1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/t10-pi.h>
22 #include <linux/types.h>
23 #include <linux/io-64-nonatomic-lo-hi.h>
24 #include <linux/sed-opal.h>
25 #include <linux/pci-p2pdma.h>
30 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
31 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
33 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
36 * These can be higher, but we need to ensure that any command doesn't
37 * require an sg allocation that needs more than a page of data.
39 #define NVME_MAX_KB_SZ 4096
40 #define NVME_MAX_SEGS 127
42 static int use_threaded_interrupts;
43 module_param(use_threaded_interrupts, int, 0);
45 static bool use_cmb_sqes = true;
46 module_param(use_cmb_sqes, bool, 0444);
47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49 static unsigned int max_host_mem_size_mb = 128;
50 module_param(max_host_mem_size_mb, uint, 0444);
51 MODULE_PARM_DESC(max_host_mem_size_mb,
52 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54 static unsigned int sgl_threshold = SZ_32K;
55 module_param(sgl_threshold, uint, 0644);
56 MODULE_PARM_DESC(sgl_threshold,
57 "Use SGLs when average request segment size is larger or equal to "
58 "this size. Use 0 to disable SGLs.");
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62 .set = io_queue_depth_set,
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70 static int queue_count_set(const char *val, const struct kernel_param *kp);
71 static const struct kernel_param_ops queue_count_ops = {
72 .set = queue_count_set,
76 static int write_queues;
77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78 MODULE_PARM_DESC(write_queues,
79 "Number of queues to use for writes. If not set, reads and writes "
80 "will share a queue set.");
82 static int poll_queues = 0;
83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
93 * Represents an NVM Express device. Each nvme_dev is a PCI function.
96 struct nvme_queue *queues;
97 struct blk_mq_tag_set tagset;
98 struct blk_mq_tag_set admin_tagset;
101 struct dma_pool *prp_page_pool;
102 struct dma_pool *prp_small_pool;
103 unsigned online_queues;
105 unsigned io_queues[HCTX_MAX_TYPES];
106 unsigned int num_vecs;
110 unsigned long bar_mapped_size;
111 struct work_struct remove_work;
112 struct mutex shutdown_lock;
118 struct nvme_ctrl ctrl;
120 mempool_t *iod_mempool;
122 /* shadow doorbell buffer support: */
124 dma_addr_t dbbuf_dbs_dma_addr;
126 dma_addr_t dbbuf_eis_dma_addr;
128 /* host memory buffer support: */
130 u32 nr_host_mem_descs;
131 dma_addr_t host_mem_descs_dma;
132 struct nvme_host_mem_buf_desc *host_mem_descs;
133 void **host_mem_desc_bufs;
136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
140 ret = kstrtoint(val, 10, &n);
141 if (ret != 0 || n < 2)
144 return param_set_int(val, kp);
147 static int queue_count_set(const char *val, const struct kernel_param *kp)
151 ret = kstrtoint(val, 10, &n);
154 if (n > num_possible_cpus())
155 n = num_possible_cpus();
157 return param_set_int(val, kp);
160 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
162 return qid * 2 * stride;
165 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
167 return (qid * 2 + 1) * stride;
170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
172 return container_of(ctrl, struct nvme_dev, ctrl);
176 * An NVM Express queue. Each device has at least two (one for admin
177 * commands and one for I/O commands).
180 struct device *q_dmadev;
181 struct nvme_dev *dev;
183 struct nvme_command *sq_cmds;
184 /* only used for poll queues: */
185 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
186 volatile struct nvme_completion *cqes;
187 struct blk_mq_tags **tags;
188 dma_addr_t sq_dma_addr;
189 dma_addr_t cq_dma_addr;
200 #define NVMEQ_ENABLED 0
201 #define NVMEQ_SQ_CMB 1
202 #define NVMEQ_DELETE_ERROR 2
207 struct completion delete_done;
211 * The nvme_iod describes the data in an I/O, including the list of PRP
212 * entries. You can't see it in this data structure because C doesn't let
213 * me express that. Use nvme_init_iod to ensure there's enough space
214 * allocated to store the PRP list.
217 struct nvme_request req;
218 struct nvme_queue *nvmeq;
221 int npages; /* In the PRP list. 0 means small pool in use */
222 int nents; /* Used in scatterlist */
223 int length; /* Of data, in bytes */
224 dma_addr_t first_dma;
225 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
226 struct scatterlist *sg;
227 struct scatterlist inline_sg[0];
231 * Check we didin't inadvertently grow the command struct
233 static inline void _nvme_check_size(void)
235 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
236 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
237 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
238 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
239 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
240 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
241 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
242 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
243 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
244 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
245 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
246 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
247 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
250 static unsigned int max_io_queues(void)
252 return num_possible_cpus() + write_queues + poll_queues;
255 static unsigned int max_queue_count(void)
257 /* IO queues + admin queue */
258 return 1 + max_io_queues();
261 static inline unsigned int nvme_dbbuf_size(u32 stride)
263 return (max_queue_count() * 8 * stride);
266 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
268 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
273 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
274 &dev->dbbuf_dbs_dma_addr,
278 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
279 &dev->dbbuf_eis_dma_addr,
281 if (!dev->dbbuf_eis) {
282 dma_free_coherent(dev->dev, mem_size,
283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 dev->dbbuf_dbs = NULL;
291 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
293 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
295 if (dev->dbbuf_dbs) {
296 dma_free_coherent(dev->dev, mem_size,
297 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
298 dev->dbbuf_dbs = NULL;
300 if (dev->dbbuf_eis) {
301 dma_free_coherent(dev->dev, mem_size,
302 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
303 dev->dbbuf_eis = NULL;
307 static void nvme_dbbuf_init(struct nvme_dev *dev,
308 struct nvme_queue *nvmeq, int qid)
310 if (!dev->dbbuf_dbs || !qid)
313 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
314 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
315 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
316 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
319 static void nvme_dbbuf_set(struct nvme_dev *dev)
321 struct nvme_command c;
326 memset(&c, 0, sizeof(c));
327 c.dbbuf.opcode = nvme_admin_dbbuf;
328 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
329 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
331 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
332 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
333 /* Free memory and continue on */
334 nvme_dbbuf_dma_free(dev);
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 volatile u32 *dbbuf_ei)
351 * Ensure that the queue is written before updating
352 * the doorbell in memory
356 old_value = *dbbuf_db;
360 * Ensure that the doorbell is updated before reading the event
361 * index from memory. The controller needs to provide similar
362 * ordering to ensure the envent index is updated before reading
367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
375 * Max size of iod being embedded in the request payload
377 #define NVME_INT_PAGES 2
378 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
381 * Will slightly overestimate the number of pages needed. This is OK
382 * as it only leads to a small amount of wasted memory for the lifetime of
385 static int nvme_npages(unsigned size, struct nvme_dev *dev)
387 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
388 dev->ctrl.page_size);
389 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
393 * Calculates the number of pages needed for the SGL segments. For example a 4k
394 * page can accommodate 256 SGL descriptors.
