]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
RDMA/ipoib: Allow user space differentiate between valid dev_port
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233
234         /*
235          * Some Renesas controllers get into a weird state if they are
236          * reset while programmed with 64bit addresses (they will preserve
237          * the top half of the address in internal, non visible
238          * registers). You end up with half the address coming from the
239          * kernel, and the other half coming from the firmware. Also,
240          * changing the programming leads to extra accesses even if the
241          * controller is supposed to be halted. The controller ends up with
242          * a fatal fault, and is then ripe for being properly reset.
243          *
244          * Special care is taken to only apply this if the device is behind
245          * an iommu. Doing anything when there is no iommu is definitely
246          * unsafe...
247          */
248         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249                 return;
250
251         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252
253         /* Clear HSEIE so that faults do not get signaled */
254         val = readl(&xhci->op_regs->command);
255         val &= ~CMD_HSEIE;
256         writel(val, &xhci->op_regs->command);
257
258         /* Clear HSE (aka FATAL) */
259         val = readl(&xhci->op_regs->status);
260         val |= STS_FATAL;
261         writel(val, &xhci->op_regs->status);
262
263         /* Now zero the registers, and brace for impact */
264         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265         if (upper_32_bits(val))
266                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268         if (upper_32_bits(val))
269                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270
271         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272                 struct xhci_intr_reg __iomem *ir;
273
274                 ir = &xhci->run_regs->ir_set[i];
275                 val = xhci_read_64(xhci, &ir->erst_base);
276                 if (upper_32_bits(val))
277                         xhci_write_64(xhci, 0, &ir->erst_base);
278                 val= xhci_read_64(xhci, &ir->erst_dequeue);
279                 if (upper_32_bits(val))
280                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
281         }
282
283         /* Wait for the fault to appear. It will be cleared on reset */
284         err = xhci_handshake(&xhci->op_regs->status,
285                              STS_FATAL, STS_FATAL,
286                              XHCI_MAX_HALT_USEC);
287         if (!err)
288                 xhci_info(xhci, "Fault detected\n");
289 }
290
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297         int ret;
298         /*
299          * TODO:Check with MSI Soc for sysdev
300          */
301         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302
303         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304         if (ret < 0) {
305                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306                                 "failed to allocate MSI entry");
307                 return ret;
308         }
309
310         ret = request_irq(pdev->irq, xhci_msi_irq,
311                                 0, "xhci_hcd", xhci_to_hcd(xhci));
312         if (ret) {
313                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314                                 "disable MSI interrupt");
315                 pci_free_irq_vectors(pdev);
316         }
317
318         return ret;
319 }
320
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326         int i, ret = 0;
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         /*
331          * calculate number of msi-x vectors supported.
332          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333          *   with max number of interrupters based on the xhci HCSPARAMS1.
334          * - num_online_cpus: maximum msi-x vectors per CPUs core.
335          *   Add additional 1 vector to ensure always available interrupt.
336          */
337         xhci->msix_count = min(num_online_cpus() + 1,
338                                 HCS_MAX_INTRS(xhci->hcs_params1));
339
340         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341                         PCI_IRQ_MSIX);
342         if (ret < 0) {
343                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344                                 "Failed to enable MSI-X");
345                 return ret;
346         }
347
348         for (i = 0; i < xhci->msix_count; i++) {
349                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350                                 "xhci_hcd", xhci_to_hcd(xhci));
351                 if (ret)
352                         goto disable_msix;
353         }
354
355         hcd->msix_enabled = 1;
356         return ret;
357
358 disable_msix:
359         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360         while (--i >= 0)
361                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362         pci_free_irq_vectors(pdev);
363         return ret;
364 }
365
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369         struct usb_hcd *hcd = xhci_to_hcd(xhci);
370         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371
372         if (xhci->quirks & XHCI_PLAT)
373                 return;
374
375         /* return if using legacy interrupt */
376         if (hcd->irq > 0)
377                 return;
378
379         if (hcd->msix_enabled) {
380                 int i;
381
382                 for (i = 0; i < xhci->msix_count; i++)
383                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384         } else {
385                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386         }
387
388         pci_free_irq_vectors(pdev);
389         hcd->msix_enabled = 0;
390 }
391
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394         struct usb_hcd *hcd = xhci_to_hcd(xhci);
395
396         if (hcd->msix_enabled) {
397                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398                 int i;
399
400                 for (i = 0; i < xhci->msix_count; i++)
401                         synchronize_irq(pci_irq_vector(pdev, i));
402         }
403 }
404
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408         struct pci_dev  *pdev;
409         int ret;
410
411         /* The xhci platform device has set up IRQs through usb_add_hcd. */
412         if (xhci->quirks & XHCI_PLAT)
413                 return 0;
414
415         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416         /*
417          * Some Fresco Logic host controllers advertise MSI, but fail to
418          * generate interrupts.  Don't even try to enable MSI.
419          */
420         if (xhci->quirks & XHCI_BROKEN_MSI)
421                 goto legacy_irq;
422
423         /* unregister the legacy interrupt */
424         if (hcd->irq)
425                 free_irq(hcd->irq, hcd);
426         hcd->irq = 0;
427
428         ret = xhci_setup_msix(xhci);
429         if (ret)
430                 /* fall back to msi*/
431                 ret = xhci_setup_msi(xhci);
432
433         if (!ret) {
434                 hcd->msi_enabled = 1;
435                 return 0;
436         }
437
438         if (!pdev->irq) {
439                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440                 return -EINVAL;
441         }
442
443  legacy_irq:
444         if (!strlen(hcd->irq_descr))
445                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446                          hcd->driver->description, hcd->self.busnum);
447
448         /* fall back to legacy interrupt*/
449         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450                         hcd->irq_descr, hcd);
451         if (ret) {
452                 xhci_err(xhci, "request interrupt %d failed\n",
453                                 pdev->irq);
454                 return ret;
455         }
456         hcd->irq = pdev->irq;
457         return 0;
458 }
459
460 #else
461
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464         return 0;
465 }
466
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474
475 #endif
476
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479         struct xhci_hcd *xhci;
480         struct usb_hcd *hcd;
481         struct xhci_hub *rhub;
482         u32 temp;
483         int i;
484
485         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486         rhub = &xhci->usb3_rhub;
487
488         for (i = 0; i < rhub->num_ports; i++) {
489                 temp = readl(rhub->ports[i]->addr);
490                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491                         /*
492                          * Compliance Mode Detected. Letting USB Core
493                          * handle the Warm Reset
494                          */
495                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                                         "Compliance mode detected->port %d",
497                                         i + 1);
498                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                                         "Attempting compliance mode recovery");
500                         hcd = xhci->shared_hcd;
501
502                         if (hcd->state == HC_STATE_SUSPENDED)
503                                 usb_hcd_resume_root_hub(hcd);
504
505                         usb_hcd_poll_rh_status(hcd);
506                 }
507         }
508
509         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510                 mod_timer(&xhci->comp_mode_recovery_timer,
511                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526         xhci->port_status_u0 = 0;
527         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528                     0);
529         xhci->comp_mode_recovery_timer.expires = jiffies +
530                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531
532         add_timer(&xhci->comp_mode_recovery_timer);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534                         "Compliance mode recovery timer initialized");
535 }
536
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545         const char *dmi_product_name, *dmi_sys_vendor;
546
547         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549         if (!dmi_product_name || !dmi_sys_vendor)
550                 return false;
551
552         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553                 return false;
554
555         if (strstr(dmi_product_name, "Z420") ||
556                         strstr(dmi_product_name, "Z620") ||
557                         strstr(dmi_product_name, "Z820") ||
558                         strstr(dmi_product_name, "Z1 Workstation"))
559                 return true;
560
561         return false;
562 }
563
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568
569
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580         int retval = 0;
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583         spin_lock_init(&xhci->lock);
584         if (xhci->hci_version == 0x95 && link_quirk) {
585                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586                                 "QUIRK: Not clearing Link TRB chain bits.");
587                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588         } else {
589                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590                                 "xHCI doesn't need link TRB QUIRK");
591         }
592         retval = xhci_mem_init(xhci, GFP_KERNEL);
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594
595         /* Initializing Compliance Mode Recovery Data If Needed */
596         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598                 compliance_mode_recovery_timer_init(xhci);
599         }
600
601         return retval;
602 }
603
604 /*-------------------------------------------------------------------------*/
605
606
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609         if (xhci_start(xhci)) {
610                 xhci_halt(xhci);
611                 return -ENODEV;
612         }
613         xhci->shared_hcd->state = HC_STATE_RUNNING;
614         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615
616         if (xhci->quirks & XHCI_NEC_HOST)
617                 xhci_ring_cmd_db(xhci);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "Finished xhci_run for USB3 roothub");
621         return 0;
622 }
623
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638         u32 temp;
639         u64 temp_64;
640         int ret;
641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642
643         /* Start the xHCI host controller running only after the USB 2.0 roothub
644          * is setup.
645          */
646
647         hcd->uses_new_polling = 1;
648         if (!usb_hcd_is_primary_hcd(hcd))
649                 return xhci_run_finished(xhci);
650
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652
653         ret = xhci_try_enable_msi(hcd);
654         if (ret)
655                 return ret;
656
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "// Set the interrupt modulation register");
664         temp = readl(&xhci->ir_set->irq_control);
665         temp &= ~ER_IRQ_INTERVAL_MASK;
666         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667         writel(temp, &xhci->ir_set->irq_control);
668
669         /* Set the HCD state before we enable the irqs */
670         temp = readl(&xhci->op_regs->command);
671         temp |= (CMD_EIE);
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Enable interrupts, cmd = 0x%x.", temp);
674         writel(temp, &xhci->op_regs->command);
675
676         temp = readl(&xhci->ir_set->irq_pending);
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681
682         if (xhci->quirks & XHCI_NEC_HOST) {
683                 struct xhci_command *command;
684
685                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686                 if (!command)
687                         return -ENOMEM;
688
689                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690                                 TRB_TYPE(TRB_NEC_GET_FW));
691                 if (ret)
692                         xhci_free_command(xhci, command);
693         }
694         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695                         "Finished xhci_run for USB2 roothub");
696
697         xhci_dbc_init(xhci);
698
699         xhci_debugfs_init(xhci);
700
701         return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716         u32 temp;
717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718
719         mutex_lock(&xhci->mutex);
720
721         /* Only halt host and free memory after both hcds are removed */
722         if (!usb_hcd_is_primary_hcd(hcd)) {
723                 mutex_unlock(&xhci->mutex);
724                 return;
725         }
726
727         xhci_dbc_exit(xhci);
728
729         spin_lock_irq(&xhci->lock);
730         xhci->xhc_state |= XHCI_STATE_HALTED;
731         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732         xhci_halt(xhci);
733         xhci_reset(xhci);
734         spin_unlock_irq(&xhci->lock);
735
736         xhci_cleanup_msix(xhci);
737
738         /* Deleting Compliance Mode Recovery Timer */
739         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740                         (!(xhci_all_ports_seen_u0(xhci)))) {
741                 del_timer_sync(&xhci->comp_mode_recovery_timer);
742                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743                                 "%s: compliance mode recovery timer deleted",
744                                 __func__);
745         }
746
747         if (xhci->quirks & XHCI_AMD_PLL_FIX)
748                 usb_amd_dev_put();
749
750         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751                         "// Disabling event ring interrupts");
752         temp = readl(&xhci->op_regs->status);
753         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754         temp = readl(&xhci->ir_set->irq_pending);
755         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758         xhci_mem_cleanup(xhci);
759         xhci_debugfs_exit(xhci);
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "xhci_stop completed - status = %x",
762                         readl(&xhci->op_regs->status));
763         mutex_unlock(&xhci->mutex);
764 }
765
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778
779         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781
782         spin_lock_irq(&xhci->lock);
783         xhci_halt(xhci);
784         /* Workaround for spurious wakeups at shutdown with HSW */
785         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786                 xhci_reset(xhci);
787         spin_unlock_irq(&xhci->lock);
788
789         xhci_cleanup_msix(xhci);
790
791         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792                         "xhci_shutdown completed - status = %x",
793                         readl(&xhci->op_regs->status));
794
795         /* Yet another workaround for spurious wakeups at shutdown with HSW */
796         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803         xhci->s3.command = readl(&xhci->op_regs->command);
804         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816         writel(xhci->s3.command, &xhci->op_regs->command);
817         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829         u64     val_64;
830
831         /* step 2: initialize command ring buffer */
832         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835                                       xhci->cmd_ring->dequeue) &
836                  (u64) ~CMD_RING_RSVD_BITS) |
837                 xhci->cmd_ring->cycle_state;
838         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839                         "// Setting command ring address to 0x%llx",
840                         (long unsigned long) val_64);
841         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855         struct xhci_ring *ring;
856         struct xhci_segment *seg;
857
858         ring = xhci->cmd_ring;
859         seg = ring->deq_seg;
860         do {
861                 memset(seg->trbs, 0,
862                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864                         cpu_to_le32(~TRB_CYCLE);
865                 seg = seg->next;
866         } while (seg != ring->deq_seg);
867
868         /* Reset the software enqueue and dequeue pointers */
869         ring->deq_seg = ring->first_seg;
870         ring->dequeue = ring->first_seg->trbs;
871         ring->enq_seg = ring->deq_seg;
872         ring->enqueue = ring->dequeue;
873
874         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875         /*
876          * Ring is now zeroed, so the HW should look for change of ownership
877          * when the cycle bit is set to 1.
878          */
879         ring->cycle_state = 1;
880
881         /*
882          * Reset the hardware dequeue pointer.
883          * Yes, this will need to be re-written after resume, but we're paranoid
884          * and want to make sure the hardware doesn't access bogus memory
885          * because, say, the BIOS or an SMI started the host without changing
886          * the command ring pointers.
887          */
888         xhci_set_cmd_ring_deq(xhci);
889 }
890
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893         struct xhci_port **ports;
894         int port_index;
895         unsigned long flags;
896         u32 t1, t2;
897
898         spin_lock_irqsave(&xhci->lock, flags);
899
900         /* disable usb3 ports Wake bits */
901         port_index = xhci->usb3_rhub.num_ports;
902         ports = xhci->usb3_rhub.ports;
903         while (port_index--) {
904                 t1 = readl(ports[port_index]->addr);
905                 t1 = xhci_port_state_to_neutral(t1);
906                 t2 = t1 & ~PORT_WAKE_BITS;
907                 if (t1 != t2)
908                         writel(t2, ports[port_index]->addr);
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 t1 = xhci_port_state_to_neutral(t1);
917                 t2 = t1 & ~PORT_WAKE_BITS;
918                 if (t1 != t2)
919                         writel(t2, ports[port_index]->addr);
920         }
921
922         spin_unlock_irqrestore(&xhci->lock, flags);
923 }
924
925 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
926 {
927         struct xhci_port        **ports;
928         int                     port_index;
929         u32                     status;
930         u32                     portsc;
931
932         status = readl(&xhci->op_regs->status);
933         if (status & STS_EINT)
934                 return true;
935         /*
936          * Checking STS_EINT is not enough as there is a lag between a change
937          * bit being set and the Port Status Change Event that it generated
938          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
939          */
940
941         port_index = xhci->usb2_rhub.num_ports;
942         ports = xhci->usb2_rhub.ports;
943         while (port_index--) {
944                 portsc = readl(ports[port_index]->addr);
945                 if (portsc & PORT_CHANGE_MASK ||
946                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
947                         return true;
948         }
949         port_index = xhci->usb3_rhub.num_ports;
950         ports = xhci->usb3_rhub.ports;
951         while (port_index--) {
952                 portsc = readl(ports[port_index]->addr);
953                 if (portsc & PORT_CHANGE_MASK ||
954                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
955                         return true;
956         }
957         return false;
958 }
959
960 /*
961  * Stop HC (not bus-specific)
962  *
963  * This is called when the machine transition into S3/S4 mode.
964  *
965  */
966 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
967 {
968         int                     rc = 0;
969         unsigned int            delay = XHCI_MAX_HALT_USEC;
970         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
971         u32                     command;
972         u32                     res;
973
974         if (!hcd->state)
975                 return 0;
976
977         if (hcd->state != HC_STATE_SUSPENDED ||
978                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979                 return -EINVAL;
980
981         xhci_dbc_suspend(xhci);
982
983         /* Clear root port wake on bits if wakeup not allowed. */
984         if (!do_wakeup)
985                 xhci_disable_port_wake_on_bits(xhci);
986
987         /* Don't poll the roothubs on bus suspend. */
988         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990         del_timer_sync(&hcd->rh_timer);
991         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992         del_timer_sync(&xhci->shared_hcd->rh_timer);
993
994         if (xhci->quirks & XHCI_SUSPEND_DELAY)
995                 usleep_range(1000, 1500);
996
997         spin_lock_irq(&xhci->lock);
998         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000         /* step 1: stop endpoint */
1001         /* skipped assuming that port suspend has done */
1002
1003         /* step 2: clear Run/Stop bit */
1004         command = readl(&xhci->op_regs->command);
1005         command &= ~CMD_RUN;
1006         writel(command, &xhci->op_regs->command);
1007
1008         /* Some chips from Fresco Logic need an extraordinary delay */
1009         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010
1011         if (xhci_handshake(&xhci->op_regs->status,
1012                       STS_HALT, STS_HALT, delay)) {
1013                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014                 spin_unlock_irq(&xhci->lock);
1015                 return -ETIMEDOUT;
1016         }
1017         xhci_clear_command_ring(xhci);
1018
1019         /* step 3: save registers */
1020         xhci_save_registers(xhci);
1021
1022         /* step 4: set CSS flag */
1023         command = readl(&xhci->op_regs->command);
1024         command |= CMD_CSS;
1025         writel(command, &xhci->op_regs->command);
1026         xhci->broken_suspend = 0;
1027         if (xhci_handshake(&xhci->op_regs->status,
1028                                 STS_SAVE, 0, 10 * 1000)) {
1029         /*
1030          * AMD SNPS xHC 3.0 occasionally does not clear the
1031          * SSS bit of USBSTS and when driver tries to poll
1032          * to see if the xHC clears BIT(8) which never happens
1033          * and driver assumes that controller is not responding
1034          * and times out. To workaround this, its good to check
1035          * if SRE and HCE bits are not set (as per xhci
1036          * Section 5.4.2) and bypass the timeout.
1037          */
1038                 res = readl(&xhci->op_regs->status);
1039                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040                     (((res & STS_SRE) == 0) &&
1041                                 ((res & STS_HCE) == 0))) {
1042                         xhci->broken_suspend = 1;
1043                 } else {
1044                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045                         spin_unlock_irq(&xhci->lock);
1046                         return -ETIMEDOUT;
1047                 }
1048         }
1049         spin_unlock_irq(&xhci->lock);
1050
1051         /*
1052          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053          * is about to be suspended.
