2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #define pr_fmt(fmt) "AMD-Vi: " fmt
21 #define dev_fmt(fmt) pr_fmt(fmt)
23 #include <linux/ratelimit.h>
24 #include <linux/pci.h>
25 #include <linux/acpi.h>
26 #include <linux/amba/bus.h>
27 #include <linux/platform_device.h>
28 #include <linux/pci-ats.h>
29 #include <linux/bitmap.h>
30 #include <linux/slab.h>
31 #include <linux/debugfs.h>
32 #include <linux/scatterlist.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dma-direct.h>
35 #include <linux/iommu-helper.h>
36 #include <linux/iommu.h>
37 #include <linux/delay.h>
38 #include <linux/amd-iommu.h>
39 #include <linux/notifier.h>
40 #include <linux/export.h>
41 #include <linux/irq.h>
42 #include <linux/msi.h>
43 #include <linux/dma-contiguous.h>
44 #include <linux/irqdomain.h>
45 #include <linux/percpu.h>
46 #include <linux/iova.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/io_apic.h>
50 #include <asm/hw_irq.h>
51 #include <asm/msidef.h>
52 #include <asm/proto.h>
53 #include <asm/iommu.h>
57 #include "amd_iommu_proto.h"
58 #include "amd_iommu_types.h"
59 #include "irq_remapping.h"
61 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
63 #define LOOP_TIMEOUT 100000
65 /* IO virtual address start page frame number */
66 #define IOVA_START_PFN (1)
67 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
69 /* Reserved IOVA ranges */
70 #define MSI_RANGE_START (0xfee00000)
71 #define MSI_RANGE_END (0xfeefffff)
72 #define HT_RANGE_START (0xfd00000000ULL)
73 #define HT_RANGE_END (0xffffffffffULL)
76 * This bitmap is used to advertise the page sizes our hardware support
77 * to the IOMMU core, which will then use this information to split
78 * physically contiguous memory regions it is mapping into page sizes
81 * 512GB Pages are not supported due to a hardware bug
83 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
85 static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
86 static DEFINE_SPINLOCK(pd_bitmap_lock);
88 /* List of all available dev_data structures */
89 static LLIST_HEAD(dev_data_list);
91 LIST_HEAD(ioapic_map);
93 LIST_HEAD(acpihid_map);
96 * Domain for untranslated devices - only allocated
97 * if iommu=pt passed on kernel cmd line.
99 const struct iommu_ops amd_iommu_ops;
101 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
102 int amd_iommu_max_glx_val = -1;
104 static const struct dma_map_ops amd_iommu_dma_ops;
107 * general struct to manage commands send to an IOMMU
113 struct kmem_cache *amd_iommu_irq_cache;
115 static void update_domain(struct protection_domain *domain);
116 static int protection_domain_init(struct protection_domain *domain);
117 static void detach_device(struct device *dev);
118 static void iova_domain_flush_tlb(struct iova_domain *iovad);
121 * Data container for a dma_ops specific protection domain
123 struct dma_ops_domain {
124 /* generic protection domain information */
125 struct protection_domain domain;
128 struct iova_domain iovad;
131 static struct iova_domain reserved_iova_ranges;
132 static struct lock_class_key reserved_rbtree_key;
134 /****************************************************************************
138 ****************************************************************************/
140 static inline int match_hid_uid(struct device *dev,
141 struct acpihid_map_entry *entry)
143 struct acpi_device *adev = ACPI_COMPANION(dev);
144 const char *hid, *uid;
149 hid = acpi_device_hid(adev);
150 uid = acpi_device_uid(adev);
156 return strcmp(hid, entry->hid);
159 return strcmp(hid, entry->hid);
161 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
164 static inline u16 get_pci_device_id(struct device *dev)
166 struct pci_dev *pdev = to_pci_dev(dev);
168 return PCI_DEVID(pdev->bus->number, pdev->devfn);
171 static inline int get_acpihid_device_id(struct device *dev,
172 struct acpihid_map_entry **entry)
174 struct acpihid_map_entry *p;
176 list_for_each_entry(p, &acpihid_map, list) {
177 if (!match_hid_uid(dev, p)) {
186 static inline int get_device_id(struct device *dev)
191 devid = get_pci_device_id(dev);
193 devid = get_acpihid_device_id(dev, NULL);
198 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
200 return container_of(dom, struct protection_domain, domain);
203 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
205 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
206 return container_of(domain, struct dma_ops_domain, domain);
209 static struct iommu_dev_data *alloc_dev_data(u16 devid)
211 struct iommu_dev_data *dev_data;
213 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
217 dev_data->devid = devid;
218 ratelimit_default_init(&dev_data->rs);
220 llist_add(&dev_data->dev_data_list, &dev_data_list);
224 static struct iommu_dev_data *search_dev_data(u16 devid)
226 struct iommu_dev_data *dev_data;
227 struct llist_node *node;
229 if (llist_empty(&dev_data_list))
232 node = dev_data_list.first;
233 llist_for_each_entry(dev_data, node, dev_data_list) {
234 if (dev_data->devid == devid)
241 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
243 *(u16 *)data = alias;
247 static u16 get_alias(struct device *dev)
249 struct pci_dev *pdev = to_pci_dev(dev);
250 u16 devid, ivrs_alias, pci_alias;
252 /* The callers make sure that get_device_id() does not fail here */
253 devid = get_device_id(dev);
255 /* For ACPI HID devices, we simply return the devid as such */
256 if (!dev_is_pci(dev))
259 ivrs_alias = amd_iommu_alias_table[devid];
261 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
263 if (ivrs_alias == pci_alias)
269 * The IVRS is fairly reliable in telling us about aliases, but it
270 * can't know about every screwy device. If we don't have an IVRS
271 * reported alias, use the PCI reported alias. In that case we may
272 * still need to initialize the rlookup and dev_table entries if the
273 * alias is to a non-existent device.
275 if (ivrs_alias == devid) {
276 if (!amd_iommu_rlookup_table[pci_alias]) {
277 amd_iommu_rlookup_table[pci_alias] =
278 amd_iommu_rlookup_table[devid];
279 memcpy(amd_iommu_dev_table[pci_alias].data,
280 amd_iommu_dev_table[devid].data,
281 sizeof(amd_iommu_dev_table[pci_alias].data));
287 pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
288 "for device [%04x:%04x], kernel reported alias "
289 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
290 PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
291 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
292 PCI_FUNC(pci_alias));
295 * If we don't have a PCI DMA alias and the IVRS alias is on the same
296 * bus, then the IVRS table may know about a quirk that we don't.
298 if (pci_alias == devid &&
299 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
300 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
301 pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
302 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
308 static struct iommu_dev_data *find_dev_data(u16 devid)
310 struct iommu_dev_data *dev_data;
311 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
313 dev_data = search_dev_data(devid);
315 if (dev_data == NULL) {
316 dev_data = alloc_dev_data(devid);
320 if (translation_pre_enabled(iommu))
321 dev_data->defer_attach = true;
327 struct iommu_dev_data *get_dev_data(struct device *dev)
329 return dev->archdata.iommu;
331 EXPORT_SYMBOL(get_dev_data);
334 * Find or create an IOMMU group for a acpihid device.
336 static struct iommu_group *acpihid_device_group(struct device *dev)
338 struct acpihid_map_entry *p, *entry = NULL;
341 devid = get_acpihid_device_id(dev, &entry);
343 return ERR_PTR(devid);
345 list_for_each_entry(p, &acpihid_map, list) {
346 if ((devid == p->devid) && p->group)
347 entry->group = p->group;
351 entry->group = generic_device_group(dev);
353 iommu_group_ref_get(entry->group);
358 static bool pci_iommuv2_capable(struct pci_dev *pdev)
360 static const int caps[] = {
363 PCI_EXT_CAP_ID_PASID,
367 if (pci_ats_disabled())
370 for (i = 0; i < 3; ++i) {
371 pos = pci_find_ext_capability(pdev, caps[i]);
379 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
381 struct iommu_dev_data *dev_data;
383 dev_data = get_dev_data(&pdev->dev);
385 return dev_data->errata & (1 << erratum) ? true : false;
389 * This function checks if the driver got a valid device from the caller to
390 * avoid dereferencing invalid pointers.
392 static bool check_device(struct device *dev)
396 if (!dev || !dev->dma_mask)
399 devid = get_device_id(dev);
403 /* Out of our scope? */
404 if (devid > amd_iommu_last_bdf)
407 if (amd_iommu_rlookup_table[devid] == NULL)
413 static void init_iommu_group(struct device *dev)
415 struct iommu_group *group;
417 group = iommu_group_get_for_dev(dev);
421 iommu_group_put(group);
424 static int iommu_init_device(struct device *dev)
426 struct iommu_dev_data *dev_data;
427 struct amd_iommu *iommu;
430 if (dev->archdata.iommu)
433 devid = get_device_id(dev);
437 iommu = amd_iommu_rlookup_table[devid];
439 dev_data = find_dev_data(devid);
443 dev_data->alias = get_alias(dev);
446 * By default we use passthrough mode for IOMMUv2 capable device.
447 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
448 * invalid address), we ignore the capability for the device so
449 * it'll be forced to go into translation mode.
451 if ((iommu_pass_through || !amd_iommu_force_isolation) &&
452 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
453 struct amd_iommu *iommu;
455 iommu = amd_iommu_rlookup_table[dev_data->devid];
456 dev_data->iommu_v2 = iommu->is_iommu_v2;
459 dev->archdata.iommu = dev_data;
461 iommu_device_link(&iommu->iommu, dev);
466 static void iommu_ignore_device(struct device *dev)
471 devid = get_device_id(dev);
475 alias = get_alias(dev);
477 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
478 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
480 amd_iommu_rlookup_table[devid] = NULL;
481 amd_iommu_rlookup_table[alias] = NULL;
484 static void iommu_uninit_device(struct device *dev)
486 struct iommu_dev_data *dev_data;
487 struct amd_iommu *iommu;
490 devid = get_device_id(dev);
494 iommu = amd_iommu_rlookup_table[devid];
496 dev_data = search_dev_data(devid);
500 if (dev_data->domain)
503 iommu_device_unlink(&iommu->iommu, dev);
505 iommu_group_remove_device(dev);
511 * We keep dev_data around for unplugged devices and reuse it when the
512 * device is re-plugged - not doing so would introduce a ton of races.