396 static int nvme_pci_npages_sgl(unsigned int num_seg)
398 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
401 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
402 unsigned int size, unsigned int nseg, bool use_sgl)
407 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
409 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
411 return alloc_size + sizeof(struct scatterlist) * nseg;
414 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
416 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
417 NVME_INT_BYTES(dev), NVME_INT_PAGES,
420 return sizeof(struct nvme_iod) + alloc_size;
423 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
424 unsigned int hctx_idx)
426 struct nvme_dev *dev = data;
427 struct nvme_queue *nvmeq = &dev->queues[0];
429 WARN_ON(hctx_idx != 0);
430 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
431 WARN_ON(nvmeq->tags);
433 hctx->driver_data = nvmeq;
434 nvmeq->tags = &dev->admin_tagset.tags[0];
438 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
440 struct nvme_queue *nvmeq = hctx->driver_data;
445 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
446 unsigned int hctx_idx)
448 struct nvme_dev *dev = data;
449 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
452 nvmeq->tags = &dev->tagset.tags[hctx_idx];
454 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
455 hctx->driver_data = nvmeq;
459 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
460 unsigned int hctx_idx, unsigned int numa_node)
462 struct nvme_dev *dev = set->driver_data;
463 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
464 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
465 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
470 nvme_req(req)->ctrl = &dev->ctrl;
474 static int queue_irq_offset(struct nvme_dev *dev)
476 /* if we have more than 1 vec, admin queue offsets us by 1 */
477 if (dev->num_vecs > 1)
483 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
485 struct nvme_dev *dev = set->driver_data;
488 offset = queue_irq_offset(dev);
489 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
490 struct blk_mq_queue_map *map = &set->map[i];
492 map->nr_queues = dev->io_queues[i];
493 if (!map->nr_queues) {
494 BUG_ON(i == HCTX_TYPE_DEFAULT);
499 * The poll queue(s) doesn't have an IRQ (and hence IRQ
500 * affinity), so use the regular blk-mq cpu mapping
502 map->queue_offset = qoff;
503 if (i != HCTX_TYPE_POLL)
504 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
506 blk_mq_map_queues(map);
507 qoff += map->nr_queues;
508 offset += map->nr_queues;
515 * Write sq tail if we are asked to, or if the next command would wrap.
517 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
520 u16 next_tail = nvmeq->sq_tail + 1;
522 if (next_tail == nvmeq->q_depth)
524 if (next_tail != nvmeq->last_sq_tail)
528 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
529 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
530 writel(nvmeq->sq_tail, nvmeq->q_db);
531 nvmeq->last_sq_tail = nvmeq->sq_tail;
535 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
536 * @nvmeq: The queue to use
537 * @cmd: The command to send
538 * @write_sq: whether to write to the SQ doorbell
540 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
543 spin_lock(&nvmeq->sq_lock);
544 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
545 if (++nvmeq->sq_tail == nvmeq->q_depth)
547 nvme_write_sq_db(nvmeq, write_sq);
548 spin_unlock(&nvmeq->sq_lock);
551 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
553 struct nvme_queue *nvmeq = hctx->driver_data;
555 spin_lock(&nvmeq->sq_lock);
556 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
557 nvme_write_sq_db(nvmeq, true);
558 spin_unlock(&nvmeq->sq_lock);
561 static void **nvme_pci_iod_list(struct request *req)
563 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
564 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
567 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
569 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570 int nseg = blk_rq_nr_phys_segments(req);
571 unsigned int avg_seg_size;
576 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
578 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
580 if (!iod->nvmeq->qid)
582 if (!sgl_threshold || avg_seg_size < sgl_threshold)
587 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
589 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
590 int nseg = blk_rq_nr_phys_segments(rq);
591 unsigned int size = blk_rq_payload_bytes(rq);
593 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
595 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
596 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
598 return BLK_STS_RESOURCE;
600 iod->sg = iod->inline_sg;
611 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
613 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
614 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
615 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
619 if (iod->npages == 0)
620 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
623 for (i = 0; i < iod->npages; i++) {
624 void *addr = nvme_pci_iod_list(req)[i];
627 struct nvme_sgl_desc *sg_list = addr;
630 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
632 __le64 *prp_list = addr;
634 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
637 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
638 dma_addr = next_dma_addr;
641 if (iod->sg != iod->inline_sg)
642 mempool_free(iod->sg, dev->iod_mempool);
645 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
648 struct scatterlist *sg;
650 for_each_sg(sgl, sg, nents, i) {
651 dma_addr_t phys = sg_phys(sg);
652 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
653 "dma_address:%pad dma_length:%d\n",
654 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
659 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
660 struct request *req, struct nvme_rw_command *cmnd)
662 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
663 struct dma_pool *pool;
664 int length = blk_rq_payload_bytes(req);
665 struct scatterlist *sg = iod->sg;
666 int dma_len = sg_dma_len(sg);
667 u64 dma_addr = sg_dma_address(sg);
668 u32 page_size = dev->ctrl.page_size;
669 int offset = dma_addr & (page_size - 1);
671 void **list = nvme_pci_iod_list(req);
675 length -= (page_size - offset);
681 dma_len -= (page_size - offset);
683 dma_addr += (page_size - offset);
686 dma_addr = sg_dma_address(sg);
687 dma_len = sg_dma_len(sg);
690 if (length <= page_size) {
691 iod->first_dma = dma_addr;
695 nprps = DIV_ROUND_UP(length, page_size);
696 if (nprps <= (256 / 8)) {
697 pool = dev->prp_small_pool;
700 pool = dev->prp_page_pool;
704 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
706 iod->first_dma = dma_addr;
708 return BLK_STS_RESOURCE;
711 iod->first_dma = prp_dma;
714 if (i == page_size >> 3) {
715 __le64 *old_prp_list = prp_list;
716 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
718 return BLK_STS_RESOURCE;
719 list[iod->npages++] = prp_list;
720 prp_list[0] = old_prp_list[i - 1];
721 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
724 prp_list[i++] = cpu_to_le64(dma_addr);
725 dma_len -= page_size;
726 dma_addr += page_size;
732 if (unlikely(dma_len < 0))
735 dma_addr = sg_dma_address(sg);
736 dma_len = sg_dma_len(sg);
740 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
741 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
746 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
747 "Invalid SGL for payload:%d nents:%d\n",
748 blk_rq_payload_bytes(req), iod->nents);
749 return BLK_STS_IOERR;
752 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
753 struct scatterlist *sg)
755 sge->addr = cpu_to_le64(sg_dma_address(sg));
756 sge->length = cpu_to_le32(sg_dma_len(sg));
757 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
760 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
761 dma_addr_t dma_addr, int entries)
763 sge->addr = cpu_to_le64(dma_addr);
764 if (entries < SGES_PER_PAGE) {
765 sge->length = cpu_to_le32(entries * sizeof(*sge));
766 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
768 sge->length = cpu_to_le32(PAGE_SIZE);
769 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
773 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
774 struct request *req, struct nvme_rw_command *cmd, int entries)
776 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
777 struct dma_pool *pool;
778 struct nvme_sgl_desc *sg_list;
779 struct scatterlist *sg = iod->sg;
783 /* setting the transfer type as SGL */
784 cmd->flags = NVME_CMD_SGL_METABUF;
787 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
791 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
792 pool = dev->prp_small_pool;
795 pool = dev->prp_page_pool;
799 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
802 return BLK_STS_RESOURCE;
805 nvme_pci_iod_list(req)[0] = sg_list;
806 iod->first_dma = sgl_dma;
808 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
811 if (i == SGES_PER_PAGE) {
812 struct nvme_sgl_desc *old_sg_desc = sg_list;
813 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
815 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
817 return BLK_STS_RESOURCE;
820 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
821 sg_list[i++] = *link;
822 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
825 nvme_pci_sgl_set_data(&sg_list[i++], sg);
827 } while (--entries > 0);
832 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
833 struct nvme_command *cmnd)
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 struct request_queue *q = req->q;
837 enum dma_data_direction dma_dir = rq_data_dir(req) ?