1054          */
1055         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056                         (!(xhci_all_ports_seen_u0(xhci)))) {
1057                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1058                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059                                 "%s: compliance mode recovery timer deleted",
1060                                 __func__);
1061         }
1062
1063         /* step 5: remove core well power */
1064         /* synchronize irq when using MSI-X */
1065         xhci_msix_sync_irqs(xhci);
1066
1067         return rc;
1068 }
1069 EXPORT_SYMBOL_GPL(xhci_suspend);
1070
1071 /*
1072  * start xHC (not bus-specific)
1073  *
1074  * This is called when the machine transition from S3/S4 mode.
1075  *
1076  */
1077 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1078 {
1079         u32                     command, temp = 0;
1080         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1081         struct usb_hcd          *secondary_hcd;
1082         int                     retval = 0;
1083         bool                    comp_timer_running = false;
1084
1085         if (!hcd->state)
1086                 return 0;
1087
1088         /* Wait a bit if either of the roothubs need to settle from the
1089          * transition into bus suspend.
1090          */
1091
1092         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1093             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1094                 msleep(100);
1095
1096         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1097         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1098
1099         spin_lock_irq(&xhci->lock);
1100         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1101                 hibernated = true;
1102
1103         if (!hibernated) {
1104                 /* step 1: restore register */
1105                 xhci_restore_registers(xhci);
1106                 /* step 2: initialize command ring buffer */
1107                 xhci_set_cmd_ring_deq(xhci);
1108                 /* step 3: restore state and start state*/
1109                 /* step 3: set CRS flag */
1110                 command = readl(&xhci->op_regs->command);
1111                 command |= CMD_CRS;
1112                 writel(command, &xhci->op_regs->command);
1113                 /*
1114                  * Some controllers take up to 55+ ms to complete the controller
1115                  * restore so setting the timeout to 100ms. Xhci specification
1116                  * doesn't mention any timeout value.
1117                  */
1118                 if (xhci_handshake(&xhci->op_regs->status,
1119                               STS_RESTORE, 0, 100 * 1000)) {
1120                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1121                         spin_unlock_irq(&xhci->lock);
1122                         return -ETIMEDOUT;
1123                 }
1124                 temp = readl(&xhci->op_regs->status);
1125         }
1126
1127         /* If restore operation fails, re-initialize the HC during resume */
1128         if ((temp & STS_SRE) || hibernated) {
1129
1130                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1131                                 !(xhci_all_ports_seen_u0(xhci))) {
1132                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1133                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1134                                 "Compliance Mode Recovery Timer deleted!");
1135                 }
1136
1137                 /* Let the USB core know _both_ roothubs lost power. */
1138                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1139                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1140
1141                 xhci_dbg(xhci, "Stop HCD\n");
1142                 xhci_halt(xhci);
1143                 xhci_zero_64b_regs(xhci);
1144                 xhci_reset(xhci);
1145                 spin_unlock_irq(&xhci->lock);
1146                 xhci_cleanup_msix(xhci);
1147
1148                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1149                 temp = readl(&xhci->op_regs->status);
1150                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1151                 temp = readl(&xhci->ir_set->irq_pending);
1152                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1153
1154                 xhci_dbg(xhci, "cleaning up memory\n");
1155                 xhci_mem_cleanup(xhci);
1156                 xhci_debugfs_exit(xhci);
1157                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1158                             readl(&xhci->op_regs->status));
1159
1160                 /* USB core calls the PCI reinit and start functions twice:
1161                  * first with the primary HCD, and then with the secondary HCD.
1162                  * If we don't do the same, the host will never be started.
1163                  */
1164                 if (!usb_hcd_is_primary_hcd(hcd))
1165                         secondary_hcd = hcd;
1166                 else
1167                         secondary_hcd = xhci->shared_hcd;
1168
1169                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1170                 retval = xhci_init(hcd->primary_hcd);
1171                 if (retval)
1172                         return retval;
1173                 comp_timer_running = true;
1174
1175                 xhci_dbg(xhci, "Start the primary HCD\n");
1176                 retval = xhci_run(hcd->primary_hcd);
1177                 if (!retval) {
1178                         xhci_dbg(xhci, "Start the secondary HCD\n");
1179                         retval = xhci_run(secondary_hcd);
1180                 }
1181                 hcd->state = HC_STATE_SUSPENDED;
1182                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1183                 goto done;
1184         }
1185
1186         /* step 4: set Run/Stop bit */
1187         command = readl(&xhci->op_regs->command);
1188         command |= CMD_RUN;
1189         writel(command, &xhci->op_regs->command);
1190         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1191                   0, 250 * 1000);
1192
1193         /* step 5: walk topology and initialize portsc,
1194          * portpmsc and portli
1195          */
1196         /* this is done in bus_resume */
1197
1198         /* step 6: restart each of the previously
1199          * Running endpoints by ringing their doorbells
1200          */
1201
1202         spin_unlock_irq(&xhci->lock);
1203
1204         xhci_dbc_resume(xhci);
1205
1206  done:
1207         if (retval == 0) {
1208                 /* Resume root hubs only when have pending events. */
1209                 if (xhci_pending_portevent(xhci)) {
1210                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1211                         usb_hcd_resume_root_hub(hcd);
1212                 }
1213         }
1214
1215         /*
1216          * If system is subject to the Quirk, Compliance Mode Timer needs to
1217          * be re-initialized Always after a system resume. Ports are subject
1218          * to suffer the Compliance Mode issue again. It doesn't matter if
1219          * ports have entered previously to U0 before system's suspension.
1220          */
1221         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1222                 compliance_mode_recovery_timer_init(xhci);
1223
1224         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1225                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1226
1227         /* Re-enable port polling. */
1228         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1229         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1230         usb_hcd_poll_rh_status(xhci->shared_hcd);
1231         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1232         usb_hcd_poll_rh_status(hcd);
1233
1234         return retval;
1235 }
1236 EXPORT_SYMBOL_GPL(xhci_resume);
1237 #endif  /* CONFIG_PM */
1238
1239 /*-------------------------------------------------------------------------*/
1240
1241 /**
1242  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1243  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1244  * value to right shift 1 for the bitmask.
1245  *
1246  * Index  = (epnum * 2) + direction - 1,
1247  * where direction = 0 for OUT, 1 for IN.
1248  * For control endpoints, the IN index is used (OUT index is unused), so
1249  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1250  */
1251 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1252 {
1253         unsigned int index;
1254         if (usb_endpoint_xfer_control(desc))
1255                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1256         else
1257                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1258                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1259         return index;
1260 }
1261
1262 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1263  * address from the XHCI endpoint index.
1264  */
1265 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1266 {
1267         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1268         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1269         return direction | number;
1270 }
1271
1272 /* Find the flag for this endpoint (for use in the control context).  Use the
1273  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1274  * bit 1, etc.
1275  */
1276 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1277 {
1278         return 1 << (xhci_get_endpoint_index(desc) + 1);
1279 }
1280
1281 /* Find the flag for this endpoint (for use in the control context).  Use the
1282  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1283  * bit 1, etc.
1284  */
1285 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1286 {
1287         return 1 << (ep_index + 1);
1288 }
1289
1290 /* Compute the last valid endpoint context index.  Basically, this is the
1291  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1292  * we find the most significant bit set in the added contexts flags.
1293  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1294  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1295  */
1296 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1297 {
1298         return fls(added_ctxs) - 1;
1299 }
1300
1301 /* Returns 1 if the arguments are OK;
1302  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1303  */
1304 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1305                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1306                 const char *func) {
1307         struct xhci_hcd *xhci;
1308         struct xhci_virt_device *virt_dev;
1309
1310         if (!hcd || (check_ep && !ep) || !udev) {
1311                 pr_debug("xHCI %s called with invalid args\n", func);
1312                 return -EINVAL;
1313         }
1314         if (!udev->parent) {
1315                 pr_debug("xHCI %s called for root hub\n", func);
1316                 return 0;
1317         }
1318
1319         xhci = hcd_to_xhci(hcd);
1320         if (check_virt_dev) {
1321                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1322                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1323                                         func);
1324                         return -EINVAL;
1325                 }
1326
1327                 virt_dev = xhci->devs[udev->slot_id];
1328                 if (virt_dev->udev != udev) {
1329                         xhci_dbg(xhci, "xHCI %s called with udev and "
1330                                           "virt_dev does not match\n", func);
1331                         return -EINVAL;
1332                 }
1333         }
1334
1335         if (xhci->xhc_state & XHCI_STATE_HALTED)
1336                 return -ENODEV;
1337
1338         return 1;
1339 }
1340
1341 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1342                 struct usb_device *udev, struct xhci_command *command,
1343                 bool ctx_change, bool must_succeed);
1344
1345 /*
1346  * Full speed devices may have a max packet size greater than 8 bytes, but the
1347  * USB core doesn't know that until it reads the first 8 bytes of the
1348  * descriptor.  If the usb_device's max packet size changes after that point,
1349  * we need to issue an evaluate context command and wait on it.
1350  */
1351 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1352                 unsigned int ep_index, struct urb *urb)
1353 {
1354         struct xhci_container_ctx *out_ctx;
1355         struct xhci_input_control_ctx *ctrl_ctx;
1356         struct xhci_ep_ctx *ep_ctx;
1357         struct xhci_command *command;
1358         int max_packet_size;
1359         int hw_max_packet_size;
1360         int ret = 0;
1361
1362         out_ctx = xhci->devs[slot_id]->out_ctx;
1363         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1364         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1365         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1366         if (hw_max_packet_size != max_packet_size) {
1367                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1368                                 "Max Packet Size for ep 0 changed.");
1369                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1370                                 "Max packet size in usb_device = %d",
1371                                 max_packet_size);
1372                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1373                                 "Max packet size in xHCI HW = %d",
1374                                 hw_max_packet_size);
1375                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1376                                 "Issuing evaluate context command.");
1377
1378                 /* Set up the input context flags for the command */
1379                 /* FIXME: This won't work if a non-default control endpoint
1380                  * changes max packet sizes.
1381                  */
1382
1383                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1384                 if (!command)
1385                         return -ENOMEM;
1386
1387                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1388                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1389                 if (!ctrl_ctx) {
1390                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1391                                         __func__);
1392                         ret = -ENOMEM;
1393                         goto command_cleanup;
1394                 }
1395                 /* Set up the modified control endpoint 0 */
1396                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1397                                 xhci->devs[slot_id]->out_ctx, ep_index);
1398
1399                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1400                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1401                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1402
1403                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1404                 ctrl_ctx->drop_flags = 0;
1405
1406                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1407                                 true, false);
1408
1409                 /* Clean up the input context for later use by bandwidth
1410                  * functions.
1411                  */
1412                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1413 command_cleanup:
1414                 kfree(command->completion);
1415                 kfree(command);
1416         }
1417         return ret;
1418 }
1419
1420 /*
1421  * non-error returns are a promise to giveback() the urb later
1422  * we drop ownership so next owner (or urb unlink) can get it
1423  */
1424 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1425 {
1426         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1427         unsigned long flags;
1428         int ret = 0;
1429         unsigned int slot_id, ep_index;
1430         unsigned int *ep_state;
1431         struct urb_priv *urb_priv;
1432         int num_tds;
1433
1434         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1435                                         true, true, __func__) <= 0)
1436                 return -EINVAL;
1437
1438         slot_id = urb->dev->slot_id;
1439         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1440         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1441
1442         if (!HCD_HW_ACCESSIBLE(hcd)) {
1443                 if (!in_interrupt())
1444                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1445                 return -ESHUTDOWN;
1446         }
1447
1448         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1449                 num_tds = urb->number_of_packets;
1450         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1451             urb->transfer_buffer_length > 0 &&
1452             urb->transfer_flags & URB_ZERO_PACKET &&
1453             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1454                 num_tds = 2;
1455         else
1456                 num_tds = 1;
1457
1458         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1459         if (!urb_priv)
1460                 return -ENOMEM;
1461
1462         urb_priv->num_tds = num_tds;
1463         urb_priv->num_tds_done = 0;
1464         urb->hcpriv = urb_priv;
1465
1466         trace_xhci_urb_enqueue(urb);
1467
1468         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1469                 /* Check to see if the max packet size for the default control
1470                  * endpoint changed during FS device enumeration
1471                  */
1472                 if (urb->dev->speed == USB_SPEED_FULL) {
1473                         ret = xhci_check_maxpacket(xhci, slot_id,
1474                                         ep_index, urb);
1475                         if (ret < 0) {
1476                                 xhci_urb_free_priv(urb_priv);
1477                                 urb->hcpriv = NULL;
1478                                 return ret;
1479                         }
1480                 }
1481         }
1482
1483         spin_lock_irqsave(&xhci->lock, flags);
1484
1485         if (xhci->xhc_state & XHCI_STATE_DYING) {
1486                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1487                          urb->ep->desc.bEndpointAddress, urb);
1488                 ret = -ESHUTDOWN;
1489                 goto free_priv;
1490         }
1491         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1492                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1493                           *ep_state);
1494                 ret = -EINVAL;
1495                 goto free_priv;
1496         }
1497         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1498                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1499                 ret = -EINVAL;
1500                 goto free_priv;
1501         }
1502
1503         switch (usb_endpoint_type(&urb->ep->desc)) {
1504
1505         case USB_ENDPOINT_XFER_CONTROL:
1506                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1507                                          slot_id, ep_index);
1508                 break;
1509         case USB_ENDPOINT_XFER_BULK:
1510                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1511                                          slot_id, ep_index);
1512                 break;
1513         case USB_ENDPOINT_XFER_INT:
1514                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1515                                 slot_id, ep_index);
1516                 break;
1517         case USB_ENDPOINT_XFER_ISOC:
1518                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1519                                 slot_id, ep_index);
1520         }
1521
1522         if (ret) {
1523 free_priv:
1524                 xhci_urb_free_priv(urb_priv);
1525                 urb->hcpriv = NULL;
1526         }
1527         spin_unlock_irqrestore(&xhci->lock, flags);
1528         return ret;
1529 }
1530
1531 /*
1532  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1533  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1534  * should pick up where it left off in the TD, unless a Set Transfer Ring
1535  * Dequeue Pointer is issued.
1536  *
1537  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1538  * the ring.  Since the ring is a contiguous structure, they can't be physically
1539  * removed.  Instead, there are two options:
1540  *
1541  *  1) If the HC is in the middle of processing the URB to be canceled, we
1542  *     simply move the ring's dequeue pointer past those TRBs using the Set
1543  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1544  *     when drivers timeout on the last submitted URB and attempt to cancel.
1545  *
1546  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1547  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1548  *     HC will need to invalidate the any TRBs it has cached after the stop
1549  *     endpoint command, as noted in the xHCI 0.95 errata.
1550  *
1551  *  3) The TD may have completed by the time the Stop Endpoint Command
1552  *     completes, so software needs to handle that case too.
1553  *
1554  * This function should protect against the TD enqueueing code ringing the
1555  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1556  * It also needs to account for multiple cancellations on happening at the same
1557  * time for the same endpoint.
1558  *
1559  * Note that this function can be called in any context, or so says
1560  * usb_hcd_unlink_urb()
1561  */
1562 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1563 {
1564         unsigned long flags;
1565         int ret, i;
1566         u32 temp;
1567         struct xhci_hcd *xhci;
1568         struct urb_priv *urb_priv;
1569         struct xhci_td *td;
1570         unsigned int ep_index;
1571         struct xhci_ring *ep_ring;
1572         struct xhci_virt_ep *ep;
1573         struct xhci_command *command;
1574         struct xhci_virt_device *vdev;
1575
1576         xhci = hcd_to_xhci(hcd);
1577         spin_lock_irqsave(&xhci->lock, flags);
1578
1579         trace_xhci_urb_dequeue(urb);
1580
1581         /* Make sure the URB hasn't completed or been unlinked already */
1582         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1583         if (ret)
1584                 goto done;
1585
1586         /* give back URB now if we can't queue it for cancel */
1587         vdev = xhci->devs[urb->dev->slot_id];
1588         urb_priv = urb->hcpriv;
1589         if (!vdev || !urb_priv)
1590                 goto err_giveback;
1591
1592         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1593         ep = &vdev->eps[ep_index];
1594         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1595         if (!ep || !ep_ring)
1596                 goto err_giveback;
1597
1598         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1599         temp = readl(&xhci->op_regs->status);
1600         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1601                 xhci_hc_died(xhci);
1602                 goto done;
1603         }
1604
1605         /*
1606          * check ring is not re-allocated since URB was enqueued. If it is, then
1607          * make sure none of the ring related pointers in this URB private data
1608          * are touched, such as td_list, otherwise we overwrite freed data
1609          */
1610         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1611                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1612                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1613                         td = &urb_priv->td[i];
1614                         if (!list_empty(&td->cancelled_td_list))
1615                                 list_del_init(&td->cancelled_td_list);
1616                 }
1617                 goto err_giveback;
1618         }
1619
1620         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1621                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622                                 "HC halted, freeing TD manually.");
1623                 for (i = urb_priv->num_tds_done;
1624                      i < urb_priv->num_tds;
1625                      i++) {
1626                         td = &urb_priv->td[i];
1627                         if (!list_empty(&td->td_list))
1628                                 list_del_init(&td->td_list);
1629                         if (!list_empty(&td->cancelled_td_list))
1630                                 list_del_init(&td->cancelled_td_list);
1631                 }
1632                 goto err_giveback;
1633         }
1634
1635         i = urb_priv->num_tds_done;
1636         if (i < urb_priv->num_tds)
1637                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1638                                 "Cancel URB %p, dev %s, ep 0x%x, "
1639                                 "starting at offset 0x%llx",
1640                                 urb, urb->dev->devpath,
1641                                 urb->ep->desc.bEndpointAddress,
1642                                 (unsigned long long) xhci_trb_virt_to_dma(
1643                                         urb_priv->td[i].start_seg,
1644                                         urb_priv->td[i].first_trb));
1645
1646         for (; i < urb_priv->num_tds; i++) {
1647                 td = &urb_priv->td[i];
1648                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1649         }
1650
1651         /* Queue a stop endpoint command, but only if this is
1652          * the first cancellation to be handled.
