1 // SPDX-License-Identifier: GPL-2.0-only
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
100 pgprot_t protection_map[16] __ro_after_init = {
101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 pgprot_val(arch_vm_get_page_prot(vm_flags)));
118 return arch_filter_pgprot(ret);
120 EXPORT_SYMBOL(vm_get_page_prot);
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
130 unsigned long vm_flags = vma->vm_flags;
131 pgprot_t vm_page_prot;
133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 if (vma_wants_writenotify(vma, vm_page_prot)) {
135 vm_flags &= ~VM_SHARED;
136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 * Requires inode->i_mapping->i_mmap_rwsem
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 struct file *file, struct address_space *mapping)
148 if (vma->vm_flags & VM_DENYWRITE)
149 atomic_inc(&file_inode(file)->i_writecount);
150 if (vma->vm_flags & VM_SHARED)
151 mapping_unmap_writable(mapping);
153 flush_dcache_mmap_lock(mapping);
154 vma_interval_tree_remove(vma, &mapping->i_mmap);
155 flush_dcache_mmap_unlock(mapping);
159 * Unlink a file-based vm structure from its interval tree, to hide
160 * vma from rmap and vmtruncate before freeing its page tables.
162 void unlink_file_vma(struct vm_area_struct *vma)
164 struct file *file = vma->vm_file;
167 struct address_space *mapping = file->f_mapping;
168 i_mmap_lock_write(mapping);
169 __remove_shared_vm_struct(vma, file, mapping);
170 i_mmap_unlock_write(mapping);
175 * Close a vm structure and free it, returning the next.
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 struct vm_area_struct *next = vma->vm_next;
182 if (vma->vm_ops && vma->vm_ops->close)
183 vma->vm_ops->close(vma);
186 mpol_put(vma_policy(vma));
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 unsigned long retval;
196 unsigned long newbrk, oldbrk, origbrk;
197 struct mm_struct *mm = current->mm;
198 struct vm_area_struct *next;
199 unsigned long min_brk;
201 bool downgraded = false;
204 brk = untagged_addr(brk);
206 if (down_write_killable(&mm->mmap_sem))
211 #ifdef CONFIG_COMPAT_BRK
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
220 min_brk = mm->end_data;
222 min_brk = mm->start_brk;
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_sem to read.
248 if (brk <= mm->brk) {
252 * mm->brk must to be protected by write mmap_sem so update it
253 * before downgrading mmap_sem. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
261 } else if (ret == 1) {
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
280 up_read(&mm->mmap_sem);
282 up_write(&mm->mmap_sem);
283 userfaultfd_unmap_complete(mm, &uf);
285 mm_populate(oldbrk, newbrk - oldbrk);
290 up_write(&mm->mmap_sem);
294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
296 unsigned long gap, prev_end;
299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 * allow two stack_guard_gaps between them here, and when choosing
301 * an unmapped area; whereas when expanding we only require one.
302 * That's a little inconsistent, but keeps the code here simpler.
304 gap = vm_start_gap(vma);
306 prev_end = vm_end_gap(vma->vm_prev);
315 #ifdef CONFIG_DEBUG_VM_RB
316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
318 unsigned long max = vma_compute_gap(vma), subtree_gap;
319 if (vma->vm_rb.rb_left) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
325 if (vma->vm_rb.rb_right) {
326 subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 if (subtree_gap > max)
334 static int browse_rb(struct mm_struct *mm)
336 struct rb_root *root = &mm->mm_rb;
337 int i = 0, j, bug = 0;
338 struct rb_node *nd, *pn = NULL;
339 unsigned long prev = 0, pend = 0;
341 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 struct vm_area_struct *vma;
343 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 if (vma->vm_start < prev) {
345 pr_emerg("vm_start %lx < prev %lx\n",
346 vma->vm_start, prev);
349 if (vma->vm_start < pend) {
350 pr_emerg("vm_start %lx < pend %lx\n",
351 vma->vm_start, pend);
354 if (vma->vm_start > vma->vm_end) {
355 pr_emerg("vm_start %lx > vm_end %lx\n",
356 vma->vm_start, vma->vm_end);
359 spin_lock(&mm->page_table_lock);
360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 pr_emerg("free gap %lx, correct %lx\n",
363 vma_compute_subtree_gap(vma));
366 spin_unlock(&mm->page_table_lock);
369 prev = vma->vm_start;
373 for (nd = pn; nd; nd = rb_prev(nd))
376 pr_emerg("backwards %d, forwards %d\n", j, i);
382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 VM_BUG_ON_VMA(vma != ignore &&
390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
395 static void validate_mm(struct mm_struct *mm)
399 unsigned long highest_address = 0;
400 struct vm_area_struct *vma = mm->mmap;
403 struct anon_vma *anon_vma = vma->anon_vma;
404 struct anon_vma_chain *avc;
407 anon_vma_lock_read(anon_vma);
408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 anon_vma_interval_tree_verify(avc);
410 anon_vma_unlock_read(anon_vma);
413 highest_address = vm_end_gap(vma);
417 if (i != mm->map_count) {
418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
421 if (highest_address != mm->highest_vm_end) {
422 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 mm->highest_vm_end, highest_address);
427 if (i != mm->map_count) {
429 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
432 VM_BUG_ON_MM(bug, mm);
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 struct vm_area_struct, vm_rb,
441 unsigned long, rb_subtree_gap, vma_compute_gap)
444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
448 static void vma_gap_update(struct vm_area_struct *vma)
451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 * a callback function that does exactly what we want.
454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 struct rb_root *root)
460 /* All rb_subtree_gap values must be consistent prior to insertion */
461 validate_mm_rb(root, NULL);
463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
469 * Note rb_erase_augmented is a fairly large inline function,
470 * so make sure we instantiate it only once with our desired
471 * augmented rbtree callbacks.
473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 struct rb_root *root,
478 struct vm_area_struct *ignore)
481 * All rb_subtree_gap values must be consistent prior to erase,
482 * with the possible exception of the "next" vma being erased if
483 * next->vm_start was reduced.
485 validate_mm_rb(root, ignore);
487 __vma_rb_erase(vma, root);
490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
491 struct rb_root *root)
494 * All rb_subtree_gap values must be consistent prior to erase,
495 * with the possible exception of the vma being erased.
497 validate_mm_rb(root, vma);
499 __vma_rb_erase(vma, root);
503 * vma has some anon_vma assigned, and is already inserted on that
504 * anon_vma's interval trees.
506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507 * vma must be removed from the anon_vma's interval trees using
508 * anon_vma_interval_tree_pre_update_vma().
510 * After the update, the vma will be reinserted using
511 * anon_vma_interval_tree_post_update_vma().
513 * The entire update must be protected by exclusive mmap_sem and by
514 * the root anon_vma's mutex.
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
519 struct anon_vma_chain *avc;
521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
528 struct anon_vma_chain *avc;
530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 unsigned long end, struct vm_area_struct **pprev,
536 struct rb_node ***rb_link, struct rb_node **rb_parent)
538 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
540 __rb_link = &mm->mm_rb.rb_node;
541 rb_prev = __rb_parent = NULL;
544 struct vm_area_struct *vma_tmp;
546 __rb_parent = *__rb_link;
547 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
549 if (vma_tmp->vm_end > addr) {
550 /* Fail if an existing vma overlaps the area */
551 if (vma_tmp->vm_start < end)
553 __rb_link = &__rb_parent->rb_left;
555 rb_prev = __rb_parent;
556 __rb_link = &__rb_parent->rb_right;
562 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 *rb_link = __rb_link;
564 *rb_parent = __rb_parent;
568 static unsigned long count_vma_pages_range(struct mm_struct *mm,
569 unsigned long addr, unsigned long end)
571 unsigned long nr_pages = 0;
572 struct vm_area_struct *vma;
574 /* Find first overlaping mapping */
575 vma = find_vma_intersection(mm, addr, end);
579 nr_pages = (min(end, vma->vm_end) -
580 max(addr, vma->vm_start)) >> PAGE_SHIFT;
582 /* Iterate over the rest of the overlaps */
583 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
584 unsigned long overlap_len;
586 if (vma->vm_start > end)
589 overlap_len = min(end, vma->vm_end) - vma->vm_start;
590 nr_pages += overlap_len >> PAGE_SHIFT;
596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
597 struct rb_node **rb_link, struct rb_node *rb_parent)
599 /* Update tracking information for the gap following the new vma. */
601 vma_gap_update(vma->vm_next);
603 mm->highest_vm_end = vm_end_gap(vma);
606 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 * correct insertion point for that vma. As a result, we could not
608 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 * So, we first insert the vma with a zero rb_subtree_gap value
610 * (to be consistent with what we did on the way down), and then
611 * immediately update the gap to the correct value. Finally we
612 * rebalance the rbtree after all augmented values have been set.
614 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
615 vma->rb_subtree_gap = 0;
617 vma_rb_insert(vma, &mm->mm_rb);
620 static void __vma_link_file(struct vm_area_struct *vma)
626 struct address_space *mapping = file->f_mapping;
628 if (vma->vm_flags & VM_DENYWRITE)
629 atomic_dec(&file_inode(file)->i_writecount);
630 if (vma->vm_flags & VM_SHARED)
631 atomic_inc(&mapping->i_mmap_writable);
633 flush_dcache_mmap_lock(mapping);
634 vma_interval_tree_insert(vma, &mapping->i_mmap);
635 flush_dcache_mmap_unlock(mapping);
640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
644 __vma_link_list(mm, vma, prev);
645 __vma_link_rb(mm, vma, rb_link, rb_parent);
648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
649 struct vm_area_struct *prev, struct rb_node **rb_link,
650 struct rb_node *rb_parent)
652 struct address_space *mapping = NULL;
655 mapping = vma->vm_file->f_mapping;
656 i_mmap_lock_write(mapping);
659 __vma_link(mm, vma, prev, rb_link, rb_parent);
660 __vma_link_file(vma);
663 i_mmap_unlock_write(mapping);
670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
671 * mm's list and rbtree. It has already been inserted into the interval tree.
673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
675 struct vm_area_struct *prev;
676 struct rb_node **rb_link, *rb_parent;
678 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
679 &prev, &rb_link, &rb_parent))
681 __vma_link(mm, vma, prev, rb_link, rb_parent);
685 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
686 struct vm_area_struct *vma,
687 struct vm_area_struct *ignore)
689 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
690 __vma_unlink_list(mm, vma);
692 vmacache_invalidate(mm);
696 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
697 * is already present in an i_mmap tree without adjusting the tree.
