1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 #define CMPXCHG cmpxchg
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 #define CMPXCHG cmpxchg
56 #elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 #define CMPXCHG cmpxchg64
69 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
71 #error Invalid PTTYPE value
74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
81 * The guest_walker structure emulates the behavior of the hardware page
87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 bool pte_writable[PT_MAX_FULL_LEVELS];
93 unsigned int pt_access[PT_MAX_FULL_LEVELS];
94 unsigned int pte_access;
96 struct x86_exception fault;
99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
109 /* dirty bit is not supported, so no need to track it */
110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
122 static inline int FNAME(is_present_gpte)(unsigned long pte)
124 #if PTTYPE != PTTYPE_EPT
125 return pte & PT_PRESENT_MASK;
131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
133 #if PTTYPE != PTTYPE_EPT
136 return __is_bad_mt_xwr(rsvd_check, gpte);
140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 pt_element_t __user *ptep_user, unsigned index,
148 pt_element_t orig_pte, pt_element_t new_pte)
155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 if (likely(npages == 1)) {
157 table = kmap_atomic(page);
158 ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 kunmap_atomic(table);
161 kvm_release_page_dirty(page);
163 struct vm_area_struct *vma;
164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
168 mmap_read_lock(current->mm);
169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171 mmap_read_unlock(current->mm);
174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 paddr = pfn << PAGE_SHIFT;
176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
178 mmap_read_unlock(current->mm);
181 ret = CMPXCHG(&table[index], orig_pte, new_pte);
183 mmap_read_unlock(current->mm);
186 return (ret != orig_pte);
189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 struct kvm_mmu_page *sp, u64 *spte,
193 if (!FNAME(is_present_gpte)(gpte))
196 /* if accessed bit is not supported prefetch non accessed gpte */
197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 !(gpte & PT_GUEST_ACCESSED_MASK))
201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
207 drop_spte(vcpu->kvm, spte);
212 * For PTTYPE_EPT, a page table can be executable but not readable
213 * on supported processors. Therefore, set_spte does not automatically
214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215 * to signify readability since it isn't used in the EPT case
217 static inline unsigned FNAME(gpte_access)(u64 gpte)
220 #if PTTYPE == PTTYPE_EPT
221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
229 access ^= (gpte >> PT64_NX_SHIFT);
235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
237 struct guest_walker *walker,
238 gpa_t addr, int write_fault)
240 unsigned level, index;
241 pt_element_t pte, orig_pte;
242 pt_element_t __user *ptep_user;
246 /* dirty/accessed bits are not supported, so no need to update them */
247 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
250 for (level = walker->max_level; level >= walker->level; --level) {
251 pte = orig_pte = walker->ptes[level - 1];
252 table_gfn = walker->table_gfn[level - 1];
253 ptep_user = walker->ptep_user[level - 1];
254 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257 pte |= PT_GUEST_ACCESSED_MASK;
259 if (level == walker->level && write_fault &&
260 !(pte & PT_GUEST_DIRTY_MASK)) {
261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262 #if PTTYPE == PTTYPE_EPT
263 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
266 pte |= PT_GUEST_DIRTY_MASK;
272 * If the slot is read-only, simply do not process the accessed
273 * and dirty bits. This is the correct thing to do if the slot
274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 * are only supported if the accessed and dirty bits are already
276 * set in the ROM (so that MMIO writes are never needed).
278 * Note that NPT does not allow this at all and faults, since
279 * it always wants nested page table entries for the guest
280 * page tables to be writable. And EPT works but will simply
281 * overwrite the read-only memory to set the accessed and dirty
284 if (unlikely(!walker->pte_writable[level - 1]))
287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292 walker->ptes[level - 1] = pte;
297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
301 pte_t pte = {.pte = gpte};
303 pkeys = pte_flags_pkey(pte_flags(pte));
309 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
311 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
312 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
313 gpa_t addr, u32 access)
317 pt_element_t __user *ptep_user;
319 u64 pt_access, pte_access;
320 unsigned index, accessed_dirty, pte_pkey;
321 unsigned nested_access;
325 u64 walk_nx_mask = 0;
326 const int write_fault = access & PFERR_WRITE_MASK;
327 const int user_fault = access & PFERR_USER_MASK;
328 const int fetch_fault = access & PFERR_FETCH_MASK;
333 trace_kvm_mmu_pagetable_walk(addr, access);
335 walker->level = mmu->root_level;
336 pte = mmu->get_guest_pgd(vcpu);
337 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
340 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
341 if (walker->level == PT32E_ROOT_LEVEL) {
342 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
343 trace_kvm_mmu_paging_element(pte, walker->level);
344 if (!FNAME(is_present_gpte)(pte))
349 walker->max_level = walker->level;
350 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
353 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
354 * by the MOV to CR instruction are treated as reads and do not cause the
355 * processor to set the dirty flag in any EPT paging-structure entry.