838 DMA_TO_DEVICE : DMA_FROM_DEVICE;
839 blk_status_t ret = BLK_STS_IOERR;
842 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
843 iod->nents = blk_rq_map_sg(q, req, iod->sg);
847 ret = BLK_STS_RESOURCE;
849 if (is_pci_p2pdma_page(sg_page(iod->sg)))
850 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
853 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
854 dma_dir, DMA_ATTR_NO_WARN);
859 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
861 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
863 if (ret != BLK_STS_OK)
867 if (blk_integrity_rq(req)) {
868 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
871 sg_init_table(&iod->meta_sg, 1);
872 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
875 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
878 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
884 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
889 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
891 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
892 enum dma_data_direction dma_dir = rq_data_dir(req) ?
893 DMA_TO_DEVICE : DMA_FROM_DEVICE;
896 /* P2PDMA requests do not need to be unmapped */
897 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
898 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
900 if (blk_integrity_rq(req))
901 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
904 nvme_cleanup_cmd(req);
905 nvme_free_iod(dev, req);
909 * NOTE: ns is NULL when called on the admin queue.
911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
912 const struct blk_mq_queue_data *bd)
914 struct nvme_ns *ns = hctx->queue->queuedata;
915 struct nvme_queue *nvmeq = hctx->driver_data;
916 struct nvme_dev *dev = nvmeq->dev;
917 struct request *req = bd->rq;
918 struct nvme_command cmnd;
922 * We should not need to do this, but we're still using this to
923 * ensure we can drain requests on a dying queue.
925 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
926 return BLK_STS_IOERR;
928 ret = nvme_setup_cmd(ns, req, &cmnd);
932 ret = nvme_init_iod(req, dev);
936 if (blk_rq_nr_phys_segments(req)) {
937 ret = nvme_map_data(dev, req, &cmnd);
939 goto out_cleanup_iod;
942 blk_mq_start_request(req);
943 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
946 nvme_free_iod(dev, req);
948 nvme_cleanup_cmd(req);
952 static void nvme_pci_complete_rq(struct request *req)
954 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956 nvme_unmap_data(iod->nvmeq->dev, req);
957 nvme_complete_rq(req);
960 /* We read the CQE phase first to check if the rest of the entry is valid */
961 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
963 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
967 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
969 u16 head = nvmeq->cq_head;
971 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
973 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
976 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
978 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
981 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
982 dev_warn(nvmeq->dev->ctrl.device,
983 "invalid id %d completed on queue %d\n",
984 cqe->command_id, le16_to_cpu(cqe->sq_id));
989 * AEN requests are special as they don't time out and can
990 * survive any kind of queue freeze and often don't respond to
991 * aborts. We don't even bother to allocate a struct request
992 * for them but rather special case them here.
994 if (unlikely(nvmeq->qid == 0 &&
995 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
996 nvme_complete_async_event(&nvmeq->dev->ctrl,
997 cqe->status, &cqe->result);
1001 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1002 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1003 nvme_end_request(req, cqe->status, cqe->result);
1006 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1008 while (start != end) {
1009 nvme_handle_cqe(nvmeq, start);
1010 if (++start == nvmeq->q_depth)
1015 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1017 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1019 nvmeq->cq_phase = !nvmeq->cq_phase;
1025 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1026 u16 *end, unsigned int tag)
1030 *start = nvmeq->cq_head;
1031 while (nvme_cqe_pending(nvmeq)) {
1032 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1034 nvme_update_cq_head(nvmeq);
1036 *end = nvmeq->cq_head;
1039 nvme_ring_cq_doorbell(nvmeq);
1043 static irqreturn_t nvme_irq(int irq, void *data)
1045 struct nvme_queue *nvmeq = data;
1046 irqreturn_t ret = IRQ_NONE;
1050 * The rmb/wmb pair ensures we see all updates from a previous run of
1051 * the irq handler, even if that was on another CPU.
1054 if (nvmeq->cq_head != nvmeq->last_cq_head)
1056 nvme_process_cq(nvmeq, &start, &end, -1);
1057 nvmeq->last_cq_head = nvmeq->cq_head;
1061 nvme_complete_cqes(nvmeq, start, end);
1068 static irqreturn_t nvme_irq_check(int irq, void *data)
1070 struct nvme_queue *nvmeq = data;
1071 if (nvme_cqe_pending(nvmeq))
1072 return IRQ_WAKE_THREAD;
1077 * Poll for completions any queue, including those not dedicated to polling.
1078 * Can be called from any context.
1080 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1082 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1087 * For a poll queue we need to protect against the polling thread
1088 * using the CQ lock. For normal interrupt driven threads we have
1089 * to disable the interrupt to avoid racing with it.
1091 if (nvmeq->cq_vector == -1) {
1092 spin_lock(&nvmeq->cq_poll_lock);
1093 found = nvme_process_cq(nvmeq, &start, &end, tag);
1094 spin_unlock(&nvmeq->cq_poll_lock);
1096 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 found = nvme_process_cq(nvmeq, &start, &end, tag);
1098 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1101 nvme_complete_cqes(nvmeq, start, end);
1105 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1107 struct nvme_queue *nvmeq = hctx->driver_data;
1111 if (!nvme_cqe_pending(nvmeq))
1114 spin_lock(&nvmeq->cq_poll_lock);
1115 found = nvme_process_cq(nvmeq, &start, &end, -1);
1116 spin_unlock(&nvmeq->cq_poll_lock);
1118 nvme_complete_cqes(nvmeq, start, end);
1122 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1124 struct nvme_dev *dev = to_nvme_dev(ctrl);
1125 struct nvme_queue *nvmeq = &dev->queues[0];
1126 struct nvme_command c;
1128 memset(&c, 0, sizeof(c));
1129 c.common.opcode = nvme_admin_async_event;
1130 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1131 nvme_submit_cmd(nvmeq, &c, true);
1134 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1136 struct nvme_command c;
1138 memset(&c, 0, sizeof(c));
1139 c.delete_queue.opcode = opcode;
1140 c.delete_queue.qid = cpu_to_le16(id);
1142 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1145 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1146 struct nvme_queue *nvmeq, s16 vector)
1148 struct nvme_command c;
1149 int flags = NVME_QUEUE_PHYS_CONTIG;
1152 flags |= NVME_CQ_IRQ_ENABLED;
1155 * Note: we (ab)use the fact that the prp fields survive if no data
1156 * is attached to the request.
1158 memset(&c, 0, sizeof(c));
1159 c.create_cq.opcode = nvme_admin_create_cq;
1160 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1161 c.create_cq.cqid = cpu_to_le16(qid);
1162 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1163 c.create_cq.cq_flags = cpu_to_le16(flags);
1165 c.create_cq.irq_vector = cpu_to_le16(vector);
1167 c.create_cq.irq_vector = 0;
1169 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1172 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1173 struct nvme_queue *nvmeq)
1175 struct nvme_ctrl *ctrl = &dev->ctrl;
1176 struct nvme_command c;
1177 int flags = NVME_QUEUE_PHYS_CONTIG;
1180 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1181 * set. Since URGENT priority is zeroes, it makes all queues
1184 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1185 flags |= NVME_SQ_PRIO_MEDIUM;
1188 * Note: we (ab)use the fact that the prp fields survive if no data
1189 * is attached to the request.
1191 memset(&c, 0, sizeof(c));
1192 c.create_sq.opcode = nvme_admin_create_sq;
1193 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1194 c.create_sq.sqid = cpu_to_le16(qid);
1195 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1196 c.create_sq.sq_flags = cpu_to_le16(flags);
1197 c.create_sq.cqid = cpu_to_le16(qid);
1199 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1202 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1204 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1207 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1209 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1212 static void abort_endio(struct request *req, blk_status_t error)
1214 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1215 struct nvme_queue *nvmeq = iod->nvmeq;
1217 dev_warn(nvmeq->dev->ctrl.device,
1218 "Abort status: 0x%x", nvme_req(req)->status);
1219 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1220 blk_mq_free_request(req);
1223 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1226 /* If true, indicates loss of adapter communication, possibly by a
1227 * NVMe Subsystem reset.