698 * The following helper function should be used when such adjustments
699 * are necessary. The "insert" vma (if any) is to be inserted
700 * before we drop the necessary locks.
702 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
703 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
704 struct vm_area_struct *expand)
706 struct mm_struct *mm = vma->vm_mm;
707 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
708 struct address_space *mapping = NULL;
709 struct rb_root_cached *root = NULL;
710 struct anon_vma *anon_vma = NULL;
711 struct file *file = vma->vm_file;
712 bool start_changed = false, end_changed = false;
713 long adjust_next = 0;
716 if (next && !insert) {
717 struct vm_area_struct *exporter = NULL, *importer = NULL;
719 if (end >= next->vm_end) {
721 * vma expands, overlapping all the next, and
722 * perhaps the one after too (mprotect case 6).
723 * The only other cases that gets here are
724 * case 1, case 7 and case 8.
726 if (next == expand) {
728 * The only case where we don't expand "vma"
729 * and we expand "next" instead is case 8.
731 VM_WARN_ON(end != next->vm_end);
733 * remove_next == 3 means we're
734 * removing "vma" and that to do so we
735 * swapped "vma" and "next".
738 VM_WARN_ON(file != next->vm_file);
741 VM_WARN_ON(expand != vma);
743 * case 1, 6, 7, remove_next == 2 is case 6,
744 * remove_next == 1 is case 1 or 7.
746 remove_next = 1 + (end > next->vm_end);
747 VM_WARN_ON(remove_next == 2 &&
748 end != next->vm_next->vm_end);
749 /* trim end to next, for case 6 first pass */
757 * If next doesn't have anon_vma, import from vma after
758 * next, if the vma overlaps with it.
760 if (remove_next == 2 && !next->anon_vma)
761 exporter = next->vm_next;
763 } else if (end > next->vm_start) {
765 * vma expands, overlapping part of the next:
766 * mprotect case 5 shifting the boundary up.
768 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
771 VM_WARN_ON(expand != importer);
772 } else if (end < vma->vm_end) {
774 * vma shrinks, and !insert tells it's not
775 * split_vma inserting another: so it must be
776 * mprotect case 4 shifting the boundary down.
778 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
781 VM_WARN_ON(expand != importer);
785 * Easily overlooked: when mprotect shifts the boundary,
786 * make sure the expanding vma has anon_vma set if the
787 * shrinking vma had, to cover any anon pages imported.
789 if (exporter && exporter->anon_vma && !importer->anon_vma) {
792 importer->anon_vma = exporter->anon_vma;
793 error = anon_vma_clone(importer, exporter);
799 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
802 mapping = file->f_mapping;
803 root = &mapping->i_mmap;
804 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
807 uprobe_munmap(next, next->vm_start, next->vm_end);
809 i_mmap_lock_write(mapping);
812 * Put into interval tree now, so instantiated pages
813 * are visible to arm/parisc __flush_dcache_page
814 * throughout; but we cannot insert into address
815 * space until vma start or end is updated.
817 __vma_link_file(insert);
821 anon_vma = vma->anon_vma;
822 if (!anon_vma && adjust_next)
823 anon_vma = next->anon_vma;
825 VM_WARN_ON(adjust_next && next->anon_vma &&
826 anon_vma != next->anon_vma);
827 anon_vma_lock_write(anon_vma);
828 anon_vma_interval_tree_pre_update_vma(vma);
830 anon_vma_interval_tree_pre_update_vma(next);
834 flush_dcache_mmap_lock(mapping);
835 vma_interval_tree_remove(vma, root);
837 vma_interval_tree_remove(next, root);
840 if (start != vma->vm_start) {
841 vma->vm_start = start;
842 start_changed = true;
844 if (end != vma->vm_end) {
848 vma->vm_pgoff = pgoff;
850 next->vm_start += adjust_next << PAGE_SHIFT;
851 next->vm_pgoff += adjust_next;
856 vma_interval_tree_insert(next, root);
857 vma_interval_tree_insert(vma, root);
858 flush_dcache_mmap_unlock(mapping);
863 * vma_merge has merged next into vma, and needs
864 * us to remove next before dropping the locks.
866 if (remove_next != 3)
867 __vma_unlink_common(mm, next, next);
870 * vma is not before next if they've been
873 * pre-swap() next->vm_start was reduced so
874 * tell validate_mm_rb to ignore pre-swap()
875 * "next" (which is stored in post-swap()
878 __vma_unlink_common(mm, next, vma);
880 __remove_shared_vm_struct(next, file, mapping);
883 * split_vma has split insert from vma, and needs
884 * us to insert it before dropping the locks
885 * (it may either follow vma or precede it).
887 __insert_vm_struct(mm, insert);
893 mm->highest_vm_end = vm_end_gap(vma);
894 else if (!adjust_next)
895 vma_gap_update(next);
900 anon_vma_interval_tree_post_update_vma(vma);
902 anon_vma_interval_tree_post_update_vma(next);
903 anon_vma_unlock_write(anon_vma);
906 i_mmap_unlock_write(mapping);
917 uprobe_munmap(next, next->vm_start, next->vm_end);
921 anon_vma_merge(vma, next);
923 mpol_put(vma_policy(next));
926 * In mprotect's case 6 (see comments on vma_merge),
927 * we must remove another next too. It would clutter
928 * up the code too much to do both in one go.
930 if (remove_next != 3) {
932 * If "next" was removed and vma->vm_end was
933 * expanded (up) over it, in turn
934 * "next->vm_prev->vm_end" changed and the
935 * "vma->vm_next" gap must be updated.
940 * For the scope of the comment "next" and
941 * "vma" considered pre-swap(): if "vma" was
942 * removed, next->vm_start was expanded (down)
943 * over it and the "next" gap must be updated.
944 * Because of the swap() the post-swap() "vma"
945 * actually points to pre-swap() "next"
946 * (post-swap() "next" as opposed is now a
951 if (remove_next == 2) {
957 vma_gap_update(next);
960 * If remove_next == 2 we obviously can't
963 * If remove_next == 3 we can't reach this
964 * path because pre-swap() next is always not
965 * NULL. pre-swap() "next" is not being
966 * removed and its next->vm_end is not altered
967 * (and furthermore "end" already matches
968 * next->vm_end in remove_next == 3).
970 * We reach this only in the remove_next == 1
971 * case if the "next" vma that was removed was
972 * the highest vma of the mm. However in such
973 * case next->vm_end == "end" and the extended
974 * "vma" has vma->vm_end == next->vm_end so
975 * mm->highest_vm_end doesn't need any update
976 * in remove_next == 1 case.
978 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
990 * If the vma has a ->close operation then the driver probably needs to release
991 * per-vma resources, so we don't attempt to merge those.
993 static inline int is_mergeable_vma(struct vm_area_struct *vma,
994 struct file *file, unsigned long vm_flags,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
998 * VM_SOFTDIRTY should not prevent from VMA merging, if we
999 * match the flags but dirty bit -- the caller should mark
1000 * merged VMA as dirty. If dirty bit won't be excluded from
1001 * comparison, we increase pressure on the memory system forcing
1002 * the kernel to generate new VMAs when old one could be
1005 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1007 if (vma->vm_file != file)
1009 if (vma->vm_ops && vma->vm_ops->close)
1011 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1016 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1017 struct anon_vma *anon_vma2,
1018 struct vm_area_struct *vma)
1021 * The list_is_singular() test is to avoid merging VMA cloned from
1022 * parents. This can improve scalability caused by anon_vma lock.
1024 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1025 list_is_singular(&vma->anon_vma_chain)))
1027 return anon_vma1 == anon_vma2;
1031 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1032 * in front of (at a lower virtual address and file offset than) the vma.
1034 * We cannot merge two vmas if they have differently assigned (non-NULL)
1035 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1037 * We don't check here for the merged mmap wrapping around the end of pagecache
1038 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1039 * wrap, nor mmaps which cover the final page at index -1UL.
1042 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1043 struct anon_vma *anon_vma, struct file *file,
1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1047 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1048 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1049 if (vma->vm_pgoff == vm_pgoff)
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * beyond (at a higher virtual address and file offset than) the vma.
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1064 struct anon_vma *anon_vma, struct file *file,
1066 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1068 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1069 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1071 vm_pglen = vma_pages(vma);
1072 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1079 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1080 * whether that can be merged with its predecessor or its successor.
1081 * Or both (it neatly fills a hole).
1083 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1084 * certain not to be mapped by the time vma_merge is called; but when
1085 * called for mprotect, it is certain to be already mapped (either at
1086 * an offset within prev, or at the start of next), and the flags of
1087 * this area are about to be changed to vm_flags - and the no-change
1088 * case has already been eliminated.
1090 * The following mprotect cases have to be considered, where AAAA is
1091 * the area passed down from mprotect_fixup, never extending beyond one
1092 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1094 * AAAA AAAA AAAA AAAA
1095 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1096 * cannot merge might become might become might become
1097 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1098 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1099 * mremap move: PPPPXXXXXXXX 8
1101 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1102 * might become case 1 below case 2 below case 3 below
1104 * It is important for case 8 that the vma NNNN overlapping the
1105 * region AAAA is never going to extended over XXXX. Instead XXXX must
1106 * be extended in region AAAA and NNNN must be removed. This way in
1107 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1108 * rmap_locks, the properties of the merged vma will be already
1109 * correct for the whole merged range. Some of those properties like
1110 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1111 * be correct for the whole merged range immediately after the
1112 * rmap_locks are released. Otherwise if XXXX would be removed and
1113 * NNNN would be extended over the XXXX range, remove_migration_ptes
1114 * or other rmap walkers (if working on addresses beyond the "end"
1115 * parameter) may establish ptes with the wrong permissions of NNNN
1116 * instead of the right permissions of XXXX.
1118 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1119 struct vm_area_struct *prev, unsigned long addr,
1120 unsigned long end, unsigned long vm_flags,
1121 struct anon_vma *anon_vma, struct file *file,
1122 pgoff_t pgoff, struct mempolicy *policy,
1123 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1125 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1126 struct vm_area_struct *area, *next;
1130 * We later require that vma->vm_flags == vm_flags,
1131 * so this tests vma->vm_flags & VM_SPECIAL, too.