516 /****************************************************************************
518 * Interrupt handling functions
520 ****************************************************************************/
522 static void dump_dte_entry(u16 devid)
526 for (i = 0; i < 4; ++i)
527 pr_err("DTE[%d]: %016llx\n", i,
528 amd_iommu_dev_table[devid].data[i]);
531 static void dump_command(unsigned long phys_addr)
533 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
536 for (i = 0; i < 4; ++i)
537 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
540 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
541 u64 address, int flags)
543 struct iommu_dev_data *dev_data = NULL;
544 struct pci_dev *pdev;
546 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
549 dev_data = get_dev_data(&pdev->dev);
551 if (dev_data && __ratelimit(&dev_data->rs)) {
552 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
553 domain_id, address, flags);
554 } else if (printk_ratelimit()) {
555 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
556 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
557 domain_id, address, flags);
564 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
566 struct device *dev = iommu->iommu.dev;
567 int type, devid, pasid, flags, tag;
568 volatile u32 *event = __evt;
573 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
574 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
575 pasid = PPR_PASID(*(u64 *)&event[0]);
576 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
577 address = (u64)(((u64)event[3]) << 32) | event[2];
580 /* Did we hit the erratum? */
581 if (++count == LOOP_TIMEOUT) {
582 pr_err("No event written to event log\n");
589 if (type == EVENT_TYPE_IO_FAULT) {
590 amd_iommu_report_page_fault(devid, pasid, address, flags);
595 case EVENT_TYPE_ILL_DEV:
596 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 pasid, address, flags);
599 dump_dte_entry(devid);
601 case EVENT_TYPE_DEV_TAB_ERR:
602 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603 "address=0x%llx flags=0x%04x]\n",
604 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
607 case EVENT_TYPE_PAGE_TAB_ERR:
608 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
609 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 pasid, address, flags);
612 case EVENT_TYPE_ILL_CMD:
613 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
614 dump_command(address);
616 case EVENT_TYPE_CMD_HARD_ERR:
617 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
620 case EVENT_TYPE_IOTLB_INV_TO:
621 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
622 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
625 case EVENT_TYPE_INV_DEV_REQ:
626 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 pasid, address, flags);
630 case EVENT_TYPE_INV_PPR_REQ:
631 pasid = ((event[0] >> 16) & 0xFFFF)
632 | ((event[1] << 6) & 0xF0000);
633 tag = event[1] & 0x03FF;
634 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
635 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 pasid, address, flags);
639 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640 event[0], event[1], event[2], event[3]);
643 memset(__evt, 0, 4 * sizeof(u32));
646 static void iommu_poll_events(struct amd_iommu *iommu)
650 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
651 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
653 while (head != tail) {
654 iommu_print_event(iommu, iommu->evt_buf + head);
655 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
658 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
661 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
663 struct amd_iommu_fault fault;
665 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
666 pr_err_ratelimited("Unknown PPR request received\n");
670 fault.address = raw[1];
671 fault.pasid = PPR_PASID(raw[0]);
672 fault.device_id = PPR_DEVID(raw[0]);
673 fault.tag = PPR_TAG(raw[0]);
674 fault.flags = PPR_FLAGS(raw[0]);
676 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
679 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
683 if (iommu->ppr_log == NULL)
686 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
687 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
689 while (head != tail) {
694 raw = (u64 *)(iommu->ppr_log + head);
697 * Hardware bug: Interrupt may arrive before the entry is
698 * written to memory. If this happens we need to wait for the
701 for (i = 0; i < LOOP_TIMEOUT; ++i) {
702 if (PPR_REQ_TYPE(raw[0]) != 0)
707 /* Avoid memcpy function-call overhead */
712 * To detect the hardware bug we need to clear the entry
715 raw[0] = raw[1] = 0UL;
717 /* Update head pointer of hardware ring-buffer */
718 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
719 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
721 /* Handle PPR entry */
722 iommu_handle_ppr_entry(iommu, entry);
724 /* Refresh ring-buffer information */
725 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
726 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
730 #ifdef CONFIG_IRQ_REMAP
731 static int (*iommu_ga_log_notifier)(u32);
733 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
735 iommu_ga_log_notifier = notifier;
739 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
741 static void iommu_poll_ga_log(struct amd_iommu *iommu)
743 u32 head, tail, cnt = 0;
745 if (iommu->ga_log == NULL)
748 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
749 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
751 while (head != tail) {
755 raw = (u64 *)(iommu->ga_log + head);
758 /* Avoid memcpy function-call overhead */
761 /* Update head pointer of hardware ring-buffer */
762 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
763 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
765 /* Handle GA entry */
766 switch (GA_REQ_TYPE(log_entry)) {
768 if (!iommu_ga_log_notifier)
771 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
772 __func__, GA_DEVID(log_entry),
775 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
776 pr_err("GA log notifier failed.\n");
783 #endif /* CONFIG_IRQ_REMAP */
785 #define AMD_IOMMU_INT_MASK \
786 (MMIO_STATUS_EVT_INT_MASK | \
787 MMIO_STATUS_PPR_INT_MASK | \
788 MMIO_STATUS_GALOG_INT_MASK)
790 irqreturn_t amd_iommu_int_thread(int irq, void *data)
792 struct amd_iommu *iommu = (struct amd_iommu *) data;
793 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
795 while (status & AMD_IOMMU_INT_MASK) {
796 /* Enable EVT and PPR and GA interrupts again */
797 writel(AMD_IOMMU_INT_MASK,
798 iommu->mmio_base + MMIO_STATUS_OFFSET);
800 if (status & MMIO_STATUS_EVT_INT_MASK) {
801 pr_devel("Processing IOMMU Event Log\n");
802 iommu_poll_events(iommu);
805 if (status & MMIO_STATUS_PPR_INT_MASK) {
806 pr_devel("Processing IOMMU PPR Log\n");
807 iommu_poll_ppr_log(iommu);
810 #ifdef CONFIG_IRQ_REMAP
811 if (status & MMIO_STATUS_GALOG_INT_MASK) {
812 pr_devel("Processing IOMMU GA Log\n");
813 iommu_poll_ga_log(iommu);
818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts.
825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits
830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
835 irqreturn_t amd_iommu_int_handler(int irq, void *data)
837 return IRQ_WAKE_THREAD;
840 /****************************************************************************
842 * IOMMU command queuing functions
844 ****************************************************************************/
846 static int wait_on_sem(volatile u64 *sem)
850 while (*sem == 0 && i < LOOP_TIMEOUT) {
855 if (i == LOOP_TIMEOUT) {
856 pr_alert("Completion-Wait loop timed out\n");
863 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 struct iommu_cmd *cmd)
868 target = iommu->cmd_buf + iommu->cmd_buf_tail;
870 iommu->cmd_buf_tail += sizeof(*cmd);
871 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
873 /* Copy command to buffer */
874 memcpy(target, cmd, sizeof(*cmd));
876 /* Tell the IOMMU about it */
877 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
880 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
882 u64 paddr = iommu_virt_to_phys((void *)address);
884 WARN_ON(address & 0x7ULL);
886 memset(cmd, 0, sizeof(*cmd));
887 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
888 cmd->data[1] = upper_32_bits(paddr);
890 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
893 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
895 memset(cmd, 0, sizeof(*cmd));
896 cmd->data[0] = devid;
897 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
900 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
901 size_t size, u16 domid, int pde)
906 pages = iommu_num_pages(address, size, PAGE_SIZE);
911 * If we have to flush more than one page, flush all
912 * TLB entries for this domain
914 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
918 address &= PAGE_MASK;
920 memset(cmd, 0, sizeof(*cmd));
921 cmd->data[1] |= domid;
922 cmd->data[2] = lower_32_bits(address);
923 cmd->data[3] = upper_32_bits(address);
924 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
925 if (s) /* size bit - we flush more than one 4kb page */
926 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
927 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
928 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
931 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
932 u64 address, size_t size)
937 pages = iommu_num_pages(address, size, PAGE_SIZE);
942 * If we have to flush more than one page, flush all
943 * TLB entries for this domain
945 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
949 address &= PAGE_MASK;
951 memset(cmd, 0, sizeof(*cmd));
952 cmd->data[0] = devid;
953 cmd->data[0] |= (qdep & 0xff) << 24;
954 cmd->data[1] = devid;
955 cmd->data[2] = lower_32_bits(address);
956 cmd->data[3] = upper_32_bits(address);
957 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
959 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
962 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
963 u64 address, bool size)
965 memset(cmd, 0, sizeof(*cmd));
967 address &= ~(0xfffULL);
969 cmd->data[0] = pasid;
970 cmd->data[1] = domid;
971 cmd->data[2] = lower_32_bits(address);
972 cmd->data[3] = upper_32_bits(address);
973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
974 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
976 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
977 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
980 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
981 int qdep, u64 address, bool size)
983 memset(cmd, 0, sizeof(*cmd));
985 address &= ~(0xfffULL);
987 cmd->data[0] = devid;
988 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
989 cmd->data[0] |= (qdep & 0xff) << 24;
990 cmd->data[1] = devid;
991 cmd->data[1] |= (pasid & 0xff) << 16;
992 cmd->data[2] = lower_32_bits(address);
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
994 cmd->data[3] = upper_32_bits(address);
996 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
997 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1000 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1001 int status, int tag, bool gn)
1003 memset(cmd, 0, sizeof(*cmd));
1005 cmd->data[0] = devid;
1007 cmd->data[1] = pasid;
1008 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1010 cmd->data[3] = tag & 0x1ff;
1011 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1013 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1016 static void build_inv_all(struct iommu_cmd *cmd)
1018 memset(cmd, 0, sizeof(*cmd));
1019 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1022 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1024 memset(cmd, 0, sizeof(*cmd));
1025 cmd->data[0] = devid;
1026 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1030 * Writes the command to the IOMMUs command buffer and informs the
1031 * hardware about the new command.
1033 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1034 struct iommu_cmd *cmd,
1037 unsigned int count = 0;
1038 u32 left, next_tail;
1040 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1042 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1045 /* Skip udelay() the first time around */
1047 if (count == LOOP_TIMEOUT) {
1048 pr_err("Command buffer timeout\n");
1055 /* Update head and recheck remaining space */
1056 iommu->cmd_buf_head = readl(iommu->mmio_base +
1057 MMIO_CMD_HEAD_OFFSET);
1062 copy_cmd_to_buffer(iommu, cmd);
1064 /* Do we need to make sure all commands are processed? */
1065 iommu->need_sync = sync;
1070 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1071 struct iommu_cmd *cmd,
1074 unsigned long flags;
1077 raw_spin_lock_irqsave(&iommu->lock, flags);
1078 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1079 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1084 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1086 return iommu_queue_command_sync(iommu, cmd, true);
1090 * This function queues a completion wait command into the command
1091 * buffer of an IOMMU
1093 static int iommu_completion_wait(struct amd_iommu *iommu)
1095 struct iommu_cmd cmd;
1096 unsigned long flags;
1099 if (!iommu->need_sync)
1103 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1105 raw_spin_lock_irqsave(&iommu->lock, flags);
1109 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1113 ret = wait_on_sem(&iommu->cmd_sem);
1116 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1121 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1123 struct iommu_cmd cmd;
1125 build_inv_dte(&cmd, devid);
1127 return iommu_queue_command(iommu, &cmd);
1130 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1134 for (devid = 0; devid <= 0xffff; ++devid)
1135 iommu_flush_dte(iommu, devid);
1137 iommu_completion_wait(iommu);
1141 * This function uses heavy locking and may disable irqs for some time. But
1142 * this is no issue because it is only called during resume.
1144 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1148 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1149 struct iommu_cmd cmd;
1150 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1152 iommu_queue_command(iommu, &cmd);
1155 iommu_completion_wait(iommu);
1158 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1160 struct iommu_cmd cmd;
1162 build_inv_all(&cmd);
1164 iommu_queue_command(iommu, &cmd);
1165 iommu_completion_wait(iommu);
1168 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1170 struct iommu_cmd cmd;
1172 build_inv_irt(&cmd, devid);
1174 iommu_queue_command(iommu, &cmd);
1177 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1181 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1182 iommu_flush_irt(iommu, devid);
1184 iommu_completion_wait(iommu);
1187 void iommu_flush_all_caches(struct amd_iommu *iommu)
1189 if (iommu_feature(iommu, FEATURE_IA)) {
1190 amd_iommu_flush_all(iommu);
1192 amd_iommu_flush_dte_all(iommu);
1193 amd_iommu_flush_irt_all(iommu);
1194 amd_iommu_flush_tlb_all(iommu);
1199 * Command send function for flushing on-device TLB
1201 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1202 u64 address, size_t size)
1204 struct amd_iommu *iommu;
1205 struct iommu_cmd cmd;
1208 qdep = dev_data->ats.qdep;
1209 iommu = amd_iommu_rlookup_table[dev_data->devid];
1211 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1213 return iommu_queue_command(iommu, &cmd);
1217 * Command send function for invalidating a device table entry
1219 static int device_flush_dte(struct iommu_dev_data *dev_data)
1221 struct amd_iommu *iommu;
1225 iommu = amd_iommu_rlookup_table[dev_data->devid];
1226 alias = dev_data->alias;
1228 ret = iommu_flush_dte(iommu, dev_data->devid);
1229 if (!ret && alias != dev_data->devid)
1230 ret = iommu_flush_dte(iommu, alias);
1234 if (dev_data->ats.enabled)
1235 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1241 * TLB invalidation function which is called from the mapping functions.
