1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/security.h>
77 #include <linux/syscalls.h>
78 #include <linux/compat.h>
79 #include <linux/kmod.h>
80 #include <linux/audit.h>
81 #include <linux/wireless.h>
82 #include <linux/nsproxy.h>
83 #include <linux/magic.h>
84 #include <linux/slab.h>
85 #include <linux/xattr.h>
86 #include <linux/nospec.h>
87 #include <linux/indirect_call_wrapper.h>
89 #include <linux/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
94 #include <net/cls_cgroup.h>
97 #include <linux/netfilter.h>
99 #include <linux/if_tun.h>
100 #include <linux/ipv6_route.h>
101 #include <linux/route.h>
102 #include <linux/sockios.h>
103 #include <net/busy_poll.h>
104 #include <linux/errqueue.h>
106 #ifdef CONFIG_NET_RX_BUSY_POLL
107 unsigned int sysctl_net_busy_read __read_mostly;
108 unsigned int sysctl_net_busy_poll __read_mostly;
111 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static __poll_t sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
138 .read_iter = sock_read_iter,
139 .write_iter = sock_write_iter,
141 .unlocked_ioctl = sock_ioctl,
143 .compat_ioctl = compat_sock_ioctl,
146 .release = sock_close,
147 .fasync = sock_fasync,
148 .sendpage = sock_sendpage,
149 .splice_write = generic_splice_sendpage,
150 .splice_read = sock_splice_read,
154 * The protocol list. Each protocol is registered in here.
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Move socket addresses back and forth across the kernel/user
163 * divide and look after the messy bits.
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
183 if (copy_from_user(kaddr, uaddr, ulen))
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
206 void __user *uaddr, int __user *ulen)
211 BUG_ON(klen > sizeof(struct sockaddr_storage));
212 err = get_user(len, ulen);
220 if (audit_sockaddr(klen, kaddr))
222 if (copy_to_user(uaddr, kaddr, len))
226 * "fromlen shall refer to the value before truncation.."
229 return __put_user(klen, ulen);
232 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234 static struct inode *sock_alloc_inode(struct super_block *sb)
236 struct socket_alloc *ei;
238 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
241 init_waitqueue_head(&ei->socket.wq.wait);
242 ei->socket.wq.fasync_list = NULL;
243 ei->socket.wq.flags = 0;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_free_inode(struct inode *inode)
256 struct socket_alloc *ei;
258 ei = container_of(inode, struct socket_alloc, vfs_inode);
259 kmem_cache_free(sock_inode_cachep, ei);
262 static void init_once(void *foo)
264 struct socket_alloc *ei = (struct socket_alloc *)foo;
266 inode_init_once(&ei->vfs_inode);
269 static void init_inodecache(void)
271 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc),
274 (SLAB_HWCACHE_ALIGN |
275 SLAB_RECLAIM_ACCOUNT |
276 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 BUG_ON(sock_inode_cachep == NULL);
281 static const struct super_operations sockfs_ops = {
282 .alloc_inode = sock_alloc_inode,
283 .free_inode = sock_free_inode,
284 .statfs = simple_statfs,
288 * sockfs_dname() is called from d_path().
290 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
293 d_inode(dentry)->i_ino);
296 static const struct dentry_operations sockfs_dentry_operations = {
297 .d_dname = sockfs_dname,
300 static int sockfs_xattr_get(const struct xattr_handler *handler,
301 struct dentry *dentry, struct inode *inode,
302 const char *suffix, void *value, size_t size)
305 if (dentry->d_name.len + 1 > size)
307 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 return dentry->d_name.len + 1;
312 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
313 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
314 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316 static const struct xattr_handler sockfs_xattr_handler = {
317 .name = XATTR_NAME_SOCKPROTONAME,
318 .get = sockfs_xattr_get,
321 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, const void *value,
324 size_t size, int flags)
326 /* Handled by LSM. */
330 static const struct xattr_handler sockfs_security_xattr_handler = {
331 .prefix = XATTR_SECURITY_PREFIX,
332 .set = sockfs_security_xattr_set,
335 static const struct xattr_handler *sockfs_xattr_handlers[] = {
336 &sockfs_xattr_handler,
337 &sockfs_security_xattr_handler,
341 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
342 int flags, const char *dev_name, void *data)
344 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
345 sockfs_xattr_handlers,
346 &sockfs_dentry_operations, SOCKFS_MAGIC);
349 static struct vfsmount *sock_mnt __read_mostly;
351 static struct file_system_type sock_fs_type = {
353 .mount = sockfs_mount,
354 .kill_sb = kill_anon_super,
358 * Obtains the first available file descriptor and sets it up for use.
360 * These functions create file structures and maps them to fd space
361 * of the current process. On success it returns file descriptor
362 * and file struct implicitly stored in sock->file.
363 * Note that another thread may close file descriptor before we return
364 * from this function. We use the fact that now we do not refer
365 * to socket after mapping. If one day we will need it, this
366 * function will increment ref. count on file by 1.
368 * In any case returned fd MAY BE not valid!
369 * This race condition is unavoidable
370 * with shared fd spaces, we cannot solve it inside kernel,
371 * but we take care of internal coherence yet.
375 * sock_alloc_file - Bind a &socket to a &file
377 * @flags: file status flags
378 * @dname: protocol name
380 * Returns the &file bound with @sock, implicitly storing it
381 * in sock->file. If dname is %NULL, sets to "".
382 * On failure the return is a ERR pointer (see linux/err.h).
383 * This function uses GFP_KERNEL internally.
386 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
394 O_RDWR | (flags & O_NONBLOCK),
402 file->private_data = sock;
405 EXPORT_SYMBOL(sock_alloc_file);
407 static int sock_map_fd(struct socket *sock, int flags)
409 struct file *newfile;
410 int fd = get_unused_fd_flags(flags);
411 if (unlikely(fd < 0)) {
416 newfile = sock_alloc_file(sock, flags, NULL);
417 if (!IS_ERR(newfile)) {
418 fd_install(fd, newfile);
423 return PTR_ERR(newfile);
427 * sock_from_file - Return the &socket bounded to @file.
429 * @err: pointer to an error code return
431 * On failure returns %NULL and assigns -ENOTSOCK to @err.
434 struct socket *sock_from_file(struct file *file, int *err)
436 if (file->f_op == &socket_file_ops)
437 return file->private_data; /* set in sock_map_fd */
442 EXPORT_SYMBOL(sock_from_file);
445 * sockfd_lookup - Go from a file number to its socket slot
447 * @err: pointer to an error code return
449 * The file handle passed in is locked and the socket it is bound
450 * to is returned. If an error occurs the err pointer is overwritten
451 * with a negative errno code and NULL is returned. The function checks
452 * for both invalid handles and passing a handle which is not a socket.
454 * On a success the socket object pointer is returned.
457 struct socket *sockfd_lookup(int fd, int *err)
468 sock = sock_from_file(file, err);
473 EXPORT_SYMBOL(sockfd_lookup);
475 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
477 struct fd f = fdget(fd);
482 sock = sock_from_file(f.file, err);
484 *fput_needed = f.flags;
492 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
508 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
522 int err = simple_setattr(dentry, iattr);
524 if (!err && (iattr->ia_valid & ATTR_UID)) {
525 struct socket *sock = SOCKET_I(d_inode(dentry));
528 sock->sk->sk_uid = iattr->ia_uid;
536 static const struct inode_operations sockfs_inode_ops = {
537 .listxattr = sockfs_listxattr,
538 .setattr = sockfs_setattr,
542 * sock_alloc - allocate a socket
544 * Allocate a new inode and socket object. The two are bound together
545 * and initialised. The socket is then returned. If we are out of inodes
546 * NULL is returned. This functions uses GFP_KERNEL internally.
549 struct socket *sock_alloc(void)
554 inode = new_inode_pseudo(sock_mnt->mnt_sb);
558 sock = SOCKET_I(inode);
560 inode->i_ino = get_next_ino();
561 inode->i_mode = S_IFSOCK | S_IRWXUGO;
562 inode->i_uid = current_fsuid();
563 inode->i_gid = current_fsgid();
564 inode->i_op = &sockfs_inode_ops;
568 EXPORT_SYMBOL(sock_alloc);
571 * sock_release - close a socket
572 * @sock: socket to close
574 * The socket is released from the protocol stack if it has a release
575 * callback, and the inode is then released if the socket is bound to
576 * an inode not a file.