1653          */
1654         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1655                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1656                 if (!command) {
1657                         ret = -ENOMEM;
1658                         goto done;
1659                 }
1660                 ep->ep_state |= EP_STOP_CMD_PENDING;
1661                 ep->stop_cmd_timer.expires = jiffies +
1662                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1663                 add_timer(&ep->stop_cmd_timer);
1664                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1665                                          ep_index, 0);
1666                 xhci_ring_cmd_db(xhci);
1667         }
1668 done:
1669         spin_unlock_irqrestore(&xhci->lock, flags);
1670         return ret;
1671
1672 err_giveback:
1673         if (urb_priv)
1674                 xhci_urb_free_priv(urb_priv);
1675         usb_hcd_unlink_urb_from_ep(hcd, urb);
1676         spin_unlock_irqrestore(&xhci->lock, flags);
1677         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1678         return ret;
1679 }
1680
1681 /* Drop an endpoint from a new bandwidth configuration for this device.
1682  * Only one call to this function is allowed per endpoint before
1683  * check_bandwidth() or reset_bandwidth() must be called.
1684  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1685  * add the endpoint to the schedule with possibly new parameters denoted by a
1686  * different endpoint descriptor in usb_host_endpoint.
1687  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1688  * not allowed.
1689  *
1690  * The USB core will not allow URBs to be queued to an endpoint that is being
1691  * disabled, so there's no need for mutual exclusion to protect
1692  * the xhci->devs[slot_id] structure.
1693  */
1694 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1695                 struct usb_host_endpoint *ep)
1696 {
1697         struct xhci_hcd *xhci;
1698         struct xhci_container_ctx *in_ctx, *out_ctx;
1699         struct xhci_input_control_ctx *ctrl_ctx;
1700         unsigned int ep_index;
1701         struct xhci_ep_ctx *ep_ctx;
1702         u32 drop_flag;
1703         u32 new_add_flags, new_drop_flags;
1704         int ret;
1705
1706         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1707         if (ret <= 0)
1708                 return ret;
1709         xhci = hcd_to_xhci(hcd);
1710         if (xhci->xhc_state & XHCI_STATE_DYING)
1711                 return -ENODEV;
1712
1713         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1714         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1715         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1716                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1717                                 __func__, drop_flag);
1718                 return 0;
1719         }
1720
1721         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1722         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1723         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1724         if (!ctrl_ctx) {
1725                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1726                                 __func__);
1727                 return 0;
1728         }
1729
1730         ep_index = xhci_get_endpoint_index(&ep->desc);
1731         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1732         /* If the HC already knows the endpoint is disabled,
1733          * or the HCD has noted it is disabled, ignore this request
1734          */
1735         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1736             le32_to_cpu(ctrl_ctx->drop_flags) &
1737             xhci_get_endpoint_flag(&ep->desc)) {
1738                 /* Do not warn when called after a usb_device_reset */
1739                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1740                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1741                                   __func__, ep);
1742                 return 0;
1743         }
1744
1745         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1746         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1747
1748         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1749         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1750
1751         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1752
1753         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1754
1755         if (xhci->quirks & XHCI_MTK_HOST)
1756                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1757
1758         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1759                         (unsigned int) ep->desc.bEndpointAddress,
1760                         udev->slot_id,
1761                         (unsigned int) new_drop_flags,
1762                         (unsigned int) new_add_flags);
1763         return 0;
1764 }
1765
1766 /* Add an endpoint to a new possible bandwidth configuration for this device.
1767  * Only one call to this function is allowed per endpoint before
1768  * check_bandwidth() or reset_bandwidth() must be called.
1769  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1770  * add the endpoint to the schedule with possibly new parameters denoted by a
1771  * different endpoint descriptor in usb_host_endpoint.
1772  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1773  * not allowed.
1774  *
1775  * The USB core will not allow URBs to be queued to an endpoint until the
1776  * configuration or alt setting is installed in the device, so there's no need
1777  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1778  */
1779 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1780                 struct usb_host_endpoint *ep)
1781 {
1782         struct xhci_hcd *xhci;
1783         struct xhci_container_ctx *in_ctx;
1784         unsigned int ep_index;
1785         struct xhci_input_control_ctx *ctrl_ctx;
1786         u32 added_ctxs;
1787         u32 new_add_flags, new_drop_flags;
1788         struct xhci_virt_device *virt_dev;
1789         int ret = 0;
1790
1791         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1792         if (ret <= 0) {
1793                 /* So we won't queue a reset ep command for a root hub */
1794                 ep->hcpriv = NULL;
1795                 return ret;
1796         }
1797         xhci = hcd_to_xhci(hcd);
1798         if (xhci->xhc_state & XHCI_STATE_DYING)
1799                 return -ENODEV;
1800
1801         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1802         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1803                 /* FIXME when we have to issue an evaluate endpoint command to
1804                  * deal with ep0 max packet size changing once we get the
1805                  * descriptors
1806                  */
1807                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1808                                 __func__, added_ctxs);
1809                 return 0;
1810         }
1811
1812         virt_dev = xhci->devs[udev->slot_id];
1813         in_ctx = virt_dev->in_ctx;
1814         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1815         if (!ctrl_ctx) {
1816                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1817                                 __func__);
1818                 return 0;
1819         }
1820
1821         ep_index = xhci_get_endpoint_index(&ep->desc);
1822         /* If this endpoint is already in use, and the upper layers are trying
1823          * to add it again without dropping it, reject the addition.
1824          */
1825         if (virt_dev->eps[ep_index].ring &&
1826                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1827                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1828                                 "without dropping it.\n",
1829                                 (unsigned int) ep->desc.bEndpointAddress);
1830                 return -EINVAL;
1831         }
1832
1833         /* If the HCD has already noted the endpoint is enabled,
1834          * ignore this request.
1835          */
1836         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1837                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1838                                 __func__, ep);
1839                 return 0;
1840         }
1841
1842         /*
1843          * Configuration and alternate setting changes must be done in
1844          * process context, not interrupt context (or so documenation
1845          * for usb_set_interface() and usb_set_configuration() claim).
1846          */
1847         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1848                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1849                                 __func__, ep->desc.bEndpointAddress);
1850                 return -ENOMEM;
1851         }
1852
1853         if (xhci->quirks & XHCI_MTK_HOST) {
1854                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1855                 if (ret < 0) {
1856                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1857                         virt_dev->eps[ep_index].new_ring = NULL;
1858                         return ret;
1859                 }
1860         }
1861
1862         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1863         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1864
1865         /* If xhci_endpoint_disable() was called for this endpoint, but the
1866          * xHC hasn't been notified yet through the check_bandwidth() call,
1867          * this re-adds a new state for the endpoint from the new endpoint
1868          * descriptors.  We must drop and re-add this endpoint, so we leave the
1869          * drop flags alone.
1870          */
1871         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1872
1873         /* Store the usb_device pointer for later use */
1874         ep->hcpriv = udev;
1875
1876         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1877
1878         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1879                         (unsigned int) ep->desc.bEndpointAddress,
1880                         udev->slot_id,
1881                         (unsigned int) new_drop_flags,
1882                         (unsigned int) new_add_flags);
1883         return 0;
1884 }
1885
1886 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1887 {
1888         struct xhci_input_control_ctx *ctrl_ctx;
1889         struct xhci_ep_ctx *ep_ctx;
1890         struct xhci_slot_ctx *slot_ctx;
1891         int i;
1892
1893         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1894         if (!ctrl_ctx) {
1895                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1896                                 __func__);
1897                 return;
1898         }
1899
1900         /* When a device's add flag and drop flag are zero, any subsequent
1901          * configure endpoint command will leave that endpoint's state
1902          * untouched.  Make sure we don't leave any old state in the input
1903          * endpoint contexts.
1904          */
1905         ctrl_ctx->drop_flags = 0;
1906         ctrl_ctx->add_flags = 0;
1907         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1908         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1909         /* Endpoint 0 is always valid */
1910         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1911         for (i = 1; i < 31; i++) {
1912                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1913                 ep_ctx->ep_info = 0;
1914                 ep_ctx->ep_info2 = 0;
1915                 ep_ctx->deq = 0;
1916                 ep_ctx->tx_info = 0;
1917         }
1918 }
1919
1920 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1921                 struct usb_device *udev, u32 *cmd_status)
1922 {
1923         int ret;
1924
1925         switch (*cmd_status) {
1926         case COMP_COMMAND_ABORTED:
1927         case COMP_COMMAND_RING_STOPPED:
1928                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1929                 ret = -ETIME;
1930                 break;
1931         case COMP_RESOURCE_ERROR:
1932                 dev_warn(&udev->dev,
1933                          "Not enough host controller resources for new device state.\n");
1934                 ret = -ENOMEM;
1935                 /* FIXME: can we allocate more resources for the HC? */
1936                 break;
1937         case COMP_BANDWIDTH_ERROR:
1938         case COMP_SECONDARY_BANDWIDTH_ERROR:
1939                 dev_warn(&udev->dev,
1940                          "Not enough bandwidth for new device state.\n");
1941                 ret = -ENOSPC;
1942                 /* FIXME: can we go back to the old state? */
1943                 break;
1944         case COMP_TRB_ERROR:
1945                 /* the HCD set up something wrong */
1946                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1947                                 "add flag = 1, "
1948                                 "and endpoint is not disabled.\n");
1949                 ret = -EINVAL;
1950                 break;
1951         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1952                 dev_warn(&udev->dev,
1953                          "ERROR: Incompatible device for endpoint configure command.\n");
1954                 ret = -ENODEV;
1955                 break;
1956         case COMP_SUCCESS:
1957                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1958                                 "Successful Endpoint Configure command");
1959                 ret = 0;
1960                 break;
1961         default:
1962                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1963                                 *cmd_status);
1964                 ret = -EINVAL;
1965                 break;
1966         }
1967         return ret;
1968 }
1969
1970 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1971                 struct usb_device *udev, u32 *cmd_status)
1972 {
1973         int ret;
1974
1975         switch (*cmd_status) {
1976         case COMP_COMMAND_ABORTED:
1977         case COMP_COMMAND_RING_STOPPED:
1978                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1979                 ret = -ETIME;
1980                 break;
1981         case COMP_PARAMETER_ERROR:
1982                 dev_warn(&udev->dev,
1983                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1984                 ret = -EINVAL;
1985                 break;
1986         case COMP_SLOT_NOT_ENABLED_ERROR:
1987                 dev_warn(&udev->dev,
1988                         "WARN: slot not enabled for evaluate context command.\n");
1989                 ret = -EINVAL;
1990                 break;
1991         case COMP_CONTEXT_STATE_ERROR:
1992                 dev_warn(&udev->dev,
1993                         "WARN: invalid context state for evaluate context command.\n");
1994                 ret = -EINVAL;
1995                 break;
1996         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1997                 dev_warn(&udev->dev,
1998                         "ERROR: Incompatible device for evaluate context command.\n");
1999                 ret = -ENODEV;
2000                 break;
2001         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2002                 /* Max Exit Latency too large error */
2003                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2004                 ret = -EINVAL;
2005                 break;
2006         case COMP_SUCCESS:
2007                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2008                                 "Successful evaluate context command");
2009                 ret = 0;
2010                 break;
2011         default:
2012                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2013                         *cmd_status);
2014                 ret = -EINVAL;
2015                 break;
2016         }
2017         return ret;
2018 }
2019
2020 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2021                 struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023         u32 valid_add_flags;
2024         u32 valid_drop_flags;
2025
2026         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2027          * (bit 1).  The default control endpoint is added during the Address
2028          * Device command and is never removed until the slot is disabled.
2029          */
2030         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2031         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2032
2033         /* Use hweight32 to count the number of ones in the add flags, or
2034          * number of endpoints added.  Don't count endpoints that are changed
2035          * (both added and dropped).
2036          */
2037         return hweight32(valid_add_flags) -
2038                 hweight32(valid_add_flags & valid_drop_flags);
2039 }
2040
2041 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2042                 struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044         u32 valid_add_flags;
2045         u32 valid_drop_flags;
2046
2047         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2048         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2049
2050         return hweight32(valid_drop_flags) -
2051                 hweight32(valid_add_flags & valid_drop_flags);
2052 }
2053
2054 /*
2055  * We need to reserve the new number of endpoints before the configure endpoint
2056  * command completes.  We can't subtract the dropped endpoints from the number
2057  * of active endpoints until the command completes because we can oversubscribe
2058  * the host in this case:
2059  *
2060  *  - the first configure endpoint command drops more endpoints than it adds
2061  *  - a second configure endpoint command that adds more endpoints is queued
2062  *  - the first configure endpoint command fails, so the config is unchanged
2063  *  - the second command may succeed, even though there isn't enough resources
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2068                 struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070         u32 added_eps;
2071
2072         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2073         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2074                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075                                 "Not enough ep ctxs: "
2076                                 "%u active, need to add %u, limit is %u.",
2077                                 xhci->num_active_eps, added_eps,
2078                                 xhci->limit_active_eps);
2079                 return -ENOMEM;
2080         }
2081         xhci->num_active_eps += added_eps;
2082         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2083                         "Adding %u ep ctxs, %u now active.", added_eps,
2084                         xhci->num_active_eps);
2085         return 0;
2086 }
2087
2088 /*
2089  * The configure endpoint was failed by the xHC for some other reason, so we
2090  * need to revert the resources that failed configuration would have used.
2091  *
2092  * Must be called with xhci->lock held.
2093  */
2094 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2095                 struct xhci_input_control_ctx *ctrl_ctx)
2096 {
2097         u32 num_failed_eps;
2098
2099         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2100         xhci->num_active_eps -= num_failed_eps;
2101         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2102                         "Removing %u failed ep ctxs, %u now active.",
2103                         num_failed_eps,
2104                         xhci->num_active_eps);
2105 }
2106
2107 /*
2108  * Now that the command has completed, clean up the active endpoint count by
2109  * subtracting out the endpoints that were dropped (but not changed).
2110  *
2111  * Must be called with xhci->lock held.
2112  */
2113 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2114                 struct xhci_input_control_ctx *ctrl_ctx)
2115 {
2116         u32 num_dropped_eps;
2117
2118         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2119         xhci->num_active_eps -= num_dropped_eps;
2120         if (num_dropped_eps)
2121                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122                                 "Removing %u dropped ep ctxs, %u now active.",
2123                                 num_dropped_eps,
2124                                 xhci->num_active_eps);
2125 }
2126
2127 static unsigned int xhci_get_block_size(struct usb_device *udev)
2128 {
2129         switch (udev->speed) {
2130         case USB_SPEED_LOW:
2131         case USB_SPEED_FULL:
2132                 return FS_BLOCK;
2133         case USB_SPEED_HIGH:
2134                 return HS_BLOCK;
2135         case USB_SPEED_SUPER:
2136         case USB_SPEED_SUPER_PLUS:
2137                 return SS_BLOCK;
2138         case USB_SPEED_UNKNOWN:
2139         case USB_SPEED_WIRELESS:
2140         default:
2141                 /* Should never happen */
2142                 return 1;
2143         }
2144 }
2145
2146 static unsigned int
2147 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2148 {
2149         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2150                 return LS_OVERHEAD;
2151         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2152                 return FS_OVERHEAD;
2153         return HS_OVERHEAD;
2154 }
2155
2156 /* If we are changing a LS/FS device under a HS hub,
2157  * make sure (if we are activating a new TT) that the HS bus has enough
2158  * bandwidth for this new TT.
2159  */
2160 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2161                 struct xhci_virt_device *virt_dev,
2162                 int old_active_eps)
2163 {
2164         struct xhci_interval_bw_table *bw_table;
2165         struct xhci_tt_bw_info *tt_info;
2166
2167         /* Find the bandwidth table for the root port this TT is attached to. */
2168         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2169         tt_info = virt_dev->tt_info;
2170         /* If this TT already had active endpoints, the bandwidth for this TT
2171          * has already been added.  Removing all periodic endpoints (and thus
2172          * making the TT enactive) will only decrease the bandwidth used.
2173          */
2174         if (old_active_eps)
2175                 return 0;
2176         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2177                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2178                         return -ENOMEM;
2179                 return 0;
2180         }
2181         /* Not sure why we would have no new active endpoints...
2182          *
2183          * Maybe because of an Evaluate Context change for a hub update or a
2184          * control endpoint 0 max packet size change?
2185          * FIXME: skip the bandwidth calculation in that case.
2186          */
2187         return 0;
2188 }
2189
2190 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2191                 struct xhci_virt_device *virt_dev)
2192 {
2193         unsigned int bw_reserved;
2194
2195         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2196         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2197                 return -ENOMEM;
2198
2199         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2200         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2201                 return -ENOMEM;
2202
2203         return 0;
2204 }
2205
2206 /*
2207  * This algorithm is a very conservative estimate of the worst-case scheduling
2208  * scenario for any one interval.  The hardware dynamically schedules the
2209  * packets, so we can't tell which microframe could be the limiting factor in
2210  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2211  *
2212  * Obviously, we can't solve an NP complete problem to find the minimum worst
2213  * case scenario.  Instead, we come up with an estimate that is no less than
2214  * the worst case bandwidth used for any one microframe, but may be an
2215  * over-estimate.
2216  *
2217  * We walk the requirements for each endpoint by interval, starting with the
2218  * smallest interval, and place packets in the schedule where there is only one
2219  * possible way to schedule packets for that interval.  In order to simplify
2220  * this algorithm, we record the largest max packet size for each interval, and
2221  * assume all packets will be that size.
2222  *
2223  * For interval 0, we obviously must schedule all packets for each interval.
2224  * The bandwidth for interval 0 is just the amount of data to be transmitted
2225  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2226  * the number of packets).
2227  *
2228  * For interval 1, we have two possible microframes to schedule those packets
2229  * in.  For this algorithm, if we can schedule the same number of packets for
2230  * each possible scheduling opportunity (each microframe), we will do so.  The
2231  * remaining number of packets will be saved to be transmitted in the gaps in
2232  * the next interval's scheduling sequence.
2233  *
2234  * As we move those remaining packets to be scheduled with interval 2 packets,
2235  * we have to double the number of remaining packets to transmit.  This is
2236  * because the intervals are actually powers of 2, and we would be transmitting
2237  * the previous interval's packets twice in this interval.  We also have to be
2238  * sure that when we look at the largest max packet size for this interval, we
2239  * also look at the largest max packet size for the remaining packets and take
2240  * the greater of the two.
2241  *
2242  * The algorithm continues to evenly distribute packets in each scheduling
2243  * opportunity, and push the remaining packets out, until we get to the last
2244  * interval.  Then those packets and their associated overhead are just added
2245  * to the bandwidth used.