1242 * It invalidates a single PTE if the range to flush is within a single
1243 * page. Otherwise it flushes the whole TLB of the IOMMU.
1245 static void __domain_flush_pages(struct protection_domain *domain,
1246 u64 address, size_t size, int pde)
1248 struct iommu_dev_data *dev_data;
1249 struct iommu_cmd cmd;
1252 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1254 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1255 if (!domain->dev_iommu[i])
1259 * Devices of this domain are behind this IOMMU
1260 * We need a TLB flush
1262 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1265 list_for_each_entry(dev_data, &domain->dev_list, list) {
1267 if (!dev_data->ats.enabled)
1270 ret |= device_flush_iotlb(dev_data, address, size);
1276 static void domain_flush_pages(struct protection_domain *domain,
1277 u64 address, size_t size)
1279 __domain_flush_pages(domain, address, size, 0);
1282 /* Flush the whole IO/TLB for a given protection domain */
1283 static void domain_flush_tlb(struct protection_domain *domain)
1285 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1288 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1289 static void domain_flush_tlb_pde(struct protection_domain *domain)
1291 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1294 static void domain_flush_complete(struct protection_domain *domain)
1298 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1299 if (domain && !domain->dev_iommu[i])
1303 * Devices of this domain are behind this IOMMU
1304 * We need to wait for completion of all commands.
1306 iommu_completion_wait(amd_iommus[i]);
1312 * This function flushes the DTEs for all devices in domain
1314 static void domain_flush_devices(struct protection_domain *domain)
1316 struct iommu_dev_data *dev_data;
1318 list_for_each_entry(dev_data, &domain->dev_list, list)
1319 device_flush_dte(dev_data);
1322 /****************************************************************************
1324 * The functions below are used the create the page table mappings for
1325 * unity mapped regions.
1327 ****************************************************************************/
1329 static void free_page_list(struct page *freelist)
1331 while (freelist != NULL) {
1332 unsigned long p = (unsigned long)page_address(freelist);
1333 freelist = freelist->freelist;
1338 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1340 struct page *p = virt_to_page((void *)pt);
1342 p->freelist = freelist;
1347 #define DEFINE_FREE_PT_FN(LVL, FN) \
1348 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1356 for (i = 0; i < 512; ++i) { \
1357 /* PTE present? */ \
1358 if (!IOMMU_PTE_PRESENT(pt[i])) \
1362 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1363 PM_PTE_LEVEL(pt[i]) == 7) \
1366 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1367 freelist = FN(p, freelist); \
1370 return free_pt_page((unsigned long)pt, freelist); \
1373 DEFINE_FREE_PT_FN(l2, free_pt_page)
1374 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1375 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1376 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1377 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1379 static struct page *free_sub_pt(unsigned long root, int mode,
1380 struct page *freelist)
1383 case PAGE_MODE_NONE:
1384 case PAGE_MODE_7_LEVEL:
1386 case PAGE_MODE_1_LEVEL:
1387 freelist = free_pt_page(root, freelist);
1389 case PAGE_MODE_2_LEVEL:
1390 freelist = free_pt_l2(root, freelist);
1392 case PAGE_MODE_3_LEVEL:
1393 freelist = free_pt_l3(root, freelist);
1395 case PAGE_MODE_4_LEVEL:
1396 freelist = free_pt_l4(root, freelist);
1398 case PAGE_MODE_5_LEVEL:
1399 freelist = free_pt_l5(root, freelist);
1401 case PAGE_MODE_6_LEVEL:
1402 freelist = free_pt_l6(root, freelist);
1411 static void free_pagetable(struct protection_domain *domain)
1413 unsigned long root = (unsigned long)domain->pt_root;
1414 struct page *freelist = NULL;
1416 BUG_ON(domain->mode < PAGE_MODE_NONE ||
1417 domain->mode > PAGE_MODE_6_LEVEL);
1419 free_sub_pt(root, domain->mode, freelist);
1421 free_page_list(freelist);
1425 * This function is used to add another level to an IO page table. Adding
1426 * another level increases the size of the address space by 9 bits to a size up
1429 static bool increase_address_space(struct protection_domain *domain,
1434 if (domain->mode == PAGE_MODE_6_LEVEL)
1435 /* address space already 64 bit large */
1438 pte = (void *)get_zeroed_page(gfp);
1442 *pte = PM_LEVEL_PDE(domain->mode,
1443 iommu_virt_to_phys(domain->pt_root));
1444 domain->pt_root = pte;
1446 domain->updated = true;
1451 static u64 *alloc_pte(struct protection_domain *domain,
1452 unsigned long address,
1453 unsigned long page_size,
1460 BUG_ON(!is_power_of_2(page_size));
1462 while (address > PM_LEVEL_SIZE(domain->mode))
1463 increase_address_space(domain, gfp);
1465 level = domain->mode - 1;
1466 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1467 address = PAGE_SIZE_ALIGN(address, page_size);
1468 end_lvl = PAGE_SIZE_LEVEL(page_size);
1470 while (level > end_lvl) {
1475 pte_level = PM_PTE_LEVEL(__pte);
1477 if (!IOMMU_PTE_PRESENT(__pte) ||
1478 pte_level == PAGE_MODE_7_LEVEL) {
1479 page = (u64 *)get_zeroed_page(gfp);
1483 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1485 /* pte could have been changed somewhere. */
1486 if (cmpxchg64(pte, __pte, __npte) != __pte)
1487 free_page((unsigned long)page);
1488 else if (pte_level == PAGE_MODE_7_LEVEL)
1489 domain->updated = true;
1494 /* No level skipping support yet */
1495 if (pte_level != level)
1500 pte = IOMMU_PTE_PAGE(__pte);
1502 if (pte_page && level == end_lvl)
1505 pte = &pte[PM_LEVEL_INDEX(level, address)];
1512 * This function checks if there is a PTE for a given dma address. If
1513 * there is one, it returns the pointer to it.
1515 static u64 *fetch_pte(struct protection_domain *domain,
1516 unsigned long address,
1517 unsigned long *page_size)
1524 if (address > PM_LEVEL_SIZE(domain->mode))
1527 level = domain->mode - 1;
1528 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1529 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1534 if (!IOMMU_PTE_PRESENT(*pte))
1538 if (PM_PTE_LEVEL(*pte) == 7 ||
1539 PM_PTE_LEVEL(*pte) == 0)
1542 /* No level skipping support yet */
1543 if (PM_PTE_LEVEL(*pte) != level)
1548 /* Walk to the next level */
1549 pte = IOMMU_PTE_PAGE(*pte);
1550 pte = &pte[PM_LEVEL_INDEX(level, address)];
1551 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1554 if (PM_PTE_LEVEL(*pte) == 0x07) {
1555 unsigned long pte_mask;
1558 * If we have a series of large PTEs, make
1559 * sure to return a pointer to the first one.
1561 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1562 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1563 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1569 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1574 while (cmpxchg64(pte, pteval, 0) != pteval) {
1575 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1579 if (!IOMMU_PTE_PRESENT(pteval))
1582 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1583 mode = IOMMU_PTE_MODE(pteval);
1585 return free_sub_pt(pt, mode, freelist);
1589 * Generic mapping functions. It maps a physical address into a DMA
1590 * address space. It allocates the page table pages if necessary.
1591 * In the future it can be extended to a generic mapping function
1592 * supporting all features of AMD IOMMU page tables like level skipping
1593 * and full 64 bit address spaces.
1595 static int iommu_map_page(struct protection_domain *dom,
1596 unsigned long bus_addr,
1597 unsigned long phys_addr,
1598 unsigned long page_size,
1602 struct page *freelist = NULL;
1606 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1607 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1609 if (!(prot & IOMMU_PROT_MASK))
1612 count = PAGE_SIZE_PTE_COUNT(page_size);
1613 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1618 for (i = 0; i < count; ++i)
1619 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1621 if (freelist != NULL)
1622 dom->updated = true;
1625 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1626 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1628 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1630 if (prot & IOMMU_PROT_IR)
1631 __pte |= IOMMU_PTE_IR;
1632 if (prot & IOMMU_PROT_IW)
1633 __pte |= IOMMU_PTE_IW;
1635 for (i = 0; i < count; ++i)
1640 /* Everything flushed out, free pages now */
1641 free_page_list(freelist);
1646 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1647 unsigned long bus_addr,
1648 unsigned long page_size)
1650 unsigned long long unmapped;
1651 unsigned long unmap_size;
1654 BUG_ON(!is_power_of_2(page_size));
1658 while (unmapped < page_size) {
1660 pte = fetch_pte(dom, bus_addr, &unmap_size);
1665 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1666 for (i = 0; i < count; i++)
1670 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1671 unmapped += unmap_size;
1674 BUG_ON(unmapped && !is_power_of_2(unmapped));
1679 /****************************************************************************
1681 * The next functions belong to the address allocator for the dma_ops
1682 * interface functions.
1684 ****************************************************************************/
1687 static unsigned long dma_ops_alloc_iova(struct device *dev,
1688 struct dma_ops_domain *dma_dom,
1689 unsigned int pages, u64 dma_mask)
1691 unsigned long pfn = 0;
1693 pages = __roundup_pow_of_two(pages);
1695 if (dma_mask > DMA_BIT_MASK(32))
1696 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1697 IOVA_PFN(DMA_BIT_MASK(32)), false);
1700 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1701 IOVA_PFN(dma_mask), true);
1703 return (pfn << PAGE_SHIFT);
1706 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1707 unsigned long address,
1710 pages = __roundup_pow_of_two(pages);
1711 address >>= PAGE_SHIFT;
1713 free_iova_fast(&dma_dom->iovad, address, pages);
1716 /****************************************************************************
1718 * The next functions belong to the domain allocation. A domain is
1719 * allocated for every IOMMU as the default domain. If device isolation
1720 * is enabled, every device get its own domain. The most important thing
1721 * about domains is the page table mapping the DMA address space they
1724 ****************************************************************************/
1727 * This function adds a protection domain to the global protection domain list
1729 static void add_domain_to_list(struct protection_domain *domain)
1731 unsigned long flags;
1733 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1734 list_add(&domain->list, &amd_iommu_pd_list);
1735 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1739 * This function removes a protection domain to the global
1740 * protection domain list
1742 static void del_domain_from_list(struct protection_domain *domain)
1744 unsigned long flags;
1746 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1747 list_del(&domain->list);
1748 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1751 static u16 domain_id_alloc(void)
1755 spin_lock(&pd_bitmap_lock);
1756 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1758 if (id > 0 && id < MAX_DOMAIN_ID)
1759 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1762 spin_unlock(&pd_bitmap_lock);
1767 static void domain_id_free(int id)
1769 spin_lock(&pd_bitmap_lock);
1770 if (id > 0 && id < MAX_DOMAIN_ID)
1771 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1772 spin_unlock(&pd_bitmap_lock);
1775 static void free_gcr3_tbl_level1(u64 *tbl)
1780 for (i = 0; i < 512; ++i) {
1781 if (!(tbl[i] & GCR3_VALID))
1784 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1786 free_page((unsigned long)ptr);
1790 static void free_gcr3_tbl_level2(u64 *tbl)
1795 for (i = 0; i < 512; ++i) {
1796 if (!(tbl[i] & GCR3_VALID))
1799 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1801 free_gcr3_tbl_level1(ptr);
1805 static void free_gcr3_table(struct protection_domain *domain)
1807 if (domain->glx == 2)
1808 free_gcr3_tbl_level2(domain->gcr3_tbl);
1809 else if (domain->glx == 1)
1810 free_gcr3_tbl_level1(domain->gcr3_tbl);
1812 BUG_ON(domain->glx != 0);
1814 free_page((unsigned long)domain->gcr3_tbl);
1817 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1819 domain_flush_tlb(&dom->domain);
1820 domain_flush_complete(&dom->domain);
1823 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1825 struct dma_ops_domain *dom;
1827 dom = container_of(iovad, struct dma_ops_domain, iovad);
1829 dma_ops_domain_flush_tlb(dom);
1833 * Free a domain, only used if something went wrong in the
1834 * allocation path and we need to free an already allocated page table
1836 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1841 del_domain_from_list(&dom->domain);
1843 put_iova_domain(&dom->iovad);
1845 free_pagetable(&dom->domain);
1848 domain_id_free(dom->domain.id);
1854 * Allocates a new protection domain usable for the dma_ops functions.