579 static void __sock_release(struct socket *sock, struct inode *inode)
582 struct module *owner = sock->ops->owner;
586 sock->ops->release(sock);
594 if (sock->wq.fasync_list)
595 pr_err("%s: fasync list not empty!\n", __func__);
598 iput(SOCK_INODE(sock));
604 void sock_release(struct socket *sock)
606 __sock_release(sock, NULL);
608 EXPORT_SYMBOL(sock_release);
610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
612 u8 flags = *tx_flags;
614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
615 flags |= SKBTX_HW_TSTAMP;
617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
618 flags |= SKBTX_SW_TSTAMP;
620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 flags |= SKBTX_SCHED_TSTAMP;
625 EXPORT_SYMBOL(__sock_tx_timestamp);
627 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
629 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
633 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
634 inet_sendmsg, sock, msg,
636 BUG_ON(ret == -EIOCBQUEUED);
641 * sock_sendmsg - send a message through @sock
643 * @msg: message to send
645 * Sends @msg through @sock, passing through LSM.
646 * Returns the number of bytes sent, or an error code.
648 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
650 int err = security_socket_sendmsg(sock, msg,
653 return err ?: sock_sendmsg_nosec(sock, msg);
655 EXPORT_SYMBOL(sock_sendmsg);
658 * kernel_sendmsg - send a message through @sock (kernel-space)
660 * @msg: message header
662 * @num: vec array length
663 * @size: total message data size
665 * Builds the message data with @vec and sends it through @sock.
666 * Returns the number of bytes sent, or an error code.
669 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
670 struct kvec *vec, size_t num, size_t size)
672 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
673 return sock_sendmsg(sock, msg);
675 EXPORT_SYMBOL(kernel_sendmsg);
678 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
680 * @msg: message header
681 * @vec: output s/g array
682 * @num: output s/g array length
683 * @size: total message data size
685 * Builds the message data with @vec and sends it through @sock.
686 * Returns the number of bytes sent, or an error code.
687 * Caller must hold @sk.
690 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
691 struct kvec *vec, size_t num, size_t size)
693 struct socket *sock = sk->sk_socket;
695 if (!sock->ops->sendmsg_locked)
696 return sock_no_sendmsg_locked(sk, msg, size);
698 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
700 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
702 EXPORT_SYMBOL(kernel_sendmsg_locked);
704 static bool skb_is_err_queue(const struct sk_buff *skb)
706 /* pkt_type of skbs enqueued on the error queue are set to
707 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
708 * in recvmsg, since skbs received on a local socket will never
709 * have a pkt_type of PACKET_OUTGOING.
711 return skb->pkt_type == PACKET_OUTGOING;
714 /* On transmit, software and hardware timestamps are returned independently.
715 * As the two skb clones share the hardware timestamp, which may be updated
716 * before the software timestamp is received, a hardware TX timestamp may be
717 * returned only if there is no software TX timestamp. Ignore false software
718 * timestamps, which may be made in the __sock_recv_timestamp() call when the
719 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
720 * hardware timestamp.
722 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
724 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
727 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
729 struct scm_ts_pktinfo ts_pktinfo;
730 struct net_device *orig_dev;
732 if (!skb_mac_header_was_set(skb))
735 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
738 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
740 ts_pktinfo.if_index = orig_dev->ifindex;
743 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
745 sizeof(ts_pktinfo), &ts_pktinfo);
749 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
751 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
754 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
755 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
756 struct scm_timestamping_internal tss;
758 int empty = 1, false_tstamp = 0;
759 struct skb_shared_hwtstamps *shhwtstamps =
762 /* Race occurred between timestamp enabling and packet
763 receiving. Fill in the current time for now. */
764 if (need_software_tstamp && skb->tstamp == 0) {
765 __net_timestamp(skb);
769 if (need_software_tstamp) {
770 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
772 struct __kernel_sock_timeval tv;
774 skb_get_new_timestamp(skb, &tv);
775 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
778 struct __kernel_old_timeval tv;
780 skb_get_timestamp(skb, &tv);
781 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
786 struct __kernel_timespec ts;
788 skb_get_new_timestampns(skb, &ts);
789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
794 skb_get_timestampns(skb, &ts);
795 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
801 memset(&tss, 0, sizeof(tss));
802 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
803 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
806 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
807 !skb_is_swtx_tstamp(skb, false_tstamp) &&
808 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
811 !skb_is_err_queue(skb))
812 put_ts_pktinfo(msg, skb);
815 if (sock_flag(sk, SOCK_TSTAMP_NEW))
816 put_cmsg_scm_timestamping64(msg, &tss);
818 put_cmsg_scm_timestamping(msg, &tss);
820 if (skb_is_err_queue(skb) && skb->len &&
821 SKB_EXT_ERR(skb)->opt_stats)
822 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
823 skb->len, skb->data);
826 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
828 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
833 if (!sock_flag(sk, SOCK_WIFI_STATUS))
835 if (!skb->wifi_acked_valid)
838 ack = skb->wifi_acked;
840 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
842 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
844 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
847 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
848 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
849 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
852 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
855 sock_recv_timestamp(msg, sk, skb);
856 sock_recv_drops(msg, sk, skb);
858 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
860 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
862 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
864 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
867 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
868 inet_recvmsg, sock, msg, msg_data_left(msg),
873 * sock_recvmsg - receive a message from @sock
875 * @msg: message to receive
876 * @flags: message flags
878 * Receives @msg from @sock, passing through LSM. Returns the total number
879 * of bytes received, or an error.
881 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
883 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
885 return err ?: sock_recvmsg_nosec(sock, msg, flags);
887 EXPORT_SYMBOL(sock_recvmsg);
890 * kernel_recvmsg - Receive a message from a socket (kernel space)
891 * @sock: The socket to receive the message from
892 * @msg: Received message
893 * @vec: Input s/g array for message data
894 * @num: Size of input s/g array
895 * @size: Number of bytes to read
896 * @flags: Message flags (MSG_DONTWAIT, etc...)
898 * On return the msg structure contains the scatter/gather array passed in the
899 * vec argument. The array is modified so that it consists of the unfilled
900 * portion of the original array.
902 * The returned value is the total number of bytes received, or an error.
905 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
906 struct kvec *vec, size_t num, size_t size, int flags)
908 mm_segment_t oldfs = get_fs();
911 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
913 result = sock_recvmsg(sock, msg, flags);
917 EXPORT_SYMBOL(kernel_recvmsg);
919 static ssize_t sock_sendpage(struct file *file, struct page *page,
920 int offset, size_t size, loff_t *ppos, int more)
925 sock = file->private_data;
927 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
928 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
931 return kernel_sendpage(sock, page, offset, size, flags);
934 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
935 struct pipe_inode_info *pipe, size_t len,
938 struct socket *sock = file->private_data;
940 if (unlikely(!sock->ops->splice_read))
941 return generic_file_splice_read(file, ppos, pipe, len, flags);
943 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
946 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
948 struct file *file = iocb->ki_filp;
949 struct socket *sock = file->private_data;
950 struct msghdr msg = {.msg_iter = *to,
954 if (file->f_flags & O_NONBLOCK)
955 msg.msg_flags = MSG_DONTWAIT;
957 if (iocb->ki_pos != 0)
960 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
963 res = sock_recvmsg(sock, &msg, msg.msg_flags);
968 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
970 struct file *file = iocb->ki_filp;
971 struct socket *sock = file->private_data;
972 struct msghdr msg = {.msg_iter = *from,
976 if (iocb->ki_pos != 0)
979 if (file->f_flags & O_NONBLOCK)
980 msg.msg_flags = MSG_DONTWAIT;
982 if (sock->type == SOCK_SEQPACKET)
983 msg.msg_flags |= MSG_EOR;
985 res = sock_sendmsg(sock, &msg);
986 *from = msg.msg_iter;
991 * Atomic setting of ioctl hooks to avoid race
992 * with module unload.
995 static DEFINE_MUTEX(br_ioctl_mutex);
996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1000 mutex_lock(&br_ioctl_mutex);
1001 br_ioctl_hook = hook;
1002 mutex_unlock(&br_ioctl_mutex);
1004 EXPORT_SYMBOL(brioctl_set);
1006 static DEFINE_MUTEX(vlan_ioctl_mutex);
1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1011 mutex_lock(&vlan_ioctl_mutex);
1012 vlan_ioctl_hook = hook;
1013 mutex_unlock(&vlan_ioctl_mutex);
1015 EXPORT_SYMBOL(vlan_ioctl_set);
1017 static DEFINE_MUTEX(dlci_ioctl_mutex);
1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1022 mutex_lock(&dlci_ioctl_mutex);
1023 dlci_ioctl_hook = hook;
1024 mutex_unlock(&dlci_ioctl_mutex);
1026 EXPORT_SYMBOL(dlci_ioctl_set);
1028 static long sock_do_ioctl(struct net *net, struct socket *sock,
1029 unsigned int cmd, unsigned long arg)
1032 void __user *argp = (void __user *)arg;
1034 err = sock->ops->ioctl(sock, cmd, arg);
1037 * If this ioctl is unknown try to hand it down
1038 * to the NIC driver.