1229 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1231 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1232 switch (dev->ctrl.state) {
1233 case NVME_CTRL_RESETTING:
1234 case NVME_CTRL_CONNECTING:
1240 /* We shouldn't reset unless the controller is on fatal error state
1241 * _or_ if we lost the communication with it.
1243 if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1251 /* Read a config register to help see what died. */
1255 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1257 if (result == PCIBIOS_SUCCESSFUL)
1258 dev_warn(dev->ctrl.device,
1259 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1262 dev_warn(dev->ctrl.device,
1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1269 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1270 struct nvme_queue *nvmeq = iod->nvmeq;
1271 struct nvme_dev *dev = nvmeq->dev;
1272 struct request *abort_req;
1273 struct nvme_command cmd;
1274 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1276 /* If PCI error recovery process is happening, we cannot reset or
1277 * the recovery mechanism will surely fail.
1280 if (pci_channel_offline(to_pci_dev(dev->dev)))
1281 return BLK_EH_RESET_TIMER;
1284 * Reset immediately if the controller is failed
1286 if (nvme_should_reset(dev, csts)) {
1287 nvme_warn_reset(dev, csts);
1288 nvme_dev_disable(dev, false);
1289 nvme_reset_ctrl(&dev->ctrl);
1294 * Did we miss an interrupt?
1296 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1297 dev_warn(dev->ctrl.device,
1298 "I/O %d QID %d timeout, completion polled\n",
1299 req->tag, nvmeq->qid);
1304 * Shutdown immediately if controller times out while starting. The
1305 * reset work will see the pci device disabled when it gets the forced
1306 * cancellation error. All outstanding requests are completed on
1307 * shutdown, so we return BLK_EH_DONE.
1309 switch (dev->ctrl.state) {
1310 case NVME_CTRL_CONNECTING:
1311 case NVME_CTRL_RESETTING:
1312 dev_warn_ratelimited(dev->ctrl.device,
1313 "I/O %d QID %d timeout, disable controller\n",
1314 req->tag, nvmeq->qid);
1315 nvme_dev_disable(dev, false);
1316 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1323 * Shutdown the controller immediately and schedule a reset if the
1324 * command was already aborted once before and still hasn't been
1325 * returned to the driver, or if this is the admin queue.
1327 if (!nvmeq->qid || iod->aborted) {
1328 dev_warn(dev->ctrl.device,
1329 "I/O %d QID %d timeout, reset controller\n",
1330 req->tag, nvmeq->qid);
1331 nvme_dev_disable(dev, false);
1332 nvme_reset_ctrl(&dev->ctrl);
1334 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1338 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1339 atomic_inc(&dev->ctrl.abort_limit);
1340 return BLK_EH_RESET_TIMER;
1344 memset(&cmd, 0, sizeof(cmd));
1345 cmd.abort.opcode = nvme_admin_abort_cmd;
1346 cmd.abort.cid = req->tag;
1347 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1349 dev_warn(nvmeq->dev->ctrl.device,
1350 "I/O %d QID %d timeout, aborting\n",
1351 req->tag, nvmeq->qid);
1353 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1354 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1355 if (IS_ERR(abort_req)) {
1356 atomic_inc(&dev->ctrl.abort_limit);
1357 return BLK_EH_RESET_TIMER;
1360 abort_req->timeout = ADMIN_TIMEOUT;
1361 abort_req->end_io_data = NULL;
1362 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1365 * The aborted req will be completed on receiving the abort req.
1366 * We enable the timer again. If hit twice, it'll cause a device reset,
1367 * as the device then is in a faulty state.
1369 return BLK_EH_RESET_TIMER;
1372 static void nvme_free_queue(struct nvme_queue *nvmeq)
1374 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1375 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1376 if (!nvmeq->sq_cmds)
1379 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1380 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1381 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1383 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1384 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1388 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1392 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1393 dev->ctrl.queue_count--;
1394 nvme_free_queue(&dev->queues[i]);
1399 * nvme_suspend_queue - put queue into suspended state
1400 * @nvmeq: queue to suspend
1402 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1404 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1407 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1410 nvmeq->dev->online_queues--;
1411 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1412 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1413 if (nvmeq->cq_vector == -1)
1415 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1416 nvmeq->cq_vector = -1;
1420 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1424 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1425 nvme_suspend_queue(&dev->queues[i]);
1428 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1430 struct nvme_queue *nvmeq = &dev->queues[0];
1433 nvme_shutdown_ctrl(&dev->ctrl);
1435 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1437 nvme_poll_irqdisable(nvmeq, -1);
1440 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1443 int q_depth = dev->q_depth;
1444 unsigned q_size_aligned = roundup(q_depth * entry_size,
1445 dev->ctrl.page_size);
1447 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1448 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1449 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1450 q_depth = div_u64(mem_per_q, entry_size);
1453 * Ensure the reduced q_depth is above some threshold where it
1454 * would be better to map queues in system memory with the
1464 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1467 struct pci_dev *pdev = to_pci_dev(dev->dev);
1469 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1470 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1471 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1473 if (nvmeq->sq_dma_addr) {
1474 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1479 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1480 &nvmeq->sq_dma_addr, GFP_KERNEL);
1481 if (!nvmeq->sq_cmds)
1486 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1488 struct nvme_queue *nvmeq = &dev->queues[qid];
1490 if (dev->ctrl.queue_count > qid)
1493 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1494 &nvmeq->cq_dma_addr, GFP_KERNEL);
1498 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1501 nvmeq->q_dmadev = dev->dev;
1503 spin_lock_init(&nvmeq->sq_lock);
1504 spin_lock_init(&nvmeq->cq_poll_lock);
1506 nvmeq->cq_phase = 1;
1507 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508 nvmeq->q_depth = depth;
1510 nvmeq->cq_vector = -1;
1511 dev->ctrl.queue_count++;
1516 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1517 nvmeq->cq_dma_addr);
1522 static int queue_request_irq(struct nvme_queue *nvmeq)
1524 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1525 int nr = nvmeq->dev->ctrl.instance;
1527 if (use_threaded_interrupts) {
1528 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1529 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1531 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1532 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1536 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1538 struct nvme_dev *dev = nvmeq->dev;
1541 nvmeq->last_sq_tail = 0;
1543 nvmeq->cq_phase = 1;
1544 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1545 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1546 nvme_dbbuf_init(dev, nvmeq, qid);
1547 dev->online_queues++;
1548 wmb(); /* ensure the first interrupt sees the initialization */
1551 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1553 struct nvme_dev *dev = nvmeq->dev;
1557 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1560 * A queue's vector matches the queue identifier unless the controller
1561 * has only one vector available.
1564 vector = dev->num_vecs == 1 ? 0 : qid;
1568 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1572 result = adapter_alloc_sq(dev, qid, nvmeq);
1578 nvmeq->cq_vector = vector;
1579 nvme_init_queue(nvmeq, qid);
1582 result = queue_request_irq(nvmeq);
1587 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1591 nvmeq->cq_vector = -1;
1592 dev->online_queues--;
1593 adapter_delete_sq(dev, qid);
1595 adapter_delete_cq(dev, qid);
1599 static const struct blk_mq_ops nvme_mq_admin_ops = {
1600 .queue_rq = nvme_queue_rq,
1601 .complete = nvme_pci_complete_rq,
1602 .init_hctx = nvme_admin_init_hctx,
1603 .exit_hctx = nvme_admin_exit_hctx,
1604 .init_request = nvme_init_request,
1605 .timeout = nvme_timeout,
1608 static const struct blk_mq_ops nvme_mq_ops = {
1609 .queue_rq = nvme_queue_rq,
1610 .complete = nvme_pci_complete_rq,
1611 .commit_rqs = nvme_commit_rqs,
1612 .init_hctx = nvme_init_hctx,
1613 .init_request = nvme_init_request,
1614 .map_queues = nvme_pci_map_queues,
1615 .timeout = nvme_timeout,
1619 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1621 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1623 * If the controller was reset during removal, it's possible
1624 * user requests may be waiting on a stopped queue. Start the
1625 * queue to flush these to completion.
