]> Git Repo - linux.git/blob - fs/ext4/fast_commit.c
Merge tag 's390-6.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <[email protected]>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173         BUFFER_TRACE(bh, "");
174         if (uptodate) {
175                 ext4_debug("%s: Block %lld up-to-date",
176                            __func__, bh->b_blocknr);
177                 set_buffer_uptodate(bh);
178         } else {
179                 ext4_debug("%s: Block %lld not up-to-date",
180                            __func__, bh->b_blocknr);
181                 clear_buffer_uptodate(bh);
182         }
183
184         unlock_buffer(bh);
185 }
186
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189         struct ext4_inode_info *ei = EXT4_I(inode);
190
191         ei->i_fc_lblk_start = 0;
192         ei->i_fc_lblk_len = 0;
193 }
194
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197         struct ext4_inode_info *ei = EXT4_I(inode);
198
199         ext4_fc_reset_inode(inode);
200         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201         INIT_LIST_HEAD(&ei->i_fc_list);
202         INIT_LIST_HEAD(&ei->i_fc_dilist);
203         init_waitqueue_head(&ei->i_fc_wait);
204         atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211         wait_queue_head_t *wq;
212         struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216                         EXT4_STATE_FC_COMMITTING);
217         wq = bit_waitqueue(&ei->i_state_flags,
218                                 EXT4_STATE_FC_COMMITTING);
219 #else
220         DEFINE_WAIT_BIT(wait, &ei->i_flags,
221                         EXT4_STATE_FC_COMMITTING);
222         wq = bit_waitqueue(&ei->i_flags,
223                                 EXT4_STATE_FC_COMMITTING);
224 #endif
225         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228         schedule();
229         finish_wait(wq, &wait.wq_entry);
230 }
231
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234         return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235                 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247         struct ext4_inode_info *ei = EXT4_I(inode);
248
249         if (ext4_fc_disabled(inode->i_sb))
250                 return;
251
252 restart:
253         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254         if (list_empty(&ei->i_fc_list))
255                 goto out;
256
257         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258                 ext4_fc_wait_committing_inode(inode);
259                 goto restart;
260         }
261 out:
262         atomic_inc(&ei->i_fc_updates);
263         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271         struct ext4_inode_info *ei = EXT4_I(inode);
272
273         if (ext4_fc_disabled(inode->i_sb))
274                 return;
275
276         if (atomic_dec_and_test(&ei->i_fc_updates))
277                 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286         struct ext4_inode_info *ei = EXT4_I(inode);
287         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288         struct ext4_fc_dentry_update *fc_dentry;
289
290         if (ext4_fc_disabled(inode->i_sb))
291                 return;
292
293 restart:
294         spin_lock(&sbi->s_fc_lock);
295         if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296                 spin_unlock(&sbi->s_fc_lock);
297                 return;
298         }
299
300         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301                 ext4_fc_wait_committing_inode(inode);
302                 goto restart;
303         }
304
305         if (!list_empty(&ei->i_fc_list))
306                 list_del_init(&ei->i_fc_list);
307
308         /*
309          * Since this inode is getting removed, let's also remove all FC
310          * dentry create references, since it is not needed to log it anyways.
311          */
312         if (list_empty(&ei->i_fc_dilist)) {
313                 spin_unlock(&sbi->s_fc_lock);
314                 return;
315         }
316
317         fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318         WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319         list_del_init(&fc_dentry->fcd_list);
320         list_del_init(&fc_dentry->fcd_dilist);
321
322         WARN_ON(!list_empty(&ei->i_fc_dilist));
323         spin_unlock(&sbi->s_fc_lock);
324
325         release_dentry_name_snapshot(&fc_dentry->fcd_name);
326         kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
327
328         return;
329 }
330
331 /*
332  * Mark file system as fast commit ineligible, and record latest
333  * ineligible transaction tid. This means until the recorded
334  * transaction, commit operation would result in a full jbd2 commit.