1040 if (err != -ENOIOCTLCMD)
1043 if (cmd == SIOCGIFCONF) {
1045 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1048 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1050 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1057 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1058 if (!err && need_copyout)
1059 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1066 * With an ioctl, arg may well be a user mode pointer, but we don't know
1067 * what to do with it - that's up to the protocol still.
1071 * get_net_ns - increment the refcount of the network namespace
1072 * @ns: common namespace (net)
1074 * Returns the net's common namespace.
1077 struct ns_common *get_net_ns(struct ns_common *ns)
1079 return &get_net(container_of(ns, struct net, ns))->ns;
1081 EXPORT_SYMBOL_GPL(get_net_ns);
1083 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1085 struct socket *sock;
1087 void __user *argp = (void __user *)arg;
1091 sock = file->private_data;
1094 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1097 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1099 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1100 if (!err && need_copyout)
1101 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1104 #ifdef CONFIG_WEXT_CORE
1105 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1106 err = wext_handle_ioctl(net, cmd, argp);
1113 if (get_user(pid, (int __user *)argp))
1115 err = f_setown(sock->file, pid, 1);
1119 err = put_user(f_getown(sock->file),
1120 (int __user *)argp);
1128 request_module("bridge");
1130 mutex_lock(&br_ioctl_mutex);
1132 err = br_ioctl_hook(net, cmd, argp);
1133 mutex_unlock(&br_ioctl_mutex);
1138 if (!vlan_ioctl_hook)
1139 request_module("8021q");
1141 mutex_lock(&vlan_ioctl_mutex);
1142 if (vlan_ioctl_hook)
1143 err = vlan_ioctl_hook(net, argp);
1144 mutex_unlock(&vlan_ioctl_mutex);
1149 if (!dlci_ioctl_hook)
1150 request_module("dlci");
1152 mutex_lock(&dlci_ioctl_mutex);
1153 if (dlci_ioctl_hook)
1154 err = dlci_ioctl_hook(cmd, argp);
1155 mutex_unlock(&dlci_ioctl_mutex);
1159 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1162 err = open_related_ns(&net->ns, get_net_ns);
1164 case SIOCGSTAMP_OLD:
1165 case SIOCGSTAMPNS_OLD:
1166 if (!sock->ops->gettstamp) {
1170 err = sock->ops->gettstamp(sock, argp,
1171 cmd == SIOCGSTAMP_OLD,
1172 !IS_ENABLED(CONFIG_64BIT));
1174 case SIOCGSTAMP_NEW:
1175 case SIOCGSTAMPNS_NEW:
1176 if (!sock->ops->gettstamp) {
1180 err = sock->ops->gettstamp(sock, argp,
1181 cmd == SIOCGSTAMP_NEW,
1185 err = sock_do_ioctl(net, sock, cmd, arg);
1192 * sock_create_lite - creates a socket
1193 * @family: protocol family (AF_INET, ...)
1194 * @type: communication type (SOCK_STREAM, ...)
1195 * @protocol: protocol (0, ...)
1198 * Creates a new socket and assigns it to @res, passing through LSM.
1199 * The new socket initialization is not complete, see kernel_accept().
1200 * Returns 0 or an error. On failure @res is set to %NULL.
1201 * This function internally uses GFP_KERNEL.
1204 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1207 struct socket *sock = NULL;
1209 err = security_socket_create(family, type, protocol, 1);
1213 sock = sock_alloc();
1220 err = security_socket_post_create(sock, family, type, protocol, 1);
1232 EXPORT_SYMBOL(sock_create_lite);
1234 /* No kernel lock held - perfect */
1235 static __poll_t sock_poll(struct file *file, poll_table *wait)
1237 struct socket *sock = file->private_data;
1238 __poll_t events = poll_requested_events(wait), flag = 0;
1240 if (!sock->ops->poll)
1243 if (sk_can_busy_loop(sock->sk)) {
1244 /* poll once if requested by the syscall */
1245 if (events & POLL_BUSY_LOOP)
1246 sk_busy_loop(sock->sk, 1);
1248 /* if this socket can poll_ll, tell the system call */
1249 flag = POLL_BUSY_LOOP;
1252 return sock->ops->poll(file, sock, wait) | flag;
1255 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1257 struct socket *sock = file->private_data;
1259 return sock->ops->mmap(file, sock, vma);
1262 static int sock_close(struct inode *inode, struct file *filp)
1264 __sock_release(SOCKET_I(inode), inode);
1269 * Update the socket async list
1271 * Fasync_list locking strategy.
1273 * 1. fasync_list is modified only under process context socket lock
1274 * i.e. under semaphore.
1275 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1276 * or under socket lock
1279 static int sock_fasync(int fd, struct file *filp, int on)
1281 struct socket *sock = filp->private_data;
1282 struct sock *sk = sock->sk;
1283 struct socket_wq *wq = &sock->wq;
1289 fasync_helper(fd, filp, on, &wq->fasync_list);
1291 if (!wq->fasync_list)
1292 sock_reset_flag(sk, SOCK_FASYNC);
1294 sock_set_flag(sk, SOCK_FASYNC);
1300 /* This function may be called only under rcu_lock */
1302 int sock_wake_async(struct socket_wq *wq, int how, int band)
1304 if (!wq || !wq->fasync_list)
1308 case SOCK_WAKE_WAITD:
1309 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1312 case SOCK_WAKE_SPACE:
1313 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318 kill_fasync(&wq->fasync_list, SIGIO, band);
1321 kill_fasync(&wq->fasync_list, SIGURG, band);
1326 EXPORT_SYMBOL(sock_wake_async);
1329 * __sock_create - creates a socket
1330 * @net: net namespace
1331 * @family: protocol family (AF_INET, ...)
1332 * @type: communication type (SOCK_STREAM, ...)
1333 * @protocol: protocol (0, ...)
1335 * @kern: boolean for kernel space sockets
1337 * Creates a new socket and assigns it to @res, passing through LSM.
1338 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1339 * be set to true if the socket resides in kernel space.
1340 * This function internally uses GFP_KERNEL.
1343 int __sock_create(struct net *net, int family, int type, int protocol,
1344 struct socket **res, int kern)
1347 struct socket *sock;
1348 const struct net_proto_family *pf;
1351 * Check protocol is in range
1353 if (family < 0 || family >= NPROTO)
1354 return -EAFNOSUPPORT;
1355 if (type < 0 || type >= SOCK_MAX)
1360 This uglymoron is moved from INET layer to here to avoid
1361 deadlock in module load.
1363 if (family == PF_INET && type == SOCK_PACKET) {
1364 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369 err = security_socket_create(family, type, protocol, kern);
1374 * Allocate the socket and allow the family to set things up. if
1375 * the protocol is 0, the family is instructed to select an appropriate
1378 sock = sock_alloc();
1380 net_warn_ratelimited("socket: no more sockets\n");
1381 return -ENFILE; /* Not exactly a match, but its the
1382 closest posix thing */
1387 #ifdef CONFIG_MODULES
1388 /* Attempt to load a protocol module if the find failed.
1390 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1391 * requested real, full-featured networking support upon configuration.
1392 * Otherwise module support will break!
1394 if (rcu_access_pointer(net_families[family]) == NULL)
1395 request_module("net-pf-%d", family);
1399 pf = rcu_dereference(net_families[family]);
1400 err = -EAFNOSUPPORT;
1405 * We will call the ->create function, that possibly is in a loadable
1406 * module, so we have to bump that loadable module refcnt first.
1408 if (!try_module_get(pf->owner))
1411 /* Now protected by module ref count */
1414 err = pf->create(net, sock, protocol, kern);
1416 goto out_module_put;
1419 * Now to bump the refcnt of the [loadable] module that owns this
1420 * socket at sock_release time we decrement its refcnt.