1627 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1628 blk_cleanup_queue(dev->ctrl.admin_q);
1629 blk_mq_free_tag_set(&dev->admin_tagset);
1633 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1635 if (!dev->ctrl.admin_q) {
1636 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1637 dev->admin_tagset.nr_hw_queues = 1;
1639 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1640 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1641 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1642 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1643 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1644 dev->admin_tagset.driver_data = dev;
1646 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1648 dev->ctrl.admin_tagset = &dev->admin_tagset;
1650 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1651 if (IS_ERR(dev->ctrl.admin_q)) {
1652 blk_mq_free_tag_set(&dev->admin_tagset);
1655 if (!blk_get_queue(dev->ctrl.admin_q)) {
1656 nvme_dev_remove_admin(dev);
1657 dev->ctrl.admin_q = NULL;
1661 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1666 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1668 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1671 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1673 struct pci_dev *pdev = to_pci_dev(dev->dev);
1675 if (size <= dev->bar_mapped_size)
1677 if (size > pci_resource_len(pdev, 0))
1681 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1683 dev->bar_mapped_size = 0;
1686 dev->bar_mapped_size = size;
1687 dev->dbs = dev->bar + NVME_REG_DBS;
1692 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1696 struct nvme_queue *nvmeq;
1698 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1702 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1703 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1705 if (dev->subsystem &&
1706 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1707 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1709 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1713 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1717 nvmeq = &dev->queues[0];
1718 aqa = nvmeq->q_depth - 1;
1721 writel(aqa, dev->bar + NVME_REG_AQA);
1722 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1723 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1725 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1729 nvmeq->cq_vector = 0;
1730 nvme_init_queue(nvmeq, 0);
1731 result = queue_request_irq(nvmeq);
1733 nvmeq->cq_vector = -1;
1737 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1741 static int nvme_create_io_queues(struct nvme_dev *dev)
1743 unsigned i, max, rw_queues;
1746 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1747 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1753 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1754 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1755 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1756 dev->io_queues[HCTX_TYPE_READ];
1761 for (i = dev->online_queues; i <= max; i++) {
1762 bool polled = i > rw_queues;
1764 ret = nvme_create_queue(&dev->queues[i], i, polled);
1770 * Ignore failing Create SQ/CQ commands, we can continue with less
1771 * than the desired amount of queues, and even a controller without
1772 * I/O queues can still be used to issue admin commands. This might
1773 * be useful to upgrade a buggy firmware for example.
1775 return ret >= 0 ? 0 : ret;
1778 static ssize_t nvme_cmb_show(struct device *dev,
1779 struct device_attribute *attr,
1782 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1784 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1785 ndev->cmbloc, ndev->cmbsz);
1787 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1789 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1791 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1793 return 1ULL << (12 + 4 * szu);
1796 static u32 nvme_cmb_size(struct nvme_dev *dev)
1798 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1801 static void nvme_map_cmb(struct nvme_dev *dev)
1804 resource_size_t bar_size;
1805 struct pci_dev *pdev = to_pci_dev(dev->dev);
1811 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1814 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1816 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1817 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1818 bar = NVME_CMB_BIR(dev->cmbloc);
1819 bar_size = pci_resource_len(pdev, bar);
1821 if (offset > bar_size)
1825 * Controllers may support a CMB size larger than their BAR,
1826 * for example, due to being behind a bridge. Reduce the CMB to
1827 * the reported size of the BAR
1829 if (size > bar_size - offset)
1830 size = bar_size - offset;
1832 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1833 dev_warn(dev->ctrl.device,
1834 "failed to register the CMB\n");
1838 dev->cmb_size = size;
1839 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1841 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1842 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1843 pci_p2pmem_publish(pdev, true);
1845 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1846 &dev_attr_cmb.attr, NULL))
1847 dev_warn(dev->ctrl.device,
1848 "failed to add sysfs attribute for CMB\n");
1851 static inline void nvme_release_cmb(struct nvme_dev *dev)
1853 if (dev->cmb_size) {
1854 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1855 &dev_attr_cmb.attr, NULL);
1860 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1862 u64 dma_addr = dev->host_mem_descs_dma;
1863 struct nvme_command c;
1866 memset(&c, 0, sizeof(c));
1867 c.features.opcode = nvme_admin_set_features;
1868 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1869 c.features.dword11 = cpu_to_le32(bits);
1870 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1871 ilog2(dev->ctrl.page_size));
1872 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1873 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1874 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1876 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1878 dev_warn(dev->ctrl.device,
1879 "failed to set host mem (err %d, flags %#x).\n",
1885 static void nvme_free_host_mem(struct nvme_dev *dev)
1889 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1890 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1891 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1893 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1894 le64_to_cpu(desc->addr),
1895 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1898 kfree(dev->host_mem_desc_bufs);
1899 dev->host_mem_desc_bufs = NULL;
1900 dma_free_coherent(dev->dev,
1901 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1902 dev->host_mem_descs, dev->host_mem_descs_dma);
1903 dev->host_mem_descs = NULL;
1904 dev->nr_host_mem_descs = 0;
1907 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1910 struct nvme_host_mem_buf_desc *descs;
1911 u32 max_entries, len;
1912 dma_addr_t descs_dma;
1917 tmp = (preferred + chunk_size - 1);
1918 do_div(tmp, chunk_size);
1921 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1922 max_entries = dev->ctrl.hmmaxd;
1924 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1925 &descs_dma, GFP_KERNEL);
1929 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1931 goto out_free_descs;
1933 for (size = 0; size < preferred && i < max_entries; size += len) {
1934 dma_addr_t dma_addr;
1936 len = min_t(u64, chunk_size, preferred - size);
1937 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1938 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1942 descs[i].addr = cpu_to_le64(dma_addr);
1943 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1950 dev->nr_host_mem_descs = i;
1951 dev->host_mem_size = size;
1952 dev->host_mem_descs = descs;
1953 dev->host_mem_descs_dma = descs_dma;
1954 dev->host_mem_desc_bufs = bufs;
1959 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1961 dma_free_attrs(dev->dev, size, bufs[i],
1962 le64_to_cpu(descs[i].addr),
1963 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1971 dev->host_mem_descs = NULL;
1975 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1979 /* start big and work our way down */
1980 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1981 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1983 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1984 if (!min || dev->host_mem_size >= min)
1986 nvme_free_host_mem(dev);
1993 static int nvme_setup_host_mem(struct nvme_dev *dev)
1995 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1996 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1997 u64 min = (u64)dev->ctrl.hmmin * 4096;
1998 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2001 preferred = min(preferred, max);
2003 dev_warn(dev->ctrl.device,
2004 "min host memory (%lld MiB) above limit (%d MiB).\n",
2005 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2006 nvme_free_host_mem(dev);
2011 * If we already have a buffer allocated check if we can reuse it.