1133 if (vm_flags & VM_SPECIAL)
1137 next = prev->vm_next;
1141 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1142 next = next->vm_next;
1144 /* verify some invariant that must be enforced by the caller */
1145 VM_WARN_ON(prev && addr <= prev->vm_start);
1146 VM_WARN_ON(area && end > area->vm_end);
1147 VM_WARN_ON(addr >= end);
1150 * Can it merge with the predecessor?
1152 if (prev && prev->vm_end == addr &&
1153 mpol_equal(vma_policy(prev), policy) &&
1154 can_vma_merge_after(prev, vm_flags,
1155 anon_vma, file, pgoff,
1156 vm_userfaultfd_ctx)) {
1158 * OK, it can. Can we now merge in the successor as well?
1160 if (next && end == next->vm_start &&
1161 mpol_equal(policy, vma_policy(next)) &&
1162 can_vma_merge_before(next, vm_flags,
1165 vm_userfaultfd_ctx) &&
1166 is_mergeable_anon_vma(prev->anon_vma,
1167 next->anon_vma, NULL)) {
1169 err = __vma_adjust(prev, prev->vm_start,
1170 next->vm_end, prev->vm_pgoff, NULL,
1172 } else /* cases 2, 5, 7 */
1173 err = __vma_adjust(prev, prev->vm_start,
1174 end, prev->vm_pgoff, NULL, prev);
1177 khugepaged_enter_vma_merge(prev, vm_flags);
1182 * Can this new request be merged in front of next?
1184 if (next && end == next->vm_start &&
1185 mpol_equal(policy, vma_policy(next)) &&
1186 can_vma_merge_before(next, vm_flags,
1187 anon_vma, file, pgoff+pglen,
1188 vm_userfaultfd_ctx)) {
1189 if (prev && addr < prev->vm_end) /* case 4 */
1190 err = __vma_adjust(prev, prev->vm_start,
1191 addr, prev->vm_pgoff, NULL, next);
1192 else { /* cases 3, 8 */
1193 err = __vma_adjust(area, addr, next->vm_end,
1194 next->vm_pgoff - pglen, NULL, next);
1196 * In case 3 area is already equal to next and
1197 * this is a noop, but in case 8 "area" has
1198 * been removed and next was expanded over it.
1204 khugepaged_enter_vma_merge(area, vm_flags);
1212 * Rough compatbility check to quickly see if it's even worth looking
1213 * at sharing an anon_vma.
1215 * They need to have the same vm_file, and the flags can only differ
1216 * in things that mprotect may change.
1218 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1219 * we can merge the two vma's. For example, we refuse to merge a vma if
1220 * there is a vm_ops->close() function, because that indicates that the
1221 * driver is doing some kind of reference counting. But that doesn't
1222 * really matter for the anon_vma sharing case.
1224 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1226 return a->vm_end == b->vm_start &&
1227 mpol_equal(vma_policy(a), vma_policy(b)) &&
1228 a->vm_file == b->vm_file &&
1229 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1230 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1234 * Do some basic sanity checking to see if we can re-use the anon_vma
1235 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1236 * the same as 'old', the other will be the new one that is trying
1237 * to share the anon_vma.
1239 * NOTE! This runs with mm_sem held for reading, so it is possible that
1240 * the anon_vma of 'old' is concurrently in the process of being set up
1241 * by another page fault trying to merge _that_. But that's ok: if it
1242 * is being set up, that automatically means that it will be a singleton
1243 * acceptable for merging, so we can do all of this optimistically. But
1244 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1246 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1247 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1248 * is to return an anon_vma that is "complex" due to having gone through
1251 * We also make sure that the two vma's are compatible (adjacent,
1252 * and with the same memory policies). That's all stable, even with just
1253 * a read lock on the mm_sem.
1255 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1257 if (anon_vma_compatible(a, b)) {
1258 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1260 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1267 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1268 * neighbouring vmas for a suitable anon_vma, before it goes off
1269 * to allocate a new anon_vma. It checks because a repetitive
1270 * sequence of mprotects and faults may otherwise lead to distinct
1271 * anon_vmas being allocated, preventing vma merge in subsequent
1274 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1276 struct anon_vma *anon_vma;
1277 struct vm_area_struct *near;
1279 near = vma->vm_next;
1283 anon_vma = reusable_anon_vma(near, vma, near);
1287 near = vma->vm_prev;
1291 anon_vma = reusable_anon_vma(near, near, vma);
1296 * There's no absolute need to look only at touching neighbours:
1297 * we could search further afield for "compatible" anon_vmas.
1298 * But it would probably just be a waste of time searching,
1299 * or lead to too many vmas hanging off the same anon_vma.
1300 * We're trying to allow mprotect remerging later on,
1301 * not trying to minimize memory used for anon_vmas.
1307 * If a hint addr is less than mmap_min_addr change hint to be as
1308 * low as possible but still greater than mmap_min_addr
1310 static inline unsigned long round_hint_to_min(unsigned long hint)
1313 if (((void *)hint != NULL) &&
1314 (hint < mmap_min_addr))
1315 return PAGE_ALIGN(mmap_min_addr);
1319 static inline int mlock_future_check(struct mm_struct *mm,
1320 unsigned long flags,
1323 unsigned long locked, lock_limit;
1325 /* mlock MCL_FUTURE? */
1326 if (flags & VM_LOCKED) {
1327 locked = len >> PAGE_SHIFT;
1328 locked += mm->locked_vm;
1329 lock_limit = rlimit(RLIMIT_MEMLOCK);
1330 lock_limit >>= PAGE_SHIFT;
1331 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1337 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1339 if (S_ISREG(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1342 if (S_ISBLK(inode->i_mode))
1343 return MAX_LFS_FILESIZE;
1345 if (S_ISSOCK(inode->i_mode))
1346 return MAX_LFS_FILESIZE;
1348 /* Special "we do even unsigned file positions" case */
1349 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1352 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1356 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1357 unsigned long pgoff, unsigned long len)
1359 u64 maxsize = file_mmap_size_max(file, inode);
1361 if (maxsize && len > maxsize)
1364 if (pgoff > maxsize >> PAGE_SHIFT)
1370 * The caller must hold down_write(¤t->mm->mmap_sem).
1372 unsigned long do_mmap(struct file *file, unsigned long addr,
1373 unsigned long len, unsigned long prot,
1374 unsigned long flags, vm_flags_t vm_flags,
1375 unsigned long pgoff, unsigned long *populate,
1376 struct list_head *uf)
1378 struct mm_struct *mm = current->mm;
1387 * Does the application expect PROT_READ to imply PROT_EXEC?
1389 * (the exception is when the underlying filesystem is noexec
1390 * mounted, in which case we dont add PROT_EXEC.)
1392 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1393 if (!(file && path_noexec(&file->f_path)))
1396 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1397 if (flags & MAP_FIXED_NOREPLACE)
1400 if (!(flags & MAP_FIXED))
1401 addr = round_hint_to_min(addr);
1403 /* Careful about overflows.. */
1404 len = PAGE_ALIGN(len);
1408 /* offset overflow? */
1409 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1412 /* Too many mappings? */
1413 if (mm->map_count > sysctl_max_map_count)
1416 /* Obtain the address to map to. we verify (or select) it and ensure
1417 * that it represents a valid section of the address space.
1419 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1420 if (IS_ERR_VALUE(addr))
1423 if (flags & MAP_FIXED_NOREPLACE) {
1424 struct vm_area_struct *vma = find_vma(mm, addr);
1426 if (vma && vma->vm_start < addr + len)
1430 if (prot == PROT_EXEC) {
1431 pkey = execute_only_pkey(mm);
1436 /* Do simple checking here so the lower-level routines won't have
1437 * to. we assume access permissions have been handled by the open
1438 * of the memory object, so we don't do any here.
1440 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1441 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1443 if (flags & MAP_LOCKED)
1444 if (!can_do_mlock())
1447 if (mlock_future_check(mm, vm_flags, len))
1451 struct inode *inode = file_inode(file);
1452 unsigned long flags_mask;
1454 if (!file_mmap_ok(file, inode, pgoff, len))
1457 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1459 switch (flags & MAP_TYPE) {
1462 * Force use of MAP_SHARED_VALIDATE with non-legacy
1463 * flags. E.g. MAP_SYNC is dangerous to use with
1464 * MAP_SHARED as you don't know which consistency model
1465 * you will get. We silently ignore unsupported flags
1466 * with MAP_SHARED to preserve backward compatibility.
1468 flags &= LEGACY_MAP_MASK;
1470 case MAP_SHARED_VALIDATE:
1471 if (flags & ~flags_mask)
1473 if (prot & PROT_WRITE) {
1474 if (!(file->f_mode & FMODE_WRITE))
1476 if (IS_SWAPFILE(file->f_mapping->host))
1481 * Make sure we don't allow writing to an append-only
1484 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1488 * Make sure there are no mandatory locks on the file.
1490 if (locks_verify_locked(file))
1493 vm_flags |= VM_SHARED | VM_MAYSHARE;
1494 if (!(file->f_mode & FMODE_WRITE))
1495 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1499 if (!(file->f_mode & FMODE_READ))
1501 if (path_noexec(&file->f_path)) {
1502 if (vm_flags & VM_EXEC)
1504 vm_flags &= ~VM_MAYEXEC;
1507 if (!file->f_op->mmap)
1509 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1517 switch (flags & MAP_TYPE) {
1519 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1525 vm_flags |= VM_SHARED | VM_MAYSHARE;
1529 * Set pgoff according to addr for anon_vma.
1531 pgoff = addr >> PAGE_SHIFT;
1539 * Set 'VM_NORESERVE' if we should not account for the
1540 * memory use of this mapping.