357 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
363 unsigned long host_addr;
365 pt_access = pte_access;
368 index = PT_INDEX(addr, walker->level);
369 table_gfn = gpte_to_gfn(pte);
370 offset = index * sizeof(pt_element_t);
371 pte_gpa = gfn_to_gpa(table_gfn) + offset;
373 BUG_ON(walker->level < 1);
374 walker->table_gfn[walker->level - 1] = table_gfn;
375 walker->pte_gpa[walker->level - 1] = pte_gpa;
377 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
382 * FIXME: This can happen if emulation (for of an INS/OUTS
383 * instruction) triggers a nested page fault. The exit
384 * qualification / exit info field will incorrectly have
385 * "guest page access" as the nested page fault's cause,
386 * instead of "guest page structure access". To fix this,
387 * the x86_exception struct should be augmented with enough
388 * information to fix the exit_qualification or exit_info_1
391 if (unlikely(real_gpa == UNMAPPED_GVA))
394 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
395 &walker->pte_writable[walker->level - 1]);
396 if (unlikely(kvm_is_error_hva(host_addr)))
399 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
400 if (unlikely(__get_user(pte, ptep_user)))
402 walker->ptep_user[walker->level - 1] = ptep_user;
404 trace_kvm_mmu_paging_element(pte, walker->level);
407 * Inverting the NX it lets us AND it like other
410 pte_access = pt_access & (pte ^ walk_nx_mask);
412 if (unlikely(!FNAME(is_present_gpte)(pte)))
415 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
416 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
420 walker->ptes[walker->level - 1] = pte;
422 /* Convert to ACC_*_MASK flags for struct guest_walker. */
423 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
424 } while (!is_last_gpte(mmu, walker->level, pte));
426 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
427 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
429 /* Convert to ACC_*_MASK flags for struct guest_walker. */
430 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
431 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
432 if (unlikely(errcode))
435 gfn = gpte_to_gfn_lvl(pte, walker->level);
436 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
438 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
439 gfn += pse36_gfn_delta(pte);
441 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
442 if (real_gpa == UNMAPPED_GVA)
445 walker->gfn = real_gpa >> PAGE_SHIFT;
448 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
451 * On a write fault, fold the dirty bit into accessed_dirty.
452 * For modes without A/D bits support accessed_dirty will be
455 accessed_dirty &= pte >>
456 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
458 if (unlikely(!accessed_dirty)) {
459 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
461 if (unlikely(ret < 0))
467 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
468 __func__, (u64)pte, walker->pte_access,
469 walker->pt_access[walker->level - 1]);
473 errcode |= write_fault | user_fault;
474 if (fetch_fault && (mmu->nx ||
475 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
476 errcode |= PFERR_FETCH_MASK;
478 walker->fault.vector = PF_VECTOR;
479 walker->fault.error_code_valid = true;
480 walker->fault.error_code = errcode;
482 #if PTTYPE == PTTYPE_EPT
484 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
485 * misconfiguration requires to be injected. The detection is
486 * done by is_rsvd_bits_set() above.
488 * We set up the value of exit_qualification to inject:
489 * [2:0] - Derive from the access bits. The exit_qualification might be
490 * out of date if it is serving an EPT misconfiguration.
491 * [5:3] - Calculated by the page walk of the guest EPT page tables
492 * [7:8] - Derived from [7:8] of real exit_qualification
494 * The other bits are set to 0.