2013 if (dev->host_mem_descs) {
2014 if (dev->host_mem_size >= min)
2015 enable_bits |= NVME_HOST_MEM_RETURN;
2017 nvme_free_host_mem(dev);
2020 if (!dev->host_mem_descs) {
2021 if (nvme_alloc_host_mem(dev, min, preferred)) {
2022 dev_warn(dev->ctrl.device,
2023 "failed to allocate host memory buffer.\n");
2024 return 0; /* controller must work without HMB */
2027 dev_info(dev->ctrl.device,
2028 "allocated %lld MiB host memory buffer.\n",
2029 dev->host_mem_size >> ilog2(SZ_1M));
2032 ret = nvme_set_host_mem(dev, enable_bits);
2034 nvme_free_host_mem(dev);
2039 * nirqs is the number of interrupts available for write and read
2040 * queues. The core already reserved an interrupt for the admin queue.
2042 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2044 struct nvme_dev *dev = affd->priv;
2045 unsigned int nr_read_queues;
2048 * If there is no interupt available for queues, ensure that
2049 * the default queue is set to 1. The affinity set size is
2050 * also set to one, but the irq core ignores it for this case.
2052 * If only one interrupt is available or 'write_queue' == 0, combine
2053 * write and read queues.
2055 * If 'write_queues' > 0, ensure it leaves room for at least one read
2061 } else if (nrirqs == 1 || !write_queues) {
2063 } else if (write_queues >= nrirqs) {
2066 nr_read_queues = nrirqs - write_queues;
2069 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2070 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2071 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2072 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2073 affd->nr_sets = nr_read_queues ? 2 : 1;
2076 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2078 struct pci_dev *pdev = to_pci_dev(dev->dev);
2079 struct irq_affinity affd = {
2081 .calc_sets = nvme_calc_irq_sets,
2084 unsigned int irq_queues, this_p_queues;
2087 * Poll queues don't need interrupts, but we need at least one IO
2088 * queue left over for non-polled IO.
2090 this_p_queues = poll_queues;
2091 if (this_p_queues >= nr_io_queues) {
2092 this_p_queues = nr_io_queues - 1;
2095 irq_queues = nr_io_queues - this_p_queues + 1;
2097 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2099 /* Initialize for the single interrupt case */
2100 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2101 dev->io_queues[HCTX_TYPE_READ] = 0;
2103 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2104 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2107 static void nvme_disable_io_queues(struct nvme_dev *dev)
2109 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2110 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2113 static int nvme_setup_io_queues(struct nvme_dev *dev)
2115 struct nvme_queue *adminq = &dev->queues[0];
2116 struct pci_dev *pdev = to_pci_dev(dev->dev);
2117 int result, nr_io_queues;
2120 nr_io_queues = max_io_queues();
2121 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2125 if (nr_io_queues == 0)
2128 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2130 if (dev->cmb_use_sqes) {
2131 result = nvme_cmb_qdepth(dev, nr_io_queues,
2132 sizeof(struct nvme_command));
2134 dev->q_depth = result;
2136 dev->cmb_use_sqes = false;
2140 size = db_bar_size(dev, nr_io_queues);
2141 result = nvme_remap_bar(dev, size);
2144 if (!--nr_io_queues)
2147 adminq->q_db = dev->dbs;
2150 /* Deregister the admin queue's interrupt */
2151 pci_free_irq(pdev, 0, adminq);
2154 * If we enable msix early due to not intx, disable it again before
2155 * setting up the full range we need.
2157 pci_free_irq_vectors(pdev);
2159 result = nvme_setup_irqs(dev, nr_io_queues);
2163 dev->num_vecs = result;
2164 result = max(result - 1, 1);
2165 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2168 * Should investigate if there's a performance win from allocating
2169 * more queues than interrupt vectors; it might allow the submission
2170 * path to scale better, even if the receive path is limited by the
2171 * number of interrupts.
2173 result = queue_request_irq(adminq);
2175 adminq->cq_vector = -1;
2178 set_bit(NVMEQ_ENABLED, &adminq->flags);
2180 result = nvme_create_io_queues(dev);
2181 if (result || dev->online_queues < 2)
2184 if (dev->online_queues - 1 < dev->max_qid) {
2185 nr_io_queues = dev->online_queues - 1;
2186 nvme_disable_io_queues(dev);
2187 nvme_suspend_io_queues(dev);
2190 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2191 dev->io_queues[HCTX_TYPE_DEFAULT],
2192 dev->io_queues[HCTX_TYPE_READ],
2193 dev->io_queues[HCTX_TYPE_POLL]);
2197 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2199 struct nvme_queue *nvmeq = req->end_io_data;
2201 blk_mq_free_request(req);
2202 complete(&nvmeq->delete_done);
2205 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2207 struct nvme_queue *nvmeq = req->end_io_data;
2210 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2212 nvme_del_queue_end(req, error);
2215 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2217 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2218 struct request *req;
2219 struct nvme_command cmd;
2221 memset(&cmd, 0, sizeof(cmd));
2222 cmd.delete_queue.opcode = opcode;
2223 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2225 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2227 return PTR_ERR(req);
2229 req->timeout = ADMIN_TIMEOUT;
2230 req->end_io_data = nvmeq;
2232 init_completion(&nvmeq->delete_done);
2233 blk_execute_rq_nowait(q, NULL, req, false,
2234 opcode == nvme_admin_delete_cq ?
2235 nvme_del_cq_end : nvme_del_queue_end);
2239 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2241 int nr_queues = dev->online_queues - 1, sent = 0;
2242 unsigned long timeout;
2245 timeout = ADMIN_TIMEOUT;
2246 while (nr_queues > 0) {
2247 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2253 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2255 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2260 /* handle any remaining CQEs */
2261 if (opcode == nvme_admin_delete_cq &&
2262 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2263 nvme_poll_irqdisable(nvmeq, -1);
2273 * return error value only when tagset allocation failed
2275 static int nvme_dev_add(struct nvme_dev *dev)
2279 if (!dev->ctrl.tagset) {
2280 dev->tagset.ops = &nvme_mq_ops;
2281 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2282 dev->tagset.nr_maps = 2; /* default + read */
2283 if (dev->io_queues[HCTX_TYPE_POLL])
2284 dev->tagset.nr_maps++;
2285 dev->tagset.timeout = NVME_IO_TIMEOUT;
2286 dev->tagset.numa_node = dev_to_node(dev->dev);
2287 dev->tagset.queue_depth =
2288 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2289 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2290 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2291 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2292 nvme_pci_cmd_size(dev, true));
2294 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2295 dev->tagset.driver_data = dev;
2297 ret = blk_mq_alloc_tag_set(&dev->tagset);
2299 dev_warn(dev->ctrl.device,
2300 "IO queues tagset allocation failed %d\n", ret);
2303 dev->ctrl.tagset = &dev->tagset;
2305 nvme_dbbuf_set(dev);
2307 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2309 /* Free previously allocated queues that are no longer usable */
2310 nvme_free_queues(dev, dev->online_queues);
2316 static int nvme_pci_enable(struct nvme_dev *dev)
2318 int result = -ENOMEM;
2319 struct pci_dev *pdev = to_pci_dev(dev->dev);
2321 if (pci_enable_device_mem(pdev))
2324 pci_set_master(pdev);
2326 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2327 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2330 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2336 * Some devices and/or platforms don't advertise or work with INTx
2337 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2338 * adjust this later.
2340 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2344 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2346 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2348 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2349 dev->dbs = dev->bar + 4096;
2352 * Temporary fix for the Apple controller found in the MacBook8,1 and
2353 * some MacBook7,1 to avoid controller resets and data loss.