1542 if (flags & MAP_NORESERVE) {
1543 /* We honor MAP_NORESERVE if allowed to overcommit */
1544 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1545 vm_flags |= VM_NORESERVE;
1547 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1548 if (file && is_file_hugepages(file))
1549 vm_flags |= VM_NORESERVE;
1552 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1553 if (!IS_ERR_VALUE(addr) &&
1554 ((vm_flags & VM_LOCKED) ||
1555 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1560 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1561 unsigned long prot, unsigned long flags,
1562 unsigned long fd, unsigned long pgoff)
1564 struct file *file = NULL;
1565 unsigned long retval;
1567 addr = untagged_addr(addr);
1569 if (!(flags & MAP_ANONYMOUS)) {
1570 audit_mmap_fd(fd, flags);
1574 if (is_file_hugepages(file))
1575 len = ALIGN(len, huge_page_size(hstate_file(file)));
1577 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1579 } else if (flags & MAP_HUGETLB) {
1580 struct user_struct *user = NULL;
1583 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1587 len = ALIGN(len, huge_page_size(hs));
1589 * VM_NORESERVE is used because the reservations will be
1590 * taken when vm_ops->mmap() is called
1591 * A dummy user value is used because we are not locking
1592 * memory so no accounting is necessary
1594 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1596 &user, HUGETLB_ANONHUGE_INODE,
1597 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1599 return PTR_ERR(file);
1602 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1604 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1611 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1612 unsigned long, prot, unsigned long, flags,
1613 unsigned long, fd, unsigned long, pgoff)
1615 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1618 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1619 struct mmap_arg_struct {
1623 unsigned long flags;
1625 unsigned long offset;
1628 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1630 struct mmap_arg_struct a;
1632 if (copy_from_user(&a, arg, sizeof(a)))
1634 if (offset_in_page(a.offset))
1637 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1638 a.offset >> PAGE_SHIFT);
1640 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1643 * Some shared mappings will want the pages marked read-only
1644 * to track write events. If so, we'll downgrade vm_page_prot
1645 * to the private version (using protection_map[] without the
1648 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1650 vm_flags_t vm_flags = vma->vm_flags;
1651 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1653 /* If it was private or non-writable, the write bit is already clear */
1654 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1657 /* The backer wishes to know when pages are first written to? */
1658 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1661 /* The open routine did something to the protections that pgprot_modify
1662 * won't preserve? */
1663 if (pgprot_val(vm_page_prot) !=
1664 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1667 /* Do we need to track softdirty? */
1668 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1671 /* Specialty mapping? */
1672 if (vm_flags & VM_PFNMAP)
1675 /* Can the mapping track the dirty pages? */
1676 return vma->vm_file && vma->vm_file->f_mapping &&
1677 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1681 * We account for memory if it's a private writeable mapping,
1682 * not hugepages and VM_NORESERVE wasn't set.
1684 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1687 * hugetlb has its own accounting separate from the core VM
1688 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1690 if (file && is_file_hugepages(file))
1693 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1696 unsigned long mmap_region(struct file *file, unsigned long addr,
1697 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1698 struct list_head *uf)
1700 struct mm_struct *mm = current->mm;
1701 struct vm_area_struct *vma, *prev;
1703 struct rb_node **rb_link, *rb_parent;
1704 unsigned long charged = 0;
1706 /* Check against address space limit. */
1707 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1708 unsigned long nr_pages;
1711 * MAP_FIXED may remove pages of mappings that intersects with
1712 * requested mapping. Account for the pages it would unmap.
1714 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1716 if (!may_expand_vm(mm, vm_flags,
1717 (len >> PAGE_SHIFT) - nr_pages))
1721 /* Clear old maps */
1722 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1724 if (do_munmap(mm, addr, len, uf))
1729 * Private writable mapping: check memory availability
1731 if (accountable_mapping(file, vm_flags)) {
1732 charged = len >> PAGE_SHIFT;
1733 if (security_vm_enough_memory_mm(mm, charged))
1735 vm_flags |= VM_ACCOUNT;
1739 * Can we just expand an old mapping?
1741 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1742 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1747 * Determine the object being mapped and call the appropriate
1748 * specific mapper. the address has already been validated, but
1749 * not unmapped, but the maps are removed from the list.
1751 vma = vm_area_alloc(mm);
1757 vma->vm_start = addr;
1758 vma->vm_end = addr + len;
1759 vma->vm_flags = vm_flags;
1760 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1761 vma->vm_pgoff = pgoff;
1764 if (vm_flags & VM_DENYWRITE) {
1765 error = deny_write_access(file);
1769 if (vm_flags & VM_SHARED) {
1770 error = mapping_map_writable(file->f_mapping);
1772 goto allow_write_and_free_vma;
1775 /* ->mmap() can change vma->vm_file, but must guarantee that
1776 * vma_link() below can deny write-access if VM_DENYWRITE is set
1777 * and map writably if VM_SHARED is set. This usually means the
1778 * new file must not have been exposed to user-space, yet.
1780 vma->vm_file = get_file(file);
1781 error = call_mmap(file, vma);
1783 goto unmap_and_free_vma;
1785 /* Can addr have changed??
1787 * Answer: Yes, several device drivers can do it in their
1788 * f_op->mmap method. -DaveM
1789 * Bug: If addr is changed, prev, rb_link, rb_parent should
1790 * be updated for vma_link()
1792 WARN_ON_ONCE(addr != vma->vm_start);
1794 addr = vma->vm_start;
1795 vm_flags = vma->vm_flags;
1796 } else if (vm_flags & VM_SHARED) {
1797 error = shmem_zero_setup(vma);
1801 vma_set_anonymous(vma);
1804 vma_link(mm, vma, prev, rb_link, rb_parent);
1805 /* Once vma denies write, undo our temporary denial count */
1807 if (vm_flags & VM_SHARED)
1808 mapping_unmap_writable(file->f_mapping);
1809 if (vm_flags & VM_DENYWRITE)
1810 allow_write_access(file);
1812 file = vma->vm_file;
1814 perf_event_mmap(vma);
1816 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1817 if (vm_flags & VM_LOCKED) {
1818 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1819 is_vm_hugetlb_page(vma) ||
1820 vma == get_gate_vma(current->mm))
1821 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1823 mm->locked_vm += (len >> PAGE_SHIFT);
1830 * New (or expanded) vma always get soft dirty status.
1831 * Otherwise user-space soft-dirty page tracker won't
1832 * be able to distinguish situation when vma area unmapped,
1833 * then new mapped in-place (which must be aimed as
1834 * a completely new data area).
1836 vma->vm_flags |= VM_SOFTDIRTY;
1838 vma_set_page_prot(vma);
1843 vma->vm_file = NULL;
1846 /* Undo any partial mapping done by a device driver. */
1847 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1849 if (vm_flags & VM_SHARED)
1850 mapping_unmap_writable(file->f_mapping);
1851 allow_write_and_free_vma:
1852 if (vm_flags & VM_DENYWRITE)
1853 allow_write_access(file);
1858 vm_unacct_memory(charged);
1862 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1865 * We implement the search by looking for an rbtree node that
1866 * immediately follows a suitable gap. That is,
1867 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1868 * - gap_end = vma->vm_start >= info->low_limit + length;
1869 * - gap_end - gap_start >= length
1872 struct mm_struct *mm = current->mm;
1873 struct vm_area_struct *vma;
1874 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1876 /* Adjust search length to account for worst case alignment overhead */
1877 length = info->length + info->align_mask;
1878 if (length < info->length)
1881 /* Adjust search limits by the desired length */
1882 if (info->high_limit < length)
1884 high_limit = info->high_limit - length;
1886 if (info->low_limit > high_limit)
1888 low_limit = info->low_limit + length;
1890 /* Check if rbtree root looks promising */
1891 if (RB_EMPTY_ROOT(&mm->mm_rb))
1893 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1894 if (vma->rb_subtree_gap < length)
1898 /* Visit left subtree if it looks promising */
1899 gap_end = vm_start_gap(vma);
1900 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1901 struct vm_area_struct *left =
1902 rb_entry(vma->vm_rb.rb_left,
1903 struct vm_area_struct, vm_rb);
1904 if (left->rb_subtree_gap >= length) {
1910 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1912 /* Check if current node has a suitable gap */
1913 if (gap_start > high_limit)
1915 if (gap_end >= low_limit &&
1916 gap_end > gap_start && gap_end - gap_start >= length)
1919 /* Visit right subtree if it looks promising */
1920 if (vma->vm_rb.rb_right) {
1921 struct vm_area_struct *right =
1922 rb_entry(vma->vm_rb.rb_right,
1923 struct vm_area_struct, vm_rb);
1924 if (right->rb_subtree_gap >= length) {
1930 /* Go back up the rbtree to find next candidate node */
1932 struct rb_node *prev = &vma->vm_rb;
1933 if (!rb_parent(prev))
1935 vma = rb_entry(rb_parent(prev),
1936 struct vm_area_struct, vm_rb);
1937 if (prev == vma->vm_rb.rb_left) {
1938 gap_start = vm_end_gap(vma->vm_prev);
1939 gap_end = vm_start_gap(vma);
1946 /* Check highest gap, which does not precede any rbtree node */
1947 gap_start = mm->highest_vm_end;
1948 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1949 if (gap_start > high_limit)
1953 /* We found a suitable gap. Clip it with the original low_limit. */
1954 if (gap_start < info->low_limit)
1955 gap_start = info->low_limit;
1957 /* Adjust gap address to the desired alignment */
1958 gap_start += (info->align_offset - gap_start) & info->align_mask;
1960 VM_BUG_ON(gap_start + info->length > info->high_limit);
1961 VM_BUG_ON(gap_start + info->length > gap_end);
1965 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1967 struct mm_struct *mm = current->mm;
1968 struct vm_area_struct *vma;
1969 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1971 /* Adjust search length to account for worst case alignment overhead */
1972 length = info->length + info->align_mask;
1973 if (length < info->length)
1977 * Adjust search limits by the desired length.
1978 * See implementation comment at top of unmapped_area().
1980 gap_end = info->high_limit;
1981 if (gap_end < length)
1983 high_limit = gap_end - length;
1985 if (info->low_limit > high_limit)
1987 low_limit = info->low_limit + length;
1989 /* Check highest gap, which does not precede any rbtree node */
1990 gap_start = mm->highest_vm_end;
1991 if (gap_start <= high_limit)
1994 /* Check if rbtree root looks promising */
1995 if (RB_EMPTY_ROOT(&mm->mm_rb))
1997 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1998 if (vma->rb_subtree_gap < length)
2002 /* Visit right subtree if it looks promising */
2003 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2004 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2005 struct vm_area_struct *right =
2006 rb_entry(vma->vm_rb.rb_right,
2007 struct vm_area_struct, vm_rb);
2008 if (right->rb_subtree_gap >= length) {
2015 /* Check if current node has a suitable gap */
2016 gap_end = vm_start_gap(vma);
2017 if (gap_end < low_limit)
2019 if (gap_start <= high_limit &&
2020 gap_end > gap_start && gap_end - gap_start >= length)
2023 /* Visit left subtree if it looks promising */
2024 if (vma->vm_rb.rb_left) {
2025 struct vm_area_struct *left =
2026 rb_entry(vma->vm_rb.rb_left,
2027 struct vm_area_struct, vm_rb);
2028 if (left->rb_subtree_gap >= length) {
2034 /* Go back up the rbtree to find next candidate node */
2036 struct rb_node *prev = &vma->vm_rb;
2037 if (!rb_parent(prev))
2039 vma = rb_entry(rb_parent(prev),
2040 struct vm_area_struct, vm_rb);
2041 if (prev == vma->vm_rb.rb_right) {
2042 gap_start = vma->vm_prev ?