496 if (!(errcode & PFERR_RSVD_MASK)) {
497 vcpu->arch.exit_qualification &= 0x180;
499 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
501 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
503 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
504 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
507 walker->fault.address = addr;
508 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
509 walker->fault.async_page_fault = false;
511 trace_kvm_mmu_walker_error(walker->fault.error_code);
515 static int FNAME(walk_addr)(struct guest_walker *walker,
516 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
518 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
522 #if PTTYPE != PTTYPE_EPT
523 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
524 struct kvm_vcpu *vcpu, gva_t addr,
527 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
533 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534 u64 *spte, pt_element_t gpte, bool no_dirty_log)
540 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
543 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
545 gfn = gpte_to_gfn(gpte);
546 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
547 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
548 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
549 no_dirty_log && (pte_access & ACC_WRITE_MASK));
550 if (is_error_pfn(pfn))
554 * we call mmu_set_spte() with host_writable = true because
555 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
557 mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
560 kvm_release_pfn_clean(pfn);
564 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
565 u64 *spte, const void *pte)
567 pt_element_t gpte = *(const pt_element_t *)pte;
569 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
572 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
573 struct guest_walker *gw, int level)
575 pt_element_t curr_pte;
576 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
580 if (level == PG_LEVEL_4K) {
581 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
582 base_gpa = pte_gpa & ~mask;
583 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
585 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
586 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
587 curr_pte = gw->prefetch_ptes[index];
589 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
590 &curr_pte, sizeof(curr_pte));
592 return r || curr_pte != gw->ptes[level - 1];
595 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
598 struct kvm_mmu_page *sp;
599 pt_element_t *gptep = gw->prefetch_ptes;
603 sp = sptep_to_sp(sptep);
605 if (sp->role.level > PG_LEVEL_4K)
609 * If addresses are being invalidated, skip prefetching to avoid
610 * accidentally prefetching those addresses.
612 if (unlikely(vcpu->kvm->mmu_notifier_count))
616 return __direct_pte_prefetch(vcpu, sp, sptep);
618 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
621 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
625 if (is_shadow_present_pte(*spte))
628 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
634 * Fetch a shadow pte for a specific level in the paging hierarchy.
635 * If the guest tries to write a write-protected page, we need to
636 * emulate this operation, return 1 to indicate this case.
638 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
639 struct guest_walker *gw, u32 error_code,
640 int max_level, kvm_pfn_t pfn, bool map_writable,
643 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
644 bool write_fault = error_code & PFERR_WRITE_MASK;
645 bool exec = error_code & PFERR_FETCH_MASK;
646 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
647 struct kvm_mmu_page *sp = NULL;
648 struct kvm_shadow_walk_iterator it;
649 unsigned int direct_access, access;
650 int top_level, level, req_level, ret;
651 gfn_t base_gfn = gw->gfn;
653 direct_access = gw->pte_access;
655 top_level = vcpu->arch.mmu->root_level;
656 if (top_level == PT32E_ROOT_LEVEL)
657 top_level = PT32_ROOT_LEVEL;
659 * Verify that the top-level gpte is still there. Since the page
660 * is a root page, it is either write protected (and cannot be
661 * changed from now on) or it is invalid (in which case, we don't
662 * really care if it changes underneath us after this point).
664 if (FNAME(gpte_changed)(vcpu, gw, top_level))
665 goto out_gpte_changed;
667 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
668 goto out_gpte_changed;
670 for (shadow_walk_init(&it, vcpu, addr);
671 shadow_walk_okay(&it) && it.level > gw->level;
672 shadow_walk_next(&it)) {
675 clear_sp_write_flooding_count(it.sptep);
676 drop_large_spte(vcpu, it.sptep);
679 if (!is_shadow_present_pte(*it.sptep)) {
680 table_gfn = gw->table_gfn[it.level - 2];
681 access = gw->pt_access[it.level - 2];
682 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
687 * Verify that the gpte in the page we've just write
688 * protected is still there.
690 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
691 goto out_gpte_changed;
694 link_shadow_page(vcpu, it.sptep, sp);
697 level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
698 huge_page_disallowed, &req_level);
700 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
702 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
703 clear_sp_write_flooding_count(it.sptep);
706 * We cannot overwrite existing page tables with an NX
707 * large page, as the leaf could be executable.