2355 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2357 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2358 "set queue depth=%u to work around controller resets\n",
2360 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2361 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2362 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2364 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2365 "set queue depth=%u\n", dev->q_depth);
2370 pci_enable_pcie_error_reporting(pdev);
2371 pci_save_state(pdev);
2375 pci_disable_device(pdev);
2379 static void nvme_dev_unmap(struct nvme_dev *dev)
2383 pci_release_mem_regions(to_pci_dev(dev->dev));
2386 static void nvme_pci_disable(struct nvme_dev *dev)
2388 struct pci_dev *pdev = to_pci_dev(dev->dev);
2390 pci_free_irq_vectors(pdev);
2392 if (pci_is_enabled(pdev)) {
2393 pci_disable_pcie_error_reporting(pdev);
2394 pci_disable_device(pdev);
2398 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2401 struct pci_dev *pdev = to_pci_dev(dev->dev);
2403 mutex_lock(&dev->shutdown_lock);
2404 if (pci_is_enabled(pdev)) {
2405 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2407 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2408 dev->ctrl.state == NVME_CTRL_RESETTING)
2409 nvme_start_freeze(&dev->ctrl);
2410 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2411 pdev->error_state != pci_channel_io_normal);
2415 * Give the controller a chance to complete all entered requests if
2416 * doing a safe shutdown.
2420 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2423 nvme_stop_queues(&dev->ctrl);
2425 if (!dead && dev->ctrl.queue_count > 0) {
2426 nvme_disable_io_queues(dev);
2427 nvme_disable_admin_queue(dev, shutdown);
2429 nvme_suspend_io_queues(dev);
2430 nvme_suspend_queue(&dev->queues[0]);
2431 nvme_pci_disable(dev);
2433 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2434 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2437 * The driver will not be starting up queues again if shutting down so
2438 * must flush all entered requests to their failed completion to avoid
2439 * deadlocking blk-mq hot-cpu notifier.
2442 nvme_start_queues(&dev->ctrl);
2443 mutex_unlock(&dev->shutdown_lock);
2446 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2448 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2449 PAGE_SIZE, PAGE_SIZE, 0);
2450 if (!dev->prp_page_pool)
2453 /* Optimisation for I/Os between 4k and 128k */
2454 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2456 if (!dev->prp_small_pool) {
2457 dma_pool_destroy(dev->prp_page_pool);
2463 static void nvme_release_prp_pools(struct nvme_dev *dev)
2465 dma_pool_destroy(dev->prp_page_pool);
2466 dma_pool_destroy(dev->prp_small_pool);
2469 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2471 struct nvme_dev *dev = to_nvme_dev(ctrl);
2473 nvme_dbbuf_dma_free(dev);
2474 put_device(dev->dev);
2475 if (dev->tagset.tags)
2476 blk_mq_free_tag_set(&dev->tagset);
2477 if (dev->ctrl.admin_q)
2478 blk_put_queue(dev->ctrl.admin_q);
2480 free_opal_dev(dev->ctrl.opal_dev);
2481 mempool_destroy(dev->iod_mempool);
2485 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2487 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2489 nvme_get_ctrl(&dev->ctrl);
2490 nvme_dev_disable(dev, false);
2491 nvme_kill_queues(&dev->ctrl);
2492 if (!queue_work(nvme_wq, &dev->remove_work))
2493 nvme_put_ctrl(&dev->ctrl);
2496 static void nvme_reset_work(struct work_struct *work)
2498 struct nvme_dev *dev =
2499 container_of(work, struct nvme_dev, ctrl.reset_work);
2500 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2501 int result = -ENODEV;
2502 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2504 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2508 * If we're called to reset a live controller first shut it down before
2511 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2512 nvme_dev_disable(dev, false);
2514 mutex_lock(&dev->shutdown_lock);
2515 result = nvme_pci_enable(dev);
2519 result = nvme_pci_configure_admin_queue(dev);
2523 result = nvme_alloc_admin_tags(dev);
2528 * Limit the max command size to prevent iod->sg allocations going
2529 * over a single page.
2531 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2532 dev->ctrl.max_segments = NVME_MAX_SEGS;
2533 mutex_unlock(&dev->shutdown_lock);
2536 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2537 * initializing procedure here.
2539 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2540 dev_warn(dev->ctrl.device,
2541 "failed to mark controller CONNECTING\n");
2545 result = nvme_init_identify(&dev->ctrl);
2549 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2550 if (!dev->ctrl.opal_dev)
2551 dev->ctrl.opal_dev =
2552 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2553 else if (was_suspend)
2554 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2556 free_opal_dev(dev->ctrl.opal_dev);
2557 dev->ctrl.opal_dev = NULL;
2560 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2561 result = nvme_dbbuf_dma_alloc(dev);
2564 "unable to allocate dma for dbbuf\n");
2567 if (dev->ctrl.hmpre) {
2568 result = nvme_setup_host_mem(dev);
2573 result = nvme_setup_io_queues(dev);
2578 * Keep the controller around but remove all namespaces if we don't have
2579 * any working I/O queue.
2581 if (dev->online_queues < 2) {
2582 dev_warn(dev->ctrl.device, "IO queues not created\n");
2583 nvme_kill_queues(&dev->ctrl);
2584 nvme_remove_namespaces(&dev->ctrl);
2585 new_state = NVME_CTRL_ADMIN_ONLY;
2587 nvme_start_queues(&dev->ctrl);
2588 nvme_wait_freeze(&dev->ctrl);
2589 /* hit this only when allocate tagset fails */
2590 if (nvme_dev_add(dev))
2591 new_state = NVME_CTRL_ADMIN_ONLY;
2592 nvme_unfreeze(&dev->ctrl);
2596 * If only admin queue live, keep it to do further investigation or
2599 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2600 dev_warn(dev->ctrl.device,
2601 "failed to mark controller state %d\n", new_state);
2605 nvme_start_ctrl(&dev->ctrl);
2609 mutex_unlock(&dev->shutdown_lock);
2611 nvme_remove_dead_ctrl(dev, result);
2614 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2616 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2617 struct pci_dev *pdev = to_pci_dev(dev->dev);
2619 if (pci_get_drvdata(pdev))
2620 device_release_driver(&pdev->dev);
2621 nvme_put_ctrl(&dev->ctrl);
2624 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2626 *val = readl(to_nvme_dev(ctrl)->bar + off);
2630 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2632 writel(val, to_nvme_dev(ctrl)->bar + off);
2636 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2638 *val = readq(to_nvme_dev(ctrl)->bar + off);
2642 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2644 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2646 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2649 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2651 .module = THIS_MODULE,
2652 .flags = NVME_F_METADATA_SUPPORTED |
2654 .reg_read32 = nvme_pci_reg_read32,
2655 .reg_write32 = nvme_pci_reg_write32,
2656 .reg_read64 = nvme_pci_reg_read64,
2657 .free_ctrl = nvme_pci_free_ctrl,
2658 .submit_async_event = nvme_pci_submit_async_event,
2659 .get_address = nvme_pci_get_address,
2662 static int nvme_dev_map(struct nvme_dev *dev)
2664 struct pci_dev *pdev = to_pci_dev(dev->dev);
2666 if (pci_request_mem_regions(pdev, "nvme"))
2669 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2674 pci_release_mem_regions(pdev);
2678 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2680 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2682 * Several Samsung devices seem to drop off the PCIe bus
2683 * randomly when APST is on and uses the deepest sleep state.