2246  */
2247 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2248                 struct xhci_virt_device *virt_dev,
2249                 int old_active_eps)
2250 {
2251         unsigned int bw_reserved;
2252         unsigned int max_bandwidth;
2253         unsigned int bw_used;
2254         unsigned int block_size;
2255         struct xhci_interval_bw_table *bw_table;
2256         unsigned int packet_size = 0;
2257         unsigned int overhead = 0;
2258         unsigned int packets_transmitted = 0;
2259         unsigned int packets_remaining = 0;
2260         unsigned int i;
2261
2262         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2263                 return xhci_check_ss_bw(xhci, virt_dev);
2264
2265         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2266                 max_bandwidth = HS_BW_LIMIT;
2267                 /* Convert percent of bus BW reserved to blocks reserved */
2268                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2269         } else {
2270                 max_bandwidth = FS_BW_LIMIT;
2271                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2272         }
2273
2274         bw_table = virt_dev->bw_table;
2275         /* We need to translate the max packet size and max ESIT payloads into
2276          * the units the hardware uses.
2277          */
2278         block_size = xhci_get_block_size(virt_dev->udev);
2279
2280         /* If we are manipulating a LS/FS device under a HS hub, double check
2281          * that the HS bus has enough bandwidth if we are activing a new TT.
2282          */
2283         if (virt_dev->tt_info) {
2284                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285                                 "Recalculating BW for rootport %u",
2286                                 virt_dev->real_port);
2287                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2288                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2289                                         "newly activated TT.\n");
2290                         return -ENOMEM;
2291                 }
2292                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293                                 "Recalculating BW for TT slot %u port %u",
2294                                 virt_dev->tt_info->slot_id,
2295                                 virt_dev->tt_info->ttport);
2296         } else {
2297                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2298                                 "Recalculating BW for rootport %u",
2299                                 virt_dev->real_port);
2300         }
2301
2302         /* Add in how much bandwidth will be used for interval zero, or the
2303          * rounded max ESIT payload + number of packets * largest overhead.
2304          */
2305         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2306                 bw_table->interval_bw[0].num_packets *
2307                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2308
2309         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2310                 unsigned int bw_added;
2311                 unsigned int largest_mps;
2312                 unsigned int interval_overhead;
2313
2314                 /*
2315                  * How many packets could we transmit in this interval?
2316                  * If packets didn't fit in the previous interval, we will need
2317                  * to transmit that many packets twice within this interval.
2318                  */
2319                 packets_remaining = 2 * packets_remaining +
2320                         bw_table->interval_bw[i].num_packets;
2321
2322                 /* Find the largest max packet size of this or the previous
2323                  * interval.
2324                  */
2325                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2326                         largest_mps = 0;
2327                 else {
2328                         struct xhci_virt_ep *virt_ep;
2329                         struct list_head *ep_entry;
2330
2331                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2332                         virt_ep = list_entry(ep_entry,
2333                                         struct xhci_virt_ep, bw_endpoint_list);
2334                         /* Convert to blocks, rounding up */
2335                         largest_mps = DIV_ROUND_UP(
2336                                         virt_ep->bw_info.max_packet_size,
2337                                         block_size);
2338                 }
2339                 if (largest_mps > packet_size)
2340                         packet_size = largest_mps;
2341
2342                 /* Use the larger overhead of this or the previous interval. */
2343                 interval_overhead = xhci_get_largest_overhead(
2344                                 &bw_table->interval_bw[i]);
2345                 if (interval_overhead > overhead)
2346                         overhead = interval_overhead;
2347
2348                 /* How many packets can we evenly distribute across
2349                  * (1 << (i + 1)) possible scheduling opportunities?
2350                  */
2351                 packets_transmitted = packets_remaining >> (i + 1);
2352
2353                 /* Add in the bandwidth used for those scheduled packets */
2354                 bw_added = packets_transmitted * (overhead + packet_size);
2355
2356                 /* How many packets do we have remaining to transmit? */
2357                 packets_remaining = packets_remaining % (1 << (i + 1));
2358
2359                 /* What largest max packet size should those packets have? */
2360                 /* If we've transmitted all packets, don't carry over the
2361                  * largest packet size.
2362                  */
2363                 if (packets_remaining == 0) {
2364                         packet_size = 0;
2365                         overhead = 0;
2366                 } else if (packets_transmitted > 0) {
2367                         /* Otherwise if we do have remaining packets, and we've
2368                          * scheduled some packets in this interval, take the
2369                          * largest max packet size from endpoints with this
2370                          * interval.
2371                          */
2372                         packet_size = largest_mps;
2373                         overhead = interval_overhead;
2374                 }
2375                 /* Otherwise carry over packet_size and overhead from the last
2376                  * time we had a remainder.
2377                  */
2378                 bw_used += bw_added;
2379                 if (bw_used > max_bandwidth) {
2380                         xhci_warn(xhci, "Not enough bandwidth. "
2381                                         "Proposed: %u, Max: %u\n",
2382                                 bw_used, max_bandwidth);
2383                         return -ENOMEM;
2384                 }
2385         }
2386         /*
2387          * Ok, we know we have some packets left over after even-handedly
2388          * scheduling interval 15.  We don't know which microframes they will
2389          * fit into, so we over-schedule and say they will be scheduled every
2390          * microframe.
2391          */
2392         if (packets_remaining > 0)
2393                 bw_used += overhead + packet_size;
2394
2395         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2396                 unsigned int port_index = virt_dev->real_port - 1;
2397
2398                 /* OK, we're manipulating a HS device attached to a
2399                  * root port bandwidth domain.  Include the number of active TTs
2400                  * in the bandwidth used.
2401                  */
2402                 bw_used += TT_HS_OVERHEAD *
2403                         xhci->rh_bw[port_index].num_active_tts;
2404         }
2405
2406         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2408                 "Available: %u " "percent",
2409                 bw_used, max_bandwidth, bw_reserved,
2410                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2411                 max_bandwidth);
2412
2413         bw_used += bw_reserved;
2414         if (bw_used > max_bandwidth) {
2415                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2416                                 bw_used, max_bandwidth);
2417                 return -ENOMEM;
2418         }
2419
2420         bw_table->bw_used = bw_used;
2421         return 0;
2422 }
2423
2424 static bool xhci_is_async_ep(unsigned int ep_type)
2425 {
2426         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2427                                         ep_type != ISOC_IN_EP &&
2428                                         ep_type != INT_IN_EP);
2429 }
2430
2431 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2432 {
2433         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2434 }
2435
2436 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2437 {
2438         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2439
2440         if (ep_bw->ep_interval == 0)
2441                 return SS_OVERHEAD_BURST +
2442                         (ep_bw->mult * ep_bw->num_packets *
2443                                         (SS_OVERHEAD + mps));
2444         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2445                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2446                                 1 << ep_bw->ep_interval);
2447
2448 }
2449
2450 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2451                 struct xhci_bw_info *ep_bw,
2452                 struct xhci_interval_bw_table *bw_table,
2453                 struct usb_device *udev,
2454                 struct xhci_virt_ep *virt_ep,
2455                 struct xhci_tt_bw_info *tt_info)
2456 {
2457         struct xhci_interval_bw *interval_bw;
2458         int normalized_interval;
2459
2460         if (xhci_is_async_ep(ep_bw->type))
2461                 return;
2462
2463         if (udev->speed >= USB_SPEED_SUPER) {
2464                 if (xhci_is_sync_in_ep(ep_bw->type))
2465                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2466                                 xhci_get_ss_bw_consumed(ep_bw);
2467                 else
2468                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2469                                 xhci_get_ss_bw_consumed(ep_bw);
2470                 return;
2471         }
2472
2473         /* SuperSpeed endpoints never get added to intervals in the table, so
2474          * this check is only valid for HS/FS/LS devices.
2475          */
2476         if (list_empty(&virt_ep->bw_endpoint_list))
2477                 return;
2478         /* For LS/FS devices, we need to translate the interval expressed in
2479          * microframes to frames.
2480          */
2481         if (udev->speed == USB_SPEED_HIGH)
2482                 normalized_interval = ep_bw->ep_interval;
2483         else
2484                 normalized_interval = ep_bw->ep_interval - 3;
2485
2486         if (normalized_interval == 0)
2487                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2488         interval_bw = &bw_table->interval_bw[normalized_interval];
2489         interval_bw->num_packets -= ep_bw->num_packets;
2490         switch (udev->speed) {
2491         case USB_SPEED_LOW:
2492                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2493                 break;
2494         case USB_SPEED_FULL:
2495                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2496                 break;
2497         case USB_SPEED_HIGH:
2498                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2499                 break;
2500         case USB_SPEED_SUPER:
2501         case USB_SPEED_SUPER_PLUS:
2502         case USB_SPEED_UNKNOWN:
2503         case USB_SPEED_WIRELESS:
2504                 /* Should never happen because only LS/FS/HS endpoints will get
2505                  * added to the endpoint list.
2506                  */
2507                 return;
2508         }
2509         if (tt_info)
2510                 tt_info->active_eps -= 1;
2511         list_del_init(&virt_ep->bw_endpoint_list);
2512 }
2513
2514 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2515                 struct xhci_bw_info *ep_bw,
2516                 struct xhci_interval_bw_table *bw_table,
2517                 struct usb_device *udev,
2518                 struct xhci_virt_ep *virt_ep,
2519                 struct xhci_tt_bw_info *tt_info)
2520 {
2521         struct xhci_interval_bw *interval_bw;
2522         struct xhci_virt_ep *smaller_ep;
2523         int normalized_interval;
2524
2525         if (xhci_is_async_ep(ep_bw->type))
2526                 return;
2527
2528         if (udev->speed == USB_SPEED_SUPER) {
2529                 if (xhci_is_sync_in_ep(ep_bw->type))
2530                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2531                                 xhci_get_ss_bw_consumed(ep_bw);
2532                 else
2533                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2534                                 xhci_get_ss_bw_consumed(ep_bw);
2535                 return;
2536         }
2537
2538         /* For LS/FS devices, we need to translate the interval expressed in
2539          * microframes to frames.
2540          */
2541         if (udev->speed == USB_SPEED_HIGH)
2542                 normalized_interval = ep_bw->ep_interval;
2543         else
2544                 normalized_interval = ep_bw->ep_interval - 3;
2545
2546         if (normalized_interval == 0)
2547                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2548         interval_bw = &bw_table->interval_bw[normalized_interval];
2549         interval_bw->num_packets += ep_bw->num_packets;
2550         switch (udev->speed) {
2551         case USB_SPEED_LOW:
2552                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2553                 break;
2554         case USB_SPEED_FULL:
2555                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2556                 break;
2557         case USB_SPEED_HIGH:
2558                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2559                 break;
2560         case USB_SPEED_SUPER:
2561         case USB_SPEED_SUPER_PLUS:
2562         case USB_SPEED_UNKNOWN:
2563         case USB_SPEED_WIRELESS:
2564                 /* Should never happen because only LS/FS/HS endpoints will get
2565                  * added to the endpoint list.
2566                  */
2567                 return;
2568         }
2569
2570         if (tt_info)
2571                 tt_info->active_eps += 1;
2572         /* Insert the endpoint into the list, largest max packet size first. */
2573         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2574                         bw_endpoint_list) {
2575                 if (ep_bw->max_packet_size >=
2576                                 smaller_ep->bw_info.max_packet_size) {
2577                         /* Add the new ep before the smaller endpoint */
2578                         list_add_tail(&virt_ep->bw_endpoint_list,
2579                                         &smaller_ep->bw_endpoint_list);
2580                         return;
2581                 }
2582         }
2583         /* Add the new endpoint at the end of the list. */
2584         list_add_tail(&virt_ep->bw_endpoint_list,
2585                         &interval_bw->endpoints);
2586 }
2587
2588 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2589                 struct xhci_virt_device *virt_dev,
2590                 int old_active_eps)
2591 {
2592         struct xhci_root_port_bw_info *rh_bw_info;
2593         if (!virt_dev->tt_info)
2594                 return;
2595
2596         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2597         if (old_active_eps == 0 &&
2598                                 virt_dev->tt_info->active_eps != 0) {
2599                 rh_bw_info->num_active_tts += 1;
2600                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2601         } else if (old_active_eps != 0 &&
2602                                 virt_dev->tt_info->active_eps == 0) {
2603                 rh_bw_info->num_active_tts -= 1;
2604                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2605         }
2606 }
2607
2608 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2609                 struct xhci_virt_device *virt_dev,
2610                 struct xhci_container_ctx *in_ctx)
2611 {
2612         struct xhci_bw_info ep_bw_info[31];
2613         int i;
2614         struct xhci_input_control_ctx *ctrl_ctx;
2615         int old_active_eps = 0;
2616
2617         if (virt_dev->tt_info)
2618                 old_active_eps = virt_dev->tt_info->active_eps;
2619
2620         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2621         if (!ctrl_ctx) {
2622                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2623                                 __func__);
2624                 return -ENOMEM;
2625         }
2626
2627         for (i = 0; i < 31; i++) {
2628                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2629                         continue;
2630
2631                 /* Make a copy of the BW info in case we need to revert this */
2632                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2633                                 sizeof(ep_bw_info[i]));
2634                 /* Drop the endpoint from the interval table if the endpoint is
2635                  * being dropped or changed.
2636                  */
2637                 if (EP_IS_DROPPED(ctrl_ctx, i))
2638                         xhci_drop_ep_from_interval_table(xhci,
2639                                         &virt_dev->eps[i].bw_info,
2640                                         virt_dev->bw_table,
2641                                         virt_dev->udev,
2642                                         &virt_dev->eps[i],
2643                                         virt_dev->tt_info);
2644         }
2645         /* Overwrite the information stored in the endpoints' bw_info */
2646         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2647         for (i = 0; i < 31; i++) {
2648                 /* Add any changed or added endpoints to the interval table */
2649                 if (EP_IS_ADDED(ctrl_ctx, i))
2650                         xhci_add_ep_to_interval_table(xhci,
2651                                         &virt_dev->eps[i].bw_info,
2652                                         virt_dev->bw_table,
2653                                         virt_dev->udev,
2654                                         &virt_dev->eps[i],
2655                                         virt_dev->tt_info);
2656         }
2657
2658         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2659                 /* Ok, this fits in the bandwidth we have.
2660                  * Update the number of active TTs.
2661                  */
2662                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2663                 return 0;
2664         }
2665
2666         /* We don't have enough bandwidth for this, revert the stored info. */
2667         for (i = 0; i < 31; i++) {
2668                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2669                         continue;
2670
2671                 /* Drop the new copies of any added or changed endpoints from
2672                  * the interval table.
2673                  */
2674                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2675                         xhci_drop_ep_from_interval_table(xhci,
2676                                         &virt_dev->eps[i].bw_info,
2677                                         virt_dev->bw_table,
2678                                         virt_dev->udev,
2679                                         &virt_dev->eps[i],
2680                                         virt_dev->tt_info);
2681                 }
2682                 /* Revert the endpoint back to its old information */
2683                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2684                                 sizeof(ep_bw_info[i]));
2685                 /* Add any changed or dropped endpoints back into the table */
2686                 if (EP_IS_DROPPED(ctrl_ctx, i))
2687                         xhci_add_ep_to_interval_table(xhci,
2688                                         &virt_dev->eps[i].bw_info,
2689                                         virt_dev->bw_table,
2690                                         virt_dev->udev,
2691                                         &virt_dev->eps[i],
2692                                         virt_dev->tt_info);
2693         }
2694         return -ENOMEM;
2695 }
2696
2697
2698 /* Issue a configure endpoint command or evaluate context command
2699  * and wait for it to finish.
2700  */
2701 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2702                 struct usb_device *udev,
2703                 struct xhci_command *command,
2704                 bool ctx_change, bool must_succeed)
2705 {
2706         int ret;
2707         unsigned long flags;
2708         struct xhci_input_control_ctx *ctrl_ctx;
2709         struct xhci_virt_device *virt_dev;
2710         struct xhci_slot_ctx *slot_ctx;
2711
2712         if (!command)
2713                 return -EINVAL;
2714
2715         spin_lock_irqsave(&xhci->lock, flags);
2716
2717         if (xhci->xhc_state & XHCI_STATE_DYING) {
2718                 spin_unlock_irqrestore(&xhci->lock, flags);
2719                 return -ESHUTDOWN;
2720         }
2721
2722         virt_dev = xhci->devs[udev->slot_id];
2723
2724         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2725         if (!ctrl_ctx) {
2726                 spin_unlock_irqrestore(&xhci->lock, flags);
2727                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2728                                 __func__);
2729                 return -ENOMEM;
2730         }
2731
2732         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2733                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2734                 spin_unlock_irqrestore(&xhci->lock, flags);
2735                 xhci_warn(xhci, "Not enough host resources, "
2736                                 "active endpoint contexts = %u\n",
2737                                 xhci->num_active_eps);
2738                 return -ENOMEM;
2739         }
2740         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2741             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2742                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2743                         xhci_free_host_resources(xhci, ctrl_ctx);
2744                 spin_unlock_irqrestore(&xhci->lock, flags);
2745                 xhci_warn(xhci, "Not enough bandwidth\n");
2746                 return -ENOMEM;
2747         }
2748
2749         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2750         trace_xhci_configure_endpoint(slot_ctx);
2751
2752         if (!ctx_change)
2753                 ret = xhci_queue_configure_endpoint(xhci, command,
2754                                 command->in_ctx->dma,
2755                                 udev->slot_id, must_succeed);
2756         else
2757                 ret = xhci_queue_evaluate_context(xhci, command,
2758                                 command->in_ctx->dma,
2759                                 udev->slot_id, must_succeed);
2760         if (ret < 0) {
2761                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2762                         xhci_free_host_resources(xhci, ctrl_ctx);
2763                 spin_unlock_irqrestore(&xhci->lock, flags);
2764                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2765                                 "FIXME allocate a new ring segment");
2766                 return -ENOMEM;
2767         }
2768         xhci_ring_cmd_db(xhci);
2769         spin_unlock_irqrestore(&xhci->lock, flags);
2770
2771         /* Wait for the configure endpoint command to complete */
2772         wait_for_completion(command->completion);
2773
2774         if (!ctx_change)
2775                 ret = xhci_configure_endpoint_result(xhci, udev,
2776                                                      &command->status);
2777         else
2778                 ret = xhci_evaluate_context_result(xhci, udev,
2779                                                    &command->status);
2780
2781         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2782                 spin_lock_irqsave(&xhci->lock, flags);
2783                 /* If the command failed, remove the reserved resources.
2784                  * Otherwise, clean up the estimate to include dropped eps.
2785                  */
2786                 if (ret)
2787                         xhci_free_host_resources(xhci, ctrl_ctx);
2788                 else
2789                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2790                 spin_unlock_irqrestore(&xhci->lock, flags);
2791         }
2792         return ret;
2793 }
2794
2795 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2796         struct xhci_virt_device *vdev, int i)
2797 {
2798         struct xhci_virt_ep *ep = &vdev->eps[i];
2799
2800         if (ep->ep_state & EP_HAS_STREAMS) {
2801                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2802                                 xhci_get_endpoint_address(i));
2803                 xhci_free_stream_info(xhci, ep->stream_info);
2804                 ep->stream_info = NULL;
2805                 ep->ep_state &= ~EP_HAS_STREAMS;
2806         }
2807 }
2808
2809 /* Called after one or more calls to xhci_add_endpoint() or
2810  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2811  * to call xhci_reset_bandwidth().