335  */
336 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
337 {
338         struct ext4_sb_info *sbi = EXT4_SB(sb);
339         tid_t tid;
340         bool has_transaction = true;
341         bool is_ineligible;
342
343         if (ext4_fc_disabled(sb))
344                 return;
345
346         if (handle && !IS_ERR(handle))
347                 tid = handle->h_transaction->t_tid;
348         else {
349                 read_lock(&sbi->s_journal->j_state_lock);
350                 if (sbi->s_journal->j_running_transaction)
351                         tid = sbi->s_journal->j_running_transaction->t_tid;
352                 else
353                         has_transaction = false;
354                 read_unlock(&sbi->s_journal->j_state_lock);
355         }
356         spin_lock(&sbi->s_fc_lock);
357         is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
358         if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
359                 sbi->s_fc_ineligible_tid = tid;
360         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
361         spin_unlock(&sbi->s_fc_lock);
362         WARN_ON(reason >= EXT4_FC_REASON_MAX);
363         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
364 }
365
366 /*
367  * Generic fast commit tracking function. If this is the first time this we are
368  * called after a full commit, we initialize fast commit fields and then call
369  * __fc_track_fn() with update = 0. If we have already been called after a full
370  * commit, we pass update = 1. Based on that, the track function can determine
371  * if it needs to track a field for the first time or if it needs to just
372  * update the previously tracked value.
373  *
374  * If enqueue is set, this function enqueues the inode in fast commit list.
375  */
376 static int ext4_fc_track_template(
377         handle_t *handle, struct inode *inode,
378         int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
379         void *args, int enqueue)
380 {
381         bool update = false;
382         struct ext4_inode_info *ei = EXT4_I(inode);
383         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384         tid_t tid = 0;
385         int ret;
386
387         tid = handle->h_transaction->t_tid;
388         mutex_lock(&ei->i_fc_lock);
389         if (tid == ei->i_sync_tid) {
390                 update = true;
391         } else {
392                 ext4_fc_reset_inode(inode);
393                 ei->i_sync_tid = tid;
394         }
395         ret = __fc_track_fn(handle, inode, args, update);
396         mutex_unlock(&ei->i_fc_lock);
397
398         if (!enqueue)
399                 return ret;
400
401         spin_lock(&sbi->s_fc_lock);
402         if (list_empty(&EXT4_I(inode)->i_fc_list))
403                 list_add_tail(&EXT4_I(inode)->i_fc_list,
404                                 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
405                                  sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
406                                 &sbi->s_fc_q[FC_Q_STAGING] :
407                                 &sbi->s_fc_q[FC_Q_MAIN]);
408         spin_unlock(&sbi->s_fc_lock);
409
410         return ret;
411 }
412
413 struct __track_dentry_update_args {
414         struct dentry *dentry;
415         int op;
416 };
417
418 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
419 static int __track_dentry_update(handle_t *handle, struct inode *inode,
420                                  void *arg, bool update)
421 {
422         struct ext4_fc_dentry_update *node;
423         struct ext4_inode_info *ei = EXT4_I(inode);
424         struct __track_dentry_update_args *dentry_update =
425                 (struct __track_dentry_update_args *)arg;
426         struct dentry *dentry = dentry_update->dentry;
427         struct inode *dir = dentry->d_parent->d_inode;
428         struct super_block *sb = inode->i_sb;
429         struct ext4_sb_info *sbi = EXT4_SB(sb);
430
431         mutex_unlock(&ei->i_fc_lock);
432
433         if (IS_ENCRYPTED(dir)) {
434                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
435                                         handle);
436                 mutex_lock(&ei->i_fc_lock);
437                 return -EOPNOTSUPP;
438         }
439
440         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
441         if (!node) {
442                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
443                 mutex_lock(&ei->i_fc_lock);
444                 return -ENOMEM;
445         }
446
447         node->fcd_op = dentry_update->op;
448         node->fcd_parent = dir->i_ino;
449         node->fcd_ino = inode->i_ino;
450         take_dentry_name_snapshot(&node->fcd_name, dentry);
451         INIT_LIST_HEAD(&node->fcd_dilist);
452         spin_lock(&sbi->s_fc_lock);
453         if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
454                 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
455                 list_add_tail(&node->fcd_list,
456                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
457         else
458                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
459
460         /*
461          * This helps us keep a track of all fc_dentry updates which is part of
462          * this ext4 inode. So in case the inode is getting unlinked, before
463          * even we get a chance to fsync, we could remove all fc_dentry
464          * references while evicting the inode in ext4_fc_del().
465          * Also with this, we don't need to loop over all the inodes in
466          * sbi->s_fc_q to get the corresponding inode in
467          * ext4_fc_commit_dentry_updates().