1422 if (!try_module_get(sock->ops->owner))
1423 goto out_module_busy;
1426 * Now that we're done with the ->create function, the [loadable]
1427 * module can have its refcnt decremented
1429 module_put(pf->owner);
1430 err = security_socket_post_create(sock, family, type, protocol, kern);
1432 goto out_sock_release;
1438 err = -EAFNOSUPPORT;
1441 module_put(pf->owner);
1448 goto out_sock_release;
1450 EXPORT_SYMBOL(__sock_create);
1453 * sock_create - creates a socket
1454 * @family: protocol family (AF_INET, ...)
1455 * @type: communication type (SOCK_STREAM, ...)
1456 * @protocol: protocol (0, ...)
1459 * A wrapper around __sock_create().
1460 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1463 int sock_create(int family, int type, int protocol, struct socket **res)
1465 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1467 EXPORT_SYMBOL(sock_create);
1470 * sock_create_kern - creates a socket (kernel space)
1471 * @net: net namespace
1472 * @family: protocol family (AF_INET, ...)
1473 * @type: communication type (SOCK_STREAM, ...)
1474 * @protocol: protocol (0, ...)
1477 * A wrapper around __sock_create().
1478 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1481 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1483 return __sock_create(net, family, type, protocol, res, 1);
1485 EXPORT_SYMBOL(sock_create_kern);
1487 int __sys_socket(int family, int type, int protocol)
1490 struct socket *sock;
1493 /* Check the SOCK_* constants for consistency. */
1494 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1495 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1496 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1497 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1499 flags = type & ~SOCK_TYPE_MASK;
1500 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1502 type &= SOCK_TYPE_MASK;
1504 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1505 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1507 retval = sock_create(family, type, protocol, &sock);
1511 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1514 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1516 return __sys_socket(family, type, protocol);
1520 * Create a pair of connected sockets.
1523 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1525 struct socket *sock1, *sock2;
1527 struct file *newfile1, *newfile2;
1530 flags = type & ~SOCK_TYPE_MASK;
1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1533 type &= SOCK_TYPE_MASK;
1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1539 * reserve descriptors and make sure we won't fail
1540 * to return them to userland.
1542 fd1 = get_unused_fd_flags(flags);
1543 if (unlikely(fd1 < 0))
1546 fd2 = get_unused_fd_flags(flags);
1547 if (unlikely(fd2 < 0)) {
1552 err = put_user(fd1, &usockvec[0]);
1556 err = put_user(fd2, &usockvec[1]);
1561 * Obtain the first socket and check if the underlying protocol
1562 * supports the socketpair call.
1565 err = sock_create(family, type, protocol, &sock1);
1566 if (unlikely(err < 0))
1569 err = sock_create(family, type, protocol, &sock2);
1570 if (unlikely(err < 0)) {
1571 sock_release(sock1);
1575 err = security_socket_socketpair(sock1, sock2);
1576 if (unlikely(err)) {
1577 sock_release(sock2);
1578 sock_release(sock1);
1582 err = sock1->ops->socketpair(sock1, sock2);
1583 if (unlikely(err < 0)) {
1584 sock_release(sock2);
1585 sock_release(sock1);
1589 newfile1 = sock_alloc_file(sock1, flags, NULL);
1590 if (IS_ERR(newfile1)) {
1591 err = PTR_ERR(newfile1);
1592 sock_release(sock2);
1596 newfile2 = sock_alloc_file(sock2, flags, NULL);
1597 if (IS_ERR(newfile2)) {
1598 err = PTR_ERR(newfile2);
1603 audit_fd_pair(fd1, fd2);
1605 fd_install(fd1, newfile1);
1606 fd_install(fd2, newfile2);
1615 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1616 int __user *, usockvec)
1618 return __sys_socketpair(family, type, protocol, usockvec);
1622 * Bind a name to a socket. Nothing much to do here since it's
1623 * the protocol's responsibility to handle the local address.
1625 * We move the socket address to kernel space before we call
1626 * the protocol layer (having also checked the address is ok).
1629 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1631 struct socket *sock;
1632 struct sockaddr_storage address;
1633 int err, fput_needed;
1635 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1637 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1639 err = security_socket_bind(sock,
1640 (struct sockaddr *)&address,
1643 err = sock->ops->bind(sock,
1647 fput_light(sock->file, fput_needed);
1652 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1654 return __sys_bind(fd, umyaddr, addrlen);
1658 * Perform a listen. Basically, we allow the protocol to do anything
1659 * necessary for a listen, and if that works, we mark the socket as
1660 * ready for listening.
1663 int __sys_listen(int fd, int backlog)
1665 struct socket *sock;
1666 int err, fput_needed;
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1672 if ((unsigned int)backlog > somaxconn)
1673 backlog = somaxconn;
1675 err = security_socket_listen(sock, backlog);
1677 err = sock->ops->listen(sock, backlog);
1679 fput_light(sock->file, fput_needed);
1684 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1686 return __sys_listen(fd, backlog);
1690 * For accept, we attempt to create a new socket, set up the link
1691 * with the client, wake up the client, then return the new
1692 * connected fd. We collect the address of the connector in kernel
1693 * space and move it to user at the very end. This is unclean because
1694 * we open the socket then return an error.
1696 * 1003.1g adds the ability to recvmsg() to query connection pending
1697 * status to recvmsg. We need to add that support in a way thats
1698 * clean when we restructure accept also.
1701 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1702 int __user *upeer_addrlen, int flags)
1704 struct socket *sock, *newsock;
1705 struct file *newfile;
1706 int err, len, newfd, fput_needed;
1707 struct sockaddr_storage address;
1709 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1712 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1713 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1715 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 newsock = sock_alloc();
1724 newsock->type = sock->type;
1725 newsock->ops = sock->ops;
1728 * We don't need try_module_get here, as the listening socket (sock)
1729 * has the protocol module (sock->ops->owner) held.
1731 __module_get(newsock->ops->owner);
1733 newfd = get_unused_fd_flags(flags);
1734 if (unlikely(newfd < 0)) {
1736 sock_release(newsock);
1739 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1740 if (IS_ERR(newfile)) {
1741 err = PTR_ERR(newfile);
1742 put_unused_fd(newfd);
1746 err = security_socket_accept(sock, newsock);
1750 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1754 if (upeer_sockaddr) {
1755 len = newsock->ops->getname(newsock,
1756 (struct sockaddr *)&address, 2);
1758 err = -ECONNABORTED;
1761 err = move_addr_to_user(&address,
1762 len, upeer_sockaddr, upeer_addrlen);
1767 /* File flags are not inherited via accept() unlike another OSes. */
1769 fd_install(newfd, newfile);
1773 fput_light(sock->file, fput_needed);
1778 put_unused_fd(newfd);
1782 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1783 int __user *, upeer_addrlen, int, flags)
1785 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1788 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1789 int __user *, upeer_addrlen)
1791 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1795 * Attempt to connect to a socket with the server address. The address
1796 * is in user space so we verify it is OK and move it to kernel space.
1798 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1801 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1802 * other SEQPACKET protocols that take time to connect() as it doesn't
1803 * include the -EINPROGRESS status for such sockets.
1806 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1808 struct socket *sock;
1809 struct sockaddr_storage address;
1810 int err, fput_needed;
1812 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1824 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1825 sock->file->f_flags);
1827 fput_light(sock->file, fput_needed);
1832 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1835 return __sys_connect(fd, uservaddr, addrlen);
1839 * Get the local address ('name') of a socket object. Move the obtained
1840 * name to user space.
1843 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1844 int __user *usockaddr_len)
1846 struct socket *sock;
1847 struct sockaddr_storage address;
1848 int err, fput_needed;
1850 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1854 err = security_socket_getsockname(sock);
1858 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1861 /* "err" is actually length in this case */
1862 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1865 fput_light(sock->file, fput_needed);
1870 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1871 int __user *, usockaddr_len)
1873 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1877 * Get the remote address ('name') of a socket object. Move the obtained
1878 * name to user space.
1881 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1882 int __user *usockaddr_len)
1884 struct socket *sock;
1885 struct sockaddr_storage address;
1886 int err, fput_needed;
1888 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 err = security_socket_getpeername(sock);
1892 fput_light(sock->file, fput_needed);
1896 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1898 /* "err" is actually length in this case */
1899 err = move_addr_to_user(&address, err, usockaddr,
1901 fput_light(sock->file, fput_needed);
1906 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1907 int __user *, usockaddr_len)
1909 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1913 * Send a datagram to a given address. We move the address into kernel
1914 * space and check the user space data area is readable before invoking
1917 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1918 struct sockaddr __user *addr, int addr_len)
1920 struct socket *sock;
1921 struct sockaddr_storage address;
1927 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1930 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 msg.msg_name = NULL;
1935 msg.msg_control = NULL;
1936 msg.msg_controllen = 0;
1937 msg.msg_namelen = 0;
1939 err = move_addr_to_kernel(addr, addr_len, &address);
1942 msg.msg_name = (struct sockaddr *)&address;
1943 msg.msg_namelen = addr_len;
1945 if (sock->file->f_flags & O_NONBLOCK)
1946 flags |= MSG_DONTWAIT;
1947 msg.msg_flags = flags;
1948 err = sock_sendmsg(sock, &msg);
1951 fput_light(sock->file, fput_needed);
1956 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1957 unsigned int, flags, struct sockaddr __user *, addr,
1960 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1964 * Send a datagram down a socket.
