1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
12 #include <linux/kvm_host.h>
14 #include "mmu_internal.h"
18 #include <asm/e820/api.h>
21 static bool __read_mostly enable_mmio_caching = true;
22 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
24 u64 __read_mostly shadow_host_writable_mask;
25 u64 __read_mostly shadow_mmu_writable_mask;
26 u64 __read_mostly shadow_nx_mask;
27 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
28 u64 __read_mostly shadow_user_mask;
29 u64 __read_mostly shadow_accessed_mask;
30 u64 __read_mostly shadow_dirty_mask;
31 u64 __read_mostly shadow_mmio_value;
32 u64 __read_mostly shadow_mmio_mask;
33 u64 __read_mostly shadow_mmio_access_mask;
34 u64 __read_mostly shadow_present_mask;
35 u64 __read_mostly shadow_me_mask;
36 u64 __read_mostly shadow_acc_track_mask;
38 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
39 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
41 u8 __read_mostly shadow_phys_bits;
43 static u64 generation_mmio_spte_mask(u64 gen)
47 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
49 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
50 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
54 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
56 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
57 u64 spte = generation_mmio_spte_mask(gen);
58 u64 gpa = gfn << PAGE_SHIFT;
60 WARN_ON_ONCE(!shadow_mmio_value);
62 access &= shadow_mmio_access_mask;
63 spte |= shadow_mmio_value | access;
64 spte |= gpa | shadow_nonpresent_or_rsvd_mask;
65 spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
66 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
71 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
74 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
76 * Some reserved pages, such as those from NVDIMM
77 * DAX devices, are not for MMIO, and can be mapped
78 * with cached memory type for better performance.
79 * However, the above check misconceives those pages
80 * as MMIO, and results in KVM mapping them with UC
81 * memory type, which would hurt the performance.
82 * Therefore, we check the host memory type in addition
83 * and only treat UC/UC-/WC pages as MMIO.
85 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
87 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
88 pfn_to_hpa(pfn + 1) - 1,
92 int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
93 gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
94 bool can_unsync, bool host_writable, bool ad_disabled,
97 u64 spte = SPTE_MMU_PRESENT_MASK;
101 spte |= SPTE_TDP_AD_DISABLED_MASK;
102 else if (kvm_vcpu_ad_need_write_protect(vcpu))
103 spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
106 * Bits 62:52 of PAE SPTEs are reserved. WARN if said bits are set
107 * if PAE paging may be employed (shadow paging or any 32-bit KVM).
109 WARN_ON_ONCE((!tdp_enabled || !IS_ENABLED(CONFIG_X86_64)) &&
110 (spte & SPTE_TDP_AD_MASK));
113 * For the EPT case, shadow_present_mask is 0 if hardware
114 * supports exec-only page table entries. In that case,
115 * ACC_USER_MASK and shadow_user_mask are used to represent
116 * read access. See FNAME(gpte_access) in paging_tmpl.h.
118 spte |= shadow_present_mask;
120 spte |= spte_shadow_accessed_mask(spte);
122 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
123 is_nx_huge_page_enabled()) {
124 pte_access &= ~ACC_EXEC_MASK;
127 if (pte_access & ACC_EXEC_MASK)
128 spte |= shadow_x_mask;
130 spte |= shadow_nx_mask;
132 if (pte_access & ACC_USER_MASK)
133 spte |= shadow_user_mask;
135 if (level > PG_LEVEL_4K)
136 spte |= PT_PAGE_SIZE_MASK;
138 spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
139 kvm_is_mmio_pfn(pfn));
142 spte |= shadow_host_writable_mask;
144 pte_access &= ~ACC_WRITE_MASK;
146 if (!kvm_is_mmio_pfn(pfn))
147 spte |= shadow_me_mask;
149 spte |= (u64)pfn << PAGE_SHIFT;
151 if (pte_access & ACC_WRITE_MASK) {
152 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
155 * Optimization: for pte sync, if spte was writable the hash
156 * lookup is unnecessary (and expensive). Write protection
157 * is responsibility of mmu_get_page / kvm_sync_page.
158 * Same reasoning can be applied to dirty page accounting.