468          */
469         if (dentry_update->op == EXT4_FC_TAG_CREAT) {
470                 WARN_ON(!list_empty(&ei->i_fc_dilist));
471                 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
472         }
473         spin_unlock(&sbi->s_fc_lock);
474         mutex_lock(&ei->i_fc_lock);
475
476         return 0;
477 }
478
479 void __ext4_fc_track_unlink(handle_t *handle,
480                 struct inode *inode, struct dentry *dentry)
481 {
482         struct __track_dentry_update_args args;
483         int ret;
484
485         args.dentry = dentry;
486         args.op = EXT4_FC_TAG_UNLINK;
487
488         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
489                                         (void *)&args, 0);
490         trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
491 }
492
493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
494 {
495         struct inode *inode = d_inode(dentry);
496
497         if (ext4_fc_disabled(inode->i_sb))
498                 return;
499
500         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
501                 return;
502
503         __ext4_fc_track_unlink(handle, inode, dentry);
504 }
505
506 void __ext4_fc_track_link(handle_t *handle,
507         struct inode *inode, struct dentry *dentry)
508 {
509         struct __track_dentry_update_args args;
510         int ret;
511
512         args.dentry = dentry;
513         args.op = EXT4_FC_TAG_LINK;
514
515         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
516                                         (void *)&args, 0);
517         trace_ext4_fc_track_link(handle, inode, dentry, ret);
518 }
519
520 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
521 {
522         struct inode *inode = d_inode(dentry);
523
524         if (ext4_fc_disabled(inode->i_sb))
525                 return;
526
527         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
528                 return;
529
530         __ext4_fc_track_link(handle, inode, dentry);
531 }
532
533 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
534                           struct dentry *dentry)
535 {
536         struct __track_dentry_update_args args;
537         int ret;
538
539         args.dentry = dentry;
540         args.op = EXT4_FC_TAG_CREAT;
541
542         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
543                                         (void *)&args, 0);
544         trace_ext4_fc_track_create(handle, inode, dentry, ret);
545 }
546
547 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
548 {
549         struct inode *inode = d_inode(dentry);
550
551         if (ext4_fc_disabled(inode->i_sb))
552                 return;
553
554         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
555                 return;
556
557         __ext4_fc_track_create(handle, inode, dentry);
558 }
559
560 /* __track_fn for inode tracking */
561 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
562                          bool update)
563 {
564         if (update)
565                 return -EEXIST;
566
567         EXT4_I(inode)->i_fc_lblk_len = 0;
568
569         return 0;
570 }
571
572 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
573 {
574         int ret;
575
576         if (S_ISDIR(inode->i_mode))
577                 return;
578
579         if (ext4_fc_disabled(inode->i_sb))
580                 return;
581
582         if (ext4_should_journal_data(inode)) {
583                 ext4_fc_mark_ineligible(inode->i_sb,
584                                         EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
585                 return;
586         }
587
588         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
589                 return;
590
591         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
592         trace_ext4_fc_track_inode(handle, inode, ret);
593 }
594
595 struct __track_range_args {
596         ext4_lblk_t start, end;
597 };
598
599 /* __track_fn for tracking data updates */
600 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
601                          bool update)
602 {
603         struct ext4_inode_info *ei = EXT4_I(inode);
604         ext4_lblk_t oldstart;
605         struct __track_range_args *__arg =
606                 (struct __track_range_args *)arg;
607
608         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
609                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
610                 return -ECANCELED;
611         }
612
613         oldstart = ei->i_fc_lblk_start;
614
615         if (update && ei->i_fc_lblk_len > 0) {
616                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
617                 ei->i_fc_lblk_len =
618                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
619                                 ei->i_fc_lblk_start + 1;
620         } else {
621                 ei->i_fc_lblk_start = __arg->start;
622                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
623         }
624
625         return 0;
626 }
627
628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
629                          ext4_lblk_t end)
630 {
631         struct __track_range_args args;
632         int ret;
633
634         if (S_ISDIR(inode->i_mode))
635                 return;
636
637         if (ext4_fc_disabled(inode->i_sb))
638                 return;
639
640         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
641                 return;
642
643         if (ext4_has_inline_data(inode)) {
644                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
645                                         handle);
646                 return;
647         }
648
649         args.start = start;
650         args.end = end;
651
652         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
653
654         trace_ext4_fc_track_range(handle, inode, start, end, ret);
655 }
656
657 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
658 {
659         blk_opf_t write_flags = REQ_SYNC;
660         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
661
662         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
663         if (test_opt(sb, BARRIER) && is_tail)
664                 write_flags |= REQ_FUA | REQ_PREFLUSH;
665         lock_buffer(bh);
666         set_buffer_dirty(bh);
667         set_buffer_uptodate(bh);
668         bh->b_end_io = ext4_end_buffer_io_sync;
669         submit_bh(REQ_OP_WRITE | write_flags, bh);
670         EXT4_SB(sb)->s_fc_bh = NULL;
671 }
672
673 /* Ext4 commit path routines */
674
675 /*
676  * Allocate len bytes on a fast commit buffer.