709 if (nx_huge_page_workaround_enabled)
710 disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
713 base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
714 if (it.level == level)
717 validate_direct_spte(vcpu, it.sptep, direct_access);
719 drop_large_spte(vcpu, it.sptep);
721 if (!is_shadow_present_pte(*it.sptep)) {
722 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
723 it.level - 1, true, direct_access);
724 link_shadow_page(vcpu, it.sptep, sp);
725 if (huge_page_disallowed && req_level >= it.level)
726 account_huge_nx_page(vcpu->kvm, sp);
730 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
731 it.level, base_gfn, pfn, prefault, map_writable);
732 if (ret == RET_PF_SPURIOUS)
735 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
736 ++vcpu->stat.pf_fixed;
744 * To see whether the mapped gfn can write its page table in the current
747 * It is the helper function of FNAME(page_fault). When guest uses large page
748 * size to map the writable gfn which is used as current page table, we should
749 * force kvm to use small page size to map it because new shadow page will be
750 * created when kvm establishes shadow page table that stop kvm using large
751 * page size. Do it early can avoid unnecessary #PF and emulation.
753 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
754 * currently used as its page table.
756 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
757 * since the PDPT is always shadowed, that means, we can not use large page
758 * size to map the gfn which is used as PDPT.
761 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
762 struct guest_walker *walker, bool user_fault,
763 bool *write_fault_to_shadow_pgtable)
766 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
767 bool self_changed = false;
769 if (!(walker->pte_access & ACC_WRITE_MASK ||
770 (!is_write_protection(vcpu) && !user_fault)))
773 for (level = walker->level; level <= walker->max_level; level++) {
774 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
776 self_changed |= !(gfn & mask);
777 *write_fault_to_shadow_pgtable |= !gfn;
784 * Page fault handler. There are several causes for a page fault:
785 * - there is no shadow pte for the guest pte
786 * - write access through a shadow pte marked read only so that we can set
788 * - write access to a shadow pte marked read only so we can update the page
789 * dirty bitmap, when userspace requests it
790 * - mmio access; in this case we will never install a present shadow pte
791 * - normal guest page fault due to the guest pte marked not present, not
792 * writable, or not executable
794 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
795 * a negative value on error.
797 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
800 bool write_fault = error_code & PFERR_WRITE_MASK;
801 bool user_fault = error_code & PFERR_USER_MASK;
802 struct guest_walker walker;
806 unsigned long mmu_seq;
807 bool map_writable, is_self_change_mapping;
810 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
813 * If PFEC.RSVD is set, this is a shadow page fault.
814 * The bit needs to be cleared before walking guest page tables.
816 error_code &= ~PFERR_RSVD_MASK;
819 * Look up the guest pte for the faulting address.
821 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
824 * The page is not mapped by the guest. Let the guest handle it.
827 pgprintk("%s: guest page fault\n", __func__);
829 kvm_inject_emulated_page_fault(vcpu, &walker.fault);
834 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
835 shadow_page_table_clear_flood(vcpu, addr);
836 return RET_PF_EMULATE;
839 r = mmu_topup_memory_caches(vcpu, true);
843 vcpu->arch.write_fault_to_shadow_pgtable = false;
845 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
846 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
848 if (is_self_change_mapping)
849 max_level = PG_LEVEL_4K;
851 max_level = walker.level;
853 mmu_seq = vcpu->kvm->mmu_notifier_seq;
856 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, &hva,
857 write_fault, &map_writable))
860 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
864 * Do not change pte_access if the pfn is a mmio page, otherwise
865 * we will cache the incorrect access into mmio spte.
867 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
868 !is_write_protection(vcpu) && !user_fault &&
869 !is_noslot_pfn(pfn)) {
870 walker.pte_access |= ACC_WRITE_MASK;
871 walker.pte_access &= ~ACC_USER_MASK;
874 * If we converted a user page to a kernel page,
875 * so that the kernel can write to it when cr0.wp=0,
876 * then we should prevent the kernel from executing it
877 * if SMEP is enabled.
879 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
880 walker.pte_access &= ~ACC_EXEC_MASK;
884 write_lock(&vcpu->kvm->mmu_lock);
885 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
888 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
889 r = make_mmu_pages_available(vcpu);
892 r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
893 map_writable, prefault);
894 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
897 write_unlock(&vcpu->kvm->mmu_lock);
898 kvm_release_pfn_clean(pfn);
902 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
906 WARN_ON(sp->role.level != PG_LEVEL_4K);
909 offset = sp->role.quadrant << PT64_LEVEL_BITS;
911 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
914 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
916 struct kvm_shadow_walk_iterator iterator;
917 struct kvm_mmu_page *sp;
922 vcpu_clear_mmio_info(vcpu, gva);
925 * No need to check return value here, rmap_can_add() can
926 * help us to skip pte prefetch later.