160 if (!can_unsync && is_writable_pte(old_spte))
163 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
164 pgprintk("%s: found shadow page for %llx, marking ro\n",
166 ret |= SET_SPTE_WRITE_PROTECTED_PT;
167 pte_access &= ~ACC_WRITE_MASK;
168 spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
172 if (pte_access & ACC_WRITE_MASK)
173 spte |= spte_shadow_dirty_mask(spte);
176 spte = mark_spte_for_access_track(spte);
179 WARN_ON(is_mmio_spte(spte));
184 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
186 u64 spte = SPTE_MMU_PRESENT_MASK;
188 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
189 shadow_user_mask | shadow_x_mask | shadow_me_mask;
192 spte |= SPTE_TDP_AD_DISABLED_MASK;
194 spte |= shadow_accessed_mask;
199 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
203 new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
204 new_spte |= (u64)new_pfn << PAGE_SHIFT;
206 new_spte &= ~PT_WRITABLE_MASK;
207 new_spte &= ~shadow_host_writable_mask;
209 new_spte = mark_spte_for_access_track(new_spte);
214 static u8 kvm_get_shadow_phys_bits(void)
217 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
218 * in CPU detection code, but the processor treats those reduced bits as
219 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
220 * the physical address bits reported by CPUID.
222 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
223 return cpuid_eax(0x80000008) & 0xff;
226 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
227 * custom CPUID. Proceed with whatever the kernel found since these features
228 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
230 return boot_cpu_data.x86_phys_bits;
233 u64 mark_spte_for_access_track(u64 spte)
235 if (spte_ad_enabled(spte))
236 return spte & ~shadow_accessed_mask;
238 if (is_access_track_spte(spte))
242 * Making an Access Tracking PTE will result in removal of write access
243 * from the PTE. So, verify that we will be able to restore the write
244 * access in the fast page fault path later on.
246 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
247 !spte_can_locklessly_be_made_writable(spte),
248 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
250 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
251 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
252 "kvm: Access Tracking saved bit locations are not zero\n");
254 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
255 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
256 spte &= ~shadow_acc_track_mask;
261 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
263 BUG_ON((u64)(unsigned)access_mask != access_mask);
264 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
266 if (!enable_mmio_caching)
270 * Disable MMIO caching if the MMIO value collides with the bits that
271 * are used to hold the relocated GFN when the L1TF mitigation is
272 * enabled. This should never fire as there is no known hardware that
273 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
274 * MMIO value are not susceptible to L1TF.
276 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
277 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
281 * The masked MMIO value must obviously match itself and a removed SPTE
282 * must not get a false positive. Removed SPTEs and MMIO SPTEs should
283 * never collide as MMIO must set some RWX bits, and removed SPTEs must
284 * not set any RWX bits.
286 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
287 WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
290 shadow_mmio_value = mmio_value;
291 shadow_mmio_mask = mmio_mask;
292 shadow_mmio_access_mask = access_mask;
294 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
296 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
298 shadow_user_mask = VMX_EPT_READABLE_MASK;
299 shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
300 shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
301 shadow_nx_mask = 0ull;
302 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
303 shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
304 shadow_acc_track_mask = VMX_EPT_RWX_MASK;
305 shadow_me_mask = 0ull;
307 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
308 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
311 * EPT Misconfigurations are generated if the value of bits 2:0
312 * of an EPT paging-structure entry is 110b (write/execute).
314 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
315 VMX_EPT_RWX_MASK, 0);
317 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
319 void kvm_mmu_reset_all_pte_masks(void)
324 shadow_phys_bits = kvm_get_shadow_phys_bits();
327 * If the CPU has 46 or less physical address bits, then set an
328 * appropriate mask to guard against L1TF attacks. Otherwise, it is
329 * assumed that the CPU is not vulnerable to L1TF.
331 * Some Intel CPUs address the L1 cache using more PA bits than are
332 * reported by CPUID. Use the PA width of the L1 cache when possible
333 * to achieve more effective mitigation, e.g. if system RAM overlaps
334 * the most significant bits of legal physical address space.
336 shadow_nonpresent_or_rsvd_mask = 0;
337 low_phys_bits = boot_cpu_data.x86_phys_bits;
338 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
339 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
340 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
341 low_phys_bits = boot_cpu_data.x86_cache_bits
342 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
343 shadow_nonpresent_or_rsvd_mask =
344 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
347 shadow_nonpresent_or_rsvd_lower_gfn_mask =
348 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
350 shadow_user_mask = PT_USER_MASK;
351 shadow_accessed_mask = PT_ACCESSED_MASK;
352 shadow_dirty_mask = PT_DIRTY_MASK;
353 shadow_nx_mask = PT64_NX_MASK;
355 shadow_present_mask = PT_PRESENT_MASK;
356 shadow_acc_track_mask = 0;
357 shadow_me_mask = sme_me_mask;
359 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE;
360 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITEABLE;
363 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
364 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
365 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
366 * 52-bit physical addresses then there are no reserved PA bits in the
367 * PTEs and so the reserved PA approach must be disabled.
369 if (shadow_phys_bits < 52)
370 mask = BIT_ULL(51) | PT_PRESENT_MASK;
374 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);