677  *
678  * During the commit time this function is used to manage fast commit
679  * block space. We don't split a fast commit log onto different
680  * blocks. So this function makes sure that if there's not enough space
681  * on the current block, the remaining space in the current block is
682  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
683  * new block is from jbd2 and CRC is updated to reflect the padding
684  * we added.
685  */
686 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
687 {
688         struct ext4_fc_tl tl;
689         struct ext4_sb_info *sbi = EXT4_SB(sb);
690         struct buffer_head *bh;
691         int bsize = sbi->s_journal->j_blocksize;
692         int ret, off = sbi->s_fc_bytes % bsize;
693         int remaining;
694         u8 *dst;
695
696         /*
697          * If 'len' is too long to fit in any block alongside a PAD tlv, then we
698          * cannot fulfill the request.
699          */
700         if (len > bsize - EXT4_FC_TAG_BASE_LEN)
701                 return NULL;
702
703         if (!sbi->s_fc_bh) {
704                 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
705                 if (ret)
706                         return NULL;
707                 sbi->s_fc_bh = bh;
708         }
709         dst = sbi->s_fc_bh->b_data + off;
710
711         /*
712          * Allocate the bytes in the current block if we can do so while still
713          * leaving enough space for a PAD tlv.
714          */
715         remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
716         if (len <= remaining) {
717                 sbi->s_fc_bytes += len;
718                 return dst;
719         }
720
721         /*
722          * Else, terminate the current block with a PAD tlv, then allocate a new
723          * block and allocate the bytes at the start of that new block.
724          */
725
726         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
727         tl.fc_len = cpu_to_le16(remaining);
728         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
729         memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
730         *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
731
732         ext4_fc_submit_bh(sb, false);
733
734         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
735         if (ret)
736                 return NULL;
737         sbi->s_fc_bh = bh;
738         sbi->s_fc_bytes += bsize - off + len;
739         return sbi->s_fc_bh->b_data;
740 }
741
742 /*
743  * Complete a fast commit by writing tail tag.
744  *
745  * Writing tail tag marks the end of a fast commit. In order to guarantee
746  * atomicity, after writing tail tag, even if there's space remaining
747  * in the block, next commit shouldn't use it. That's why tail tag
748  * has the length as that of the remaining space on the block.
749  */
750 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
751 {
752         struct ext4_sb_info *sbi = EXT4_SB(sb);
753         struct ext4_fc_tl tl;
754         struct ext4_fc_tail tail;
755         int off, bsize = sbi->s_journal->j_blocksize;
756         u8 *dst;
757
758         /*
759          * ext4_fc_reserve_space takes care of allocating an extra block if
760          * there's no enough space on this block for accommodating this tail.
761          */
762         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
763         if (!dst)
764                 return -ENOSPC;
765
766         off = sbi->s_fc_bytes % bsize;
767
768         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
769         tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
770         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
771
772         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
773         dst += EXT4_FC_TAG_BASE_LEN;
774         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
775         memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
776         dst += sizeof(tail.fc_tid);
777         crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
778                           dst - (u8 *)sbi->s_fc_bh->b_data);
779         tail.fc_crc = cpu_to_le32(crc);
780         memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
781         dst += sizeof(tail.fc_crc);
782         memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
783
784         ext4_fc_submit_bh(sb, true);
785
786         return 0;
787 }
788
789 /*
790  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
791  * Returns false if there's not enough space.