2043 vm_end_gap(vma->vm_prev) : 0;
2050 /* We found a suitable gap. Clip it with the original high_limit. */
2051 if (gap_end > info->high_limit)
2052 gap_end = info->high_limit;
2055 /* Compute highest gap address at the desired alignment */
2056 gap_end -= info->length;
2057 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2059 VM_BUG_ON(gap_end < info->low_limit);
2060 VM_BUG_ON(gap_end < gap_start);
2065 #ifndef arch_get_mmap_end
2066 #define arch_get_mmap_end(addr) (TASK_SIZE)
2069 #ifndef arch_get_mmap_base
2070 #define arch_get_mmap_base(addr, base) (base)
2073 /* Get an address range which is currently unmapped.
2074 * For shmat() with addr=0.
2076 * Ugly calling convention alert:
2077 * Return value with the low bits set means error value,
2079 * if (ret & ~PAGE_MASK)
2082 * This function "knows" that -ENOMEM has the bits set.
2084 #ifndef HAVE_ARCH_UNMAPPED_AREA
2086 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2087 unsigned long len, unsigned long pgoff, unsigned long flags)
2089 struct mm_struct *mm = current->mm;
2090 struct vm_area_struct *vma, *prev;
2091 struct vm_unmapped_area_info info;
2092 const unsigned long mmap_end = arch_get_mmap_end(addr);
2094 if (len > mmap_end - mmap_min_addr)
2097 if (flags & MAP_FIXED)
2101 addr = PAGE_ALIGN(addr);
2102 vma = find_vma_prev(mm, addr, &prev);
2103 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2104 (!vma || addr + len <= vm_start_gap(vma)) &&
2105 (!prev || addr >= vm_end_gap(prev)))
2111 info.low_limit = mm->mmap_base;
2112 info.high_limit = mmap_end;
2113 info.align_mask = 0;
2114 return vm_unmapped_area(&info);
2119 * This mmap-allocator allocates new areas top-down from below the
2120 * stack's low limit (the base):
2122 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2124 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2125 unsigned long len, unsigned long pgoff,
2126 unsigned long flags)
2128 struct vm_area_struct *vma, *prev;
2129 struct mm_struct *mm = current->mm;
2130 struct vm_unmapped_area_info info;
2131 const unsigned long mmap_end = arch_get_mmap_end(addr);
2133 /* requested length too big for entire address space */
2134 if (len > mmap_end - mmap_min_addr)
2137 if (flags & MAP_FIXED)
2140 /* requesting a specific address */
2142 addr = PAGE_ALIGN(addr);
2143 vma = find_vma_prev(mm, addr, &prev);
2144 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2145 (!vma || addr + len <= vm_start_gap(vma)) &&
2146 (!prev || addr >= vm_end_gap(prev)))
2150 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2152 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2153 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2154 info.align_mask = 0;
2155 addr = vm_unmapped_area(&info);
2158 * A failed mmap() very likely causes application failure,
2159 * so fall back to the bottom-up function here. This scenario
2160 * can happen with large stack limits and large mmap()
2163 if (offset_in_page(addr)) {
2164 VM_BUG_ON(addr != -ENOMEM);
2166 info.low_limit = TASK_UNMAPPED_BASE;
2167 info.high_limit = mmap_end;
2168 addr = vm_unmapped_area(&info);
2176 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2177 unsigned long pgoff, unsigned long flags)
2179 unsigned long (*get_area)(struct file *, unsigned long,
2180 unsigned long, unsigned long, unsigned long);
2182 unsigned long error = arch_mmap_check(addr, len, flags);
2186 /* Careful about overflows.. */
2187 if (len > TASK_SIZE)
2190 get_area = current->mm->get_unmapped_area;
2192 if (file->f_op->get_unmapped_area)
2193 get_area = file->f_op->get_unmapped_area;
2194 } else if (flags & MAP_SHARED) {
2196 * mmap_region() will call shmem_zero_setup() to create a file,
2197 * so use shmem's get_unmapped_area in case it can be huge.
2198 * do_mmap_pgoff() will clear pgoff, so match alignment.
2201 get_area = shmem_get_unmapped_area;
2204 addr = get_area(file, addr, len, pgoff, flags);
2205 if (IS_ERR_VALUE(addr))
2208 if (addr > TASK_SIZE - len)
2210 if (offset_in_page(addr))
2213 error = security_mmap_addr(addr);
2214 return error ? error : addr;
2217 EXPORT_SYMBOL(get_unmapped_area);
2219 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2220 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2222 struct rb_node *rb_node;
2223 struct vm_area_struct *vma;
2225 /* Check the cache first. */
2226 vma = vmacache_find(mm, addr);
2230 rb_node = mm->mm_rb.rb_node;
2233 struct vm_area_struct *tmp;
2235 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2237 if (tmp->vm_end > addr) {
2239 if (tmp->vm_start <= addr)
2241 rb_node = rb_node->rb_left;
2243 rb_node = rb_node->rb_right;
2247 vmacache_update(addr, vma);
2251 EXPORT_SYMBOL(find_vma);
2254 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2256 struct vm_area_struct *
2257 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2258 struct vm_area_struct **pprev)
2260 struct vm_area_struct *vma;
2262 vma = find_vma(mm, addr);
2264 *pprev = vma->vm_prev;
2266 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2268 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2274 * Verify that the stack growth is acceptable and
2275 * update accounting. This is shared with both the
2276 * grow-up and grow-down cases.
2278 static int acct_stack_growth(struct vm_area_struct *vma,
2279 unsigned long size, unsigned long grow)
2281 struct mm_struct *mm = vma->vm_mm;
2282 unsigned long new_start;
2284 /* address space limit tests */
2285 if (!may_expand_vm(mm, vma->vm_flags, grow))
2288 /* Stack limit test */
2289 if (size > rlimit(RLIMIT_STACK))
2292 /* mlock limit tests */
2293 if (vma->vm_flags & VM_LOCKED) {
2294 unsigned long locked;
2295 unsigned long limit;
2296 locked = mm->locked_vm + grow;
2297 limit = rlimit(RLIMIT_MEMLOCK);
2298 limit >>= PAGE_SHIFT;
2299 if (locked > limit && !capable(CAP_IPC_LOCK))
2303 /* Check to ensure the stack will not grow into a hugetlb-only region */
2304 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2306 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2310 * Overcommit.. This must be the final test, as it will
2311 * update security statistics.
2313 if (security_vm_enough_memory_mm(mm, grow))
2319 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2321 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2322 * vma is the last one with address > vma->vm_end. Have to extend vma.
2324 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2326 struct mm_struct *mm = vma->vm_mm;
2327 struct vm_area_struct *next;
2328 unsigned long gap_addr;
2331 if (!(vma->vm_flags & VM_GROWSUP))
2334 /* Guard against exceeding limits of the address space. */
2335 address &= PAGE_MASK;
2336 if (address >= (TASK_SIZE & PAGE_MASK))
2338 address += PAGE_SIZE;
2340 /* Enforce stack_guard_gap */
2341 gap_addr = address + stack_guard_gap;
2343 /* Guard against overflow */
2344 if (gap_addr < address || gap_addr > TASK_SIZE)
2345 gap_addr = TASK_SIZE;
2347 next = vma->vm_next;
2348 if (next && next->vm_start < gap_addr &&
2349 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2350 if (!(next->vm_flags & VM_GROWSUP))
2352 /* Check that both stack segments have the same anon_vma? */
2355 /* We must make sure the anon_vma is allocated. */
2356 if (unlikely(anon_vma_prepare(vma)))
2360 * vma->vm_start/vm_end cannot change under us because the caller
2361 * is required to hold the mmap_sem in read mode. We need the
2362 * anon_vma lock to serialize against concurrent expand_stacks.
2364 anon_vma_lock_write(vma->anon_vma);
2366 /* Somebody else might have raced and expanded it already */
2367 if (address > vma->vm_end) {
2368 unsigned long size, grow;
2370 size = address - vma->vm_start;
2371 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2374 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2375 error = acct_stack_growth(vma, size, grow);
2378 * vma_gap_update() doesn't support concurrent
2379 * updates, but we only hold a shared mmap_sem
2380 * lock here, so we need to protect against
2381 * concurrent vma expansions.
2382 * anon_vma_lock_write() doesn't help here, as
2383 * we don't guarantee that all growable vmas
2384 * in a mm share the same root anon vma.
2385 * So, we reuse mm->page_table_lock to guard
2386 * against concurrent vma expansions.
2388 spin_lock(&mm->page_table_lock);
2389 if (vma->vm_flags & VM_LOCKED)
2390 mm->locked_vm += grow;
2391 vm_stat_account(mm, vma->vm_flags, grow);
2392 anon_vma_interval_tree_pre_update_vma(vma);
2393 vma->vm_end = address;
2394 anon_vma_interval_tree_post_update_vma(vma);
2396 vma_gap_update(vma->vm_next);
2398 mm->highest_vm_end = vm_end_gap(vma);
2399 spin_unlock(&mm->page_table_lock);
2401 perf_event_mmap(vma);
2405 anon_vma_unlock_write(vma->anon_vma);
2406 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2410 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2413 * vma is the first one with address < vma->vm_start. Have to extend vma.