1855 * It also initializes the page table and the address allocator data
1856 * structures required for the dma_ops interface
1858 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1860 struct dma_ops_domain *dma_dom;
1862 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1866 if (protection_domain_init(&dma_dom->domain))
1869 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1870 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1871 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1872 if (!dma_dom->domain.pt_root)
1875 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1877 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1880 /* Initialize reserved ranges */
1881 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1883 add_domain_to_list(&dma_dom->domain);
1888 dma_ops_domain_free(dma_dom);
1894 * little helper function to check whether a given protection domain is a
1897 static bool dma_ops_domain(struct protection_domain *domain)
1899 return domain->flags & PD_DMA_OPS_MASK;
1902 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1908 if (domain->mode != PAGE_MODE_NONE)
1909 pte_root = iommu_virt_to_phys(domain->pt_root);
1911 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1912 << DEV_ENTRY_MODE_SHIFT;
1913 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1915 flags = amd_iommu_dev_table[devid].data[1];
1918 flags |= DTE_FLAG_IOTLB;
1921 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1923 if (iommu_feature(iommu, FEATURE_EPHSUP))
1924 pte_root |= 1ULL << DEV_ENTRY_PPR;
1927 if (domain->flags & PD_IOMMUV2_MASK) {
1928 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1929 u64 glx = domain->glx;
1932 pte_root |= DTE_FLAG_GV;
1933 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1935 /* First mask out possible old values for GCR3 table */
1936 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1939 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1942 /* Encode GCR3 table into DTE */
1943 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1946 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1949 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1953 flags &= ~DEV_DOMID_MASK;
1954 flags |= domain->id;
1956 amd_iommu_dev_table[devid].data[1] = flags;
1957 amd_iommu_dev_table[devid].data[0] = pte_root;
1960 static void clear_dte_entry(u16 devid)
1962 /* remove entry from the device table seen by the hardware */
1963 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1964 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1966 amd_iommu_apply_erratum_63(devid);
1969 static void do_attach(struct iommu_dev_data *dev_data,
1970 struct protection_domain *domain)
1972 struct amd_iommu *iommu;
1976 iommu = amd_iommu_rlookup_table[dev_data->devid];
1977 alias = dev_data->alias;
1978 ats = dev_data->ats.enabled;
1980 /* Update data structures */
1981 dev_data->domain = domain;
1982 list_add(&dev_data->list, &domain->dev_list);
1984 /* Do reference counting */
1985 domain->dev_iommu[iommu->index] += 1;
1986 domain->dev_cnt += 1;
1988 /* Update device table */
1989 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1990 if (alias != dev_data->devid)
1991 set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1993 device_flush_dte(dev_data);
1996 static void do_detach(struct iommu_dev_data *dev_data)
1998 struct protection_domain *domain = dev_data->domain;
1999 struct amd_iommu *iommu;
2002 iommu = amd_iommu_rlookup_table[dev_data->devid];
2003 alias = dev_data->alias;
2005 /* Update data structures */
2006 dev_data->domain = NULL;
2007 list_del(&dev_data->list);
2008 clear_dte_entry(dev_data->devid);
2009 if (alias != dev_data->devid)
2010 clear_dte_entry(alias);
2012 /* Flush the DTE entry */
2013 device_flush_dte(dev_data);
2016 domain_flush_tlb_pde(domain);
2018 /* Wait for the flushes to finish */
2019 domain_flush_complete(domain);
2021 /* decrease reference counters - needs to happen after the flushes */
2022 domain->dev_iommu[iommu->index] -= 1;
2023 domain->dev_cnt -= 1;
2027 * If a device is not yet associated with a domain, this function makes the
2028 * device visible in the domain
2030 static int __attach_device(struct iommu_dev_data *dev_data,
2031 struct protection_domain *domain)
2036 spin_lock(&domain->lock);
2039 if (dev_data->domain != NULL)
2042 /* Attach alias group root */
2043 do_attach(dev_data, domain);
2050 spin_unlock(&domain->lock);
2056 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2058 pci_disable_ats(pdev);
2059 pci_disable_pri(pdev);
2060 pci_disable_pasid(pdev);
2063 /* FIXME: Change generic reset-function to do the same */
2064 static int pri_reset_while_enabled(struct pci_dev *pdev)
2069 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2073 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2074 control |= PCI_PRI_CTRL_RESET;
2075 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2080 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2085 /* FIXME: Hardcode number of outstanding requests for now */
2087 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2089 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2091 /* Only allow access to user-accessible pages */
2092 ret = pci_enable_pasid(pdev, 0);
2096 /* First reset the PRI state of the device */
2097 ret = pci_reset_pri(pdev);
2102 ret = pci_enable_pri(pdev, reqs);
2107 ret = pri_reset_while_enabled(pdev);
2112 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2119 pci_disable_pri(pdev);
2120 pci_disable_pasid(pdev);
2125 /* FIXME: Move this to PCI code */
2126 #define PCI_PRI_TLP_OFF (1 << 15)
2128 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2133 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2137 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2139 return (status & PCI_PRI_TLP_OFF) ? true : false;
2143 * If a device is not yet associated with a domain, this function makes the
2144 * device visible in the domain
2146 static int attach_device(struct device *dev,
2147 struct protection_domain *domain)
2149 struct pci_dev *pdev;
2150 struct iommu_dev_data *dev_data;
2151 unsigned long flags;
2154 dev_data = get_dev_data(dev);
2156 if (!dev_is_pci(dev))
2157 goto skip_ats_check;
2159 pdev = to_pci_dev(dev);
2160 if (domain->flags & PD_IOMMUV2_MASK) {
2161 if (!dev_data->passthrough)
2164 if (dev_data->iommu_v2) {
2165 if (pdev_iommuv2_enable(pdev) != 0)
2168 dev_data->ats.enabled = true;
2169 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2170 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2172 } else if (amd_iommu_iotlb_sup &&
2173 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2174 dev_data->ats.enabled = true;
2175 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2179 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2180 ret = __attach_device(dev_data, domain);
2181 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2184 * We might boot into a crash-kernel here. The crashed kernel
2185 * left the caches in the IOMMU dirty. So we have to flush
2186 * here to evict all dirty stuff.
2188 domain_flush_tlb_pde(domain);
2194 * Removes a device from a protection domain (unlocked)
2196 static void __detach_device(struct iommu_dev_data *dev_data)
2198 struct protection_domain *domain;
2200 domain = dev_data->domain;
2202 spin_lock(&domain->lock);
2204 do_detach(dev_data);
2206 spin_unlock(&domain->lock);
2210 * Removes a device from a protection domain (with devtable_lock held)
2212 static void detach_device(struct device *dev)
2214 struct protection_domain *domain;
2215 struct iommu_dev_data *dev_data;
2216 unsigned long flags;
2218 dev_data = get_dev_data(dev);
2219 domain = dev_data->domain;
2222 * First check if the device is still attached. It might already
2223 * be detached from its domain because the generic
2224 * iommu_detach_group code detached it and we try again here in
2225 * our alias handling.
2227 if (WARN_ON(!dev_data->domain))
2230 /* lock device table */
2231 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2232 __detach_device(dev_data);
2233 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2235 if (!dev_is_pci(dev))
2238 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2239 pdev_iommuv2_disable(to_pci_dev(dev));
2240 else if (dev_data->ats.enabled)
2241 pci_disable_ats(to_pci_dev(dev));
2243 dev_data->ats.enabled = false;
2246 static int amd_iommu_add_device(struct device *dev)
2248 struct iommu_dev_data *dev_data;
2249 struct iommu_domain *domain;
2250 struct amd_iommu *iommu;
2253 if (!check_device(dev) || get_dev_data(dev))
2256 devid = get_device_id(dev);
2260 iommu = amd_iommu_rlookup_table[devid];
2262 ret = iommu_init_device(dev);
2264 if (ret != -ENOTSUPP)
2265 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2267 iommu_ignore_device(dev);
2268 dev->dma_ops = NULL;
2271 init_iommu_group(dev);
2273 dev_data = get_dev_data(dev);
2277 if (iommu_pass_through || dev_data->iommu_v2)
2278 iommu_request_dm_for_dev(dev);
2280 /* Domains are initialized for this device - have a look what we ended up with */
2281 domain = iommu_get_domain_for_dev(dev);
2282 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2283 dev_data->passthrough = true;
2285 dev->dma_ops = &amd_iommu_dma_ops;
2288 iommu_completion_wait(iommu);
2293 static void amd_iommu_remove_device(struct device *dev)
2295 struct amd_iommu *iommu;
2298 if (!check_device(dev))
2301 devid = get_device_id(dev);
2305 iommu = amd_iommu_rlookup_table[devid];
2307 iommu_uninit_device(dev);
2308 iommu_completion_wait(iommu);
2311 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2313 if (dev_is_pci(dev))
2314 return pci_device_group(dev);
2316 return acpihid_device_group(dev);
2319 /*****************************************************************************
2321 * The next functions belong to the dma_ops mapping/unmapping code.
2323 *****************************************************************************/
2326 * In the dma_ops path we only have the struct device. This function
2327 * finds the corresponding IOMMU, the protection domain and the
2328 * requestor id for a given device.