792  */
793 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
794                            u32 *crc)
795 {
796         struct ext4_fc_tl tl;
797         u8 *dst;
798
799         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
800         if (!dst)
801                 return false;
802
803         tl.fc_tag = cpu_to_le16(tag);
804         tl.fc_len = cpu_to_le16(len);
805
806         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
807         memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
808
809         return true;
810 }
811
812 /* Same as above, but adds dentry tlv. */
813 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
814                                    struct ext4_fc_dentry_update *fc_dentry)
815 {
816         struct ext4_fc_dentry_info fcd;
817         struct ext4_fc_tl tl;
818         int dlen = fc_dentry->fcd_name.name.len;
819         u8 *dst = ext4_fc_reserve_space(sb,
820                         EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
821
822         if (!dst)
823                 return false;
824
825         fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
826         fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
827         tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
828         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
829         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
830         dst += EXT4_FC_TAG_BASE_LEN;
831         memcpy(dst, &fcd, sizeof(fcd));
832         dst += sizeof(fcd);
833         memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
834
835         return true;
836 }
837
838 /*
839  * Writes inode in the fast commit space under TLV with tag @tag.
840  * Returns 0 on success, error on failure.
841  */
842 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
843 {
844         struct ext4_inode_info *ei = EXT4_I(inode);
845         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
846         int ret;
847         struct ext4_iloc iloc;
848         struct ext4_fc_inode fc_inode;
849         struct ext4_fc_tl tl;
850         u8 *dst;
851
852         ret = ext4_get_inode_loc(inode, &iloc);
853         if (ret)
854                 return ret;
855
856         if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
857                 inode_len = EXT4_INODE_SIZE(inode->i_sb);
858         else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
859                 inode_len += ei->i_extra_isize;
860
861         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
862         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
863         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
864
865         ret = -ECANCELED;
866         dst = ext4_fc_reserve_space(inode->i_sb,
867                 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
868         if (!dst)
869                 goto err;
870
871         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
872         dst += EXT4_FC_TAG_BASE_LEN;
873         memcpy(dst, &fc_inode, sizeof(fc_inode));
874         dst += sizeof(fc_inode);
875         memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
876         ret = 0;
877 err:
878         brelse(iloc.bh);
879         return ret;
880 }
881
882 /*
883  * Writes updated data ranges for the inode in question. Updates CRC.
884  * Returns 0 on success, error otherwise.
885  */
886 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
887 {
888         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
889         struct ext4_inode_info *ei = EXT4_I(inode);
890         struct ext4_map_blocks map;
891         struct ext4_fc_add_range fc_ext;
892         struct ext4_fc_del_range lrange;
893         struct ext4_extent *ex;
894         int ret;
895
896         mutex_lock(&ei->i_fc_lock);
897         if (ei->i_fc_lblk_len == 0) {
898                 mutex_unlock(&ei->i_fc_lock);
899                 return 0;
900         }
901         old_blk_size = ei->i_fc_lblk_start;
902         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
903         ei->i_fc_lblk_len = 0;
904         mutex_unlock(&ei->i_fc_lock);
905
906         cur_lblk_off = old_blk_size;
907         ext4_debug("will try writing %d to %d for inode %ld\n",
908                    cur_lblk_off, new_blk_size, inode->i_ino);
909
910         while (cur_lblk_off <= new_blk_size) {
911                 map.m_lblk = cur_lblk_off;
912                 map.m_len = new_blk_size - cur_lblk_off + 1;
913                 ret = ext4_map_blocks(NULL, inode, &map, 0);
914                 if (ret < 0)
915                         return -ECANCELED;
916
917                 if (map.m_len == 0) {
918                         cur_lblk_off++;
919                         continue;
920                 }
921
922                 if (ret == 0) {
923                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
924                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
925                         lrange.fc_len = cpu_to_le32(map.m_len);
926                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
927                                             sizeof(lrange), (u8 *)&lrange, crc))
928                                 return -ENOSPC;
929                 } else {
930                         unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
931                                 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
932
933                         /* Limit the number of blocks in one extent */