1967 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1968 unsigned int, flags)
1970 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1974 * Receive a frame from the socket and optionally record the address of the
1975 * sender. We verify the buffers are writable and if needed move the
1976 * sender address from kernel to user space.
1978 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1979 struct sockaddr __user *addr, int __user *addr_len)
1981 struct socket *sock;
1984 struct sockaddr_storage address;
1988 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1991 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1995 msg.msg_control = NULL;
1996 msg.msg_controllen = 0;
1997 /* Save some cycles and don't copy the address if not needed */
1998 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1999 /* We assume all kernel code knows the size of sockaddr_storage */
2000 msg.msg_namelen = 0;
2001 msg.msg_iocb = NULL;
2003 if (sock->file->f_flags & O_NONBLOCK)
2004 flags |= MSG_DONTWAIT;
2005 err = sock_recvmsg(sock, &msg, flags);
2007 if (err >= 0 && addr != NULL) {
2008 err2 = move_addr_to_user(&address,
2009 msg.msg_namelen, addr, addr_len);
2014 fput_light(sock->file, fput_needed);
2019 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2020 unsigned int, flags, struct sockaddr __user *, addr,
2021 int __user *, addr_len)
2023 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2027 * Receive a datagram from a socket.
2030 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2031 unsigned int, flags)
2033 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2037 * Set a socket option. Because we don't know the option lengths we have
2038 * to pass the user mode parameter for the protocols to sort out.
2041 static int __sys_setsockopt(int fd, int level, int optname,
2042 char __user *optval, int optlen)
2044 mm_segment_t oldfs = get_fs();
2045 char *kernel_optval = NULL;
2046 int err, fput_needed;
2047 struct socket *sock;
2052 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054 err = security_socket_setsockopt(sock, level, optname);
2058 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2059 &optname, optval, &optlen,
2064 } else if (err > 0) {
2069 if (kernel_optval) {
2071 optval = (char __user __force *)kernel_optval;
2074 if (level == SOL_SOCKET)
2076 sock_setsockopt(sock, level, optname, optval,
2080 sock->ops->setsockopt(sock, level, optname, optval,
2083 if (kernel_optval) {
2085 kfree(kernel_optval);
2088 fput_light(sock->file, fput_needed);
2093 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2094 char __user *, optval, int, optlen)
2096 return __sys_setsockopt(fd, level, optname, optval, optlen);
2100 * Get a socket option. Because we don't know the option lengths we have
2101 * to pass a user mode parameter for the protocols to sort out.
2104 static int __sys_getsockopt(int fd, int level, int optname,
2105 char __user *optval, int __user *optlen)
2107 int err, fput_needed;
2108 struct socket *sock;
2111 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2113 err = security_socket_getsockopt(sock, level, optname);
2117 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2119 if (level == SOL_SOCKET)
2121 sock_getsockopt(sock, level, optname, optval,
2125 sock->ops->getsockopt(sock, level, optname, optval,
2128 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2132 fput_light(sock->file, fput_needed);
2137 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2138 char __user *, optval, int __user *, optlen)
2140 return __sys_getsockopt(fd, level, optname, optval, optlen);
2144 * Shutdown a socket.
2147 int __sys_shutdown(int fd, int how)
2149 int err, fput_needed;
2150 struct socket *sock;
2152 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2154 err = security_socket_shutdown(sock, how);
2156 err = sock->ops->shutdown(sock, how);
2157 fput_light(sock->file, fput_needed);
2162 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2164 return __sys_shutdown(fd, how);
2167 /* A couple of helpful macros for getting the address of the 32/64 bit
2168 * fields which are the same type (int / unsigned) on our platforms.
2170 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2171 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2172 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2174 struct used_address {
2175 struct sockaddr_storage name;
2176 unsigned int name_len;
2179 static int copy_msghdr_from_user(struct msghdr *kmsg,
2180 struct user_msghdr __user *umsg,
2181 struct sockaddr __user **save_addr,
2184 struct user_msghdr msg;
2187 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2190 kmsg->msg_control = (void __force *)msg.msg_control;
2191 kmsg->msg_controllen = msg.msg_controllen;
2192 kmsg->msg_flags = msg.msg_flags;
2194 kmsg->msg_namelen = msg.msg_namelen;
2196 kmsg->msg_namelen = 0;
2198 if (kmsg->msg_namelen < 0)
2201 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2202 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2205 *save_addr = msg.msg_name;
2207 if (msg.msg_name && kmsg->msg_namelen) {
2209 err = move_addr_to_kernel(msg.msg_name,
2216 kmsg->msg_name = NULL;
2217 kmsg->msg_namelen = 0;
2220 if (msg.msg_iovlen > UIO_MAXIOV)
2223 kmsg->msg_iocb = NULL;
2225 return import_iovec(save_addr ? READ : WRITE,
2226 msg.msg_iov, msg.msg_iovlen,
2227 UIO_FASTIOV, iov, &kmsg->msg_iter);
2230 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2231 struct msghdr *msg_sys, unsigned int flags,
2232 struct used_address *used_address,
2233 unsigned int allowed_msghdr_flags)
2235 struct compat_msghdr __user *msg_compat =
2236 (struct compat_msghdr __user *)msg;
2237 struct sockaddr_storage address;
2238 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2239 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2240 __aligned(sizeof(__kernel_size_t));
2241 /* 20 is size of ipv6_pktinfo */
2242 unsigned char *ctl_buf = ctl;
2246 msg_sys->msg_name = &address;
2248 if (MSG_CMSG_COMPAT & flags)
2249 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2251 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2257 if (msg_sys->msg_controllen > INT_MAX)
2259 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2260 ctl_len = msg_sys->msg_controllen;
2261 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2263 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2267 ctl_buf = msg_sys->msg_control;
2268 ctl_len = msg_sys->msg_controllen;
2269 } else if (ctl_len) {
2270 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2271 CMSG_ALIGN(sizeof(struct cmsghdr)));
2272 if (ctl_len > sizeof(ctl)) {
2273 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2274 if (ctl_buf == NULL)
2279 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2280 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2281 * checking falls down on this.
2283 if (copy_from_user(ctl_buf,
2284 (void __user __force *)msg_sys->msg_control,
2287 msg_sys->msg_control = ctl_buf;
2289 msg_sys->msg_flags = flags;
2291 if (sock->file->f_flags & O_NONBLOCK)
2292 msg_sys->msg_flags |= MSG_DONTWAIT;
2294 * If this is sendmmsg() and current destination address is same as
2295 * previously succeeded address, omit asking LSM's decision.
2296 * used_address->name_len is initialized to UINT_MAX so that the first
2297 * destination address never matches.
2299 if (used_address && msg_sys->msg_name &&
2300 used_address->name_len == msg_sys->msg_namelen &&
2301 !memcmp(&used_address->name, msg_sys->msg_name,
2302 used_address->name_len)) {
2303 err = sock_sendmsg_nosec(sock, msg_sys);
2306 err = sock_sendmsg(sock, msg_sys);
2308 * If this is sendmmsg() and sending to current destination address was
2309 * successful, remember it.