2329 * If the device is not yet associated with a domain this is also done
2332 static struct protection_domain *get_domain(struct device *dev)
2334 struct protection_domain *domain;
2335 struct iommu_domain *io_domain;
2337 if (!check_device(dev))
2338 return ERR_PTR(-EINVAL);
2340 domain = get_dev_data(dev)->domain;
2341 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2342 get_dev_data(dev)->defer_attach = false;
2343 io_domain = iommu_get_domain_for_dev(dev);
2344 domain = to_pdomain(io_domain);
2345 attach_device(dev, domain);
2348 return ERR_PTR(-EBUSY);
2350 if (!dma_ops_domain(domain))
2351 return ERR_PTR(-EBUSY);
2356 static void update_device_table(struct protection_domain *domain)
2358 struct iommu_dev_data *dev_data;
2360 list_for_each_entry(dev_data, &domain->dev_list, list) {
2361 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2362 dev_data->iommu_v2);
2364 if (dev_data->devid == dev_data->alias)
2367 /* There is an alias, update device table entry for it */
2368 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2369 dev_data->iommu_v2);
2373 static void update_domain(struct protection_domain *domain)
2375 if (!domain->updated)
2378 update_device_table(domain);
2380 domain_flush_devices(domain);
2381 domain_flush_tlb_pde(domain);
2383 domain->updated = false;
2386 static int dir2prot(enum dma_data_direction direction)
2388 if (direction == DMA_TO_DEVICE)
2389 return IOMMU_PROT_IR;
2390 else if (direction == DMA_FROM_DEVICE)
2391 return IOMMU_PROT_IW;
2392 else if (direction == DMA_BIDIRECTIONAL)
2393 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2399 * This function contains common code for mapping of a physically
2400 * contiguous memory region into DMA address space. It is used by all
2401 * mapping functions provided with this IOMMU driver.
2402 * Must be called with the domain lock held.
2404 static dma_addr_t __map_single(struct device *dev,
2405 struct dma_ops_domain *dma_dom,
2408 enum dma_data_direction direction,
2411 dma_addr_t offset = paddr & ~PAGE_MASK;
2412 dma_addr_t address, start, ret;
2417 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2420 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2424 prot = dir2prot(direction);
2427 for (i = 0; i < pages; ++i) {
2428 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2429 PAGE_SIZE, prot, GFP_ATOMIC);
2438 if (unlikely(amd_iommu_np_cache)) {
2439 domain_flush_pages(&dma_dom->domain, address, size);
2440 domain_flush_complete(&dma_dom->domain);
2448 for (--i; i >= 0; --i) {
2450 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2453 domain_flush_tlb(&dma_dom->domain);
2454 domain_flush_complete(&dma_dom->domain);
2456 dma_ops_free_iova(dma_dom, address, pages);
2458 return DMA_MAPPING_ERROR;
2462 * Does the reverse of the __map_single function. Must be called with
2463 * the domain lock held too
2465 static void __unmap_single(struct dma_ops_domain *dma_dom,
2466 dma_addr_t dma_addr,
2470 dma_addr_t i, start;
2473 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2474 dma_addr &= PAGE_MASK;
2477 for (i = 0; i < pages; ++i) {
2478 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2482 if (amd_iommu_unmap_flush) {
2483 domain_flush_tlb(&dma_dom->domain);
2484 domain_flush_complete(&dma_dom->domain);
2485 dma_ops_free_iova(dma_dom, dma_addr, pages);
2487 pages = __roundup_pow_of_two(pages);
2488 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2493 * The exported map_single function for dma_ops.
2495 static dma_addr_t map_page(struct device *dev, struct page *page,
2496 unsigned long offset, size_t size,
2497 enum dma_data_direction dir,
2498 unsigned long attrs)
2500 phys_addr_t paddr = page_to_phys(page) + offset;
2501 struct protection_domain *domain;
2502 struct dma_ops_domain *dma_dom;
2505 domain = get_domain(dev);
2506 if (PTR_ERR(domain) == -EINVAL)
2507 return (dma_addr_t)paddr;
2508 else if (IS_ERR(domain))
2509 return DMA_MAPPING_ERROR;
2511 dma_mask = *dev->dma_mask;
2512 dma_dom = to_dma_ops_domain(domain);
2514 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2518 * The exported unmap_single function for dma_ops.
2520 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2521 enum dma_data_direction dir, unsigned long attrs)
2523 struct protection_domain *domain;
2524 struct dma_ops_domain *dma_dom;
2526 domain = get_domain(dev);
2530 dma_dom = to_dma_ops_domain(domain);
2532 __unmap_single(dma_dom, dma_addr, size, dir);
2535 static int sg_num_pages(struct device *dev,
2536 struct scatterlist *sglist,
2539 unsigned long mask, boundary_size;
2540 struct scatterlist *s;
2543 mask = dma_get_seg_boundary(dev);
2544 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2545 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2547 for_each_sg(sglist, s, nelems, i) {
2550 s->dma_address = npages << PAGE_SHIFT;
2551 p = npages % boundary_size;
2552 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2553 if (p + n > boundary_size)
2554 npages += boundary_size - p;
2562 * The exported map_sg function for dma_ops (handles scatter-gather
2565 static int map_sg(struct device *dev, struct scatterlist *sglist,
2566 int nelems, enum dma_data_direction direction,
2567 unsigned long attrs)
2569 int mapped_pages = 0, npages = 0, prot = 0, i;
2570 struct protection_domain *domain;
2571 struct dma_ops_domain *dma_dom;
2572 struct scatterlist *s;
2573 unsigned long address;
2577 domain = get_domain(dev);
2581 dma_dom = to_dma_ops_domain(domain);
2582 dma_mask = *dev->dma_mask;
2584 npages = sg_num_pages(dev, sglist, nelems);
2586 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2587 if (address == DMA_MAPPING_ERROR)
2590 prot = dir2prot(direction);
2592 /* Map all sg entries */
2593 for_each_sg(sglist, s, nelems, i) {
2594 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2596 for (j = 0; j < pages; ++j) {
2597 unsigned long bus_addr, phys_addr;
2599 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2600 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2601 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2609 /* Everything is mapped - write the right values into s->dma_address */
2610 for_each_sg(sglist, s, nelems, i) {
2612 * Add in the remaining piece of the scatter-gather offset that
2613 * was masked out when we were determining the physical address
2614 * via (sg_phys(s) & PAGE_MASK) earlier.
2616 s->dma_address += address + (s->offset & ~PAGE_MASK);
2617 s->dma_length = s->length;
2623 dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2626 for_each_sg(sglist, s, nelems, i) {
2627 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2629 for (j = 0; j < pages; ++j) {
2630 unsigned long bus_addr;
2632 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2633 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2635 if (--mapped_pages == 0)
2641 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2648 * The exported map_sg function for dma_ops (handles scatter-gather
2651 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2652 int nelems, enum dma_data_direction dir,
2653 unsigned long attrs)
2655 struct protection_domain *domain;
2656 struct dma_ops_domain *dma_dom;
2657 unsigned long startaddr;
2660 domain = get_domain(dev);
2664 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2665 dma_dom = to_dma_ops_domain(domain);
2666 npages = sg_num_pages(dev, sglist, nelems);
2668 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2672 * The exported alloc_coherent function for dma_ops.
2674 static void *alloc_coherent(struct device *dev, size_t size,
2675 dma_addr_t *dma_addr, gfp_t flag,
2676 unsigned long attrs)
2678 u64 dma_mask = dev->coherent_dma_mask;
2679 struct protection_domain *domain;
2680 struct dma_ops_domain *dma_dom;
2683 domain = get_domain(dev);
2684 if (PTR_ERR(domain) == -EINVAL) {
2685 page = alloc_pages(flag, get_order(size));
2686 *dma_addr = page_to_phys(page);
2687 return page_address(page);
2688 } else if (IS_ERR(domain))
2691 dma_dom = to_dma_ops_domain(domain);
2692 size = PAGE_ALIGN(size);
2693 dma_mask = dev->coherent_dma_mask;
2694 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2697 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2699 if (!gfpflags_allow_blocking(flag))
2702 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2703 get_order(size), flag & __GFP_NOWARN);
2709 dma_mask = *dev->dma_mask;
2711 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2712 size, DMA_BIDIRECTIONAL, dma_mask);
2714 if (*dma_addr == DMA_MAPPING_ERROR)
2717 return page_address(page);
2721 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2722 __free_pages(page, get_order(size));
2728 * The exported free_coherent function for dma_ops.
2730 static void free_coherent(struct device *dev, size_t size,
2731 void *virt_addr, dma_addr_t dma_addr,
2732 unsigned long attrs)
2734 struct protection_domain *domain;
2735 struct dma_ops_domain *dma_dom;
2738 page = virt_to_page(virt_addr);
2739 size = PAGE_ALIGN(size);
2741 domain = get_domain(dev);
2745 dma_dom = to_dma_ops_domain(domain);
2747 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2750 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2751 __free_pages(page, get_order(size));
2755 * This function is called by the DMA layer to find out if we can handle a
2756 * particular device. It is part of the dma_ops.
2758 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2760 if (!dma_direct_supported(dev, mask))
2762 return check_device(dev);
2765 static const struct dma_map_ops amd_iommu_dma_ops = {
2766 .alloc = alloc_coherent,
2767 .free = free_coherent,
2768 .map_page = map_page,
2769 .unmap_page = unmap_page,
2771 .unmap_sg = unmap_sg,
2772 .dma_supported = amd_iommu_dma_supported,
2775 static int init_reserved_iova_ranges(void)
2777 struct pci_dev *pdev = NULL;
2780 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2782 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2783 &reserved_rbtree_key);
2785 /* MSI memory range */
2786 val = reserve_iova(&reserved_iova_ranges,
2787 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2789 pr_err("Reserving MSI range failed\n");
2793 /* HT memory range */
2794 val = reserve_iova(&reserved_iova_ranges,
2795 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2797 pr_err("Reserving HT range failed\n");
2802 * Memory used for PCI resources
2803 * FIXME: Check whether we can reserve the PCI-hole completly
2805 for_each_pci_dev(pdev) {
2808 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2809 struct resource *r = &pdev->resource[i];
2811 if (!(r->flags & IORESOURCE_MEM))
2814 val = reserve_iova(&reserved_iova_ranges,
2818 pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2827 int __init amd_iommu_init_api(void)
2831 ret = iova_cache_get();
2835 ret = init_reserved_iova_ranges();
2839 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2842 #ifdef CONFIG_ARM_AMBA
2843 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2847 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2854 int __init amd_iommu_init_dma_ops(void)
2856 swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2859 if (amd_iommu_unmap_flush)
2860 pr_info("IO/TLB flush on unmap enabled\n");
2862 pr_info("Lazy IO/TLB flushing enabled\n");
2868 /*****************************************************************************
2870 * The following functions belong to the exported interface of AMD IOMMU
2872 * This interface allows access to lower level functions of the IOMMU
2873 * like protection domain handling and assignement of devices to domains
2874 * which is not possible with the dma_ops interface.