2812  *
2813  * Since we are in the middle of changing either configuration or
2814  * installing a new alt setting, the USB core won't allow URBs to be
2815  * enqueued for any endpoint on the old config or interface.  Nothing
2816  * else should be touching the xhci->devs[slot_id] structure, so we
2817  * don't need to take the xhci->lock for manipulating that.
2818  */
2819 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2820 {
2821         int i;
2822         int ret = 0;
2823         struct xhci_hcd *xhci;
2824         struct xhci_virt_device *virt_dev;
2825         struct xhci_input_control_ctx *ctrl_ctx;
2826         struct xhci_slot_ctx *slot_ctx;
2827         struct xhci_command *command;
2828
2829         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2830         if (ret <= 0)
2831                 return ret;
2832         xhci = hcd_to_xhci(hcd);
2833         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2834                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2835                 return -ENODEV;
2836
2837         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838         virt_dev = xhci->devs[udev->slot_id];
2839
2840         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2841         if (!command)
2842                 return -ENOMEM;
2843
2844         command->in_ctx = virt_dev->in_ctx;
2845
2846         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2847         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2848         if (!ctrl_ctx) {
2849                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2850                                 __func__);
2851                 ret = -ENOMEM;
2852                 goto command_cleanup;
2853         }
2854         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2855         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2856         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2857
2858         /* Don't issue the command if there's no endpoints to update. */
2859         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2860             ctrl_ctx->drop_flags == 0) {
2861                 ret = 0;
2862                 goto command_cleanup;
2863         }
2864         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2865         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2866         for (i = 31; i >= 1; i--) {
2867                 __le32 le32 = cpu_to_le32(BIT(i));
2868
2869                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2870                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2871                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2872                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2873                         break;
2874                 }
2875         }
2876
2877         ret = xhci_configure_endpoint(xhci, udev, command,
2878                         false, false);
2879         if (ret)
2880                 /* Callee should call reset_bandwidth() */
2881                 goto command_cleanup;
2882
2883         /* Free any rings that were dropped, but not changed. */
2884         for (i = 1; i < 31; i++) {
2885                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2886                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2887                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2888                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2889                 }
2890         }
2891         xhci_zero_in_ctx(xhci, virt_dev);
2892         /*
2893          * Install any rings for completely new endpoints or changed endpoints,
2894          * and free any old rings from changed endpoints.
2895          */
2896         for (i = 1; i < 31; i++) {
2897                 if (!virt_dev->eps[i].new_ring)
2898                         continue;
2899                 /* Only free the old ring if it exists.
2900                  * It may not if this is the first add of an endpoint.
2901                  */
2902                 if (virt_dev->eps[i].ring) {
2903                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2904                 }
2905                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2906                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2907                 virt_dev->eps[i].new_ring = NULL;
2908         }
2909 command_cleanup:
2910         kfree(command->completion);
2911         kfree(command);
2912
2913         return ret;
2914 }
2915
2916 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2917 {
2918         struct xhci_hcd *xhci;
2919         struct xhci_virt_device *virt_dev;
2920         int i, ret;
2921
2922         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2923         if (ret <= 0)
2924                 return;
2925         xhci = hcd_to_xhci(hcd);
2926
2927         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928         virt_dev = xhci->devs[udev->slot_id];
2929         /* Free any rings allocated for added endpoints */
2930         for (i = 0; i < 31; i++) {
2931                 if (virt_dev->eps[i].new_ring) {
2932                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2933                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2934                         virt_dev->eps[i].new_ring = NULL;
2935                 }
2936         }
2937         xhci_zero_in_ctx(xhci, virt_dev);
2938 }
2939
2940 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2941                 struct xhci_container_ctx *in_ctx,
2942                 struct xhci_container_ctx *out_ctx,
2943                 struct xhci_input_control_ctx *ctrl_ctx,
2944                 u32 add_flags, u32 drop_flags)
2945 {
2946         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2947         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2948         xhci_slot_copy(xhci, in_ctx, out_ctx);
2949         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2950 }
2951
2952 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2953                 unsigned int slot_id, unsigned int ep_index,
2954                 struct xhci_dequeue_state *deq_state)
2955 {
2956         struct xhci_input_control_ctx *ctrl_ctx;
2957         struct xhci_container_ctx *in_ctx;
2958         struct xhci_ep_ctx *ep_ctx;
2959         u32 added_ctxs;
2960         dma_addr_t addr;
2961
2962         in_ctx = xhci->devs[slot_id]->in_ctx;
2963         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2964         if (!ctrl_ctx) {
2965                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2966                                 __func__);
2967                 return;
2968         }
2969
2970         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2971                         xhci->devs[slot_id]->out_ctx, ep_index);
2972         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2973         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2974                         deq_state->new_deq_ptr);
2975         if (addr == 0) {
2976                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2977                                 "reset ep command\n");
2978                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2979                                 deq_state->new_deq_seg,
2980                                 deq_state->new_deq_ptr);
2981                 return;
2982         }
2983         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2984
2985         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2986         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2987                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2988                         added_ctxs, added_ctxs);
2989 }
2990
2991 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2992                                unsigned int stream_id, struct xhci_td *td)
2993 {
2994         struct xhci_dequeue_state deq_state;
2995         struct usb_device *udev = td->urb->dev;
2996
2997         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2998                         "Cleaning up stalled endpoint ring");
2999         /* We need to move the HW's dequeue pointer past this TD,
3000          * or it will attempt to resend it on the next doorbell ring.
3001          */
3002         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3003                         ep_index, stream_id, td, &deq_state);
3004
3005         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3006                 return;
3007
3008         /* HW with the reset endpoint quirk will use the saved dequeue state to
3009          * issue a configure endpoint command later.
3010          */
3011         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3012                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3013                                 "Queueing new dequeue state");
3014                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3015                                 ep_index, &deq_state);
3016         } else {
3017                 /* Better hope no one uses the input context between now and the
3018                  * reset endpoint completion!
3019                  * XXX: No idea how this hardware will react when stream rings
3020                  * are enabled.
3021                  */
3022                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3023                                 "Setting up input context for "
3024                                 "configure endpoint command");
3025                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3026                                 ep_index, &deq_state);
3027         }
3028 }
3029
3030 /*
3031  * Called after usb core issues a clear halt control message.
3032  * The host side of the halt should already be cleared by a reset endpoint
3033  * command issued when the STALL event was received.
3034  *
3035  * The reset endpoint command may only be issued to endpoints in the halted
3036  * state. For software that wishes to reset the data toggle or sequence number
3037  * of an endpoint that isn't in the halted state this function will issue a
3038  * configure endpoint command with the Drop and Add bits set for the target
3039  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3040  */
3041
3042 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3043                 struct usb_host_endpoint *host_ep)
3044 {
3045         struct xhci_hcd *xhci;
3046         struct usb_device *udev;
3047         struct xhci_virt_device *vdev;
3048         struct xhci_virt_ep *ep;
3049         struct xhci_input_control_ctx *ctrl_ctx;
3050         struct xhci_command *stop_cmd, *cfg_cmd;
3051         unsigned int ep_index;
3052         unsigned long flags;
3053         u32 ep_flag;
3054
3055         xhci = hcd_to_xhci(hcd);
3056         if (!host_ep->hcpriv)
3057                 return;
3058         udev = (struct usb_device *) host_ep->hcpriv;
3059         vdev = xhci->devs[udev->slot_id];
3060         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3061         ep = &vdev->eps[ep_index];
3062
3063         /* Bail out if toggle is already being cleared by a endpoint reset */
3064         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3065                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3066                 return;
3067         }
3068         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3069         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3070             usb_endpoint_xfer_isoc(&host_ep->desc))
3071                 return;
3072
3073         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3074
3075         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3076                 return;
3077
3078         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3079         if (!stop_cmd)
3080                 return;
3081
3082         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3083         if (!cfg_cmd)
3084                 goto cleanup;
3085
3086         spin_lock_irqsave(&xhci->lock, flags);
3087
3088         /* block queuing new trbs and ringing ep doorbell */
3089         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3090
3091         /*
3092          * Make sure endpoint ring is empty before resetting the toggle/seq.
3093          * Driver is required to synchronously cancel all transfer request.
3094          * Stop the endpoint to force xHC to update the output context
3095          */
3096
3097         if (!list_empty(&ep->ring->td_list)) {
3098                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3099                 spin_unlock_irqrestore(&xhci->lock, flags);
3100                 xhci_free_command(xhci, cfg_cmd);
3101                 goto cleanup;
3102         }
3103         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3104         xhci_ring_cmd_db(xhci);
3105         spin_unlock_irqrestore(&xhci->lock, flags);
3106
3107         wait_for_completion(stop_cmd->completion);
3108
3109         spin_lock_irqsave(&xhci->lock, flags);
3110
3111         /* config ep command clears toggle if add and drop ep flags are set */
3112         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3113         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3114                                            ctrl_ctx, ep_flag, ep_flag);
3115         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3116
3117         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3118                                       udev->slot_id, false);
3119         xhci_ring_cmd_db(xhci);
3120         spin_unlock_irqrestore(&xhci->lock, flags);
3121
3122         wait_for_completion(cfg_cmd->completion);
3123
3124         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3125         xhci_free_command(xhci, cfg_cmd);
3126 cleanup:
3127         xhci_free_command(xhci, stop_cmd);
3128 }
3129
3130 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3131                 struct usb_device *udev, struct usb_host_endpoint *ep,
3132                 unsigned int slot_id)
3133 {
3134         int ret;
3135         unsigned int ep_index;
3136         unsigned int ep_state;
3137
3138         if (!ep)
3139                 return -EINVAL;
3140         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3141         if (ret <= 0)
3142                 return -EINVAL;
3143         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3144                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3145                                 " descriptor for ep 0x%x does not support streams\n",
3146                                 ep->desc.bEndpointAddress);
3147                 return -EINVAL;
3148         }
3149
3150         ep_index = xhci_get_endpoint_index(&ep->desc);
3151         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3152         if (ep_state & EP_HAS_STREAMS ||
3153                         ep_state & EP_GETTING_STREAMS) {
3154                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3155                                 "already has streams set up.\n",
3156                                 ep->desc.bEndpointAddress);
3157                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3158                                 "dynamic stream context array reallocation.\n");
3159                 return -EINVAL;
3160         }
3161         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3162                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3163                                 "endpoint 0x%x; URBs are pending.\n",
3164                                 ep->desc.bEndpointAddress);
3165                 return -EINVAL;
3166         }
3167         return 0;
3168 }
3169
3170 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3171                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3172 {
3173         unsigned int max_streams;
3174
3175         /* The stream context array size must be a power of two */
3176         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3177         /*
3178          * Find out how many primary stream array entries the host controller
3179          * supports.  Later we may use secondary stream arrays (similar to 2nd
3180          * level page entries), but that's an optional feature for xHCI host
3181          * controllers. xHCs must support at least 4 stream IDs.
3182          */
3183         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3184         if (*num_stream_ctxs > max_streams) {
3185                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3186                                 max_streams);
3187                 *num_stream_ctxs = max_streams;
3188                 *num_streams = max_streams;
3189         }
3190 }
3191
3192 /* Returns an error code if one of the endpoint already has streams.
3193  * This does not change any data structures, it only checks and gathers
3194  * information.
3195  */
3196 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3197                 struct usb_device *udev,
3198                 struct usb_host_endpoint **eps, unsigned int num_eps,
3199                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3200 {
3201         unsigned int max_streams;
3202         unsigned int endpoint_flag;
3203         int i;
3204         int ret;
3205
3206         for (i = 0; i < num_eps; i++) {
3207                 ret = xhci_check_streams_endpoint(xhci, udev,
3208                                 eps[i], udev->slot_id);
3209                 if (ret < 0)
3210                         return ret;
3211
3212                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3213                 if (max_streams < (*num_streams - 1)) {
3214                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3215                                         eps[i]->desc.bEndpointAddress,
3216                                         max_streams);
3217                         *num_streams = max_streams+1;
3218                 }
3219
3220                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3221                 if (*changed_ep_bitmask & endpoint_flag)
3222                         return -EINVAL;
3223                 *changed_ep_bitmask |= endpoint_flag;
3224         }
3225         return 0;
3226 }
3227
3228 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3229                 struct usb_device *udev,
3230                 struct usb_host_endpoint **eps, unsigned int num_eps)
3231 {
3232         u32 changed_ep_bitmask = 0;
3233         unsigned int slot_id;
3234         unsigned int ep_index;
3235         unsigned int ep_state;
3236         int i;
3237
3238         slot_id = udev->slot_id;
3239         if (!xhci->devs[slot_id])
3240                 return 0;
3241
3242         for (i = 0; i < num_eps; i++) {
3243                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3245                 /* Are streams already being freed for the endpoint? */
3246                 if (ep_state & EP_GETTING_NO_STREAMS) {
3247                         xhci_warn(xhci, "WARN Can't disable streams for "
3248                                         "endpoint 0x%x, "
3249                                         "streams are being disabled already\n",
3250                                         eps[i]->desc.bEndpointAddress);
3251                         return 0;
3252                 }
3253                 /* Are there actually any streams to free? */
3254                 if (!(ep_state & EP_HAS_STREAMS) &&
3255                                 !(ep_state & EP_GETTING_STREAMS)) {
3256                         xhci_warn(xhci, "WARN Can't disable streams for "
3257                                         "endpoint 0x%x, "
3258                                         "streams are already disabled!\n",
3259                                         eps[i]->desc.bEndpointAddress);
3260                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3261                                         "with non-streams endpoint\n");
3262                         return 0;
3263                 }
3264                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3265         }
3266         return changed_ep_bitmask;
3267 }
3268
3269 /*
3270  * The USB device drivers use this function (through the HCD interface in USB
3271  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3272  * coordinate mass storage command queueing across multiple endpoints (basically
3273  * a stream ID == a task ID).
3274  *
3275  * Setting up streams involves allocating the same size stream context array
3276  * for each endpoint and issuing a configure endpoint command for all endpoints.
3277  *
3278  * Don't allow the call to succeed if one endpoint only supports one stream
3279  * (which means it doesn't support streams at all).
3280  *
3281  * Drivers may get less stream IDs than they asked for, if the host controller
3282  * hardware or endpoints claim they can't support the number of requested
3283  * stream IDs.
3284  */
3285 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3286                 struct usb_host_endpoint **eps, unsigned int num_eps,
3287                 unsigned int num_streams, gfp_t mem_flags)
3288 {
3289         int i, ret;
3290         struct xhci_hcd *xhci;
3291         struct xhci_virt_device *vdev;
3292         struct xhci_command *config_cmd;
3293         struct xhci_input_control_ctx *ctrl_ctx;
3294         unsigned int ep_index;
3295         unsigned int num_stream_ctxs;
3296         unsigned int max_packet;
3297         unsigned long flags;
3298         u32 changed_ep_bitmask = 0;
3299
3300         if (!eps)
3301                 return -EINVAL;
3302
3303         /* Add one to the number of streams requested to account for
3304          * stream 0 that is reserved for xHCI usage.
3305          */
3306         num_streams += 1;
3307         xhci = hcd_to_xhci(hcd);
3308         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3309                         num_streams);
3310
3311         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3312         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3313                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3314                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3315                 return -ENOSYS;
3316         }
3317
3318         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3319         if (!config_cmd)
3320                 return -ENOMEM;
3321
3322         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3323         if (!ctrl_ctx) {
3324                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3325                                 __func__);
3326                 xhci_free_command(xhci, config_cmd);
3327                 return -ENOMEM;
3328         }
3329
3330         /* Check to make sure all endpoints are not already configured for
3331          * streams.  While we're at it, find the maximum number of streams that
3332          * all the endpoints will support and check for duplicate endpoints.
3333          */
3334         spin_lock_irqsave(&xhci->lock, flags);
3335         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3336                         num_eps, &num_streams, &changed_ep_bitmask);
3337         if (ret < 0) {
3338                 xhci_free_command(xhci, config_cmd);
3339                 spin_unlock_irqrestore(&xhci->lock, flags);
3340                 return ret;
3341         }
3342         if (num_streams <= 1) {
3343                 xhci_warn(xhci, "WARN: endpoints can't handle "
3344                                 "more than one stream.\n");
3345                 xhci_free_command(xhci, config_cmd);
3346                 spin_unlock_irqrestore(&xhci->lock, flags);
3347                 return -EINVAL;
3348         }
3349         vdev = xhci->devs[udev->slot_id];
3350         /* Mark each endpoint as being in transition, so
3351          * xhci_urb_enqueue() will reject all URBs.
3352          */
3353         for (i = 0; i < num_eps; i++) {
3354                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3355                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3356         }
3357         spin_unlock_irqrestore(&xhci->lock, flags);
3358
3359         /* Setup internal data structures and allocate HW data structures for
3360          * streams (but don't install the HW structures in the input context
3361          * until we're sure all memory allocation succeeded).
3362          */
3363         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3364         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3365                         num_stream_ctxs, num_streams);
3366
3367         for (i = 0; i < num_eps; i++) {
3368                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3370                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3371                                 num_stream_ctxs,
3372                                 num_streams,
3373                                 max_packet, mem_flags);
3374                 if (!vdev->eps[ep_index].stream_info)
3375                         goto cleanup;
3376                 /* Set maxPstreams in endpoint context and update deq ptr to
3377                  * point to stream context array. FIXME
3378                  */
3379         }
3380
3381         /* Set up the input context for a configure endpoint command. */
3382         for (i = 0; i < num_eps; i++) {
3383                 struct xhci_ep_ctx *ep_ctx;
3384
3385                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3386                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3387
3388                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3389                                 vdev->out_ctx, ep_index);
3390                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3391                                 vdev->eps[ep_index].stream_info);
3392         }
3393         /* Tell the HW to drop its old copy of the endpoint context info
3394          * and add the updated copy from the input context.
3395          */
3396         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3397                         vdev->out_ctx, ctrl_ctx,
3398                         changed_ep_bitmask, changed_ep_bitmask);
3399
3400         /* Issue and wait for the configure endpoint command */
3401         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3402                         false, false);
3403
3404         /* xHC rejected the configure endpoint command for some reason, so we
3405          * leave the old ring intact and free our internal streams data
3406          * structure.
