrfs_root *root,
4252 struct btrfs_path *path,
4253 const struct btrfs_key *new_key)
4255 struct extent_buffer *leaf;
4259 leaf = path->nodes[0];
4260 item_size = btrfs_item_size(leaf, path->slots[0]);
4261 ret = setup_leaf_for_split(trans, root, path,
4262 item_size + sizeof(struct btrfs_item));
4267 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4268 leaf = path->nodes[0];
4269 memcpy_extent_buffer(leaf,
4270 btrfs_item_ptr_offset(leaf, path->slots[0]),
4271 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4277 * delete the pointer from a given node.
4279 * the tree should have been previously balanced so the deletion does not
4282 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4283 int level, int slot)
4285 struct extent_buffer *parent = path->nodes[level];
4289 nritems = btrfs_header_nritems(parent);
4290 if (slot != nritems - 1) {
4292 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4293 slot + 1, nritems - slot - 1);
4296 memmove_extent_buffer(parent,
4297 btrfs_node_key_ptr_offset(parent, slot),
4298 btrfs_node_key_ptr_offset(parent, slot + 1),
4299 sizeof(struct btrfs_key_ptr) *
4300 (nritems - slot - 1));
4302 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4303 BTRFS_MOD_LOG_KEY_REMOVE);
4308 btrfs_set_header_nritems(parent, nritems);
4309 if (nritems == 0 && parent == root->node) {
4310 BUG_ON(btrfs_header_level(root->node) != 1);
4311 /* just turn the root into a leaf and break */
4312 btrfs_set_header_level(root->node, 0);
4313 } else if (slot == 0) {
4314 struct btrfs_disk_key disk_key;
4316 btrfs_node_key(parent, &disk_key, 0);
4317 fixup_low_keys(path, &disk_key, level + 1);
4319 btrfs_mark_buffer_dirty(parent);
4323 * a helper function to delete the leaf pointed to by path->slots[1] and
4326 * This deletes the pointer in path->nodes[1] and frees the leaf
4327 * block extent. zero is returned if it all worked out, < 0 otherwise.
4329 * The path must have already been setup for deleting the leaf, including
4330 * all the proper balancing. path->nodes[1] must be locked.
4332 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4333 struct btrfs_root *root,
4334 struct btrfs_path *path,
4335 struct extent_buffer *leaf)
4337 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4338 del_ptr(root, path, 1, path->slots[1]);
4341 * btrfs_free_extent is expensive, we want to make sure we
4342 * aren't holding any locks when we call it
4344 btrfs_unlock_up_safe(path, 0);
4346 root_sub_used(root, leaf->len);
4348 atomic_inc(&leaf->refs);
4349 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4350 free_extent_buffer_stale(leaf);
4353 * delete the item at the leaf level in path. If that empties
4354 * the leaf, remove it from the tree
4356 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4357 struct btrfs_path *path, int slot, int nr)
4359 struct btrfs_fs_info *fs_info = root->fs_info;
4360 struct extent_buffer *leaf;
4365 leaf = path->nodes[0];
4366 nritems = btrfs_header_nritems(leaf);
4368 if (slot + nr != nritems) {
4369 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4370 const int data_end = leaf_data_end(leaf);
4371 struct btrfs_map_token token;
4375 for (i = 0; i < nr; i++)
4376 dsize += btrfs_item_size(leaf, slot + i);
4378 memmove_leaf_data(leaf, data_end + dsize, data_end,
4379 last_off - data_end);
4381 btrfs_init_map_token(&token, leaf);
4382 for (i = slot + nr; i < nritems; i++) {
4385 ioff = btrfs_token_item_offset(&token, i);
4386 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4389 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4391 btrfs_set_header_nritems(leaf, nritems - nr);
4394 /* delete the leaf if we've emptied it */
4396 if (leaf == root->node) {
4397 btrfs_set_header_level(leaf, 0);
4399 btrfs_clear_buffer_dirty(trans, leaf);
4400 btrfs_del_leaf(trans, root, path, leaf);
4403 int used = leaf_space_used(leaf, 0, nritems);
4405 struct btrfs_disk_key disk_key;
4407 btrfs_item_key(leaf, &disk_key, 0);
4408 fixup_low_keys(path, &disk_key, 1);
4412 * Try to delete the leaf if it is mostly empty. We do this by
4413 * trying to move all its items into its left and right neighbours.
4414 * If we can't move all the items, then we don't delete it - it's
4415 * not ideal, but future insertions might fill the leaf with more
4416 * items, or items from other leaves might be moved later into our
4417 * leaf due to deletions on those leaves.