2415 int expand_downwards(struct vm_area_struct *vma,
2416 unsigned long address)
2418 struct mm_struct *mm = vma->vm_mm;
2419 struct vm_area_struct *prev;
2422 address &= PAGE_MASK;
2423 if (address < mmap_min_addr)
2426 /* Enforce stack_guard_gap */
2427 prev = vma->vm_prev;
2428 /* Check that both stack segments have the same anon_vma? */
2429 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2430 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2431 if (address - prev->vm_end < stack_guard_gap)
2435 /* We must make sure the anon_vma is allocated. */
2436 if (unlikely(anon_vma_prepare(vma)))
2440 * vma->vm_start/vm_end cannot change under us because the caller
2441 * is required to hold the mmap_sem in read mode. We need the
2442 * anon_vma lock to serialize against concurrent expand_stacks.
2444 anon_vma_lock_write(vma->anon_vma);
2446 /* Somebody else might have raced and expanded it already */
2447 if (address < vma->vm_start) {
2448 unsigned long size, grow;
2450 size = vma->vm_end - address;
2451 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2454 if (grow <= vma->vm_pgoff) {
2455 error = acct_stack_growth(vma, size, grow);
2458 * vma_gap_update() doesn't support concurrent
2459 * updates, but we only hold a shared mmap_sem
2460 * lock here, so we need to protect against
2461 * concurrent vma expansions.
2462 * anon_vma_lock_write() doesn't help here, as
2463 * we don't guarantee that all growable vmas
2464 * in a mm share the same root anon vma.
2465 * So, we reuse mm->page_table_lock to guard
2466 * against concurrent vma expansions.
2468 spin_lock(&mm->page_table_lock);
2469 if (vma->vm_flags & VM_LOCKED)
2470 mm->locked_vm += grow;
2471 vm_stat_account(mm, vma->vm_flags, grow);
2472 anon_vma_interval_tree_pre_update_vma(vma);
2473 vma->vm_start = address;
2474 vma->vm_pgoff -= grow;
2475 anon_vma_interval_tree_post_update_vma(vma);
2476 vma_gap_update(vma);
2477 spin_unlock(&mm->page_table_lock);
2479 perf_event_mmap(vma);
2483 anon_vma_unlock_write(vma->anon_vma);
2484 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2489 /* enforced gap between the expanding stack and other mappings. */
2490 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2492 static int __init cmdline_parse_stack_guard_gap(char *p)
2497 val = simple_strtoul(p, &endptr, 10);
2499 stack_guard_gap = val << PAGE_SHIFT;
2503 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2505 #ifdef CONFIG_STACK_GROWSUP
2506 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2508 return expand_upwards(vma, address);
2511 struct vm_area_struct *
2512 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2514 struct vm_area_struct *vma, *prev;
2517 vma = find_vma_prev(mm, addr, &prev);
2518 if (vma && (vma->vm_start <= addr))
2520 /* don't alter vm_end if the coredump is running */
2521 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2523 if (prev->vm_flags & VM_LOCKED)
2524 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2528 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2530 return expand_downwards(vma, address);
2533 struct vm_area_struct *
2534 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2536 struct vm_area_struct *vma;
2537 unsigned long start;
2540 vma = find_vma(mm, addr);
2543 if (vma->vm_start <= addr)
2545 if (!(vma->vm_flags & VM_GROWSDOWN))
2547 /* don't alter vm_start if the coredump is running */
2548 if (!mmget_still_valid(mm))
2550 start = vma->vm_start;
2551 if (expand_stack(vma, addr))
2553 if (vma->vm_flags & VM_LOCKED)
2554 populate_vma_page_range(vma, addr, start, NULL);
2559 EXPORT_SYMBOL_GPL(find_extend_vma);
2562 * Ok - we have the memory areas we should free on the vma list,
2563 * so release them, and do the vma updates.
2565 * Called with the mm semaphore held.
2567 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2569 unsigned long nr_accounted = 0;
2571 /* Update high watermark before we lower total_vm */
2572 update_hiwater_vm(mm);
2574 long nrpages = vma_pages(vma);
2576 if (vma->vm_flags & VM_ACCOUNT)
2577 nr_accounted += nrpages;
2578 vm_stat_account(mm, vma->vm_flags, -nrpages);
2579 vma = remove_vma(vma);
2581 vm_unacct_memory(nr_accounted);
2586 * Get rid of page table information in the indicated region.
2588 * Called with the mm semaphore held.
2590 static void unmap_region(struct mm_struct *mm,
2591 struct vm_area_struct *vma, struct vm_area_struct *prev,
2592 unsigned long start, unsigned long end)
2594 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2595 struct mmu_gather tlb;
2598 tlb_gather_mmu(&tlb, mm, start, end);
2599 update_hiwater_rss(mm);
2600 unmap_vmas(&tlb, vma, start, end);
2601 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2602 next ? next->vm_start : USER_PGTABLES_CEILING);
2603 tlb_finish_mmu(&tlb, start, end);
2607 * Create a list of vma's touched by the unmap, removing them from the mm's
2608 * vma list as we go..
2611 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2612 struct vm_area_struct *prev, unsigned long end)
2614 struct vm_area_struct **insertion_point;
2615 struct vm_area_struct *tail_vma = NULL;
2617 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2618 vma->vm_prev = NULL;
2620 vma_rb_erase(vma, &mm->mm_rb);
2624 } while (vma && vma->vm_start < end);
2625 *insertion_point = vma;
2627 vma->vm_prev = prev;
2628 vma_gap_update(vma);
2630 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2631 tail_vma->vm_next = NULL;
2633 /* Kill the cache */
2634 vmacache_invalidate(mm);
2638 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2639 * has already been checked or doesn't make sense to fail.
2641 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2642 unsigned long addr, int new_below)
2644 struct vm_area_struct *new;
2647 if (vma->vm_ops && vma->vm_ops->split) {
2648 err = vma->vm_ops->split(vma, addr);
2653 new = vm_area_dup(vma);
2660 new->vm_start = addr;
2661 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2664 err = vma_dup_policy(vma, new);
2668 err = anon_vma_clone(new, vma);
2673 get_file(new->vm_file);
2675 if (new->vm_ops && new->vm_ops->open)
2676 new->vm_ops->open(new);
2679 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2680 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2682 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2688 /* Clean everything up if vma_adjust failed. */
2689 if (new->vm_ops && new->vm_ops->close)
2690 new->vm_ops->close(new);
2693 unlink_anon_vmas(new);
2695 mpol_put(vma_policy(new));
2702 * Split a vma into two pieces at address 'addr', a new vma is allocated
2703 * either for the first part or the tail.
2705 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2706 unsigned long addr, int new_below)
2708 if (mm->map_count >= sysctl_max_map_count)
2711 return __split_vma(mm, vma, addr, new_below);
2714 /* Munmap is split into 2 main parts -- this part which finds
2715 * what needs doing, and the areas themselves, which do the
2716 * work. This now handles partial unmappings.
2719 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2720 struct list_head *uf, bool downgrade)
2723 struct vm_area_struct *vma, *prev, *last;
2725 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2728 len = PAGE_ALIGN(len);
2734 * arch_unmap() might do unmaps itself. It must be called
2735 * and finish any rbtree manipulation before this code
2736 * runs and also starts to manipulate the rbtree.
2738 arch_unmap(mm, start, end);
2740 /* Find the first overlapping VMA */
2741 vma = find_vma(mm, start);
2744 prev = vma->vm_prev;
2745 /* we have start < vma->vm_end */
2747 /* if it doesn't overlap, we have nothing.. */
2748 if (vma->vm_start >= end)
2752 * If we need to split any vma, do it now to save pain later.
2754 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2755 * unmapped vm_area_struct will remain in use: so lower split_vma
2756 * places tmp vma above, and higher split_vma places tmp vma below.
2758 if (start > vma->vm_start) {
2762 * Make sure that map_count on return from munmap() will
2763 * not exceed its limit; but let map_count go just above
2764 * its limit temporarily, to help free resources as expected.
2766 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2769 error = __split_vma(mm, vma, start, 0);
2775 /* Does it split the last one? */
2776 last = find_vma(mm, end);
2777 if (last && end > last->vm_start) {
2778 int error = __split_vma(mm, last, end, 1);
2782 vma = prev ? prev->vm_next : mm->mmap;
2786 * If userfaultfd_unmap_prep returns an error the vmas
2787 * will remain splitted, but userland will get a
2788 * highly unexpected error anyway. This is no
2789 * different than the case where the first of the two
2790 * __split_vma fails, but we don't undo the first
2791 * split, despite we could. This is unlikely enough
2792 * failure that it's not worth optimizing it for.
2794 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2800 * unlock any mlock()ed ranges before detaching vmas
2802 if (mm->locked_vm) {
2803 struct vm_area_struct *tmp = vma;
2804 while (tmp && tmp->vm_start < end) {
2805 if (tmp->vm_flags & VM_LOCKED) {
2806 mm->locked_vm -= vma_pages(tmp);
2807 munlock_vma_pages_all(tmp);
2814 /* Detach vmas from rbtree */
2815 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2818 downgrade_write(&mm->mmap_sem);
2820 unmap_region(mm, vma, prev, start, end);
2822 /* Fix up all other VM information */
2823 remove_vma_list(mm, vma);
2825 return downgrade ? 1 : 0;
2828 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2829 struct list_head *uf)
2831 return __do_munmap(mm, start, len, uf, false);
2834 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2837 struct mm_struct *mm = current->mm;
2840 if (down_write_killable(&mm->mmap_sem))
2843 ret = __do_munmap(mm, start, len, &uf, downgrade);
2845 * Returning 1 indicates mmap_sem is downgraded.
2846 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2847 * it to 0 before return.
2850 up_read(&mm->mmap_sem);
2853 up_write(&mm->mmap_sem);
2855 userfaultfd_unmap_complete(mm, &uf);
2859 int vm_munmap(unsigned long start, size_t len)
2861 return __vm_munmap(start, len, false);
2863 EXPORT_SYMBOL(vm_munmap);
2865 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2867 addr = untagged_addr(addr);
2868 profile_munmap(addr);
2869 return __vm_munmap(addr, len, true);
2874 * Emulation of deprecated remap_file_pages() syscall.