3407          */
3408         if (ret < 0)
3409                 goto cleanup;
3410
3411         spin_lock_irqsave(&xhci->lock, flags);
3412         for (i = 0; i < num_eps; i++) {
3413                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3415                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3416                          udev->slot_id, ep_index);
3417                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3418         }
3419         xhci_free_command(xhci, config_cmd);
3420         spin_unlock_irqrestore(&xhci->lock, flags);
3421
3422         /* Subtract 1 for stream 0, which drivers can't use */
3423         return num_streams - 1;
3424
3425 cleanup:
3426         /* If it didn't work, free the streams! */
3427         for (i = 0; i < num_eps; i++) {
3428                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3430                 vdev->eps[ep_index].stream_info = NULL;
3431                 /* FIXME Unset maxPstreams in endpoint context and
3432                  * update deq ptr to point to normal string ring.
3433                  */
3434                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3435                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3436                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3437         }
3438         xhci_free_command(xhci, config_cmd);
3439         return -ENOMEM;
3440 }
3441
3442 /* Transition the endpoint from using streams to being a "normal" endpoint
3443  * without streams.
3444  *
3445  * Modify the endpoint context state, submit a configure endpoint command,
3446  * and free all endpoint rings for streams if that completes successfully.
3447  */
3448 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3449                 struct usb_host_endpoint **eps, unsigned int num_eps,
3450                 gfp_t mem_flags)
3451 {
3452         int i, ret;
3453         struct xhci_hcd *xhci;
3454         struct xhci_virt_device *vdev;
3455         struct xhci_command *command;
3456         struct xhci_input_control_ctx *ctrl_ctx;
3457         unsigned int ep_index;
3458         unsigned long flags;
3459         u32 changed_ep_bitmask;
3460
3461         xhci = hcd_to_xhci(hcd);
3462         vdev = xhci->devs[udev->slot_id];
3463
3464         /* Set up a configure endpoint command to remove the streams rings */
3465         spin_lock_irqsave(&xhci->lock, flags);
3466         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3467                         udev, eps, num_eps);
3468         if (changed_ep_bitmask == 0) {
3469                 spin_unlock_irqrestore(&xhci->lock, flags);
3470                 return -EINVAL;
3471         }
3472
3473         /* Use the xhci_command structure from the first endpoint.  We may have
3474          * allocated too many, but the driver may call xhci_free_streams() for
3475          * each endpoint it grouped into one call to xhci_alloc_streams().
3476          */
3477         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3478         command = vdev->eps[ep_index].stream_info->free_streams_command;
3479         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3480         if (!ctrl_ctx) {
3481                 spin_unlock_irqrestore(&xhci->lock, flags);
3482                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3483                                 __func__);
3484                 return -EINVAL;
3485         }
3486
3487         for (i = 0; i < num_eps; i++) {
3488                 struct xhci_ep_ctx *ep_ctx;
3489
3490                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3492                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3493                         EP_GETTING_NO_STREAMS;
3494
3495                 xhci_endpoint_copy(xhci, command->in_ctx,
3496                                 vdev->out_ctx, ep_index);
3497                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3498                                 &vdev->eps[ep_index]);
3499         }
3500         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3501                         vdev->out_ctx, ctrl_ctx,
3502                         changed_ep_bitmask, changed_ep_bitmask);
3503         spin_unlock_irqrestore(&xhci->lock, flags);
3504
3505         /* Issue and wait for the configure endpoint command,
3506          * which must succeed.
3507          */
3508         ret = xhci_configure_endpoint(xhci, udev, command,
3509                         false, true);
3510
3511         /* xHC rejected the configure endpoint command for some reason, so we
3512          * leave the streams rings intact.
3513          */
3514         if (ret < 0)
3515                 return ret;
3516
3517         spin_lock_irqsave(&xhci->lock, flags);
3518         for (i = 0; i < num_eps; i++) {
3519                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3520                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3521                 vdev->eps[ep_index].stream_info = NULL;
3522                 /* FIXME Unset maxPstreams in endpoint context and
3523                  * update deq ptr to point to normal string ring.
3524                  */
3525                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3526                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3527         }
3528         spin_unlock_irqrestore(&xhci->lock, flags);
3529
3530         return 0;
3531 }
3532
3533 /*
3534  * Deletes endpoint resources for endpoints that were active before a Reset
3535  * Device command, or a Disable Slot command.  The Reset Device command leaves
3536  * the control endpoint intact, whereas the Disable Slot command deletes it.
3537  *
3538  * Must be called with xhci->lock held.
3539  */
3540 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3541         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3542 {
3543         int i;
3544         unsigned int num_dropped_eps = 0;
3545         unsigned int drop_flags = 0;
3546
3547         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3548                 if (virt_dev->eps[i].ring) {
3549                         drop_flags |= 1 << i;
3550                         num_dropped_eps++;
3551                 }
3552         }
3553         xhci->num_active_eps -= num_dropped_eps;
3554         if (num_dropped_eps)
3555                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3556                                 "Dropped %u ep ctxs, flags = 0x%x, "
3557                                 "%u now active.",
3558                                 num_dropped_eps, drop_flags,
3559                                 xhci->num_active_eps);
3560 }
3561
3562 /*
3563  * This submits a Reset Device Command, which will set the device state to 0,
3564  * set the device address to 0, and disable all the endpoints except the default
3565  * control endpoint.  The USB core should come back and call
3566  * xhci_address_device(), and then re-set up the configuration.  If this is
3567  * called because of a usb_reset_and_verify_device(), then the old alternate
3568  * settings will be re-installed through the normal bandwidth allocation
3569  * functions.
3570  *
3571  * Wait for the Reset Device command to finish.  Remove all structures
3572  * associated with the endpoints that were disabled.  Clear the input device
3573  * structure? Reset the control endpoint 0 max packet size?
3574  *
3575  * If the virt_dev to be reset does not exist or does not match the udev,
3576  * it means the device is lost, possibly due to the xHC restore error and
3577  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3578  * re-allocate the device.
3579  */
3580 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3581                 struct usb_device *udev)
3582 {
3583         int ret, i;
3584         unsigned long flags;
3585         struct xhci_hcd *xhci;
3586         unsigned int slot_id;
3587         struct xhci_virt_device *virt_dev;
3588         struct xhci_command *reset_device_cmd;
3589         struct xhci_slot_ctx *slot_ctx;
3590         int old_active_eps = 0;
3591
3592         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3593         if (ret <= 0)
3594                 return ret;
3595         xhci = hcd_to_xhci(hcd);
3596         slot_id = udev->slot_id;
3597         virt_dev = xhci->devs[slot_id];
3598         if (!virt_dev) {
3599                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3600                                 "not exist. Re-allocate the device\n", slot_id);
3601                 ret = xhci_alloc_dev(hcd, udev);
3602                 if (ret == 1)
3603                         return 0;
3604                 else
3605                         return -EINVAL;
3606         }
3607
3608         if (virt_dev->tt_info)
3609                 old_active_eps = virt_dev->tt_info->active_eps;
3610
3611         if (virt_dev->udev != udev) {
3612                 /* If the virt_dev and the udev does not match, this virt_dev
3613                  * may belong to another udev.
3614                  * Re-allocate the device.
3615                  */
3616                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3617                                 "not match the udev. Re-allocate the device\n",
3618                                 slot_id);
3619                 ret = xhci_alloc_dev(hcd, udev);
3620                 if (ret == 1)
3621                         return 0;
3622                 else
3623                         return -EINVAL;
3624         }
3625
3626         /* If device is not setup, there is no point in resetting it */
3627         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3628         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3629                                                 SLOT_STATE_DISABLED)
3630                 return 0;
3631
3632         trace_xhci_discover_or_reset_device(slot_ctx);
3633
3634         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3635         /* Allocate the command structure that holds the struct completion.
3636          * Assume we're in process context, since the normal device reset
3637          * process has to wait for the device anyway.  Storage devices are
3638          * reset as part of error handling, so use GFP_NOIO instead of
3639          * GFP_KERNEL.
3640          */
3641         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3642         if (!reset_device_cmd) {
3643                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3644                 return -ENOMEM;
3645         }
3646
3647         /* Attempt to submit the Reset Device command to the command ring */
3648         spin_lock_irqsave(&xhci->lock, flags);
3649
3650         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3651         if (ret) {
3652                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3653                 spin_unlock_irqrestore(&xhci->lock, flags);
3654                 goto command_cleanup;
3655         }
3656         xhci_ring_cmd_db(xhci);
3657         spin_unlock_irqrestore(&xhci->lock, flags);
3658
3659         /* Wait for the Reset Device command to finish */
3660         wait_for_completion(reset_device_cmd->completion);
3661
3662         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3663          * unless we tried to reset a slot ID that wasn't enabled,
3664          * or the device wasn't in the addressed or configured state.
3665          */
3666         ret = reset_device_cmd->status;
3667         switch (ret) {
3668         case COMP_COMMAND_ABORTED:
3669         case COMP_COMMAND_RING_STOPPED:
3670                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3671                 ret = -ETIME;
3672                 goto command_cleanup;
3673         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3674         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3675                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3676                                 slot_id,
3677                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3678                 xhci_dbg(xhci, "Not freeing device rings.\n");
3679                 /* Don't treat this as an error.  May change my mind later. */
3680                 ret = 0;
3681                 goto command_cleanup;
3682         case COMP_SUCCESS:
3683                 xhci_dbg(xhci, "Successful reset device command.\n");
3684                 break;
3685         default:
3686                 if (xhci_is_vendor_info_code(xhci, ret))
3687                         break;
3688                 xhci_warn(xhci, "Unknown completion code %u for "
3689                                 "reset device command.\n", ret);
3690                 ret = -EINVAL;
3691                 goto command_cleanup;
3692         }
3693
3694         /* Free up host controller endpoint resources */
3695         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3696                 spin_lock_irqsave(&xhci->lock, flags);
3697                 /* Don't delete the default control endpoint resources */
3698                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3699                 spin_unlock_irqrestore(&xhci->lock, flags);
3700         }
3701
3702         /* Everything but endpoint 0 is disabled, so free the rings. */
3703         for (i = 1; i < 31; i++) {
3704                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3705
3706                 if (ep->ep_state & EP_HAS_STREAMS) {
3707                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3708                                         xhci_get_endpoint_address(i));
3709                         xhci_free_stream_info(xhci, ep->stream_info);
3710                         ep->stream_info = NULL;
3711                         ep->ep_state &= ~EP_HAS_STREAMS;
3712                 }
3713
3714                 if (ep->ring) {
3715                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3716                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3717                 }
3718                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3719                         xhci_drop_ep_from_interval_table(xhci,
3720                                         &virt_dev->eps[i].bw_info,
3721                                         virt_dev->bw_table,
3722                                         udev,
3723                                         &virt_dev->eps[i],
3724                                         virt_dev->tt_info);
3725                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3726         }
3727         /* If necessary, update the number of active TTs on this root port */
3728         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3729         ret = 0;
3730
3731 command_cleanup:
3732         xhci_free_command(xhci, reset_device_cmd);
3733         return ret;
3734 }
3735
3736 /*
3737  * At this point, the struct usb_device is about to go away, the device has
3738  * disconnected, and all traffic has been stopped and the endpoints have been
3739  * disabled.  Free any HC data structures associated with that device.
3740  */
3741 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3742 {
3743         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3744         struct xhci_virt_device *virt_dev;
3745         struct xhci_slot_ctx *slot_ctx;
3746         int i, ret;
3747
3748 #ifndef CONFIG_USB_DEFAULT_PERSIST
3749         /*
3750          * We called pm_runtime_get_noresume when the device was attached.
3751          * Decrement the counter here to allow controller to runtime suspend
3752          * if no devices remain.
3753          */
3754         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3755                 pm_runtime_put_noidle(hcd->self.controller);
3756 #endif
3757
3758         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3759         /* If the host is halted due to driver unload, we still need to free the
3760          * device.
3761          */
3762         if (ret <= 0 && ret != -ENODEV)
3763                 return;
3764
3765         virt_dev = xhci->devs[udev->slot_id];
3766         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3767         trace_xhci_free_dev(slot_ctx);
3768
3769         /* Stop any wayward timer functions (which may grab the lock) */
3770         for (i = 0; i < 31; i++) {
3771                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3772                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3773         }
3774         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3775         virt_dev->udev = NULL;
3776         ret = xhci_disable_slot(xhci, udev->slot_id);
3777         if (ret)
3778                 xhci_free_virt_device(xhci, udev->slot_id);
3779 }
3780
3781 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3782 {
3783         struct xhci_command *command;
3784         unsigned long flags;
3785         u32 state;
3786         int ret = 0;
3787
3788         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3789         if (!command)
3790                 return -ENOMEM;
3791
3792         spin_lock_irqsave(&xhci->lock, flags);
3793         /* Don't disable the slot if the host controller is dead. */
3794         state = readl(&xhci->op_regs->status);
3795         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3796                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3797                 spin_unlock_irqrestore(&xhci->lock, flags);
3798                 kfree(command);
3799                 return -ENODEV;
3800         }
3801
3802         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3803                                 slot_id);
3804         if (ret) {
3805                 spin_unlock_irqrestore(&xhci->lock, flags);
3806                 kfree(command);
3807                 return ret;
3808         }
3809         xhci_ring_cmd_db(xhci);
3810         spin_unlock_irqrestore(&xhci->lock, flags);
3811         return ret;
3812 }
3813
3814 /*
3815  * Checks if we have enough host controller resources for the default control
3816  * endpoint.
3817  *
3818  * Must be called with xhci->lock held.
3819  */
3820 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3821 {
3822         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3823                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3824                                 "Not enough ep ctxs: "
3825                                 "%u active, need to add 1, limit is %u.",
3826                                 xhci->num_active_eps, xhci->limit_active_eps);
3827                 return -ENOMEM;
3828         }
3829         xhci->num_active_eps += 1;
3830         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3831                         "Adding 1 ep ctx, %u now active.",
3832                         xhci->num_active_eps);
3833         return 0;
3834 }
3835
3836
3837 /*
3838  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3839  * timed out, or allocating memory failed.  Returns 1 on success.
3840  */
3841 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3842 {
3843         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3844         struct xhci_virt_device *vdev;
3845         struct xhci_slot_ctx *slot_ctx;
3846         unsigned long flags;
3847         int ret, slot_id;
3848         struct xhci_command *command;
3849
3850         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3851         if (!command)
3852                 return 0;
3853
3854         spin_lock_irqsave(&xhci->lock, flags);
3855         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3856         if (ret) {
3857                 spin_unlock_irqrestore(&xhci->lock, flags);
3858                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3859                 xhci_free_command(xhci, command);
3860                 return 0;
3861         }
3862         xhci_ring_cmd_db(xhci);
3863         spin_unlock_irqrestore(&xhci->lock, flags);
3864
3865         wait_for_completion(command->completion);
3866         slot_id = command->slot_id;
3867
3868         if (!slot_id || command->status != COMP_SUCCESS) {
3869                 xhci_err(xhci, "Error while assigning device slot ID\n");
3870                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3871                                 HCS_MAX_SLOTS(
3872                                         readl(&xhci->cap_regs->hcs_params1)));
3873                 xhci_free_command(xhci, command);
3874                 return 0;
3875         }
3876
3877         xhci_free_command(xhci, command);
3878
3879         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3880                 spin_lock_irqsave(&xhci->lock, flags);
3881                 ret = xhci_reserve_host_control_ep_resources(xhci);
3882                 if (ret) {
3883                         spin_unlock_irqrestore(&xhci->lock, flags);
3884                         xhci_warn(xhci, "Not enough host resources, "
3885                                         "active endpoint contexts = %u\n",
3886                                         xhci->num_active_eps);
3887                         goto disable_slot;
3888                 }
3889                 spin_unlock_irqrestore(&xhci->lock, flags);
3890         }
3891         /* Use GFP_NOIO, since this function can be called from
3892          * xhci_discover_or_reset_device(), which may be called as part of
3893          * mass storage driver error handling.
3894          */
3895         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3896                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3897                 goto disable_slot;
3898         }
3899         vdev = xhci->devs[slot_id];
3900         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3901         trace_xhci_alloc_dev(slot_ctx);
3902
3903         udev->slot_id = slot_id;
3904
3905         xhci_debugfs_create_slot(xhci, slot_id);
3906
3907 #ifndef CONFIG_USB_DEFAULT_PERSIST
3908         /*
3909          * If resetting upon resume, we can't put the controller into runtime
3910          * suspend if there is a device attached.
3911          */
3912         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3913                 pm_runtime_get_noresume(hcd->self.controller);
3914 #endif
3915
3916         /* Is this a LS or FS device under a HS hub? */
3917         /* Hub or peripherial? */
3918         return 1;
3919
3920 disable_slot:
3921         ret = xhci_disable_slot(xhci, udev->slot_id);
3922         if (ret)
3923                 xhci_free_virt_device(xhci, udev->slot_id);
3924
3925         return 0;
3926 }
3927
3928 /*
3929  * Issue an Address Device command and optionally send a corresponding
3930  * SetAddress request to the device.
3931  */
3932 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3933                              enum xhci_setup_dev setup)
3934 {
3935         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3936         unsigned long flags;
3937         struct xhci_virt_device *virt_dev;
3938         int ret = 0;
3939         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3940         struct xhci_slot_ctx *slot_ctx;
3941         struct xhci_input_control_ctx *ctrl_ctx;
3942         u64 temp_64;
3943         struct xhci_command *command = NULL;
3944
3945         mutex_lock(&xhci->mutex);
3946
3947         if (xhci->xhc_state) {  /* dying, removing or halted */
3948                 ret = -ESHUTDOWN;
3949                 goto out;
3950         }
3951
3952         if (!udev->slot_id) {
3953                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954                                 "Bad Slot ID %d", udev->slot_id);
3955                 ret = -EINVAL;
3956                 goto out;
3957         }
3958
3959         virt_dev = xhci->devs[udev->slot_id];
3960
3961         if (WARN_ON(!virt_dev)) {
3962                 /*
3963                  * In plug/unplug torture test with an NEC controller,
3964                  * a zero-dereference was observed once due to virt_dev = 0.
3965                  * Print useful debug rather than crash if it is observed again!
3966                  */
3967                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3968                         udev->slot_id);
3969                 ret = -EINVAL;
3970                 goto out;
3971         }
3972         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3973         trace_xhci_setup_device_slot(slot_ctx);
3974
3975         if (setup == SETUP_CONTEXT_ONLY) {
3976                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3977                     SLOT_STATE_DEFAULT) {
3978                         xhci_dbg(xhci, "Slot already in default state\n");
3979                         goto out;
3980                 }
3981         }
3982
3983         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3984         if (!command) {
3985                 ret = -ENOMEM;
3986                 goto out;
3987         }
3988
3989         command->in_ctx = virt_dev->in_ctx;
3990
3991         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3992         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3993         if (!ctrl_ctx) {
3994                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3995                                 __func__);
3996                 ret = -EINVAL;
3997                 goto out;
3998         }
3999         /*
4000          * If this is the first Set Address since device plug-in or
4001          * virt_device realloaction after a resume with an xHCI power loss,
4002          * then set up the slot context.