2876 *****************************************************************************/
2878 static void cleanup_domain(struct protection_domain *domain)
2880 struct iommu_dev_data *entry;
2881 unsigned long flags;
2883 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2885 while (!list_empty(&domain->dev_list)) {
2886 entry = list_first_entry(&domain->dev_list,
2887 struct iommu_dev_data, list);
2888 BUG_ON(!entry->domain);
2889 __detach_device(entry);
2892 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2895 static void protection_domain_free(struct protection_domain *domain)
2900 del_domain_from_list(domain);
2903 domain_id_free(domain->id);
2908 static int protection_domain_init(struct protection_domain *domain)
2910 spin_lock_init(&domain->lock);
2911 mutex_init(&domain->api_lock);
2912 domain->id = domain_id_alloc();
2915 INIT_LIST_HEAD(&domain->dev_list);
2920 static struct protection_domain *protection_domain_alloc(void)
2922 struct protection_domain *domain;
2924 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2928 if (protection_domain_init(domain))
2931 add_domain_to_list(domain);
2941 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2943 struct protection_domain *pdomain;
2944 struct dma_ops_domain *dma_domain;
2947 case IOMMU_DOMAIN_UNMANAGED:
2948 pdomain = protection_domain_alloc();
2952 pdomain->mode = PAGE_MODE_3_LEVEL;
2953 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2954 if (!pdomain->pt_root) {
2955 protection_domain_free(pdomain);
2959 pdomain->domain.geometry.aperture_start = 0;
2960 pdomain->domain.geometry.aperture_end = ~0ULL;
2961 pdomain->domain.geometry.force_aperture = true;
2964 case IOMMU_DOMAIN_DMA:
2965 dma_domain = dma_ops_domain_alloc();
2967 pr_err("Failed to allocate\n");
2970 pdomain = &dma_domain->domain;
2972 case IOMMU_DOMAIN_IDENTITY:
2973 pdomain = protection_domain_alloc();
2977 pdomain->mode = PAGE_MODE_NONE;
2983 return &pdomain->domain;
2986 static void amd_iommu_domain_free(struct iommu_domain *dom)
2988 struct protection_domain *domain;
2989 struct dma_ops_domain *dma_dom;
2991 domain = to_pdomain(dom);
2993 if (domain->dev_cnt > 0)
2994 cleanup_domain(domain);
2996 BUG_ON(domain->dev_cnt != 0);
3001 switch (dom->type) {
3002 case IOMMU_DOMAIN_DMA:
3003 /* Now release the domain */
3004 dma_dom = to_dma_ops_domain(domain);
3005 dma_ops_domain_free(dma_dom);
3008 if (domain->mode != PAGE_MODE_NONE)
3009 free_pagetable(domain);
3011 if (domain->flags & PD_IOMMUV2_MASK)
3012 free_gcr3_table(domain);
3014 protection_domain_free(domain);
3019 static void amd_iommu_detach_device(struct iommu_domain *dom,
3022 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3023 struct amd_iommu *iommu;
3026 if (!check_device(dev))
3029 devid = get_device_id(dev);
3033 if (dev_data->domain != NULL)
3036 iommu = amd_iommu_rlookup_table[devid];
3040 #ifdef CONFIG_IRQ_REMAP
3041 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3042 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3043 dev_data->use_vapic = 0;
3046 iommu_completion_wait(iommu);
3049 static int amd_iommu_attach_device(struct iommu_domain *dom,
3052 struct protection_domain *domain = to_pdomain(dom);
3053 struct iommu_dev_data *dev_data;
3054 struct amd_iommu *iommu;
3057 if (!check_device(dev))
3060 dev_data = dev->archdata.iommu;
3062 iommu = amd_iommu_rlookup_table[dev_data->devid];
3066 if (dev_data->domain)
3069 ret = attach_device(dev, domain);
3071 #ifdef CONFIG_IRQ_REMAP
3072 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3073 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3074 dev_data->use_vapic = 1;
3076 dev_data->use_vapic = 0;
3080 iommu_completion_wait(iommu);
3085 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3086 phys_addr_t paddr, size_t page_size, int iommu_prot)
3088 struct protection_domain *domain = to_pdomain(dom);
3092 if (domain->mode == PAGE_MODE_NONE)
3095 if (iommu_prot & IOMMU_READ)
3096 prot |= IOMMU_PROT_IR;
3097 if (iommu_prot & IOMMU_WRITE)
3098 prot |= IOMMU_PROT_IW;
3100 mutex_lock(&domain->api_lock);
3101 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3102 mutex_unlock(&domain->api_lock);
3107 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3110 struct protection_domain *domain = to_pdomain(dom);
3113 if (domain->mode == PAGE_MODE_NONE)
3116 mutex_lock(&domain->api_lock);
3117 unmap_size = iommu_unmap_page(domain, iova, page_size);
3118 mutex_unlock(&domain->api_lock);
3123 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3126 struct protection_domain *domain = to_pdomain(dom);
3127 unsigned long offset_mask, pte_pgsize;
3130 if (domain->mode == PAGE_MODE_NONE)
3133 pte = fetch_pte(domain, iova, &pte_pgsize);
3135 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3138 offset_mask = pte_pgsize - 1;
3139 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3141 return (__pte & ~offset_mask) | (iova & offset_mask);
3144 static bool amd_iommu_capable(enum iommu_cap cap)
3147 case IOMMU_CAP_CACHE_COHERENCY:
3149 case IOMMU_CAP_INTR_REMAP:
3150 return (irq_remapping_enabled == 1);
3151 case IOMMU_CAP_NOEXEC:
3160 static void amd_iommu_get_resv_regions(struct device *dev,
3161 struct list_head *head)
3163 struct iommu_resv_region *region;
3164 struct unity_map_entry *entry;
3167 devid = get_device_id(dev);
3171 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3175 if (devid < entry->devid_start || devid > entry->devid_end)
3178 type = IOMMU_RESV_DIRECT;
3179 length = entry->address_end - entry->address_start;
3180 if (entry->prot & IOMMU_PROT_IR)
3182 if (entry->prot & IOMMU_PROT_IW)
3183 prot |= IOMMU_WRITE;
3184 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3185 /* Exclusion range */
3186 type = IOMMU_RESV_RESERVED;
3188 region = iommu_alloc_resv_region(entry->address_start,
3189 length, prot, type);
3191 dev_err(dev, "Out of memory allocating dm-regions\n");
3194 list_add_tail(®ion->list, head);
3197 region = iommu_alloc_resv_region(MSI_RANGE_START,
3198 MSI_RANGE_END - MSI_RANGE_START + 1,
3202 list_add_tail(®ion->list, head);
3204 region = iommu_alloc_resv_region(HT_RANGE_START,
3205 HT_RANGE_END - HT_RANGE_START + 1,
3206 0, IOMMU_RESV_RESERVED);
3209 list_add_tail(®ion->list, head);
3212 static void amd_iommu_put_resv_regions(struct device *dev,
3213 struct list_head *head)
3215 struct iommu_resv_region *entry, *next;
3217 list_for_each_entry_safe(entry, next, head, list)
3221 static void amd_iommu_apply_resv_region(struct device *dev,
3222 struct iommu_domain *domain,
3223 struct iommu_resv_region *region)
3225 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3226 unsigned long start, end;
3228 start = IOVA_PFN(region->start);
3229 end = IOVA_PFN(region->start + region->length - 1);
3231 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3234 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3237 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3238 return dev_data->defer_attach;
3241 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3243 struct protection_domain *dom = to_pdomain(domain);
3245 domain_flush_tlb_pde(dom);
3246 domain_flush_complete(dom);
3249 static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3250 unsigned long iova, size_t size)
3254 const struct iommu_ops amd_iommu_ops = {
3255 .capable = amd_iommu_capable,
3256 .domain_alloc = amd_iommu_domain_alloc,
3257 .domain_free = amd_iommu_domain_free,
3258 .attach_dev = amd_iommu_attach_device,
3259 .detach_dev = amd_iommu_detach_device,
3260 .map = amd_iommu_map,
3261 .unmap = amd_iommu_unmap,
3262 .iova_to_phys = amd_iommu_iova_to_phys,
3263 .add_device = amd_iommu_add_device,
3264 .remove_device = amd_iommu_remove_device,
3265 .device_group = amd_iommu_device_group,
3266 .get_resv_regions = amd_iommu_get_resv_regions,
3267 .put_resv_regions = amd_iommu_put_resv_regions,
3268 .apply_resv_region = amd_iommu_apply_resv_region,
3269 .is_attach_deferred = amd_iommu_is_attach_deferred,
3270 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3271 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3272 .iotlb_range_add = amd_iommu_iotlb_range_add,
3273 .iotlb_sync = amd_iommu_flush_iotlb_all,
3276 /*****************************************************************************
3278 * The next functions do a basic initialization of IOMMU for pass through
3281 * In passthrough mode the IOMMU is initialized and enabled but not used for
3282 * DMA-API translation.
3284 *****************************************************************************/
3286 /* IOMMUv2 specific functions */
3287 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3289 return atomic_notifier_chain_register(&ppr_notifier, nb);
3291 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3293 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3295 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3297 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3299 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3301 struct protection_domain *domain = to_pdomain(dom);
3302 unsigned long flags;
3304 spin_lock_irqsave(&domain->lock, flags);
3306 /* Update data structure */
3307 domain->mode = PAGE_MODE_NONE;
3308 domain->updated = true;
3310 /* Make changes visible to IOMMUs */
3311 update_domain(domain);
3313 /* Page-table is not visible to IOMMU anymore, so free it */
3314 free_pagetable(domain);
3316 spin_unlock_irqrestore(&domain->lock, flags);
3318 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3320 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3322 struct protection_domain *domain = to_pdomain(dom);
3323 unsigned long flags;
3326 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3329 /* Number of GCR3 table levels required */
3330 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3333 if (levels > amd_iommu_max_glx_val)
3336 spin_lock_irqsave(&domain->lock, flags);
3339 * Save us all sanity checks whether devices already in the
3340 * domain support IOMMUv2. Just force that the domain has no
3341 * devices attached when it is switched into IOMMUv2 mode.