934                         map.m_len = min(max, map.m_len);
935
936                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
937                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
938                         ex->ee_block = cpu_to_le32(map.m_lblk);
939                         ex->ee_len = cpu_to_le16(map.m_len);
940                         ext4_ext_store_pblock(ex, map.m_pblk);
941                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
942                                 ext4_ext_mark_unwritten(ex);
943                         else
944                                 ext4_ext_mark_initialized(ex);
945                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
946                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
947                                 return -ENOSPC;
948                 }
949
950                 cur_lblk_off += map.m_len;
951         }
952
953         return 0;
954 }
955
956
957 /* Submit data for all the fast commit inodes */
958 static int ext4_fc_submit_inode_data_all(journal_t *journal)
959 {
960         struct super_block *sb = journal->j_private;
961         struct ext4_sb_info *sbi = EXT4_SB(sb);
962         struct ext4_inode_info *ei;
963         int ret = 0;
964
965         spin_lock(&sbi->s_fc_lock);
966         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
967                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
968                 while (atomic_read(&ei->i_fc_updates)) {
969                         DEFINE_WAIT(wait);
970
971                         prepare_to_wait(&ei->i_fc_wait, &wait,
972                                                 TASK_UNINTERRUPTIBLE);
973                         if (atomic_read(&ei->i_fc_updates)) {
974                                 spin_unlock(&sbi->s_fc_lock);
975                                 schedule();
976                                 spin_lock(&sbi->s_fc_lock);
977                         }
978                         finish_wait(&ei->i_fc_wait, &wait);
979                 }
980                 spin_unlock(&sbi->s_fc_lock);
981                 ret = jbd2_submit_inode_data(journal, ei->jinode);
982                 if (ret)
983                         return ret;
984                 spin_lock(&sbi->s_fc_lock);
985         }
986         spin_unlock(&sbi->s_fc_lock);
987
988         return ret;
989 }
990
991 /* Wait for completion of data for all the fast commit inodes */
992 static int ext4_fc_wait_inode_data_all(journal_t *journal)
993 {
994         struct super_block *sb = journal->j_private;
995         struct ext4_sb_info *sbi = EXT4_SB(sb);
996         struct ext4_inode_info *pos, *n;
997         int ret = 0;
998
999         spin_lock(&sbi->s_fc_lock);
1000         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1001                 if (!ext4_test_inode_state(&pos->vfs_inode,
1002                                            EXT4_STATE_FC_COMMITTING))
1003                         continue;
1004                 spin_unlock(&sbi->s_fc_lock);
1005
1006                 ret = jbd2_wait_inode_data(journal, pos->jinode);
1007                 if (ret)
1008                         return ret;
1009                 spin_lock(&sbi->s_fc_lock);
1010         }
1011         spin_unlock(&sbi->s_fc_lock);
1012
1013         return 0;
1014 }
1015
1016 /* Commit all the directory entry updates */
1017 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1018 __acquires(&sbi->s_fc_lock)
1019 __releases(&sbi->s_fc_lock)
1020 {
1021         struct super_block *sb = journal->j_private;
1022         struct ext4_sb_info *sbi = EXT4_SB(sb);
1023         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1024         struct inode *inode;
1025         struct ext4_inode_info *ei;
1026         int ret;
1027
1028         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1029                 return 0;
1030         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1031                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1032                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1033                         spin_unlock(&sbi->s_fc_lock);
1034                         if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1035                                 ret = -ENOSPC;
1036                                 goto lock_and_exit;
1037                         }
1038                         spin_lock(&sbi->s_fc_lock);
1039                         continue;
1040                 }
1041                 /*
1042                  * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1043                  * corresponding inode pointer
1044                  */
1045                 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1046                 ei = list_first_entry(&fc_dentry->fcd_dilist,
1047                                 struct ext4_inode_info, i_fc_dilist);
1048                 inode = &ei->vfs_inode;
1049                 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1050
1051                 spin_unlock(&sbi->s_fc_lock);
1052
1053                 /*
1054                  * We first write the inode and then the create dirent. This
1055                  * allows the recovery code to create an unnamed inode first
1056                  * and then link it to a directory entry. This allows us
1057                  * to use namei.c routines almost as is and simplifies
1058                  * the recovery code.