2311 if (used_address && err >= 0) {
2312 used_address->name_len = msg_sys->msg_namelen;
2313 if (msg_sys->msg_name)
2314 memcpy(&used_address->name, msg_sys->msg_name,
2315 used_address->name_len);
2320 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2327 * BSD sendmsg interface
2330 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2331 bool forbid_cmsg_compat)
2333 int fput_needed, err;
2334 struct msghdr msg_sys;
2335 struct socket *sock;
2337 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2340 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2344 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2346 fput_light(sock->file, fput_needed);
2351 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2353 return __sys_sendmsg(fd, msg, flags, true);
2357 * Linux sendmmsg interface
2360 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2361 unsigned int flags, bool forbid_cmsg_compat)
2363 int fput_needed, err, datagrams;
2364 struct socket *sock;
2365 struct mmsghdr __user *entry;
2366 struct compat_mmsghdr __user *compat_entry;
2367 struct msghdr msg_sys;
2368 struct used_address used_address;
2369 unsigned int oflags = flags;
2371 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2374 if (vlen > UIO_MAXIOV)
2379 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2383 used_address.name_len = UINT_MAX;
2385 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2389 while (datagrams < vlen) {
2390 if (datagrams == vlen - 1)
2393 if (MSG_CMSG_COMPAT & flags) {
2394 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2395 &msg_sys, flags, &used_address, MSG_EOR);
2398 err = __put_user(err, &compat_entry->msg_len);
2401 err = ___sys_sendmsg(sock,
2402 (struct user_msghdr __user *)entry,
2403 &msg_sys, flags, &used_address, MSG_EOR);
2406 err = put_user(err, &entry->msg_len);
2413 if (msg_data_left(&msg_sys))
2418 fput_light(sock->file, fput_needed);
2420 /* We only return an error if no datagrams were able to be sent */
2427 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2428 unsigned int, vlen, unsigned int, flags)
2430 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2433 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2434 struct msghdr *msg_sys, unsigned int flags, int nosec)
2436 struct compat_msghdr __user *msg_compat =
2437 (struct compat_msghdr __user *)msg;
2438 struct iovec iovstack[UIO_FASTIOV];
2439 struct iovec *iov = iovstack;
2440 unsigned long cmsg_ptr;
2444 /* kernel mode address */
2445 struct sockaddr_storage addr;
2447 /* user mode address pointers */
2448 struct sockaddr __user *uaddr;
2449 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2451 msg_sys->msg_name = &addr;
2453 if (MSG_CMSG_COMPAT & flags)
2454 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2456 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2460 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2461 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2463 /* We assume all kernel code knows the size of sockaddr_storage */
2464 msg_sys->msg_namelen = 0;
2466 if (sock->file->f_flags & O_NONBLOCK)
2467 flags |= MSG_DONTWAIT;
2468 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2473 if (uaddr != NULL) {
2474 err = move_addr_to_user(&addr,
2475 msg_sys->msg_namelen, uaddr,
2480 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2484 if (MSG_CMSG_COMPAT & flags)
2485 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2486 &msg_compat->msg_controllen);
2488 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2489 &msg->msg_controllen);
2500 * BSD recvmsg interface
2503 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2504 bool forbid_cmsg_compat)
2506 int fput_needed, err;
2507 struct msghdr msg_sys;
2508 struct socket *sock;
2510 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2513 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2517 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2519 fput_light(sock->file, fput_needed);
2524 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2525 unsigned int, flags)
2527 return __sys_recvmsg(fd, msg, flags, true);
2531 * Linux recvmmsg interface
2534 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2535 unsigned int vlen, unsigned int flags,
2536 struct timespec64 *timeout)
2538 int fput_needed, err, datagrams;
2539 struct socket *sock;
2540 struct mmsghdr __user *entry;
2541 struct compat_mmsghdr __user *compat_entry;
2542 struct msghdr msg_sys;
2543 struct timespec64 end_time;
2544 struct timespec64 timeout64;
2547 poll_select_set_timeout(&end_time, timeout->tv_sec,
2553 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2557 if (likely(!(flags & MSG_ERRQUEUE))) {
2558 err = sock_error(sock->sk);
2566 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2568 while (datagrams < vlen) {
2570 * No need to ask LSM for more than the first datagram.
2572 if (MSG_CMSG_COMPAT & flags) {
2573 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2574 &msg_sys, flags & ~MSG_WAITFORONE,
2578 err = __put_user(err, &compat_entry->msg_len);
2581 err = ___sys_recvmsg(sock,
2582 (struct user_msghdr __user *)entry,
2583 &msg_sys, flags & ~MSG_WAITFORONE,
2587 err = put_user(err, &entry->msg_len);
2595 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2596 if (flags & MSG_WAITFORONE)
2597 flags |= MSG_DONTWAIT;
2600 ktime_get_ts64(&timeout64);
2601 *timeout = timespec64_sub(end_time, timeout64);
2602 if (timeout->tv_sec < 0) {
2603 timeout->tv_sec = timeout->tv_nsec = 0;
2607 /* Timeout, return less than vlen datagrams */
2608 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2612 /* Out of band data, return right away */
2613 if (msg_sys.msg_flags & MSG_OOB)
2621 if (datagrams == 0) {
2627 * We may return less entries than requested (vlen) if the
2628 * sock is non block and there aren't enough datagrams...
2630 if (err != -EAGAIN) {
2632 * ... or if recvmsg returns an error after we
2633 * received some datagrams, where we record the
2634 * error to return on the next call or if the
2635 * app asks about it using getsockopt(SO_ERROR).
2637 sock->sk->sk_err = -err;
2640 fput_light(sock->file, fput_needed);
2645 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2646 unsigned int vlen, unsigned int flags,
2647 struct __kernel_timespec __user *timeout,
2648 struct old_timespec32 __user *timeout32)
2651 struct timespec64 timeout_sys;
2653 if (timeout && get_timespec64(&timeout_sys, timeout))
2656 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2659 if (!timeout && !timeout32)
2660 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2662 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2667 if (timeout && put_timespec64(&timeout_sys, timeout))
2668 datagrams = -EFAULT;
2670 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2671 datagrams = -EFAULT;
2676 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2677 unsigned int, vlen, unsigned int, flags,
2678 struct __kernel_timespec __user *, timeout)
2680 if (flags & MSG_CMSG_COMPAT)
2683 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2686 #ifdef CONFIG_COMPAT_32BIT_TIME
2687 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2688 unsigned int, vlen, unsigned int, flags,
2689 struct old_timespec32 __user *, timeout)
2691 if (flags & MSG_CMSG_COMPAT)
2694 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2698 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2699 /* Argument list sizes for sys_socketcall */
2700 #define AL(x) ((x) * sizeof(unsigned long))
2701 static const unsigned char nargs[21] = {
2702 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2703 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2704 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2711 * System call vectors.
2713 * Argument checking cleaned up. Saved 20% in size.
2714 * This function doesn't need to set the kernel lock because
2715 * it is set by the callees.
2718 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2720 unsigned long a[AUDITSC_ARGS];
2721 unsigned long a0, a1;
2725 if (call < 1 || call > SYS_SENDMMSG)
2727 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2730 if (len > sizeof(a))
2733 /* copy_from_user should be SMP safe. */
2734 if (copy_from_user(a, args, len))
2737 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2746 err = __sys_socket(a0, a1, a[2]);
2749 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2752 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2755 err = __sys_listen(a0, a1);
2758 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2759 (int __user *)a[2], 0);
2761 case SYS_GETSOCKNAME:
2763 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2764 (int __user *)a[2]);
2766 case SYS_GETPEERNAME:
2768 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2769 (int __user *)a[2]);
2771 case SYS_SOCKETPAIR:
2772 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2775 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2779 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2780 (struct sockaddr __user *)a[4], a[5]);
2783 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2787 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2788 (struct sockaddr __user *)a[4],
2789 (int __user *)a[5]);
2792 err = __sys_shutdown(a0, a1);
2794 case SYS_SETSOCKOPT:
2795 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2798 case SYS_GETSOCKOPT:
2800 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2801 (int __user *)a[4]);
2804 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2808 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2812 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2816 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2817 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2819 (struct __kernel_timespec __user *)a[4],
2822 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2824 (struct old_timespec32 __user *)a[4]);
2827 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2828 (int __user *)a[2], a[3]);
2837 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2840 * sock_register - add a socket protocol handler
2841 * @ops: description of protocol
2843 * This function is called by a protocol handler that wants to
2844 * advertise its address family, and have it linked into the
2845 * socket interface. The value ops->family corresponds to the
2846 * socket system call protocol family.
2848 int sock_register(const struct net_proto_family *ops)
2852 if (ops->family >= NPROTO) {
2853 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2857 spin_lock(&net_family_lock);
2858 if (rcu_dereference_protected(net_families[ops->family],
2859 lockdep_is_held(&net_family_lock)))
2862 rcu_assign_pointer(net_families[ops->family], ops);
2865 spin_unlock(&net_family_lock);
2867 pr_info("NET: Registered protocol family %d\n", ops->family);
2870 EXPORT_SYMBOL(sock_register);
2873 * sock_unregister - remove a protocol handler
2874 * @family: protocol family to remove
2876 * This function is called by a protocol handler that wants to
2877 * remove its address family, and have it unlinked from the
2878 * new socket creation.