3344 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3348 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3349 if (domain->gcr3_tbl == NULL)
3352 domain->glx = levels;
3353 domain->flags |= PD_IOMMUV2_MASK;
3354 domain->updated = true;
3356 update_domain(domain);
3361 spin_unlock_irqrestore(&domain->lock, flags);
3365 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3367 static int __flush_pasid(struct protection_domain *domain, int pasid,
3368 u64 address, bool size)
3370 struct iommu_dev_data *dev_data;
3371 struct iommu_cmd cmd;
3374 if (!(domain->flags & PD_IOMMUV2_MASK))
3377 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3380 * IOMMU TLB needs to be flushed before Device TLB to
3381 * prevent device TLB refill from IOMMU TLB
3383 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3384 if (domain->dev_iommu[i] == 0)
3387 ret = iommu_queue_command(amd_iommus[i], &cmd);
3392 /* Wait until IOMMU TLB flushes are complete */
3393 domain_flush_complete(domain);
3395 /* Now flush device TLBs */
3396 list_for_each_entry(dev_data, &domain->dev_list, list) {
3397 struct amd_iommu *iommu;
3401 There might be non-IOMMUv2 capable devices in an IOMMUv2
3404 if (!dev_data->ats.enabled)
3407 qdep = dev_data->ats.qdep;
3408 iommu = amd_iommu_rlookup_table[dev_data->devid];
3410 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3411 qdep, address, size);
3413 ret = iommu_queue_command(iommu, &cmd);
3418 /* Wait until all device TLBs are flushed */
3419 domain_flush_complete(domain);
3428 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3431 return __flush_pasid(domain, pasid, address, false);
3434 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3437 struct protection_domain *domain = to_pdomain(dom);
3438 unsigned long flags;
3441 spin_lock_irqsave(&domain->lock, flags);
3442 ret = __amd_iommu_flush_page(domain, pasid, address);
3443 spin_unlock_irqrestore(&domain->lock, flags);
3447 EXPORT_SYMBOL(amd_iommu_flush_page);
3449 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3451 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3455 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3457 struct protection_domain *domain = to_pdomain(dom);
3458 unsigned long flags;
3461 spin_lock_irqsave(&domain->lock, flags);
3462 ret = __amd_iommu_flush_tlb(domain, pasid);
3463 spin_unlock_irqrestore(&domain->lock, flags);
3467 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3469 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3476 index = (pasid >> (9 * level)) & 0x1ff;
3482 if (!(*pte & GCR3_VALID)) {
3486 root = (void *)get_zeroed_page(GFP_ATOMIC);
3490 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3493 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3501 static int __set_gcr3(struct protection_domain *domain, int pasid,
3506 if (domain->mode != PAGE_MODE_NONE)
3509 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3513 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3515 return __amd_iommu_flush_tlb(domain, pasid);
3518 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3522 if (domain->mode != PAGE_MODE_NONE)
3525 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3531 return __amd_iommu_flush_tlb(domain, pasid);
3534 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3537 struct protection_domain *domain = to_pdomain(dom);
3538 unsigned long flags;
3541 spin_lock_irqsave(&domain->lock, flags);
3542 ret = __set_gcr3(domain, pasid, cr3);
3543 spin_unlock_irqrestore(&domain->lock, flags);
3547 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3549 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3551 struct protection_domain *domain = to_pdomain(dom);
3552 unsigned long flags;
3555 spin_lock_irqsave(&domain->lock, flags);
3556 ret = __clear_gcr3(domain, pasid);
3557 spin_unlock_irqrestore(&domain->lock, flags);
3561 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3563 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3564 int status, int tag)
3566 struct iommu_dev_data *dev_data;
3567 struct amd_iommu *iommu;
3568 struct iommu_cmd cmd;
3570 dev_data = get_dev_data(&pdev->dev);
3571 iommu = amd_iommu_rlookup_table[dev_data->devid];
3573 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3574 tag, dev_data->pri_tlp);
3576 return iommu_queue_command(iommu, &cmd);
3578 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3580 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3582 struct protection_domain *pdomain;
3584 pdomain = get_domain(&pdev->dev);
3585 if (IS_ERR(pdomain))
3588 /* Only return IOMMUv2 domains */
3589 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3592 return &pdomain->domain;
3594 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3596 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3598 struct iommu_dev_data *dev_data;
3600 if (!amd_iommu_v2_supported())
3603 dev_data = get_dev_data(&pdev->dev);
3604 dev_data->errata |= (1 << erratum);
3606 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3608 int amd_iommu_device_info(struct pci_dev *pdev,
3609 struct amd_iommu_device_info *info)
3614 if (pdev == NULL || info == NULL)
3617 if (!amd_iommu_v2_supported())
3620 memset(info, 0, sizeof(*info));
3622 if (!pci_ats_disabled()) {
3623 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3625 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3628 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3630 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3636 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3637 max_pasids = min(max_pasids, (1 << 20));
3639 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3640 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3642 features = pci_pasid_features(pdev);
3643 if (features & PCI_PASID_CAP_EXEC)
3644 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3645 if (features & PCI_PASID_CAP_PRIV)
3646 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3651 EXPORT_SYMBOL(amd_iommu_device_info);
3653 #ifdef CONFIG_IRQ_REMAP
3655 /*****************************************************************************
3657 * Interrupt Remapping Implementation
3659 *****************************************************************************/
3661 static struct irq_chip amd_ir_chip;
3662 static DEFINE_SPINLOCK(iommu_table_lock);
3664 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3668 dte = amd_iommu_dev_table[devid].data[2];
3669 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3670 dte |= iommu_virt_to_phys(table->table);
3671 dte |= DTE_IRQ_REMAP_INTCTL;
3672 dte |= DTE_IRQ_TABLE_LEN;
3673 dte |= DTE_IRQ_REMAP_ENABLE;
3675 amd_iommu_dev_table[devid].data[2] = dte;
3678 static struct irq_remap_table *get_irq_table(u16 devid)
3680 struct irq_remap_table *table;
3682 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3683 "%s: no iommu for devid %x\n", __func__, devid))
3686 table = irq_lookup_table[devid];
3687 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3693 static struct irq_remap_table *__alloc_irq_table(void)
3695 struct irq_remap_table *table;
3697 table = kzalloc(sizeof(*table), GFP_KERNEL);
3701 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3702 if (!table->table) {
3706 raw_spin_lock_init(&table->lock);
3708 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3709 memset(table->table, 0,
3710 MAX_IRQS_PER_TABLE * sizeof(u32));
3712 memset(table->table, 0,
3713 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3717 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3718 struct irq_remap_table *table)
3720 irq_lookup_table[devid] = table;
3721 set_dte_irq_entry(devid, table);
3722 iommu_flush_dte(iommu, devid);
3725 static struct irq_remap_table *alloc_irq_table(u16 devid)
3727 struct irq_remap_table *table = NULL;
3728 struct irq_remap_table *new_table = NULL;
3729 struct amd_iommu *iommu;
3730 unsigned long flags;
3733 spin_lock_irqsave(&iommu_table_lock, flags);
3735 iommu = amd_iommu_rlookup_table[devid];
3739 table = irq_lookup_table[devid];
3743 alias = amd_iommu_alias_table[devid];
3744 table = irq_lookup_table[alias];
3746 set_remap_table_entry(iommu, devid, table);
3749 spin_unlock_irqrestore(&iommu_table_lock, flags);
3751 /* Nothing there yet, allocate new irq remapping table */
3752 new_table = __alloc_irq_table();
3756 spin_lock_irqsave(&iommu_table_lock, flags);
3758 table = irq_lookup_table[devid];
3762 table = irq_lookup_table[alias];
3764 set_remap_table_entry(iommu, devid, table);
3771 set_remap_table_entry(iommu, devid, table);
3773 set_remap_table_entry(iommu, alias, table);
3776 iommu_completion_wait(iommu);
3779 spin_unlock_irqrestore(&iommu_table_lock, flags);
3782 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3788 static int alloc_irq_index(u16 devid, int count, bool align)
3790 struct irq_remap_table *table;
3791 int index, c, alignment = 1;
3792 unsigned long flags;
3793 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3798 table = alloc_irq_table(devid);
3803 alignment = roundup_pow_of_two(count);
3805 raw_spin_lock_irqsave(&table->lock, flags);
3807 /* Scan table for free entries */
3808 for (index = ALIGN(table->min_index, alignment), c = 0;
3809 index < MAX_IRQS_PER_TABLE;) {
3810 if (!iommu->irte_ops->is_allocated(table, index)) {
3814 index = ALIGN(index + 1, alignment);
3820 iommu->irte_ops->set_allocated(table, index - c + 1);
3832 raw_spin_unlock_irqrestore(&table->lock, flags);
3837 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3838 struct amd_ir_data *data)
3840 struct irq_remap_table *table;
3841 struct amd_iommu *iommu;
3842 unsigned long flags;
3843 struct irte_ga *entry;
3845 iommu = amd_iommu_rlookup_table[devid];
3849 table = get_irq_table(devid);
3853 raw_spin_lock_irqsave(&table->lock, flags);
3855 entry = (struct irte_ga *)table->table;
3856 entry = &entry[index];
3857 entry->lo.fields_remap.valid = 0;
3858 entry->hi.val = irte->hi.val;
3859 entry->lo.val = irte->lo.val;
3860 entry->lo.fields_remap.valid = 1;
3864 raw_spin_unlock_irqrestore(&table->lock, flags);
3866 iommu_flush_irt(iommu, devid);
3867 iommu_completion_wait(iommu);
3872 static int modify_irte(u16 devid, int index, union irte *irte)
3874 struct irq_remap_table *table;
3875 struct amd_iommu *iommu;
3876 unsigned long flags;
3878 iommu = amd_iommu_rlookup_table[devid];
3882 table = get_irq_table(devid);
3886 raw_spin_lock_irqsave(&table->lock, flags);
3887 table->table[index] = irte->val;
3888 raw_spin_unlock_irqrestore(&table->lock, flags);
3890 iommu_flush_irt(iommu, devid);
3891 iommu_completion_wait(iommu);
3896 static void free_irte(u16 devid, int index)
3898 struct irq_remap_table *table;
3899 struct amd_iommu *iommu;
3900 unsigned long flags;
3902 iommu = amd_iommu_rlookup_table[devid];
3906 table = get_irq_table(devid);
3910 raw_spin_lock_irqsave(&table->lock, flags);
3911 iommu->irte_ops->clear_allocated(table, index);
3912 raw_spin_unlock_irqrestore(&table->lock, flags);
3914 iommu_flush_irt(iommu, devid);
3915 iommu_completion_wait(iommu);
3918 static void irte_prepare(void *entry,
3919 u32 delivery_mode, u32 dest_mode,
3920 u8 vector, u32 dest_apicid, int devid)
3922 union irte *irte = (union irte *) entry;
3925 irte->fields.vector = vector;
3926 irte->fields.int_type = delivery_mode;
3927 irte->fields.destination = dest_apicid;
3928 irte->fields.dm = dest_mode;
3929 irte->fields.valid = 1;
3932 static void irte_ga_prepare(void *entry,
3933 u32 delivery_mode, u32 dest_mode,
3934 u8 vector, u32 dest_apicid, int devid)
3936 struct irte_ga *irte = (struct irte_ga *) entry;
3940 irte->lo.fields_remap.int_type = delivery_mode;
3941 irte->lo.fields_remap.dm = dest_mode;
3942 irte->hi.fields.vector = vector;
3943 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3944 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3945 irte->lo.fields_remap.valid = 1;
3948 static void irte_activate(void *entry, u16 devid, u16 index)
3950 union irte *irte = (union irte *) entry;
3952 irte->fields.valid = 1;
3953 modify_irte(devid, index, irte);
3956 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3958 struct irte_ga *irte = (struct irte_ga *) entry;
3960 irte->lo.fields_remap.valid = 1;
3961 modify_irte_ga(devid, index, irte, NULL);
3964 static void irte_deactivate(void *entry, u16 devid, u16 index)
3966 union irte *irte = (union irte *) entry;
3968 irte->fields.valid = 0;
3969 modify_irte(devid, index, irte);
3972 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3974 struct irte_ga *irte = (struct irte_ga *) entry;
3976 irte->lo.fields_remap.valid = 0;
3977 modify_irte_ga(devid, index, irte, NULL);
3980 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3981 u8 vector, u32 dest_apicid)
3983 union irte *irte = (union irte *) entry;
3985 irte->fields.vector = vector;
3986 irte->fields.destination = dest_apicid;
3987 modify_irte(devid, index, irte);
3990 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3991 u8 vector, u32 dest_apicid)
3993 struct irte_ga *irte = (struct irte_ga *) entry;
3995 if (!irte->lo.fields_remap.guest_mode) {
3996 irte->hi.fields.vector = vector;