4003          */
4004         if (!slot_ctx->dev_info)
4005                 xhci_setup_addressable_virt_dev(xhci, udev);
4006         /* Otherwise, update the control endpoint ring enqueue pointer. */
4007         else
4008                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4009         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4010         ctrl_ctx->drop_flags = 0;
4011
4012         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4013                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4014
4015         spin_lock_irqsave(&xhci->lock, flags);
4016         trace_xhci_setup_device(virt_dev);
4017         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4018                                         udev->slot_id, setup);
4019         if (ret) {
4020                 spin_unlock_irqrestore(&xhci->lock, flags);
4021                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4022                                 "FIXME: allocate a command ring segment");
4023                 goto out;
4024         }
4025         xhci_ring_cmd_db(xhci);
4026         spin_unlock_irqrestore(&xhci->lock, flags);
4027
4028         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4029         wait_for_completion(command->completion);
4030
4031         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4032          * the SetAddress() "recovery interval" required by USB and aborting the
4033          * command on a timeout.
4034          */
4035         switch (command->status) {
4036         case COMP_COMMAND_ABORTED:
4037         case COMP_COMMAND_RING_STOPPED:
4038                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4039                 ret = -ETIME;
4040                 break;
4041         case COMP_CONTEXT_STATE_ERROR:
4042         case COMP_SLOT_NOT_ENABLED_ERROR:
4043                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4044                          act, udev->slot_id);
4045                 ret = -EINVAL;
4046                 break;
4047         case COMP_USB_TRANSACTION_ERROR:
4048                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4049
4050                 mutex_unlock(&xhci->mutex);
4051                 ret = xhci_disable_slot(xhci, udev->slot_id);
4052                 if (!ret)
4053                         xhci_alloc_dev(hcd, udev);
4054                 kfree(command->completion);
4055                 kfree(command);
4056                 return -EPROTO;
4057         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4058                 dev_warn(&udev->dev,
4059                          "ERROR: Incompatible device for setup %s command\n", act);
4060                 ret = -ENODEV;
4061                 break;
4062         case COMP_SUCCESS:
4063                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4064                                "Successful setup %s command", act);
4065                 break;
4066         default:
4067                 xhci_err(xhci,
4068                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4069                          act, command->status);
4070                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4071                 ret = -EINVAL;
4072                 break;
4073         }
4074         if (ret)
4075                 goto out;
4076         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4077         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4078                         "Op regs DCBAA ptr = %#016llx", temp_64);
4079         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4080                 "Slot ID %d dcbaa entry @%p = %#016llx",
4081                 udev->slot_id,
4082                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4083                 (unsigned long long)
4084                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4085         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4086                         "Output Context DMA address = %#08llx",
4087                         (unsigned long long)virt_dev->out_ctx->dma);
4088         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4089                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4090         /*
4091          * USB core uses address 1 for the roothubs, so we add one to the
4092          * address given back to us by the HC.
4093          */
4094         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4095                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4096         /* Zero the input context control for later use */
4097         ctrl_ctx->add_flags = 0;
4098         ctrl_ctx->drop_flags = 0;
4099
4100         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4101                        "Internal device address = %d",
4102                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4103 out:
4104         mutex_unlock(&xhci->mutex);
4105         if (command) {
4106                 kfree(command->completion);
4107                 kfree(command);
4108         }
4109         return ret;
4110 }
4111
4112 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4113 {
4114         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4115 }
4116
4117 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4118 {
4119         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4120 }
4121
4122 /*
4123  * Transfer the port index into real index in the HW port status
4124  * registers. Caculate offset between the port's PORTSC register
4125  * and port status base. Divide the number of per port register
4126  * to get the real index. The raw port number bases 1.
4127  */
4128 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4129 {
4130         struct xhci_hub *rhub;
4131
4132         rhub = xhci_get_rhub(hcd);
4133         return rhub->ports[port1 - 1]->hw_portnum + 1;
4134 }
4135
4136 /*
4137  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4138  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4139  */
4140 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4141                         struct usb_device *udev, u16 max_exit_latency)
4142 {
4143         struct xhci_virt_device *virt_dev;
4144         struct xhci_command *command;
4145         struct xhci_input_control_ctx *ctrl_ctx;
4146         struct xhci_slot_ctx *slot_ctx;
4147         unsigned long flags;
4148         int ret;
4149
4150         spin_lock_irqsave(&xhci->lock, flags);
4151
4152         virt_dev = xhci->devs[udev->slot_id];
4153
4154         /*
4155          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4156          * xHC was re-initialized. Exit latency will be set later after
4157          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4158          */
4159
4160         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4161                 spin_unlock_irqrestore(&xhci->lock, flags);
4162                 return 0;
4163         }
4164
4165         /* Attempt to issue an Evaluate Context command to change the MEL. */
4166         command = xhci->lpm_command;
4167         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4168         if (!ctrl_ctx) {
4169                 spin_unlock_irqrestore(&xhci->lock, flags);
4170                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4171                                 __func__);
4172                 return -ENOMEM;
4173         }
4174
4175         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4176         spin_unlock_irqrestore(&xhci->lock, flags);
4177
4178         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4179         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4180         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4181         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4182         slot_ctx->dev_state = 0;
4183
4184         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4185                         "Set up evaluate context for LPM MEL change.");
4186
4187         /* Issue and wait for the evaluate context command. */
4188         ret = xhci_configure_endpoint(xhci, udev, command,
4189                         true, true);
4190
4191         if (!ret) {
4192                 spin_lock_irqsave(&xhci->lock, flags);
4193                 virt_dev->current_mel = max_exit_latency;
4194                 spin_unlock_irqrestore(&xhci->lock, flags);
4195         }
4196         return ret;
4197 }
4198
4199 #ifdef CONFIG_PM
4200
4201 /* BESL to HIRD Encoding array for USB2 LPM */
4202 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4203         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4204
4205 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4206 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4207                                         struct usb_device *udev)
4208 {
4209         int u2del, besl, besl_host;
4210         int besl_device = 0;
4211         u32 field;
4212
4213         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4214         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4215
4216         if (field & USB_BESL_SUPPORT) {
4217                 for (besl_host = 0; besl_host < 16; besl_host++) {
4218                         if (xhci_besl_encoding[besl_host] >= u2del)
4219                                 break;
4220                 }
4221                 /* Use baseline BESL value as default */
4222                 if (field & USB_BESL_BASELINE_VALID)
4223                         besl_device = USB_GET_BESL_BASELINE(field);
4224                 else if (field & USB_BESL_DEEP_VALID)
4225                         besl_device = USB_GET_BESL_DEEP(field);
4226         } else {
4227                 if (u2del <= 50)
4228                         besl_host = 0;
4229                 else
4230                         besl_host = (u2del - 51) / 75 + 1;
4231         }
4232
4233         besl = besl_host + besl_device;
4234         if (besl > 15)
4235                 besl = 15;
4236
4237         return besl;
4238 }
4239
4240 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4241 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4242 {
4243         u32 field;
4244         int l1;
4245         int besld = 0;
4246         int hirdm = 0;
4247
4248         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4249
4250         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4251         l1 = udev->l1_params.timeout / 256;
4252
4253         /* device has preferred BESLD */
4254         if (field & USB_BESL_DEEP_VALID) {
4255                 besld = USB_GET_BESL_DEEP(field);
4256                 hirdm = 1;
4257         }
4258
4259         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4260 }
4261
4262 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4263                         struct usb_device *udev, int enable)
4264 {
4265         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4266         struct xhci_port **ports;
4267         __le32 __iomem  *pm_addr, *hlpm_addr;
4268         u32             pm_val, hlpm_val, field;
4269         unsigned int    port_num;
4270         unsigned long   flags;
4271         int             hird, exit_latency;
4272         int             ret;
4273
4274         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4275                         !udev->lpm_capable)
4276                 return -EPERM;
4277
4278         if (!udev->parent || udev->parent->parent ||
4279                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4280                 return -EPERM;
4281
4282         if (udev->usb2_hw_lpm_capable != 1)
4283                 return -EPERM;
4284
4285         spin_lock_irqsave(&xhci->lock, flags);
4286
4287         ports = xhci->usb2_rhub.ports;
4288         port_num = udev->portnum - 1;
4289         pm_addr = ports[port_num]->addr + PORTPMSC;
4290         pm_val = readl(pm_addr);
4291         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4292         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4293
4294         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4295                         enable ? "enable" : "disable", port_num + 1);
4296
4297         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4298                 /* Host supports BESL timeout instead of HIRD */
4299                 if (udev->usb2_hw_lpm_besl_capable) {
4300                         /* if device doesn't have a preferred BESL value use a
4301                          * default one which works with mixed HIRD and BESL
4302                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4303                          */
4304                         if ((field & USB_BESL_SUPPORT) &&
4305                             (field & USB_BESL_BASELINE_VALID))
4306                                 hird = USB_GET_BESL_BASELINE(field);
4307                         else
4308                                 hird = udev->l1_params.besl;
4309
4310                         exit_latency = xhci_besl_encoding[hird];
4311                         spin_unlock_irqrestore(&xhci->lock, flags);
4312
4313                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4314                          * input context for link powermanagement evaluate
4315                          * context commands. It is protected by hcd->bandwidth
4316                          * mutex and is shared by all devices. We need to set
4317                          * the max ext latency in USB 2 BESL LPM as well, so
4318                          * use the same mutex and xhci_change_max_exit_latency()
4319                          */
4320                         mutex_lock(hcd->bandwidth_mutex);
4321                         ret = xhci_change_max_exit_latency(xhci, udev,
4322                                                            exit_latency);
4323                         mutex_unlock(hcd->bandwidth_mutex);
4324
4325                         if (ret < 0)
4326                                 return ret;
4327                         spin_lock_irqsave(&xhci->lock, flags);
4328
4329                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4330                         writel(hlpm_val, hlpm_addr);
4331                         /* flush write */
4332                         readl(hlpm_addr);
4333                 } else {
4334                         hird = xhci_calculate_hird_besl(xhci, udev);
4335                 }
4336
4337                 pm_val &= ~PORT_HIRD_MASK;
4338                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4339                 writel(pm_val, pm_addr);
4340                 pm_val = readl(pm_addr);
4341                 pm_val |= PORT_HLE;
4342                 writel(pm_val, pm_addr);
4343                 /* flush write */
4344                 readl(pm_addr);
4345         } else {
4346                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4347                 writel(pm_val, pm_addr);
4348                 /* flush write */
4349                 readl(pm_addr);
4350                 if (udev->usb2_hw_lpm_besl_capable) {
4351                         spin_unlock_irqrestore(&xhci->lock, flags);
4352                         mutex_lock(hcd->bandwidth_mutex);
4353                         xhci_change_max_exit_latency(xhci, udev, 0);
4354                         mutex_unlock(hcd->bandwidth_mutex);
4355                         return 0;
4356                 }
4357         }
4358
4359         spin_unlock_irqrestore(&xhci->lock, flags);
4360         return 0;
4361 }
4362
4363 /* check if a usb2 port supports a given extened capability protocol
4364  * only USB2 ports extended protocol capability values are cached.
4365  * Return 1 if capability is supported
4366  */
4367 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4368                                            unsigned capability)
4369 {
4370         u32 port_offset, port_count;
4371         int i;
4372
4373         for (i = 0; i < xhci->num_ext_caps; i++) {
4374                 if (xhci->ext_caps[i] & capability) {
4375                         /* port offsets starts at 1 */
4376                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4377                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4378                         if (port >= port_offset &&
4379                             port < port_offset + port_count)
4380                                 return 1;
4381                 }
4382         }
4383         return 0;
4384 }
4385
4386 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4387 {
4388         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4389         int             portnum = udev->portnum - 1;
4390
4391         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4392                 return 0;
4393
4394         /* we only support lpm for non-hub device connected to root hub yet */
4395         if (!udev->parent || udev->parent->parent ||
4396                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4397                 return 0;
4398
4399         if (xhci->hw_lpm_support == 1 &&
4400                         xhci_check_usb2_port_capability(
4401                                 xhci, portnum, XHCI_HLC)) {
4402                 udev->usb2_hw_lpm_capable = 1;
4403                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4404                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4405                 if (xhci_check_usb2_port_capability(xhci, portnum,
4406                                         XHCI_BLC))
4407                         udev->usb2_hw_lpm_besl_capable = 1;
4408         }
4409
4410         return 0;
4411 }
4412
4413 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4414
4415 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4416 static unsigned long long xhci_service_interval_to_ns(
4417                 struct usb_endpoint_descriptor *desc)
4418 {
4419         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4420 }
4421
4422 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4423                 enum usb3_link_state state)
4424 {
4425         unsigned long long sel;
4426         unsigned long long pel;
4427         unsigned int max_sel_pel;
4428         char *state_name;
4429
4430         switch (state) {
4431         case USB3_LPM_U1:
4432                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4433                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4434                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4435                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4436                 state_name = "U1";
4437                 break;
4438         case USB3_LPM_U2:
4439                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4440                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4441                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4442                 state_name = "U2";
4443                 break;
4444         default:
4445                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4446                                 __func__);
4447                 return USB3_LPM_DISABLED;
4448         }
4449
4450         if (sel <= max_sel_pel && pel <= max_sel_pel)
4451                 return USB3_LPM_DEVICE_INITIATED;
4452
4453         if (sel > max_sel_pel)
4454                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4455                                 "due to long SEL %llu ms\n",
4456                                 state_name, sel);
4457         else
4458                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4459                                 "due to long PEL %llu ms\n",
4460                                 state_name, pel);
4461         return USB3_LPM_DISABLED;
4462 }
4463
4464 /* The U1 timeout should be the maximum of the following values:
4465  *  - For control endpoints, U1 system exit latency (SEL) * 3
4466  *  - For bulk endpoints, U1 SEL * 5
4467  *  - For interrupt endpoints:
4468  *    - Notification EPs, U1 SEL * 3
4469  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4470  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4471  */
4472 static unsigned long long xhci_calculate_intel_u1_timeout(
4473                 struct usb_device *udev,
4474                 struct usb_endpoint_descriptor *desc)
4475 {
4476         unsigned long long timeout_ns;
4477         int ep_type;
4478         int intr_type;
4479
4480         ep_type = usb_endpoint_type(desc);
4481         switch (ep_type) {
4482         case USB_ENDPOINT_XFER_CONTROL:
4483                 timeout_ns = udev->u1_params.sel * 3;
4484                 break;
4485         case USB_ENDPOINT_XFER_BULK:
4486                 timeout_ns = udev->u1_params.sel * 5;
4487                 break;
4488         case USB_ENDPOINT_XFER_INT:
4489                 intr_type = usb_endpoint_interrupt_type(desc);
4490                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4491                         timeout_ns = udev->u1_params.sel * 3;
4492                         break;
4493                 }
4494                 /* Otherwise the calculation is the same as isoc eps */
4495                 /* fall through */
4496         case USB_ENDPOINT_XFER_ISOC:
4497                 timeout_ns = xhci_service_interval_to_ns(desc);
4498                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4499                 if (timeout_ns < udev->u1_params.sel * 2)
4500                         timeout_ns = udev->u1_params.sel * 2;
4501                 break;
4502         default:
4503                 return 0;
4504         }
4505
4506         return timeout_ns;
4507 }
4508
4509 /* Returns the hub-encoded U1 timeout value. */
4510 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4511                 struct usb_device *udev,
4512                 struct usb_endpoint_descriptor *desc)
4513 {
4514         unsigned long long timeout_ns;
4515
4516         /* Prevent U1 if service interval is shorter than U1 exit latency */
4517         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4518                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4519                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4520                         return USB3_LPM_DISABLED;
4521                 }
4522         }
4523
4524         if (xhci->quirks & XHCI_INTEL_HOST)
4525                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4526         else
4527                 timeout_ns = udev->u1_params.sel;
4528
4529         /* The U1 timeout is encoded in 1us intervals.
4530          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4531          */
4532         if (timeout_ns == USB3_LPM_DISABLED)
4533                 timeout_ns = 1;
4534         else
4535                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4536
4537         /* If the necessary timeout value is bigger than what we can set in the
4538          * USB 3.0 hub, we have to disable hub-initiated U1.
4539          */
4540         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4541                 return timeout_ns;
4542         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4543                         "due to long timeout %llu ms\n", timeout_ns);
4544         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4545 }
4546
4547 /* The U2 timeout should be the maximum of:
4548  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4549  *  - largest bInterval of any active periodic endpoint (to avoid going
4550  *    into lower power link states between intervals).
4551  *  - the U2 Exit Latency of the device
4552  */
4553 static unsigned long long xhci_calculate_intel_u2_timeout(
4554                 struct usb_device *udev,
4555                 struct usb_endpoint_descriptor *desc)
4556 {
4557         unsigned long long timeout_ns;
4558         unsigned long long u2_del_ns;
4559
4560         timeout_ns = 10 * 1000 * 1000;
4561
4562         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4563                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4564                 timeout_ns = xhci_service_interval_to_ns(desc);
4565
4566         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4567         if (u2_del_ns > timeout_ns)
4568                 timeout_ns = u2_del_ns;
4569
4570         return timeout_ns;
4571 }
4572
4573 /* Returns the hub-encoded U2 timeout value. */
4574 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4575                 struct usb_device *udev,
4576                 struct usb_endpoint_descriptor *desc)
4577 {
4578         unsigned long long timeout_ns;
4579
4580         /* Prevent U2 if service interval is shorter than U2 exit latency */
4581         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4582                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4583                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4584                         return USB3_LPM_DISABLED;
4585                 }
4586         }
4587
4588         if (xhci->quirks & XHCI_INTEL_HOST)
4589                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4590         else
4591                 timeout_ns = udev->u2_params.sel;
4592
4593         /* The U2 timeout is encoded in 256us intervals */
4594         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4595         /* If the necessary timeout value is bigger than what we can set in the
4596          * USB 3.0 hub, we have to disable hub-initiated U2.
4597          */
4598         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4599                 return timeout_ns;
4600         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4601                         "due to long timeout %llu ms\n", timeout_ns);
4602         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4603 }
4604
4605 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4606                 struct usb_device *udev,
4607                 struct usb_endpoint_descriptor *desc,
4608                 enum usb3_link_state state,
4609                 u16 *timeout)
4610 {
4611         if (state == USB3_LPM_U1)
4612                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4613         else if (state == USB3_LPM_U2)
4614                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4615
4616         return USB3_LPM_DISABLED;
4617 }
4618
4619 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4620                 struct usb_device *udev,
4621                 struct usb_endpoint_descriptor *desc,
4622                 enum usb3_link_state state,
4623                 u16 *timeout)
4624 {
4625         u16 alt_timeout;
4626
4627         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4628                 desc, state, timeout);
4629
4630         /* If we found we can't enable hub-initiated LPM, or
4631          * the U1 or U2 exit latency was too high to allow
4632          * device-initiated LPM as well, just stop searching.