1059                  */
1060                 ret = ext4_fc_write_inode(inode, crc);
1061                 if (ret)
1062                         goto lock_and_exit;
1063
1064                 ret = ext4_fc_write_inode_data(inode, crc);
1065                 if (ret)
1066                         goto lock_and_exit;
1067
1068                 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1069                         ret = -ENOSPC;
1070                         goto lock_and_exit;
1071                 }
1072
1073                 spin_lock(&sbi->s_fc_lock);
1074         }
1075         return 0;
1076 lock_and_exit:
1077         spin_lock(&sbi->s_fc_lock);
1078         return ret;
1079 }
1080
1081 static int ext4_fc_perform_commit(journal_t *journal)
1082 {
1083         struct super_block *sb = journal->j_private;
1084         struct ext4_sb_info *sbi = EXT4_SB(sb);
1085         struct ext4_inode_info *iter;
1086         struct ext4_fc_head head;
1087         struct inode *inode;
1088         struct blk_plug plug;
1089         int ret = 0;
1090         u32 crc = 0;
1091
1092         ret = ext4_fc_submit_inode_data_all(journal);
1093         if (ret)
1094                 return ret;
1095
1096         ret = ext4_fc_wait_inode_data_all(journal);
1097         if (ret)
1098                 return ret;
1099
1100         /*
1101          * If file system device is different from journal device, issue a cache
1102          * flush before we start writing fast commit blocks.
1103          */
1104         if (journal->j_fs_dev != journal->j_dev)
1105                 blkdev_issue_flush(journal->j_fs_dev);
1106
1107         blk_start_plug(&plug);
1108         if (sbi->s_fc_bytes == 0) {
1109                 /*
1110                  * Add a head tag only if this is the first fast commit
1111                  * in this TID.
1112                  */
1113                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1114                 head.fc_tid = cpu_to_le32(
1115                         sbi->s_journal->j_running_transaction->t_tid);
1116                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1117                         (u8 *)&head, &crc)) {
1118                         ret = -ENOSPC;
1119                         goto out;
1120                 }
1121         }
1122
1123         spin_lock(&sbi->s_fc_lock);
1124         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1125         if (ret) {
1126                 spin_unlock(&sbi->s_fc_lock);
1127                 goto out;
1128         }
1129
1130         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1131                 inode = &iter->vfs_inode;
1132                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1133                         continue;
1134
1135                 spin_unlock(&sbi->s_fc_lock);
1136                 ret = ext4_fc_write_inode_data(inode, &crc);
1137                 if (ret)
1138                         goto out;
1139                 ret = ext4_fc_write_inode(inode, &crc);
1140                 if (ret)
1141                         goto out;
1142                 spin_lock(&sbi->s_fc_lock);
1143         }
1144         spin_unlock(&sbi->s_fc_lock);
1145
1146         ret = ext4_fc_write_tail(sb, crc);
1147
1148 out:
1149         blk_finish_plug(&plug);
1150         return ret;
1151 }
1152
1153 static void ext4_fc_update_stats(struct super_block *sb, int status,
1154                                  u64 commit_time, int nblks, tid_t commit_tid)
1155 {
1156         struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1157
1158         ext4_debug("Fast commit ended with status = %d for tid %u",
1159                         status, commit_tid);
1160         if (status == EXT4_FC_STATUS_OK) {
1161                 stats->fc_num_commits++;
1162                 stats->fc_numblks += nblks;
1163                 if (likely(stats->s_fc_avg_commit_time))
1164                         stats->s_fc_avg_commit_time =
1165                                 (commit_time +
1166                                  stats->s_fc_avg_commit_time * 3) / 4;
1167                 else
1168                         stats->s_fc_avg_commit_time = commit_time;
1169         } else if (status == EXT4_FC_STATUS_FAILED ||
1170                    status == EXT4_FC_STATUS_INELIGIBLE) {
1171                 if (status == EXT4_FC_STATUS_FAILED)
1172                         stats->fc_failed_commits++;
1173                 stats->fc_ineligible_commits++;
1174         } else {
1175                 stats->fc_skipped_commits++;
1176         }
1177         trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1178 }
1179
1180 /*
1181  * The main commit entry point. Performs a fast commit for transaction
1182  * commit_tid if needed. If it's not possible to perform a fast commit
1183  * due to various reasons, we fall back to full commit. Returns 0
1184  * on success, error otherwise.