3997 irte->lo.fields_remap.destination =
3998 APICID_TO_IRTE_DEST_LO(dest_apicid);
3999 irte->hi.fields.destination =
4000 APICID_TO_IRTE_DEST_HI(dest_apicid);
4001 modify_irte_ga(devid, index, irte, NULL);
4005 #define IRTE_ALLOCATED (~1U)
4006 static void irte_set_allocated(struct irq_remap_table *table, int index)
4008 table->table[index] = IRTE_ALLOCATED;
4011 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4013 struct irte_ga *ptr = (struct irte_ga *)table->table;
4014 struct irte_ga *irte = &ptr[index];
4016 memset(&irte->lo.val, 0, sizeof(u64));
4017 memset(&irte->hi.val, 0, sizeof(u64));
4018 irte->hi.fields.vector = 0xff;
4021 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4023 union irte *ptr = (union irte *)table->table;
4024 union irte *irte = &ptr[index];
4026 return irte->val != 0;
4029 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4031 struct irte_ga *ptr = (struct irte_ga *)table->table;
4032 struct irte_ga *irte = &ptr[index];
4034 return irte->hi.fields.vector != 0;
4037 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4039 table->table[index] = 0;
4042 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4044 struct irte_ga *ptr = (struct irte_ga *)table->table;
4045 struct irte_ga *irte = &ptr[index];
4047 memset(&irte->lo.val, 0, sizeof(u64));
4048 memset(&irte->hi.val, 0, sizeof(u64));
4051 static int get_devid(struct irq_alloc_info *info)
4055 switch (info->type) {
4056 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4057 devid = get_ioapic_devid(info->ioapic_id);
4059 case X86_IRQ_ALLOC_TYPE_HPET:
4060 devid = get_hpet_devid(info->hpet_id);
4062 case X86_IRQ_ALLOC_TYPE_MSI:
4063 case X86_IRQ_ALLOC_TYPE_MSIX:
4064 devid = get_device_id(&info->msi_dev->dev);
4074 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4076 struct amd_iommu *iommu;
4082 devid = get_devid(info);
4084 iommu = amd_iommu_rlookup_table[devid];
4086 return iommu->ir_domain;
4092 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4094 struct amd_iommu *iommu;
4100 switch (info->type) {
4101 case X86_IRQ_ALLOC_TYPE_MSI:
4102 case X86_IRQ_ALLOC_TYPE_MSIX:
4103 devid = get_device_id(&info->msi_dev->dev);
4107 iommu = amd_iommu_rlookup_table[devid];
4109 return iommu->msi_domain;
4118 struct irq_remap_ops amd_iommu_irq_ops = {
4119 .prepare = amd_iommu_prepare,
4120 .enable = amd_iommu_enable,
4121 .disable = amd_iommu_disable,
4122 .reenable = amd_iommu_reenable,
4123 .enable_faulting = amd_iommu_enable_faulting,
4124 .get_ir_irq_domain = get_ir_irq_domain,
4125 .get_irq_domain = get_irq_domain,
4128 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4129 struct irq_cfg *irq_cfg,
4130 struct irq_alloc_info *info,
4131 int devid, int index, int sub_handle)
4133 struct irq_2_irte *irte_info = &data->irq_2_irte;
4134 struct msi_msg *msg = &data->msi_entry;
4135 struct IO_APIC_route_entry *entry;
4136 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4141 data->irq_2_irte.devid = devid;
4142 data->irq_2_irte.index = index + sub_handle;
4143 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4144 apic->irq_dest_mode, irq_cfg->vector,
4145 irq_cfg->dest_apicid, devid);
4147 switch (info->type) {
4148 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4149 /* Setup IOAPIC entry */
4150 entry = info->ioapic_entry;
4151 info->ioapic_entry = NULL;
4152 memset(entry, 0, sizeof(*entry));
4153 entry->vector = index;
4155 entry->trigger = info->ioapic_trigger;
4156 entry->polarity = info->ioapic_polarity;
4157 /* Mask level triggered irqs. */
4158 if (info->ioapic_trigger)
4162 case X86_IRQ_ALLOC_TYPE_HPET:
4163 case X86_IRQ_ALLOC_TYPE_MSI:
4164 case X86_IRQ_ALLOC_TYPE_MSIX:
4165 msg->address_hi = MSI_ADDR_BASE_HI;
4166 msg->address_lo = MSI_ADDR_BASE_LO;
4167 msg->data = irte_info->index;
4176 struct amd_irte_ops irte_32_ops = {
4177 .prepare = irte_prepare,
4178 .activate = irte_activate,
4179 .deactivate = irte_deactivate,
4180 .set_affinity = irte_set_affinity,
4181 .set_allocated = irte_set_allocated,
4182 .is_allocated = irte_is_allocated,
4183 .clear_allocated = irte_clear_allocated,
4186 struct amd_irte_ops irte_128_ops = {
4187 .prepare = irte_ga_prepare,
4188 .activate = irte_ga_activate,
4189 .deactivate = irte_ga_deactivate,
4190 .set_affinity = irte_ga_set_affinity,
4191 .set_allocated = irte_ga_set_allocated,
4192 .is_allocated = irte_ga_is_allocated,
4193 .clear_allocated = irte_ga_clear_allocated,
4196 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4197 unsigned int nr_irqs, void *arg)
4199 struct irq_alloc_info *info = arg;
4200 struct irq_data *irq_data;
4201 struct amd_ir_data *data = NULL;
4202 struct irq_cfg *cfg;
4208 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4209 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4213 * With IRQ remapping enabled, don't need contiguous CPU vectors
4214 * to support multiple MSI interrupts.
4216 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4217 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4219 devid = get_devid(info);
4223 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4227 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4228 struct irq_remap_table *table;
4229 struct amd_iommu *iommu;
4231 table = alloc_irq_table(devid);
4233 if (!table->min_index) {
4235 * Keep the first 32 indexes free for IOAPIC
4238 table->min_index = 32;
4239 iommu = amd_iommu_rlookup_table[devid];
4240 for (i = 0; i < 32; ++i)
4241 iommu->irte_ops->set_allocated(table, i);
4243 WARN_ON(table->min_index != 32);
4244 index = info->ioapic_pin;
4249 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4251 index = alloc_irq_index(devid, nr_irqs, align);
4254 pr_warn("Failed to allocate IRTE\n");
4256 goto out_free_parent;
4259 for (i = 0; i < nr_irqs; i++) {
4260 irq_data = irq_domain_get_irq_data(domain, virq + i);
4261 cfg = irqd_cfg(irq_data);
4262 if (!irq_data || !cfg) {
4268 data = kzalloc(sizeof(*data), GFP_KERNEL);
4272 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4273 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4275 data->entry = kzalloc(sizeof(struct irte_ga),
4282 irq_data->hwirq = (devid << 16) + i;
4283 irq_data->chip_data = data;
4284 irq_data->chip = &amd_ir_chip;
4285 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4286 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4292 for (i--; i >= 0; i--) {
4293 irq_data = irq_domain_get_irq_data(domain, virq + i);
4295 kfree(irq_data->chip_data);
4297 for (i = 0; i < nr_irqs; i++)
4298 free_irte(devid, index + i);
4300 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4304 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4305 unsigned int nr_irqs)
4307 struct irq_2_irte *irte_info;
4308 struct irq_data *irq_data;
4309 struct amd_ir_data *data;
4312 for (i = 0; i < nr_irqs; i++) {
4313 irq_data = irq_domain_get_irq_data(domain, virq + i);
4314 if (irq_data && irq_data->chip_data) {
4315 data = irq_data->chip_data;
4316 irte_info = &data->irq_2_irte;
4317 free_irte(irte_info->devid, irte_info->index);
4322 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4325 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4326 struct amd_ir_data *ir_data,
4327 struct irq_2_irte *irte_info,
4328 struct irq_cfg *cfg);
4330 static int irq_remapping_activate(struct irq_domain *domain,
4331 struct irq_data *irq_data, bool reserve)
4333 struct amd_ir_data *data = irq_data->chip_data;
4334 struct irq_2_irte *irte_info = &data->irq_2_irte;
4335 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4336 struct irq_cfg *cfg = irqd_cfg(irq_data);
4341 iommu->irte_ops->activate(data->entry, irte_info->devid,
4343 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4347 static void irq_remapping_deactivate(struct irq_domain *domain,
4348 struct irq_data *irq_data)
4350 struct amd_ir_data *data = irq_data->chip_data;
4351 struct irq_2_irte *irte_info = &data->irq_2_irte;
4352 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4355 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4359 static const struct irq_domain_ops amd_ir_domain_ops = {
4360 .alloc = irq_remapping_alloc,
4361 .free = irq_remapping_free,
4362 .activate = irq_remapping_activate,
4363 .deactivate = irq_remapping_deactivate,
4366 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4368 struct amd_iommu *iommu;
4369 struct amd_iommu_pi_data *pi_data = vcpu_info;
4370 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4371 struct amd_ir_data *ir_data = data->chip_data;
4372 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4373 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4374 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4377 * This device has never been set up for guest mode.
4378 * we should not modify the IRTE
4380 if (!dev_data || !dev_data->use_vapic)
4383 pi_data->ir_data = ir_data;
4386 * SVM tries to set up for VAPIC mode, but we are in
4387 * legacy mode. So, we force legacy mode instead.
4389 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4390 pr_debug("%s: Fall back to using intr legacy remap\n",
4392 pi_data->is_guest_mode = false;
4395 iommu = amd_iommu_rlookup_table[irte_info->devid];
4399 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4400 if (pi_data->is_guest_mode) {
4402 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4403 irte->hi.fields.vector = vcpu_pi_info->vector;
4404 irte->lo.fields_vapic.ga_log_intr = 1;
4405 irte->lo.fields_vapic.guest_mode = 1;
4406 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4408 ir_data->cached_ga_tag = pi_data->ga_tag;
4411 struct irq_cfg *cfg = irqd_cfg(data);
4415 irte->hi.fields.vector = cfg->vector;
4416 irte->lo.fields_remap.guest_mode = 0;
4417 irte->lo.fields_remap.destination =
4418 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4419 irte->hi.fields.destination =
4420 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4421 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4422 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4425 * This communicates the ga_tag back to the caller
4426 * so that it can do all the necessary clean up.
4428 ir_data->cached_ga_tag = 0;
4431 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4435 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4436 struct amd_ir_data *ir_data,
4437 struct irq_2_irte *irte_info,
4438 struct irq_cfg *cfg)
4442 * Atomically updates the IRTE with the new destination, vector
4443 * and flushes the interrupt entry cache.
4445 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4446 irte_info->index, cfg->vector,
4450 static int amd_ir_set_affinity(struct irq_data *data,
4451 const struct cpumask *mask, bool force)
4453 struct amd_ir_data *ir_data = data->chip_data;
4454 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4455 struct irq_cfg *cfg = irqd_cfg(data);
4456 struct irq_data *parent = data->parent_data;
4457 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4463 ret = parent->chip->irq_set_affinity(parent, mask, force);
4464 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4467 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4469 * After this point, all the interrupts will start arriving
4470 * at the new destination. So, time to cleanup the previous
4471 * vector allocation.
4473 send_cleanup_vector(cfg);
4475 return IRQ_SET_MASK_OK_DONE;
4478 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4480 struct amd_ir_data *ir_data = irq_data->chip_data;
4482 *msg = ir_data->msi_entry;
4485 static struct irq_chip amd_ir_chip = {
4487 .irq_ack = apic_ack_irq,
4488 .irq_set_affinity = amd_ir_set_affinity,
4489 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4490 .irq_compose_msi_msg = ir_compose_msi_msg,
4493 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4495 struct fwnode_handle *fn;
4497 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4500 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4501 irq_domain_free_fwnode(fn);
4502 if (!iommu->ir_domain)
4505 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4506 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4512 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4514 unsigned long flags;
4515 struct amd_iommu *iommu;
4516 struct irq_remap_table *table;
4517 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4518 int devid = ir_data->irq_2_irte.devid;
4519 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4520 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4522 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4523 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4526 iommu = amd_iommu_rlookup_table[devid];
4530 table = get_irq_table(devid);
4534 raw_spin_lock_irqsave(&table->lock, flags);
4536 if (ref->lo.fields_vapic.guest_mode) {
4538 ref->lo.fields_vapic.destination =
4539 APICID_TO_IRTE_DEST_LO(cpu);
4540 ref->hi.fields.destination =
4541 APICID_TO_IRTE_DEST_HI(cpu);
4543 ref->lo.fields_vapic.is_run = is_run;
4547 raw_spin_unlock_irqrestore(&table->lock, flags);
4549 iommu_flush_irt(iommu, devid);
4550 iommu_completion_wait(iommu);
4553 EXPORT_SYMBOL(amd_iommu_update_ga);