2876 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2877 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2880 struct mm_struct *mm = current->mm;
2881 struct vm_area_struct *vma;
2882 unsigned long populate = 0;
2883 unsigned long ret = -EINVAL;
2886 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2887 current->comm, current->pid);
2891 start = start & PAGE_MASK;
2892 size = size & PAGE_MASK;
2894 if (start + size <= start)
2897 /* Does pgoff wrap? */
2898 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2901 if (down_write_killable(&mm->mmap_sem))
2904 vma = find_vma(mm, start);
2906 if (!vma || !(vma->vm_flags & VM_SHARED))
2909 if (start < vma->vm_start)
2912 if (start + size > vma->vm_end) {
2913 struct vm_area_struct *next;
2915 for (next = vma->vm_next; next; next = next->vm_next) {
2916 /* hole between vmas ? */
2917 if (next->vm_start != next->vm_prev->vm_end)
2920 if (next->vm_file != vma->vm_file)
2923 if (next->vm_flags != vma->vm_flags)
2926 if (start + size <= next->vm_end)
2934 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2935 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2936 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2938 flags &= MAP_NONBLOCK;
2939 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2940 if (vma->vm_flags & VM_LOCKED) {
2941 struct vm_area_struct *tmp;
2942 flags |= MAP_LOCKED;
2944 /* drop PG_Mlocked flag for over-mapped range */
2945 for (tmp = vma; tmp->vm_start >= start + size;
2946 tmp = tmp->vm_next) {
2948 * Split pmd and munlock page on the border
2951 vma_adjust_trans_huge(tmp, start, start + size, 0);
2953 munlock_vma_pages_range(tmp,
2954 max(tmp->vm_start, start),
2955 min(tmp->vm_end, start + size));
2959 file = get_file(vma->vm_file);
2960 ret = do_mmap_pgoff(vma->vm_file, start, size,
2961 prot, flags, pgoff, &populate, NULL);
2964 up_write(&mm->mmap_sem);
2966 mm_populate(ret, populate);
2967 if (!IS_ERR_VALUE(ret))
2973 * this is really a simplified "do_mmap". it only handles
2974 * anonymous maps. eventually we may be able to do some
2975 * brk-specific accounting here.
2977 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2979 struct mm_struct *mm = current->mm;
2980 struct vm_area_struct *vma, *prev;
2981 struct rb_node **rb_link, *rb_parent;
2982 pgoff_t pgoff = addr >> PAGE_SHIFT;
2984 unsigned long mapped_addr;
2986 /* Until we need other flags, refuse anything except VM_EXEC. */
2987 if ((flags & (~VM_EXEC)) != 0)
2989 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2991 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2992 if (IS_ERR_VALUE(mapped_addr))
2995 error = mlock_future_check(mm, mm->def_flags, len);
3000 * Clear old maps. this also does some error checking for us
3002 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3004 if (do_munmap(mm, addr, len, uf))
3008 /* Check against address space limits *after* clearing old maps... */
3009 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3012 if (mm->map_count > sysctl_max_map_count)
3015 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3018 /* Can we just expand an old private anonymous mapping? */
3019 vma = vma_merge(mm, prev, addr, addr + len, flags,
3020 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3025 * create a vma struct for an anonymous mapping
3027 vma = vm_area_alloc(mm);
3029 vm_unacct_memory(len >> PAGE_SHIFT);
3033 vma_set_anonymous(vma);
3034 vma->vm_start = addr;
3035 vma->vm_end = addr + len;
3036 vma->vm_pgoff = pgoff;
3037 vma->vm_flags = flags;
3038 vma->vm_page_prot = vm_get_page_prot(flags);
3039 vma_link(mm, vma, prev, rb_link, rb_parent);
3041 perf_event_mmap(vma);
3042 mm->total_vm += len >> PAGE_SHIFT;
3043 mm->data_vm += len >> PAGE_SHIFT;
3044 if (flags & VM_LOCKED)
3045 mm->locked_vm += (len >> PAGE_SHIFT);
3046 vma->vm_flags |= VM_SOFTDIRTY;
3050 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3052 struct mm_struct *mm = current->mm;
3058 len = PAGE_ALIGN(request);
3064 if (down_write_killable(&mm->mmap_sem))
3067 ret = do_brk_flags(addr, len, flags, &uf);
3068 populate = ((mm->def_flags & VM_LOCKED) != 0);
3069 up_write(&mm->mmap_sem);
3070 userfaultfd_unmap_complete(mm, &uf);
3071 if (populate && !ret)
3072 mm_populate(addr, len);
3075 EXPORT_SYMBOL(vm_brk_flags);
3077 int vm_brk(unsigned long addr, unsigned long len)
3079 return vm_brk_flags(addr, len, 0);
3081 EXPORT_SYMBOL(vm_brk);
3083 /* Release all mmaps. */
3084 void exit_mmap(struct mm_struct *mm)
3086 struct mmu_gather tlb;
3087 struct vm_area_struct *vma;
3088 unsigned long nr_accounted = 0;
3090 /* mm's last user has gone, and its about to be pulled down */
3091 mmu_notifier_release(mm);
3093 if (unlikely(mm_is_oom_victim(mm))) {
3095 * Manually reap the mm to free as much memory as possible.
3096 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3097 * this mm from further consideration. Taking mm->mmap_sem for
3098 * write after setting MMF_OOM_SKIP will guarantee that the oom
3099 * reaper will not run on this mm again after mmap_sem is
3102 * Nothing can be holding mm->mmap_sem here and the above call
3103 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3104 * __oom_reap_task_mm() will not block.
3106 * This needs to be done before calling munlock_vma_pages_all(),
3107 * which clears VM_LOCKED, otherwise the oom reaper cannot
3110 (void)__oom_reap_task_mm(mm);
3112 set_bit(MMF_OOM_SKIP, &mm->flags);
3113 down_write(&mm->mmap_sem);
3114 up_write(&mm->mmap_sem);
3117 if (mm->locked_vm) {
3120 if (vma->vm_flags & VM_LOCKED)
3121 munlock_vma_pages_all(vma);
3129 if (!vma) /* Can happen if dup_mmap() received an OOM */
3134 tlb_gather_mmu(&tlb, mm, 0, -1);
3135 /* update_hiwater_rss(mm) here? but nobody should be looking */
3136 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3137 unmap_vmas(&tlb, vma, 0, -1);
3138 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3139 tlb_finish_mmu(&tlb, 0, -1);
3142 * Walk the list again, actually closing and freeing it,
3143 * with preemption enabled, without holding any MM locks.
3146 if (vma->vm_flags & VM_ACCOUNT)
3147 nr_accounted += vma_pages(vma);
3148 vma = remove_vma(vma);
3150 vm_unacct_memory(nr_accounted);
3153 /* Insert vm structure into process list sorted by address
3154 * and into the inode's i_mmap tree. If vm_file is non-NULL
3155 * then i_mmap_rwsem is taken here.
3157 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3159 struct vm_area_struct *prev;
3160 struct rb_node **rb_link, *rb_parent;
3162 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3163 &prev, &rb_link, &rb_parent))
3165 if ((vma->vm_flags & VM_ACCOUNT) &&
3166 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3170 * The vm_pgoff of a purely anonymous vma should be irrelevant
3171 * until its first write fault, when page's anon_vma and index
3172 * are set. But now set the vm_pgoff it will almost certainly
3173 * end up with (unless mremap moves it elsewhere before that
3174 * first wfault), so /proc/pid/maps tells a consistent story.
3176 * By setting it to reflect the virtual start address of the
3177 * vma, merges and splits can happen in a seamless way, just
3178 * using the existing file pgoff checks and manipulations.
3179 * Similarly in do_mmap_pgoff and in do_brk.
3181 if (vma_is_anonymous(vma)) {
3182 BUG_ON(vma->anon_vma);
3183 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3186 vma_link(mm, vma, prev, rb_link, rb_parent);
3191 * Copy the vma structure to a new location in the same mm,
3192 * prior to moving page table entries, to effect an mremap move.
3194 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3195 unsigned long addr, unsigned long len, pgoff_t pgoff,
3196 bool *need_rmap_locks)
3198 struct vm_area_struct *vma = *vmap;
3199 unsigned long vma_start = vma->vm_start;
3200 struct mm_struct *mm = vma->vm_mm;
3201 struct vm_area_struct *new_vma, *prev;
3202 struct rb_node **rb_link, *rb_parent;
3203 bool faulted_in_anon_vma = true;
3206 * If anonymous vma has not yet been faulted, update new pgoff
3207 * to match new location, to increase its chance of merging.
3209 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3210 pgoff = addr >> PAGE_SHIFT;
3211 faulted_in_anon_vma = false;
3214 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3215 return NULL; /* should never get here */
3216 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3217 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3218 vma->vm_userfaultfd_ctx);
3221 * Source vma may have been merged into new_vma
3223 if (unlikely(vma_start >= new_vma->vm_start &&
3224 vma_start < new_vma->vm_end)) {
3226 * The only way we can get a vma_merge with
3227 * self during an mremap is if the vma hasn't
3228 * been faulted in yet and we were allowed to
3229 * reset the dst vma->vm_pgoff to the
3230 * destination address of the mremap to allow
3231 * the merge to happen. mremap must change the
3232 * vm_pgoff linearity between src and dst vmas
3233 * (in turn preventing a vma_merge) to be
3234 * safe. It is only safe to keep the vm_pgoff
3235 * linear if there are no pages mapped yet.
3237 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3238 *vmap = vma = new_vma;
3240 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3242 new_vma = vm_area_dup(vma);
3245 new_vma->vm_start = addr;
3246 new_vma->vm_end = addr + len;
3247 new_vma->vm_pgoff = pgoff;
3248 if (vma_dup_policy(vma, new_vma))
3250 if (anon_vma_clone(new_vma, vma))
3251 goto out_free_mempol;
3252 if (new_vma->vm_file)
3253 get_file(new_vma->vm_file);
3254 if (new_vma->vm_ops && new_vma->vm_ops->open)
3255 new_vma->vm_ops->open(new_vma);
3256 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3257 *need_rmap_locks = false;
3262 mpol_put(vma_policy(new_vma));
3264 vm_area_free(new_vma);
3270 * Return true if the calling process may expand its vm space by the passed
3273 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3275 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3278 if (is_data_mapping(flags) &&
3279 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3280 /* Workaround for Valgrind */
3281 if (rlimit(RLIMIT_DATA) == 0 &&
3282 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3285 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3286 current->comm, current->pid,
3287 (mm->data_vm + npages) << PAGE_SHIFT,
3288 rlimit(RLIMIT_DATA),
3289 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3291 if (!ignore_rlimit_data)
3298 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3300 mm->total_vm += npages;
3302 if (is_exec_mapping(flags))
3303 mm->exec_vm += npages;
3304 else if (is_stack_mapping(flags))
3305 mm->stack_vm += npages;
3306 else if (is_data_mapping(flags))
3307 mm->data_vm += npages;
3310 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3313 * Having a close hook prevents vma merging regardless of flags.