4419 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4422 /* push_leaf_left fixes the path.
4423 * make sure the path still points to our leaf
4424 * for possible call to del_ptr below
4426 slot = path->slots[1];
4427 atomic_inc(&leaf->refs);
4429 * We want to be able to at least push one item to the
4430 * left neighbour leaf, and that's the first item.
4432 min_push_space = sizeof(struct btrfs_item) +
4433 btrfs_item_size(leaf, 0);
4434 wret = push_leaf_left(trans, root, path, 0,
4435 min_push_space, 1, (u32)-1);
4436 if (wret < 0 && wret != -ENOSPC)
4439 if (path->nodes[0] == leaf &&
4440 btrfs_header_nritems(leaf)) {
4442 * If we were not able to push all items from our
4443 * leaf to its left neighbour, then attempt to
4444 * either push all the remaining items to the
4445 * right neighbour or none. There's no advantage
4446 * in pushing only some items, instead of all, as
4447 * it's pointless to end up with a leaf having
4448 * too few items while the neighbours can be full
4451 nritems = btrfs_header_nritems(leaf);
4452 min_push_space = leaf_space_used(leaf, 0, nritems);
4453 wret = push_leaf_right(trans, root, path, 0,
4454 min_push_space, 1, 0);
4455 if (wret < 0 && wret != -ENOSPC)
4459 if (btrfs_header_nritems(leaf) == 0) {
4460 path->slots[1] = slot;
4461 btrfs_del_leaf(trans, root, path, leaf);
4462 free_extent_buffer(leaf);
4465 /* if we're still in the path, make sure
4466 * we're dirty. Otherwise, one of the
4467 * push_leaf functions must have already
4468 * dirtied this buffer
4470 if (path->nodes[0] == leaf)
4471 btrfs_mark_buffer_dirty(leaf);
4472 free_extent_buffer(leaf);
4475 btrfs_mark_buffer_dirty(leaf);
4482 * search the tree again to find a leaf with lesser keys
4483 * returns 0 if it found something or 1 if there are no lesser leaves.
4484 * returns < 0 on io errors.
4486 * This may release the path, and so you may lose any locks held at the
4489 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4491 struct btrfs_key key;
4492 struct btrfs_disk_key found_key;
4495 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4497 if (key.offset > 0) {
4499 } else if (key.type > 0) {
4501 key.offset = (u64)-1;
4502 } else if (key.objectid > 0) {
4505 key.offset = (u64)-1;
4510 btrfs_release_path(path);
4511 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4514 btrfs_item_key(path->nodes[0], &found_key, 0);
4515 ret = comp_keys(&found_key, &key);
4517 * We might have had an item with the previous key in the tree right
4518 * before we released our path. And after we released our path, that
4519 * item might have been pushed to the first slot (0) of the leaf we
4520 * were holding due to a tree balance. Alternatively, an item with the
4521 * previous key can exist as the only element of a leaf (big fat item).
4522 * Therefore account for these 2 cases, so that our callers (like
4523 * btrfs_previous_item) don't miss an existing item with a key matching
4524 * the previous key we computed above.
4532 * A helper function to walk down the tree starting at min_key, and looking
4533 * for nodes or leaves that are have a minimum transaction id.
4534 * This is used by the btree defrag code, and tree logging
4536 * This does not cow, but it does stuff the starting key it finds back
4537 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4538 * key and get a writable path.
4540 * This honors path->lowest_level to prevent descent past a given level
4543 * min_trans indicates the oldest transaction that you are interested
4544 * in walking through. Any nodes or leaves older than min_trans are
4545 * skipped over (without reading them).
4547 * returns zero if something useful was found, < 0 on error and 1 if there
4548 * was nothing in the tree that matched the search criteria.
4550 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4551 struct btrfs_path *path,
4554 struct extent_buffer *cur;
4555 struct btrfs_key found_key;
4561 int keep_locks = path->keep_locks;
4563 ASSERT(!path->nowait);
4564 path->keep_locks = 1;
4566 cur = btrfs_read_lock_root_node(root);
4567 level = btrfs_header_level(cur);
4568 WARN_ON(path->nodes[level]);
4569 path->nodes[level] = cur;
4570 path->locks[level] = BTRFS_READ_LOCK;
4572 if (btrfs_header_generation(cur) < min_trans) {
4577 nritems = btrfs_header_nritems(cur);
4578 level = btrfs_header_level(cur);
4579 sret = btrfs_bin_search(cur, min_key, &slot);
4585 /* at the lowest level, we're done, setup the path and exit */
4586 if (level == path->lowest_level) {
4587 if (slot >= nritems)
4590 path->slots[level] = slot;
4591 btrfs_item_key_to_cpu(cur, &found_key, slot);
4594 if (sret && slot > 0)
4597 * check this node pointer against the min_trans parameters.