2684 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2685 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2686 * 950 PRO 256GB", but it seems to be restricted to two Dell
2689 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2690 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2691 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2692 return NVME_QUIRK_NO_DEEPEST_PS;
2693 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2695 * Samsung SSD 960 EVO drops off the PCIe bus after system
2696 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2697 * within few minutes after bootup on a Coffee Lake board -
2700 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2701 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2702 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2703 return NVME_QUIRK_NO_APST;
2709 static void nvme_async_probe(void *data, async_cookie_t cookie)
2711 struct nvme_dev *dev = data;
2713 nvme_reset_ctrl_sync(&dev->ctrl);
2714 flush_work(&dev->ctrl.scan_work);
2715 nvme_put_ctrl(&dev->ctrl);
2718 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2720 int node, result = -ENOMEM;
2721 struct nvme_dev *dev;
2722 unsigned long quirks = id->driver_data;
2725 node = dev_to_node(&pdev->dev);
2726 if (node == NUMA_NO_NODE)
2727 set_dev_node(&pdev->dev, first_memory_node);
2729 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2733 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2738 dev->dev = get_device(&pdev->dev);
2739 pci_set_drvdata(pdev, dev);
2741 result = nvme_dev_map(dev);
2745 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2746 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2747 mutex_init(&dev->shutdown_lock);
2749 result = nvme_setup_prp_pools(dev);
2753 quirks |= check_vendor_combination_bug(pdev);
2756 * Double check that our mempool alloc size will cover the biggest
2757 * command we support.
2759 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2760 NVME_MAX_SEGS, true);
2761 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2763 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2765 (void *) alloc_size,
2767 if (!dev->iod_mempool) {
2772 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2775 goto release_mempool;
2777 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2779 nvme_get_ctrl(&dev->ctrl);
2780 async_schedule(nvme_async_probe, dev);
2785 mempool_destroy(dev->iod_mempool);
2787 nvme_release_prp_pools(dev);
2789 nvme_dev_unmap(dev);
2791 put_device(dev->dev);
2798 static void nvme_reset_prepare(struct pci_dev *pdev)
2800 struct nvme_dev *dev = pci_get_drvdata(pdev);
2801 nvme_dev_disable(dev, false);
2804 static void nvme_reset_done(struct pci_dev *pdev)
2806 struct nvme_dev *dev = pci_get_drvdata(pdev);
2807 nvme_reset_ctrl_sync(&dev->ctrl);
2810 static void nvme_shutdown(struct pci_dev *pdev)
2812 struct nvme_dev *dev = pci_get_drvdata(pdev);
2813 nvme_dev_disable(dev, true);
2817 * The driver's remove may be called on a device in a partially initialized
2818 * state. This function must not have any dependencies on the device state in
2821 static void nvme_remove(struct pci_dev *pdev)
2823 struct nvme_dev *dev = pci_get_drvdata(pdev);
2825 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2826 pci_set_drvdata(pdev, NULL);
2828 if (!pci_device_is_present(pdev)) {
2829 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2830 nvme_dev_disable(dev, true);
2831 nvme_dev_remove_admin(dev);
2834 flush_work(&dev->ctrl.reset_work);
2835 nvme_stop_ctrl(&dev->ctrl);
2836 nvme_remove_namespaces(&dev->ctrl);
2837 nvme_dev_disable(dev, true);
2838 nvme_release_cmb(dev);
2839 nvme_free_host_mem(dev);
2840 nvme_dev_remove_admin(dev);
2841 nvme_free_queues(dev, 0);
2842 nvme_uninit_ctrl(&dev->ctrl);
2843 nvme_release_prp_pools(dev);
2844 nvme_dev_unmap(dev);
2845 nvme_put_ctrl(&dev->ctrl);
2848 #ifdef CONFIG_PM_SLEEP
2849 static int nvme_suspend(struct device *dev)
2851 struct pci_dev *pdev = to_pci_dev(dev);
2852 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2854 nvme_dev_disable(ndev, true);
2858 static int nvme_resume(struct device *dev)
2860 struct pci_dev *pdev = to_pci_dev(dev);
2861 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2863 nvme_reset_ctrl(&ndev->ctrl);
2868 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2870 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2871 pci_channel_state_t state)
2873 struct nvme_dev *dev = pci_get_drvdata(pdev);
2876 * A frozen channel requires a reset. When detected, this method will
2877 * shutdown the controller to quiesce. The controller will be restarted
2878 * after the slot reset through driver's slot_reset callback.
2881 case pci_channel_io_normal:
2882 return PCI_ERS_RESULT_CAN_RECOVER;
2883 case pci_channel_io_frozen:
2884 dev_warn(dev->ctrl.device,
2885 "frozen state error detected, reset controller\n");
2886 nvme_dev_disable(dev, false);
2887 return PCI_ERS_RESULT_NEED_RESET;
2888 case pci_channel_io_perm_failure:
2889 dev_warn(dev->ctrl.device,
2890 "failure state error detected, request disconnect\n");
2891 return PCI_ERS_RESULT_DISCONNECT;
2893 return PCI_ERS_RESULT_NEED_RESET;
2896 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2898 struct nvme_dev *dev = pci_get_drvdata(pdev);
2900 dev_info(dev->ctrl.device, "restart after slot reset\n");
2901 pci_restore_state(pdev);
2902 nvme_reset_ctrl(&dev->ctrl);
2903 return PCI_ERS_RESULT_RECOVERED;
2906 static void nvme_error_resume(struct pci_dev *pdev)
2908 struct nvme_dev *dev = pci_get_drvdata(pdev);
2910 flush_work(&dev->ctrl.reset_work);
2913 static const struct pci_error_handlers nvme_err_handler = {
2914 .error_detected = nvme_error_detected,
2915 .slot_reset = nvme_slot_reset,
2916 .resume = nvme_error_resume,
2917 .reset_prepare = nvme_reset_prepare,
2918 .reset_done = nvme_reset_done,
2921 static const struct pci_device_id nvme_id_table[] = {
2922 { PCI_VDEVICE(INTEL, 0x0953),
2923 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2924 NVME_QUIRK_DEALLOCATE_ZEROES, },
2925 { PCI_VDEVICE(INTEL, 0x0a53),
2926 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2927 NVME_QUIRK_DEALLOCATE_ZEROES, },
2928 { PCI_VDEVICE(INTEL, 0x0a54),
2929 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2930 NVME_QUIRK_DEALLOCATE_ZEROES, },
2931 { PCI_VDEVICE(INTEL, 0x0a55),
2932 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2933 NVME_QUIRK_DEALLOCATE_ZEROES, },
2934 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2935 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2936 NVME_QUIRK_MEDIUM_PRIO_SQ },
2937 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
2938 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2939 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2940 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2941 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2942 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2943 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2944 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2945 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2946 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2947 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2948 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2949 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2950 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2951 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2952 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2953 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2954 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2955 .driver_data = NVME_QUIRK_LIGHTNVM, },
2956 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2957 .driver_data = NVME_QUIRK_LIGHTNVM, },
2958 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2959 .driver_data = NVME_QUIRK_LIGHTNVM, },
2960 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2961 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2962 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2965 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2967 static struct pci_driver nvme_driver = {
2969 .id_table = nvme_id_table,
2970 .probe = nvme_probe,
2971 .remove = nvme_remove,
2972 .shutdown = nvme_shutdown,
2974 .pm = &nvme_dev_pm_ops,
2976 .sriov_configure = pci_sriov_configure_simple,
2977 .err_handler = &nvme_err_handler,
2980 static int __init nvme_init(void)
2982 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2983 return pci_register_driver(&nvme_driver);
2986 static void __exit nvme_exit(void)
2988 pci_unregister_driver(&nvme_driver);
2989 flush_workqueue(nvme_wq);
2994 MODULE_LICENSE("GPL");
2995 MODULE_VERSION("1.0");
2996 module_init(nvme_init);
2997 module_exit(nvme_exit);