3315 static void special_mapping_close(struct vm_area_struct *vma)
3319 static const char *special_mapping_name(struct vm_area_struct *vma)
3321 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3324 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3326 struct vm_special_mapping *sm = new_vma->vm_private_data;
3328 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3332 return sm->mremap(sm, new_vma);
3337 static const struct vm_operations_struct special_mapping_vmops = {
3338 .close = special_mapping_close,
3339 .fault = special_mapping_fault,
3340 .mremap = special_mapping_mremap,
3341 .name = special_mapping_name,
3344 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3345 .close = special_mapping_close,
3346 .fault = special_mapping_fault,
3349 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3351 struct vm_area_struct *vma = vmf->vma;
3353 struct page **pages;
3355 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3356 pages = vma->vm_private_data;
3358 struct vm_special_mapping *sm = vma->vm_private_data;
3361 return sm->fault(sm, vmf->vma, vmf);
3366 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3370 struct page *page = *pages;
3376 return VM_FAULT_SIGBUS;
3379 static struct vm_area_struct *__install_special_mapping(
3380 struct mm_struct *mm,
3381 unsigned long addr, unsigned long len,
3382 unsigned long vm_flags, void *priv,
3383 const struct vm_operations_struct *ops)
3386 struct vm_area_struct *vma;
3388 vma = vm_area_alloc(mm);
3389 if (unlikely(vma == NULL))
3390 return ERR_PTR(-ENOMEM);
3392 vma->vm_start = addr;
3393 vma->vm_end = addr + len;
3395 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3396 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3399 vma->vm_private_data = priv;
3401 ret = insert_vm_struct(mm, vma);
3405 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3407 perf_event_mmap(vma);
3413 return ERR_PTR(ret);
3416 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3417 const struct vm_special_mapping *sm)
3419 return vma->vm_private_data == sm &&
3420 (vma->vm_ops == &special_mapping_vmops ||
3421 vma->vm_ops == &legacy_special_mapping_vmops);
3425 * Called with mm->mmap_sem held for writing.
3426 * Insert a new vma covering the given region, with the given flags.
3427 * Its pages are supplied by the given array of struct page *.
3428 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3429 * The region past the last page supplied will always produce SIGBUS.
3430 * The array pointer and the pages it points to are assumed to stay alive
3431 * for as long as this mapping might exist.
3433 struct vm_area_struct *_install_special_mapping(
3434 struct mm_struct *mm,
3435 unsigned long addr, unsigned long len,
3436 unsigned long vm_flags, const struct vm_special_mapping *spec)
3438 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3439 &special_mapping_vmops);
3442 int install_special_mapping(struct mm_struct *mm,
3443 unsigned long addr, unsigned long len,
3444 unsigned long vm_flags, struct page **pages)
3446 struct vm_area_struct *vma = __install_special_mapping(
3447 mm, addr, len, vm_flags, (void *)pages,
3448 &legacy_special_mapping_vmops);
3450 return PTR_ERR_OR_ZERO(vma);
3453 static DEFINE_MUTEX(mm_all_locks_mutex);
3455 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3457 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3459 * The LSB of head.next can't change from under us
3460 * because we hold the mm_all_locks_mutex.
3462 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3464 * We can safely modify head.next after taking the
3465 * anon_vma->root->rwsem. If some other vma in this mm shares
3466 * the same anon_vma we won't take it again.
3468 * No need of atomic instructions here, head.next
3469 * can't change from under us thanks to the
3470 * anon_vma->root->rwsem.
3472 if (__test_and_set_bit(0, (unsigned long *)
3473 &anon_vma->root->rb_root.rb_root.rb_node))
3478 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3480 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3482 * AS_MM_ALL_LOCKS can't change from under us because
3483 * we hold the mm_all_locks_mutex.
3485 * Operations on ->flags have to be atomic because
3486 * even if AS_MM_ALL_LOCKS is stable thanks to the
3487 * mm_all_locks_mutex, there may be other cpus
3488 * changing other bitflags in parallel to us.
3490 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3492 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3497 * This operation locks against the VM for all pte/vma/mm related
3498 * operations that could ever happen on a certain mm. This includes
3499 * vmtruncate, try_to_unmap, and all page faults.
3501 * The caller must take the mmap_sem in write mode before calling
3502 * mm_take_all_locks(). The caller isn't allowed to release the
3503 * mmap_sem until mm_drop_all_locks() returns.
3505 * mmap_sem in write mode is required in order to block all operations
3506 * that could modify pagetables and free pages without need of
3507 * altering the vma layout. It's also needed in write mode to avoid new
3508 * anon_vmas to be associated with existing vmas.
3510 * A single task can't take more than one mm_take_all_locks() in a row
3511 * or it would deadlock.
3513 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3514 * mapping->flags avoid to take the same lock twice, if more than one
3515 * vma in this mm is backed by the same anon_vma or address_space.
3517 * We take locks in following order, accordingly to comment at beginning
3519 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3521 * - all i_mmap_rwsem locks;
3522 * - all anon_vma->rwseml
3524 * We can take all locks within these types randomly because the VM code
3525 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3526 * mm_all_locks_mutex.
3528 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3529 * that may have to take thousand of locks.
3531 * mm_take_all_locks() can fail if it's interrupted by signals.
3533 int mm_take_all_locks(struct mm_struct *mm)
3535 struct vm_area_struct *vma;
3536 struct anon_vma_chain *avc;
3538 BUG_ON(down_read_trylock(&mm->mmap_sem));
3540 mutex_lock(&mm_all_locks_mutex);
3542 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3543 if (signal_pending(current))
3545 if (vma->vm_file && vma->vm_file->f_mapping &&
3546 is_vm_hugetlb_page(vma))
3547 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3550 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3551 if (signal_pending(current))
3553 if (vma->vm_file && vma->vm_file->f_mapping &&
3554 !is_vm_hugetlb_page(vma))
3555 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 if (signal_pending(current))
3562 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3563 vm_lock_anon_vma(mm, avc->anon_vma);
3569 mm_drop_all_locks(mm);
3573 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3575 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3577 * The LSB of head.next can't change to 0 from under
3578 * us because we hold the mm_all_locks_mutex.
3580 * We must however clear the bitflag before unlocking
3581 * the vma so the users using the anon_vma->rb_root will
3582 * never see our bitflag.
3584 * No need of atomic instructions here, head.next
3585 * can't change from under us until we release the
3586 * anon_vma->root->rwsem.
3588 if (!__test_and_clear_bit(0, (unsigned long *)
3589 &anon_vma->root->rb_root.rb_root.rb_node))
3591 anon_vma_unlock_write(anon_vma);
3595 static void vm_unlock_mapping(struct address_space *mapping)
3597 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3599 * AS_MM_ALL_LOCKS can't change to 0 from under us
3600 * because we hold the mm_all_locks_mutex.
3602 i_mmap_unlock_write(mapping);
3603 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3610 * The mmap_sem cannot be released by the caller until
3611 * mm_drop_all_locks() returns.
3613 void mm_drop_all_locks(struct mm_struct *mm)
3615 struct vm_area_struct *vma;
3616 struct anon_vma_chain *avc;
3618 BUG_ON(down_read_trylock(&mm->mmap_sem));
3619 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3621 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3624 vm_unlock_anon_vma(avc->anon_vma);
3625 if (vma->vm_file && vma->vm_file->f_mapping)
3626 vm_unlock_mapping(vma->vm_file->f_mapping);
3629 mutex_unlock(&mm_all_locks_mutex);
3633 * initialise the percpu counter for VM
3635 void __init mmap_init(void)
3639 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3644 * Initialise sysctl_user_reserve_kbytes.
3646 * This is intended to prevent a user from starting a single memory hogging
3647 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3650 * The default value is min(3% of free memory, 128MB)
3651 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3653 static int init_user_reserve(void)
3655 unsigned long free_kbytes;
3657 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3659 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3662 subsys_initcall(init_user_reserve);
3665 * Initialise sysctl_admin_reserve_kbytes.
3667 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3668 * to log in and kill a memory hogging process.
3670 * Systems with more than 256MB will reserve 8MB, enough to recover
3671 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3672 * only reserve 3% of free pages by default.
3674 static int init_admin_reserve(void)
3676 unsigned long free_kbytes;
3678 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3683 subsys_initcall(init_admin_reserve);
3686 * Reinititalise user and admin reserves if memory is added or removed.
3688 * The default user reserve max is 128MB, and the default max for the
3689 * admin reserve is 8MB. These are usually, but not always, enough to
3690 * enable recovery from a memory hogging process using login/sshd, a shell,
3691 * and tools like top. It may make sense to increase or even disable the
3692 * reserve depending on the existence of swap or variations in the recovery
3693 * tools. So, the admin may have changed them.
3695 * If memory is added and the reserves have been eliminated or increased above
3696 * the default max, then we'll trust the admin.
3698 * If memory is removed and there isn't enough free memory, then we
3699 * need to reset the reserves.
3701 * Otherwise keep the reserve set by the admin.
3703 static int reserve_mem_notifier(struct notifier_block *nb,
3704 unsigned long action, void *data)
3706 unsigned long tmp, free_kbytes;
3710 /* Default max is 128MB. Leave alone if modified by operator. */
3711 tmp = sysctl_user_reserve_kbytes;
3712 if (0 < tmp && tmp < (1UL << 17))
3713 init_user_reserve();
3715 /* Default max is 8MB. Leave alone if modified by operator. */
3716 tmp = sysctl_admin_reserve_kbytes;
3717 if (0 < tmp && tmp < (1UL << 13))
3718 init_admin_reserve();
3722 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3724 if (sysctl_user_reserve_kbytes > free_kbytes) {
3725 init_user_reserve();
3726 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3727 sysctl_user_reserve_kbytes);
3730 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3731 init_admin_reserve();
3732 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3733 sysctl_admin_reserve_kbytes);
3742 static struct notifier_block reserve_mem_nb = {
3743 .notifier_call = reserve_mem_notifier,
3746 static int __meminit init_reserve_notifier(void)
3748 if (register_hotmemory_notifier(&reserve_mem_nb))
3749 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3753 subsys_initcall(init_reserve_notifier);