4598 * If it is too old, skip to the next one.
4600 while (slot < nritems) {
4603 gen = btrfs_node_ptr_generation(cur, slot);
4604 if (gen < min_trans) {
4612 * we didn't find a candidate key in this node, walk forward
4613 * and find another one
4615 if (slot >= nritems) {
4616 path->slots[level] = slot;
4617 sret = btrfs_find_next_key(root, path, min_key, level,
4620 btrfs_release_path(path);
4626 /* save our key for returning back */
4627 btrfs_node_key_to_cpu(cur, &found_key, slot);
4628 path->slots[level] = slot;
4629 if (level == path->lowest_level) {
4633 cur = btrfs_read_node_slot(cur, slot);
4639 btrfs_tree_read_lock(cur);
4641 path->locks[level - 1] = BTRFS_READ_LOCK;
4642 path->nodes[level - 1] = cur;
4643 unlock_up(path, level, 1, 0, NULL);
4646 path->keep_locks = keep_locks;
4648 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4649 memcpy(min_key, &found_key, sizeof(found_key));
4655 * this is similar to btrfs_next_leaf, but does not try to preserve
4656 * and fixup the path. It looks for and returns the next key in the
4657 * tree based on the current path and the min_trans parameters.
4659 * 0 is returned if another key is found, < 0 if there are any errors
4660 * and 1 is returned if there are no higher keys in the tree
4662 * path->keep_locks should be set to 1 on the search made before
4663 * calling this function.
4665 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4666 struct btrfs_key *key, int level, u64 min_trans)
4669 struct extent_buffer *c;
4671 WARN_ON(!path->keep_locks && !path->skip_locking);
4672 while (level < BTRFS_MAX_LEVEL) {
4673 if (!path->nodes[level])
4676 slot = path->slots[level] + 1;
4677 c = path->nodes[level];
4679 if (slot >= btrfs_header_nritems(c)) {
4682 struct btrfs_key cur_key;
4683 if (level + 1 >= BTRFS_MAX_LEVEL ||
4684 !path->nodes[level + 1])
4687 if (path->locks[level + 1] || path->skip_locking) {
4692 slot = btrfs_header_nritems(c) - 1;
4694 btrfs_item_key_to_cpu(c, &cur_key, slot);
4696 btrfs_node_key_to_cpu(c, &cur_key, slot);
4698 orig_lowest = path->lowest_level;
4699 btrfs_release_path(path);
4700 path->lowest_level = level;
4701 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4703 path->lowest_level = orig_lowest;
4707 c = path->nodes[level];
4708 slot = path->slots[level];
4715 btrfs_item_key_to_cpu(c, key, slot);
4717 u64 gen = btrfs_node_ptr_generation(c, slot);
4719 if (gen < min_trans) {
4723 btrfs_node_key_to_cpu(c, key, slot);
4730 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735 struct extent_buffer *c;
4736 struct extent_buffer *next;
4737 struct btrfs_fs_info *fs_info = root->fs_info;
4738 struct btrfs_key key;
4739 bool need_commit_sem = false;
4745 * The nowait semantics are used only for write paths, where we don't
4746 * use the tree mod log and sequence numbers.
4749 ASSERT(!path->nowait);
4751 nritems = btrfs_header_nritems(path->nodes[0]);
4755 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4759 btrfs_release_path(path);
4761 path->keep_locks = 1;
4764 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4766 if (path->need_commit_sem) {
4767 path->need_commit_sem = 0;
4768 need_commit_sem = true;
4770 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775 down_read(&fs_info->commit_root_sem);
4778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4780 path->keep_locks = 0;
4785 nritems = btrfs_header_nritems(path->nodes[0]);
4787 * by releasing the path above we dropped all our locks. A balance
4788 * could have added more items next to the key that used to be
4789 * at the very end of the block. So, check again here and
4790 * advance the path if there are now more items available.
4792 if (nritems > 0 && path->slots[0] < nritems - 1) {
4799 * So the above check misses one case:
4800 * - after releasing the path above, someone has removed the item that
4801 * used to be at the very end of the block, and balance between leafs
4802 * gets another one with bigger key.offset to replace it.