4633          */
4634         if (alt_timeout == USB3_LPM_DISABLED ||
4635                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4636                 *timeout = alt_timeout;
4637                 return -E2BIG;
4638         }
4639         if (alt_timeout > *timeout)
4640                 *timeout = alt_timeout;
4641         return 0;
4642 }
4643
4644 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4645                 struct usb_device *udev,
4646                 struct usb_host_interface *alt,
4647                 enum usb3_link_state state,
4648                 u16 *timeout)
4649 {
4650         int j;
4651
4652         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4653                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4654                                         &alt->endpoint[j].desc, state, timeout))
4655                         return -E2BIG;
4656                 continue;
4657         }
4658         return 0;
4659 }
4660
4661 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4662                 enum usb3_link_state state)
4663 {
4664         struct usb_device *parent;
4665         unsigned int num_hubs;
4666
4667         if (state == USB3_LPM_U2)
4668                 return 0;
4669
4670         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4671         for (parent = udev->parent, num_hubs = 0; parent->parent;
4672                         parent = parent->parent)
4673                 num_hubs++;
4674
4675         if (num_hubs < 2)
4676                 return 0;
4677
4678         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4679                         " below second-tier hub.\n");
4680         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4681                         "to decrease power consumption.\n");
4682         return -E2BIG;
4683 }
4684
4685 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4686                 struct usb_device *udev,
4687                 enum usb3_link_state state)
4688 {
4689         if (xhci->quirks & XHCI_INTEL_HOST)
4690                 return xhci_check_intel_tier_policy(udev, state);
4691         else
4692                 return 0;
4693 }
4694
4695 /* Returns the U1 or U2 timeout that should be enabled.
4696  * If the tier check or timeout setting functions return with a non-zero exit
4697  * code, that means the timeout value has been finalized and we shouldn't look
4698  * at any more endpoints.
4699  */
4700 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4701                         struct usb_device *udev, enum usb3_link_state state)
4702 {
4703         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4704         struct usb_host_config *config;
4705         char *state_name;
4706         int i;
4707         u16 timeout = USB3_LPM_DISABLED;
4708
4709         if (state == USB3_LPM_U1)
4710                 state_name = "U1";
4711         else if (state == USB3_LPM_U2)
4712                 state_name = "U2";
4713         else {
4714                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4715                                 state);
4716                 return timeout;
4717         }
4718
4719         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4720                 return timeout;
4721
4722         /* Gather some information about the currently installed configuration
4723          * and alternate interface settings.
4724          */
4725         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4726                         state, &timeout))
4727                 return timeout;
4728
4729         config = udev->actconfig;
4730         if (!config)
4731                 return timeout;
4732
4733         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4734                 struct usb_driver *driver;
4735                 struct usb_interface *intf = config->interface[i];
4736
4737                 if (!intf)
4738                         continue;
4739
4740                 /* Check if any currently bound drivers want hub-initiated LPM
4741                  * disabled.
4742                  */
4743                 if (intf->dev.driver) {
4744                         driver = to_usb_driver(intf->dev.driver);
4745                         if (driver && driver->disable_hub_initiated_lpm) {
4746                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4747                                                 "at request of driver %s\n",
4748                                                 state_name, driver->name);
4749                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4750                         }
4751                 }
4752
4753                 /* Not sure how this could happen... */
4754                 if (!intf->cur_altsetting)
4755                         continue;
4756
4757                 if (xhci_update_timeout_for_interface(xhci, udev,
4758                                         intf->cur_altsetting,
4759                                         state, &timeout))
4760                         return timeout;
4761         }
4762         return timeout;
4763 }
4764
4765 static int calculate_max_exit_latency(struct usb_device *udev,
4766                 enum usb3_link_state state_changed,
4767                 u16 hub_encoded_timeout)
4768 {
4769         unsigned long long u1_mel_us = 0;
4770         unsigned long long u2_mel_us = 0;
4771         unsigned long long mel_us = 0;
4772         bool disabling_u1;
4773         bool disabling_u2;
4774         bool enabling_u1;
4775         bool enabling_u2;
4776
4777         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4778                         hub_encoded_timeout == USB3_LPM_DISABLED);
4779         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4780                         hub_encoded_timeout == USB3_LPM_DISABLED);
4781
4782         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4783                         hub_encoded_timeout != USB3_LPM_DISABLED);
4784         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4785                         hub_encoded_timeout != USB3_LPM_DISABLED);
4786
4787         /* If U1 was already enabled and we're not disabling it,
4788          * or we're going to enable U1, account for the U1 max exit latency.
4789          */
4790         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4791                         enabling_u1)
4792                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4793         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4794                         enabling_u2)
4795                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4796
4797         if (u1_mel_us > u2_mel_us)
4798                 mel_us = u1_mel_us;
4799         else
4800                 mel_us = u2_mel_us;
4801         /* xHCI host controller max exit latency field is only 16 bits wide. */
4802         if (mel_us > MAX_EXIT) {
4803                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4804                                 "is too big.\n", mel_us);
4805                 return -E2BIG;
4806         }
4807         return mel_us;
4808 }
4809
4810 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4811 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4812                         struct usb_device *udev, enum usb3_link_state state)
4813 {
4814         struct xhci_hcd *xhci;
4815         u16 hub_encoded_timeout;
4816         int mel;
4817         int ret;
4818
4819         xhci = hcd_to_xhci(hcd);
4820         /* The LPM timeout values are pretty host-controller specific, so don't
4821          * enable hub-initiated timeouts unless the vendor has provided
4822          * information about their timeout algorithm.
4823          */
4824         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4825                         !xhci->devs[udev->slot_id])
4826                 return USB3_LPM_DISABLED;
4827
4828         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4829         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4830         if (mel < 0) {
4831                 /* Max Exit Latency is too big, disable LPM. */
4832                 hub_encoded_timeout = USB3_LPM_DISABLED;
4833                 mel = 0;
4834         }
4835
4836         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4837         if (ret)
4838                 return ret;
4839         return hub_encoded_timeout;
4840 }
4841
4842 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843                         struct usb_device *udev, enum usb3_link_state state)
4844 {
4845         struct xhci_hcd *xhci;
4846         u16 mel;
4847
4848         xhci = hcd_to_xhci(hcd);
4849         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4850                         !xhci->devs[udev->slot_id])
4851                 return 0;
4852
4853         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4854         return xhci_change_max_exit_latency(xhci, udev, mel);
4855 }
4856 #else /* CONFIG_PM */
4857
4858 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4859                                 struct usb_device *udev, int enable)
4860 {
4861         return 0;
4862 }
4863
4864 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4865 {
4866         return 0;
4867 }
4868
4869 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4870                         struct usb_device *udev, enum usb3_link_state state)
4871 {
4872         return USB3_LPM_DISABLED;
4873 }
4874
4875 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4876                         struct usb_device *udev, enum usb3_link_state state)
4877 {
4878         return 0;
4879 }
4880 #endif  /* CONFIG_PM */
4881
4882 /*-------------------------------------------------------------------------*/
4883
4884 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4885  * internal data structures for the device.
4886  */
4887 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4888                         struct usb_tt *tt, gfp_t mem_flags)
4889 {
4890         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4891         struct xhci_virt_device *vdev;
4892         struct xhci_command *config_cmd;
4893         struct xhci_input_control_ctx *ctrl_ctx;
4894         struct xhci_slot_ctx *slot_ctx;
4895         unsigned long flags;
4896         unsigned think_time;
4897         int ret;
4898
4899         /* Ignore root hubs */
4900         if (!hdev->parent)
4901                 return 0;
4902
4903         vdev = xhci->devs[hdev->slot_id];
4904         if (!vdev) {
4905                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4906                 return -EINVAL;
4907         }
4908
4909         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4910         if (!config_cmd)
4911                 return -ENOMEM;
4912
4913         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4914         if (!ctrl_ctx) {
4915                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4916                                 __func__);
4917                 xhci_free_command(xhci, config_cmd);
4918                 return -ENOMEM;
4919         }
4920
4921         spin_lock_irqsave(&xhci->lock, flags);
4922         if (hdev->speed == USB_SPEED_HIGH &&
4923                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4924                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4925                 xhci_free_command(xhci, config_cmd);
4926                 spin_unlock_irqrestore(&xhci->lock, flags);
4927                 return -ENOMEM;
4928         }
4929
4930         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4931         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4932         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4933         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4934         /*
4935          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4936          * but it may be already set to 1 when setup an xHCI virtual
4937          * device, so clear it anyway.
4938          */
4939         if (tt->multi)
4940                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4941         else if (hdev->speed == USB_SPEED_FULL)
4942                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4943
4944         if (xhci->hci_version > 0x95) {
4945                 xhci_dbg(xhci, "xHCI version %x needs hub "
4946                                 "TT think time and number of ports\n",
4947                                 (unsigned int) xhci->hci_version);
4948                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4949                 /* Set TT think time - convert from ns to FS bit times.
4950                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4951                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4952                  *
4953                  * xHCI 1.0: this field shall be 0 if the device is not a
4954                  * High-spped hub.
4955                  */
4956                 think_time = tt->think_time;
4957                 if (think_time != 0)
4958                         think_time = (think_time / 666) - 1;
4959                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4960                         slot_ctx->tt_info |=
4961                                 cpu_to_le32(TT_THINK_TIME(think_time));
4962         } else {
4963                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4964                                 "TT think time or number of ports\n",
4965                                 (unsigned int) xhci->hci_version);
4966         }
4967         slot_ctx->dev_state = 0;
4968         spin_unlock_irqrestore(&xhci->lock, flags);
4969
4970         xhci_dbg(xhci, "Set up %s for hub device.\n",
4971                         (xhci->hci_version > 0x95) ?
4972                         "configure endpoint" : "evaluate context");
4973
4974         /* Issue and wait for the configure endpoint or
4975          * evaluate context command.
4976          */
4977         if (xhci->hci_version > 0x95)
4978                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4979                                 false, false);
4980         else
4981                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4982                                 true, false);
4983
4984         xhci_free_command(xhci, config_cmd);
4985         return ret;
4986 }
4987
4988 static int xhci_get_frame(struct usb_hcd *hcd)
4989 {
4990         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4991         /* EHCI mods by the periodic size.  Why? */
4992         return readl(&xhci->run_regs->microframe_index) >> 3;
4993 }
4994
4995 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4996 {
4997         struct xhci_hcd         *xhci;
4998         /*
4999          * TODO: Check with DWC3 clients for sysdev according to
5000          * quirks
5001          */
5002         struct device           *dev = hcd->self.sysdev;
5003         unsigned int            minor_rev;
5004         int                     retval;
5005
5006         /* Accept arbitrarily long scatter-gather lists */
5007         hcd->self.sg_tablesize = ~0;
5008
5009         /* support to build packet from discontinuous buffers */
5010         hcd->self.no_sg_constraint = 1;
5011
5012         /* XHCI controllers don't stop the ep queue on short packets :| */
5013         hcd->self.no_stop_on_short = 1;
5014
5015         xhci = hcd_to_xhci(hcd);
5016
5017         if (usb_hcd_is_primary_hcd(hcd)) {
5018                 xhci->main_hcd = hcd;
5019                 xhci->usb2_rhub.hcd = hcd;
5020                 /* Mark the first roothub as being USB 2.0.
5021                  * The xHCI driver will register the USB 3.0 roothub.
5022                  */
5023                 hcd->speed = HCD_USB2;
5024                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5025                 /*
5026                  * USB 2.0 roothub under xHCI has an integrated TT,
5027                  * (rate matching hub) as opposed to having an OHCI/UHCI
5028                  * companion controller.
5029                  */
5030                 hcd->has_tt = 1;
5031         } else {
5032                 /*
5033                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5034                  * minor revision instead of sbrn
5035                  */
5036                 minor_rev = xhci->usb3_rhub.min_rev;
5037                 if (minor_rev) {
5038                         hcd->speed = HCD_USB31;
5039                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5040                 }
5041                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5042                           minor_rev,
5043                           minor_rev ? "Enhanced" : "");
5044
5045                 xhci->usb3_rhub.hcd = hcd;
5046                 /* xHCI private pointer was set in xhci_pci_probe for the second
5047                  * registered roothub.
5048                  */
5049                 return 0;
5050         }
5051
5052         mutex_init(&xhci->mutex);
5053         xhci->cap_regs = hcd->regs;
5054         xhci->op_regs = hcd->regs +
5055                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5056         xhci->run_regs = hcd->regs +
5057                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5058         /* Cache read-only capability registers */
5059         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5060         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5061         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5062         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5063         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5064         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5065         if (xhci->hci_version > 0x100)
5066                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5067
5068         xhci->quirks |= quirks;
5069
5070         get_quirks(dev, xhci);
5071
5072         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5073          * success event after a short transfer. This quirk will ignore such
5074          * spurious event.
5075          */
5076         if (xhci->hci_version > 0x96)
5077                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5078
5079         /* Make sure the HC is halted. */
5080         retval = xhci_halt(xhci);
5081         if (retval)
5082                 return retval;
5083
5084         xhci_zero_64b_regs(xhci);
5085
5086         xhci_dbg(xhci, "Resetting HCD\n");
5087         /* Reset the internal HC memory state and registers. */
5088         retval = xhci_reset(xhci);
5089         if (retval)
5090                 return retval;
5091         xhci_dbg(xhci, "Reset complete\n");
5092
5093         /*
5094          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5095          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5096          * address memory pointers actually. So, this driver clears the AC64
5097          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5098          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5099          */
5100         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5101                 xhci->hcc_params &= ~BIT(0);
5102
5103         /* Set dma_mask and coherent_dma_mask to 64-bits,
5104          * if xHC supports 64-bit addressing */
5105         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5106                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5107                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5108                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5109         } else {
5110                 /*
5111                  * This is to avoid error in cases where a 32-bit USB
5112                  * controller is used on a 64-bit capable system.
5113                  */
5114                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5115                 if (retval)
5116                         return retval;
5117                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5118                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5119         }
5120
5121         xhci_dbg(xhci, "Calling HCD init\n");
5122         /* Initialize HCD and host controller data structures. */
5123         retval = xhci_init(hcd);
5124         if (retval)
5125                 return retval;
5126         xhci_dbg(xhci, "Called HCD init\n");
5127
5128         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5129                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5130
5131         return 0;
5132 }
5133 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5134
5135 static const struct hc_driver xhci_hc_driver = {
5136         .description =          "xhci-hcd",
5137         .product_desc =         "xHCI Host Controller",
5138         .hcd_priv_size =        sizeof(struct xhci_hcd),
5139
5140         /*
5141          * generic hardware linkage
5142          */
5143         .irq =                  xhci_irq,
5144         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5145
5146         /*
5147          * basic lifecycle operations
5148          */
5149         .reset =                NULL, /* set in xhci_init_driver() */
5150         .start =                xhci_run,
5151         .stop =                 xhci_stop,
5152         .shutdown =             xhci_shutdown,
5153
5154         /*
5155          * managing i/o requests and associated device resources
5156          */
5157         .urb_enqueue =          xhci_urb_enqueue,
5158         .urb_dequeue =          xhci_urb_dequeue,
5159         .alloc_dev =            xhci_alloc_dev,
5160         .free_dev =             xhci_free_dev,
5161         .alloc_streams =        xhci_alloc_streams,
5162         .free_streams =         xhci_free_streams,
5163         .add_endpoint =         xhci_add_endpoint,
5164         .drop_endpoint =        xhci_drop_endpoint,
5165         .endpoint_reset =       xhci_endpoint_reset,
5166         .check_bandwidth =      xhci_check_bandwidth,
5167         .reset_bandwidth =      xhci_reset_bandwidth,
5168         .address_device =       xhci_address_device,
5169         .enable_device =        xhci_enable_device,
5170         .update_hub_device =    xhci_update_hub_device,
5171         .reset_device =         xhci_discover_or_reset_device,
5172
5173         /*
5174          * scheduling support
5175          */
5176         .get_frame_number =     xhci_get_frame,
5177
5178         /*
5179          * root hub support
5180          */
5181         .hub_control =          xhci_hub_control,
5182         .hub_status_data =      xhci_hub_status_data,
5183         .bus_suspend =          xhci_bus_suspend,
5184         .bus_resume =           xhci_bus_resume,
5185         .get_resuming_ports =   xhci_get_resuming_ports,
5186
5187         /*
5188          * call back when device connected and addressed
5189          */
5190         .update_device =        xhci_update_device,
5191         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5192         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5193         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5194         .find_raw_port_number = xhci_find_raw_port_number,
5195 };
5196
5197 void xhci_init_driver(struct hc_driver *drv,
5198                       const struct xhci_driver_overrides *over)
5199 {
5200         BUG_ON(!over);
5201
5202         /* Copy the generic table to drv then apply the overrides */
5203         *drv = xhci_hc_driver;
5204
5205         if (over) {
5206                 drv->hcd_priv_size += over->extra_priv_size;
5207                 if (over->reset)
5208                         drv->reset = over->reset;
5209                 if (over->start)
5210                         drv->start = over->start;
5211         }
5212 }
5213 EXPORT_SYMBOL_GPL(xhci_init_driver);
5214
5215 MODULE_DESCRIPTION(DRIVER_DESC);
5216 MODULE_AUTHOR(DRIVER_AUTHOR);
5217 MODULE_LICENSE("GPL");
5218
5219 static int __init xhci_hcd_init(void)
5220 {
5221         /*
5222          * Check the compiler generated sizes of structures that must be laid
5223          * out in specific ways for hardware access.
5224          */
5225         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5226         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5227         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5228         /* xhci_device_control has eight fields, and also
5229          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5230          */
5231         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5232         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5233         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5234         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5235         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5236         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5237         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5238
5239         if (usb_disabled())
5240                 return -ENODEV;
5241
5242         xhci_debugfs_create_root();
5243
5244         return 0;
5245 }
5246
5247 /*
5248  * If an init function is provided, an exit function must also be provided
5249  * to allow module unload.
5250  */
5251 static void __exit xhci_hcd_fini(void)
5252 {
5253         xhci_debugfs_remove_root();
5254 }
5255
5256 module_init(xhci_hcd_init);
5257 module_exit(xhci_hcd_fini);
This page took 0.340463 seconds and 4 git commands to generate.