2880 * If protocol handler is a module, then it can use module reference
2881 * counts to protect against new references. If protocol handler is not
2882 * a module then it needs to provide its own protection in
2883 * the ops->create routine.
2885 void sock_unregister(int family)
2887 BUG_ON(family < 0 || family >= NPROTO);
2889 spin_lock(&net_family_lock);
2890 RCU_INIT_POINTER(net_families[family], NULL);
2891 spin_unlock(&net_family_lock);
2895 pr_info("NET: Unregistered protocol family %d\n", family);
2897 EXPORT_SYMBOL(sock_unregister);
2899 bool sock_is_registered(int family)
2901 return family < NPROTO && rcu_access_pointer(net_families[family]);
2904 static int __init sock_init(void)
2908 * Initialize the network sysctl infrastructure.
2910 err = net_sysctl_init();
2915 * Initialize skbuff SLAB cache
2920 * Initialize the protocols module.
2925 err = register_filesystem(&sock_fs_type);
2928 sock_mnt = kern_mount(&sock_fs_type);
2929 if (IS_ERR(sock_mnt)) {
2930 err = PTR_ERR(sock_mnt);
2934 /* The real protocol initialization is performed in later initcalls.
2937 #ifdef CONFIG_NETFILTER
2938 err = netfilter_init();
2943 ptp_classifier_init();
2949 unregister_filesystem(&sock_fs_type);
2954 core_initcall(sock_init); /* early initcall */
2956 #ifdef CONFIG_PROC_FS
2957 void socket_seq_show(struct seq_file *seq)
2959 seq_printf(seq, "sockets: used %d\n",
2960 sock_inuse_get(seq->private));
2962 #endif /* CONFIG_PROC_FS */
2964 #ifdef CONFIG_COMPAT
2965 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2967 struct compat_ifconf ifc32;
2971 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2974 ifc.ifc_len = ifc32.ifc_len;
2975 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2978 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2983 ifc32.ifc_len = ifc.ifc_len;
2984 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2990 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2992 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2993 bool convert_in = false, convert_out = false;
2994 size_t buf_size = 0;
2995 struct ethtool_rxnfc __user *rxnfc = NULL;
2997 u32 rule_cnt = 0, actual_rule_cnt;
3002 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3005 compat_rxnfc = compat_ptr(data);
3007 if (get_user(ethcmd, &compat_rxnfc->cmd))
3010 /* Most ethtool structures are defined without padding.
3011 * Unfortunately struct ethtool_rxnfc is an exception.
3016 case ETHTOOL_GRXCLSRLALL:
3017 /* Buffer size is variable */
3018 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3020 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3022 buf_size += rule_cnt * sizeof(u32);
3024 case ETHTOOL_GRXRINGS:
3025 case ETHTOOL_GRXCLSRLCNT:
3026 case ETHTOOL_GRXCLSRULE:
3027 case ETHTOOL_SRXCLSRLINS:
3030 case ETHTOOL_SRXCLSRLDEL:
3031 buf_size += sizeof(struct ethtool_rxnfc);
3033 rxnfc = compat_alloc_user_space(buf_size);
3037 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3040 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3043 /* We expect there to be holes between fs.m_ext and
3044 * fs.ring_cookie and at the end of fs, but nowhere else.
3046 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3047 sizeof(compat_rxnfc->fs.m_ext) !=
3048 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3049 sizeof(rxnfc->fs.m_ext));
3051 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3052 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3053 offsetof(struct ethtool_rxnfc, fs.location) -
3054 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3056 if (copy_in_user(rxnfc, compat_rxnfc,
3057 (void __user *)(&rxnfc->fs.m_ext + 1) -
3058 (void __user *)rxnfc) ||
3059 copy_in_user(&rxnfc->fs.ring_cookie,
3060 &compat_rxnfc->fs.ring_cookie,
3061 (void __user *)(&rxnfc->fs.location + 1) -
3062 (void __user *)&rxnfc->fs.ring_cookie))
3064 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3065 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3067 } else if (copy_in_user(&rxnfc->rule_cnt,
3068 &compat_rxnfc->rule_cnt,
3069 sizeof(rxnfc->rule_cnt)))
3073 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3078 if (copy_in_user(compat_rxnfc, rxnfc,
3079 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3080 (const void __user *)rxnfc) ||
3081 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3082 &rxnfc->fs.ring_cookie,
3083 (const void __user *)(&rxnfc->fs.location + 1) -
3084 (const void __user *)&rxnfc->fs.ring_cookie) ||
3085 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3086 sizeof(rxnfc->rule_cnt)))
3089 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3090 /* As an optimisation, we only copy the actual
3091 * number of rules that the underlying
3092 * function returned. Since Mallory might
3093 * change the rule count in user memory, we
3094 * check that it is less than the rule count
3095 * originally given (as the user buffer size),
3096 * which has been range-checked.
3098 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3100 if (actual_rule_cnt < rule_cnt)
3101 rule_cnt = actual_rule_cnt;
3102 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3103 &rxnfc->rule_locs[0],
3104 rule_cnt * sizeof(u32)))
3112 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3114 compat_uptr_t uptr32;
3119 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3122 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3125 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3126 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3128 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3130 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3131 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3137 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3138 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3139 struct compat_ifreq __user *u_ifreq32)
3144 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3146 if (get_user(data32, &u_ifreq32->ifr_data))
3148 ifreq.ifr_data = compat_ptr(data32);
3150 return dev_ioctl(net, cmd, &ifreq, NULL);
3153 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3155 struct compat_ifreq __user *uifr32)
3157 struct ifreq __user *uifr;
3160 /* Handle the fact that while struct ifreq has the same *layout* on
3161 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3162 * which are handled elsewhere, it still has different *size* due to
3163 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3164 * resulting in struct ifreq being 32 and 40 bytes respectively).
3165 * As a result, if the struct happens to be at the end of a page and
3166 * the next page isn't readable/writable, we get a fault. To prevent
3167 * that, copy back and forth to the full size.
3170 uifr = compat_alloc_user_space(sizeof(*uifr));
3171 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3174 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3185 case SIOCGIFBRDADDR:
3186 case SIOCGIFDSTADDR:
3187 case SIOCGIFNETMASK:
3193 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3201 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3202 struct compat_ifreq __user *uifr32)
3205 struct compat_ifmap __user *uifmap32;
3208 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3209 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3210 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3211 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3212 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3213 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3214 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3215 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3219 err = dev_ioctl(net, cmd, &ifr, NULL);
3221 if (cmd == SIOCGIFMAP && !err) {
3222 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3223 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3224 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3225 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3226 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3227 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3228 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3237 struct sockaddr rt_dst; /* target address */
3238 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3239 struct sockaddr rt_genmask; /* target network mask (IP) */
3240 unsigned short rt_flags;
3243 unsigned char rt_tos;
3244 unsigned char rt_class;
3246 short rt_metric; /* +1 for binary compatibility! */
3247 /* char * */ u32 rt_dev; /* forcing the device at add */
3248 u32 rt_mtu; /* per route MTU/Window */
3249 u32 rt_window; /* Window clamping */
3250 unsigned short rt_irtt; /* Initial RTT */
3253 struct in6_rtmsg32 {
3254 struct in6_addr rtmsg_dst;
3255 struct in6_addr rtmsg_src;
3256 struct in6_addr rtmsg_gateway;
3266 static int routing_ioctl(struct net *net, struct socket *sock,
3267 unsigned int cmd, void __user *argp)
3271 struct in6_rtmsg r6;
3275 mm_segment_t old_fs = get_fs();
3277 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3278 struct in6_rtmsg32 __user *ur6 = argp;
3279 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3280 3 * sizeof(struct in6_addr));
3281 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3282 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3283 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3284 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3285 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3286 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3287 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3291 struct rtentry32 __user *ur4 = argp;
3292 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3293 3 * sizeof(struct sockaddr));
3294 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3295 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3296 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3297 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3298 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3299 ret |= get_user(rtdev, &(ur4->rt_dev));
3301 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3302 r4.rt_dev = (char __user __force *)devname;
3316 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3323 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3324 * for some operations; this forces use of the newer bridge-utils that
3325 * use compatible ioctls
3327 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3331 if (get_user(tmp, argp))
3333 if (tmp == BRCTL_GET_VERSION)
3334 return BRCTL_VERSION + 1;
3338 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3339 unsigned int cmd, unsigned long arg)
3341 void __user *argp = compat_ptr(arg);
3342 struct sock *sk = sock->sk;
3343 struct net *net = sock_net(sk);
3345 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3346 return compat_ifr_data_ioctl(net, cmd, argp);
3351 return old_bridge_ioctl(argp);
3353 return compat_dev_ifconf(net, argp);
3355 return ethtool_ioctl(net, argp);
3357 return compat_siocwandev(net, argp);
3360 return compat_sioc_ifmap(net, cmd, argp);
3363 return routing_ioctl(net, sock, cmd, argp);
3364 case SIOCGSTAMP_OLD:
3365 case SIOCGSTAMPNS_OLD:
3366 if (!sock->ops->gettstamp)
3367 return -ENOIOCTLCMD;
3368 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3369 !COMPAT_USE_64BIT_TIME);
3371 case SIOCBONDSLAVEINFOQUERY:
3372 case SIOCBONDINFOQUERY:
3375 return compat_ifr_data_ioctl(net, cmd, argp);
3388 case SIOCGSTAMP_NEW:
3389 case SIOCGSTAMPNS_NEW:
3390 return sock_ioctl(file, cmd, arg);
3407 case SIOCSIFHWBROADCAST:
3409 case SIOCGIFBRDADDR:
3410 case SIOCSIFBRDADDR:
3411 case SIOCGIFDSTADDR:
3412 case SIOCSIFDSTADDR:
3413 case SIOCGIFNETMASK:
3414 case SIOCSIFNETMASK:
3426 case SIOCBONDENSLAVE:
3427 case SIOCBONDRELEASE:
3428 case SIOCBONDSETHWADDR:
3429 case SIOCBONDCHANGEACTIVE:
3430 return compat_ifreq_ioctl(net, sock, cmd, argp);
3436 return sock_do_ioctl(net, sock, cmd, arg);
3439 return -ENOIOCTLCMD;
3442 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3445 struct socket *sock = file->private_data;
3446 int ret = -ENOIOCTLCMD;
3453 if (sock->ops->compat_ioctl)
3454 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3456 if (ret == -ENOIOCTLCMD &&
3457 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3458 ret = compat_wext_handle_ioctl(net, cmd, arg);
3460 if (ret == -ENOIOCTLCMD)
3461 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3468 * kernel_bind - bind an address to a socket (kernel space)
3471 * @addrlen: length of address
3473 * Returns 0 or an error.