4804 * This one should be returned as well, or we can get leaf corruption
4805 * later(esp. in __btrfs_drop_extents()).
4807 * And a bit more explanation about this check,
4808 * with ret > 0, the key isn't found, the path points to the slot
4809 * where it should be inserted, so the path->slots[0] item must be the
4812 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817 while (level < BTRFS_MAX_LEVEL) {
4818 if (!path->nodes[level]) {
4823 slot = path->slots[level] + 1;
4824 c = path->nodes[level];
4825 if (slot >= btrfs_header_nritems(c)) {
4827 if (level == BTRFS_MAX_LEVEL) {
4836 * Our current level is where we're going to start from, and to
4837 * make sure lockdep doesn't complain we need to drop our locks
4838 * and nodes from 0 to our current level.
4840 for (i = 0; i < level; i++) {
4841 if (path->locks[level]) {
4842 btrfs_tree_read_unlock(path->nodes[i]);
4845 free_extent_buffer(path->nodes[i]);
4846 path->nodes[i] = NULL;
4850 ret = read_block_for_search(root, path, &next, level,
4852 if (ret == -EAGAIN && !path->nowait)
4856 btrfs_release_path(path);
4860 if (!path->skip_locking) {
4861 ret = btrfs_try_tree_read_lock(next);
4862 if (!ret && path->nowait) {
4866 if (!ret && time_seq) {
4868 * If we don't get the lock, we may be racing
4869 * with push_leaf_left, holding that lock while
4870 * itself waiting for the leaf we've currently
4871 * locked. To solve this situation, we give up
4872 * on our lock and cycle.
4874 free_extent_buffer(next);
4875 btrfs_release_path(path);
4880 btrfs_tree_read_lock(next);
4884 path->slots[level] = slot;
4887 path->nodes[level] = next;
4888 path->slots[level] = 0;
4889 if (!path->skip_locking)
4890 path->locks[level] = BTRFS_READ_LOCK;
4894 ret = read_block_for_search(root, path, &next, level,
4896 if (ret == -EAGAIN && !path->nowait)
4900 btrfs_release_path(path);
4904 if (!path->skip_locking) {
4906 if (!btrfs_try_tree_read_lock(next)) {
4911 btrfs_tree_read_lock(next);
4917 unlock_up(path, 0, 1, 0, NULL);
4918 if (need_commit_sem) {
4921 path->need_commit_sem = 1;
4922 ret2 = finish_need_commit_sem_search(path);
4923 up_read(&fs_info->commit_root_sem);
4931 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4934 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4935 return btrfs_next_old_leaf(root, path, time_seq);
4940 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4941 * searching until it gets past min_objectid or finds an item of 'type'
4943 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4945 int btrfs_previous_item(struct btrfs_root *root,
4946 struct btrfs_path *path, u64 min_objectid,
4949 struct btrfs_key found_key;
4950 struct extent_buffer *leaf;
4955 if (path->slots[0] == 0) {
4956 ret = btrfs_prev_leaf(root, path);
4962 leaf = path->nodes[0];
4963 nritems = btrfs_header_nritems(leaf);
4966 if (path->slots[0] == nritems)
4969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4970 if (found_key.objectid < min_objectid)
4972 if (found_key.type == type)
4974 if (found_key.objectid == min_objectid &&
4975 found_key.type < type)
4982 * search in extent tree to find a previous Metadata/Data extent item with
4985 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4987 int btrfs_previous_extent_item(struct btrfs_root *root,
4988 struct btrfs_path *path, u64 min_objectid)
4990 struct btrfs_key found_key;
4991 struct extent_buffer *leaf;
4996 if (path->slots[0] == 0) {
4997 ret = btrfs_prev_leaf(root, path);
5003 leaf = path->nodes[0];
5004 nritems = btrfs_header_nritems(leaf);
5007 if (path->slots[0] == nritems)
5010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5011 if (found_key.objectid < min_objectid)
5013 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5014 found_key.type == BTRFS_METADATA_ITEM_KEY)
5016 if (found_key.objectid == min_objectid &&
5017 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5023 int __init btrfs_ctree_init(void)
5025 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5026 sizeof(struct btrfs_path), 0,
5027 SLAB_MEM_SPREAD, NULL);
5028 if (!btrfs_path_cachep)
5033 void __cold btrfs_ctree_exit(void)
5035 kmem_cache_destroy(btrfs_path_cachep);