928 mmu_topup_memory_caches(vcpu, true);
930 if (!VALID_PAGE(root_hpa)) {
935 write_lock(&vcpu->kvm->mmu_lock);
936 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
937 level = iterator.level;
938 sptep = iterator.sptep;
940 sp = sptep_to_sp(sptep);
942 if (is_last_spte(old_spte, level)) {
949 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
950 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
952 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
953 if (is_shadow_present_pte(old_spte))
954 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
955 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
957 if (!rmap_can_add(vcpu))
960 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
961 sizeof(pt_element_t)))
964 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
967 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
970 write_unlock(&vcpu->kvm->mmu_lock);
973 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
974 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
975 struct x86_exception *exception)
977 struct guest_walker walker;
978 gpa_t gpa = UNMAPPED_GVA;
981 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
984 gpa = gfn_to_gpa(walker.gfn);
985 gpa |= addr & ~PAGE_MASK;
986 } else if (exception)
987 *exception = walker.fault;
992 #if PTTYPE != PTTYPE_EPT
993 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
994 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
996 struct x86_exception *exception)
998 struct guest_walker walker;
999 gpa_t gpa = UNMAPPED_GVA;
1002 #ifndef CONFIG_X86_64
1003 /* A 64-bit GVA should be impossible on 32-bit KVM. */
1004 WARN_ON_ONCE(vaddr >> 32);
1007 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
1010 gpa = gfn_to_gpa(walker.gfn);
1011 gpa |= vaddr & ~PAGE_MASK;
1012 } else if (exception)
1013 *exception = walker.fault;
1020 * Using the cached information from sp->gfns is safe because:
1021 * - The spte has a reference to the struct page, so the pfn for a given gfn
1022 * can't change unless all sptes pointing to it are nuked first.
1025 * We should flush all tlbs if spte is dropped even though guest is
1026 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1027 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1028 * used by guest then tlbs are not flushed, so guest is allowed to access the
1030 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1032 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1034 int i, nr_present = 0;
1036 gpa_t first_pte_gpa;
1037 int set_spte_ret = 0;
1039 /* direct kvm_mmu_page can not be unsync. */
1040 BUG_ON(sp->role.direct);
1042 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1044 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1045 unsigned pte_access;
1053 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1055 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1056 sizeof(pt_element_t)))
1059 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1061 * Update spte before increasing tlbs_dirty to make
1062 * sure no tlb flush is lost after spte is zapped; see
1063 * the comments in kvm_flush_remote_tlbs().
1066 vcpu->kvm->tlbs_dirty++;
1070 gfn = gpte_to_gfn(gpte);
1071 pte_access = sp->role.access;
1072 pte_access &= FNAME(gpte_access)(gpte);
1073 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1075 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1079 if (gfn != sp->gfns[i]) {
1080 drop_spte(vcpu->kvm, &sp->spt[i]);
1082 * The same as above where we are doing
1083 * prefetch_invalid_gpte().
1086 vcpu->kvm->tlbs_dirty++;
1092 host_writable = sp->spt[i] & shadow_host_writable_mask;
1094 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1095 pte_access, PG_LEVEL_4K,
1096 gfn, spte_to_pfn(sp->spt[i]),
1097 true, false, host_writable);
1100 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1101 kvm_flush_remote_tlbs(vcpu->kvm);
1109 #undef PT_BASE_ADDR_MASK
1111 #undef PT_LVL_ADDR_MASK
1112 #undef PT_LVL_OFFSET_MASK
1113 #undef PT_LEVEL_BITS
1114 #undef PT_MAX_FULL_LEVELS
1116 #undef gpte_to_gfn_lvl
1118 #undef PT_GUEST_ACCESSED_MASK
1119 #undef PT_GUEST_DIRTY_MASK
1120 #undef PT_GUEST_DIRTY_SHIFT
1121 #undef PT_GUEST_ACCESSED_SHIFT
1122 #undef PT_HAVE_ACCESSED_DIRTY