3476 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3478 return sock->ops->bind(sock, addr, addrlen);
3480 EXPORT_SYMBOL(kernel_bind);
3483 * kernel_listen - move socket to listening state (kernel space)
3485 * @backlog: pending connections queue size
3487 * Returns 0 or an error.
3490 int kernel_listen(struct socket *sock, int backlog)
3492 return sock->ops->listen(sock, backlog);
3494 EXPORT_SYMBOL(kernel_listen);
3497 * kernel_accept - accept a connection (kernel space)
3498 * @sock: listening socket
3499 * @newsock: new connected socket
3502 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3503 * If it fails, @newsock is guaranteed to be %NULL.
3504 * Returns 0 or an error.
3507 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3509 struct sock *sk = sock->sk;
3512 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3517 err = sock->ops->accept(sock, *newsock, flags, true);
3519 sock_release(*newsock);
3524 (*newsock)->ops = sock->ops;
3525 __module_get((*newsock)->ops->owner);
3530 EXPORT_SYMBOL(kernel_accept);
3533 * kernel_connect - connect a socket (kernel space)
3536 * @addrlen: address length
3537 * @flags: flags (O_NONBLOCK, ...)
3539 * For datagram sockets, @addr is the addres to which datagrams are sent
3540 * by default, and the only address from which datagrams are received.
3541 * For stream sockets, attempts to connect to @addr.
3542 * Returns 0 or an error code.
3545 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3548 return sock->ops->connect(sock, addr, addrlen, flags);
3550 EXPORT_SYMBOL(kernel_connect);
3553 * kernel_getsockname - get the address which the socket is bound (kernel space)
3555 * @addr: address holder
3557 * Fills the @addr pointer with the address which the socket is bound.
3558 * Returns 0 or an error code.
3561 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3563 return sock->ops->getname(sock, addr, 0);
3565 EXPORT_SYMBOL(kernel_getsockname);
3568 * kernel_peername - get the address which the socket is connected (kernel space)
3570 * @addr: address holder
3572 * Fills the @addr pointer with the address which the socket is connected.
3573 * Returns 0 or an error code.
3576 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3578 return sock->ops->getname(sock, addr, 1);
3580 EXPORT_SYMBOL(kernel_getpeername);
3583 * kernel_getsockopt - get a socket option (kernel space)
3585 * @level: API level (SOL_SOCKET, ...)
3586 * @optname: option tag
3587 * @optval: option value
3588 * @optlen: option length
3590 * Assigns the option length to @optlen.
3591 * Returns 0 or an error.
3594 int kernel_getsockopt(struct socket *sock, int level, int optname,
3595 char *optval, int *optlen)
3597 mm_segment_t oldfs = get_fs();
3598 char __user *uoptval;
3599 int __user *uoptlen;
3602 uoptval = (char __user __force *) optval;
3603 uoptlen = (int __user __force *) optlen;
3606 if (level == SOL_SOCKET)
3607 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3609 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3614 EXPORT_SYMBOL(kernel_getsockopt);
3617 * kernel_setsockopt - set a socket option (kernel space)
3619 * @level: API level (SOL_SOCKET, ...)
3620 * @optname: option tag
3621 * @optval: option value
3622 * @optlen: option length
3624 * Returns 0 or an error.
3627 int kernel_setsockopt(struct socket *sock, int level, int optname,
3628 char *optval, unsigned int optlen)
3630 mm_segment_t oldfs = get_fs();
3631 char __user *uoptval;
3634 uoptval = (char __user __force *) optval;
3637 if (level == SOL_SOCKET)
3638 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3640 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3645 EXPORT_SYMBOL(kernel_setsockopt);
3648 * kernel_sendpage - send a &page through a socket (kernel space)
3651 * @offset: page offset
3652 * @size: total size in bytes
3653 * @flags: flags (MSG_DONTWAIT, ...)
3655 * Returns the total amount sent in bytes or an error.
3658 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3659 size_t size, int flags)
3661 if (sock->ops->sendpage)
3662 return sock->ops->sendpage(sock, page, offset, size, flags);
3664 return sock_no_sendpage(sock, page, offset, size, flags);
3666 EXPORT_SYMBOL(kernel_sendpage);
3669 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3672 * @offset: page offset
3673 * @size: total size in bytes
3674 * @flags: flags (MSG_DONTWAIT, ...)
3676 * Returns the total amount sent in bytes or an error.
3677 * Caller must hold @sk.
3680 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3681 size_t size, int flags)
3683 struct socket *sock = sk->sk_socket;
3685 if (sock->ops->sendpage_locked)
3686 return sock->ops->sendpage_locked(sk, page, offset, size,
3689 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3691 EXPORT_SYMBOL(kernel_sendpage_locked);
3694 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3696 * @how: connection part
3698 * Returns 0 or an error.
3701 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3703 return sock->ops->shutdown(sock, how);
3705 EXPORT_SYMBOL(kernel_sock_shutdown);
3708 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3711 * This routine returns the IP overhead imposed by a socket i.e.
3712 * the length of the underlying IP header, depending on whether
3713 * this is an IPv4 or IPv6 socket and the length from IP options turned
3714 * on at the socket. Assumes that the caller has a lock on the socket.
3717 u32 kernel_sock_ip_overhead(struct sock *sk)
3719 struct inet_sock *inet;
3720 struct ip_options_rcu *opt;
3722 #if IS_ENABLED(CONFIG_IPV6)
3723 struct ipv6_pinfo *np;
3724 struct ipv6_txoptions *optv6 = NULL;
3725 #endif /* IS_ENABLED(CONFIG_IPV6) */
3730 switch (sk->sk_family) {
3733 overhead += sizeof(struct iphdr);
3734 opt = rcu_dereference_protected(inet->inet_opt,
3735 sock_owned_by_user(sk));
3737 overhead += opt->opt.optlen;
3739 #if IS_ENABLED(CONFIG_IPV6)
3742 overhead += sizeof(struct ipv6hdr);
3744 optv6 = rcu_dereference_protected(np->opt,
3745 sock_owned_by_user(sk));
3747 overhead += (optv6->opt_flen + optv6->opt_nflen);
3749 #endif /* IS_ENABLED(CONFIG_IPV6) */
3750 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3754 EXPORT_SYMBOL(kernel_sock_ip_overhead);