1185  */
1186 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1187 {
1188         struct super_block *sb = journal->j_private;
1189         struct ext4_sb_info *sbi = EXT4_SB(sb);
1190         int nblks = 0, ret, bsize = journal->j_blocksize;
1191         int subtid = atomic_read(&sbi->s_fc_subtid);
1192         int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1193         ktime_t start_time, commit_time;
1194
1195         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1196                 return jbd2_complete_transaction(journal, commit_tid);
1197
1198         trace_ext4_fc_commit_start(sb, commit_tid);
1199
1200         start_time = ktime_get();
1201
1202 restart_fc:
1203         ret = jbd2_fc_begin_commit(journal, commit_tid);
1204         if (ret == -EALREADY) {
1205                 /* There was an ongoing commit, check if we need to restart */
1206                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1207                     tid_gt(commit_tid, journal->j_commit_sequence))
1208                         goto restart_fc;
1209                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1210                                 commit_tid);
1211                 return 0;
1212         } else if (ret) {
1213                 /*
1214                  * Commit couldn't start. Just update stats and perform a
1215                  * full commit.
1216                  */
1217                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1218                                 commit_tid);
1219                 return jbd2_complete_transaction(journal, commit_tid);
1220         }
1221
1222         /*
1223          * After establishing journal barrier via jbd2_fc_begin_commit(), check
1224          * if we are fast commit ineligible.
1225          */
1226         if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1227                 status = EXT4_FC_STATUS_INELIGIBLE;
1228                 goto fallback;
1229         }
1230
1231         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1232         ret = ext4_fc_perform_commit(journal);
1233         if (ret < 0) {
1234                 status = EXT4_FC_STATUS_FAILED;
1235                 goto fallback;
1236         }
1237         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1238         ret = jbd2_fc_wait_bufs(journal, nblks);
1239         if (ret < 0) {
1240                 status = EXT4_FC_STATUS_FAILED;
1241                 goto fallback;
1242         }
1243         atomic_inc(&sbi->s_fc_subtid);
1244         ret = jbd2_fc_end_commit(journal);
1245         /*
1246          * weight the commit time higher than the average time so we
1247          * don't react too strongly to vast changes in the commit time
1248          */
1249         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1250         ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1251         return ret;
1252
1253 fallback:
1254         ret = jbd2_fc_end_commit_fallback(journal);
1255         ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1256         return ret;
1257 }
1258
1259 /*
1260  * Fast commit cleanup routine. This is called after every fast commit and
1261  * full commit. full is true if we are called after a full commit.
1262  */
1263 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1264 {
1265         struct super_block *sb = journal->j_private;
1266         struct ext4_sb_info *sbi = EXT4_SB(sb);
1267         struct ext4_inode_info *iter, *iter_n;
1268         struct ext4_fc_dentry_update *fc_dentry;
1269
1270         if (full && sbi->s_fc_bh)
1271                 sbi->s_fc_bh = NULL;
1272
1273         trace_ext4_fc_cleanup(journal, full, tid);
1274         jbd2_fc_release_bufs(journal);
1275
1276         spin_lock(&sbi->s_fc_lock);
1277         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1278                                  i_fc_list) {
1279                 list_del_init(&iter->i_fc_list);
1280                 ext4_clear_inode_state(&iter->vfs_inode,
1281                                        EXT4_STATE_FC_COMMITTING);
1282                 if (tid_geq(tid, iter->i_sync_tid)) {
1283                         ext4_fc_reset_inode(&iter->vfs_inode);
1284                 } else if (full) {
1285                         /*
1286                          * We are called after a full commit, inode has been
1287                          * modified while the commit was running. Re-enqueue
1288                          * the inode into STAGING, which will then be splice
1289                          * back into MAIN. This cannot happen during
1290                          * fastcommit because the journal is locked all the
1291                          * time in that case (and tid doesn't increase so
1292                          * tid check above isn't reliable).
1293                          */
1294                         list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1295                                       &sbi->s_fc_q[FC_Q_STAGING]);
1296                 }
1297                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1298                 smp_mb();
1299 #if (BITS_PER_LONG < 64)
1300                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1301 #else
1302                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1303 #endif
1304         }
1305
1306         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1307                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1308                                              struct ext4_fc_dentry_update,
1309                                              fcd_list);
1310                 list_del_init(&fc_dentry->fcd_list);
1311                 list_del_init(&fc_dentry->fcd_dilist);
1312                 spin_unlock(&sbi->s_fc_lock);
1313
1314                 release_dentry_name_snapshot(&fc_dentry->fcd_name);
1315                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1316                 spin_lock(&sbi->s_fc_lock);
1317         }
1318
1319         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1320                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1321         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1322                                 &sbi->s_fc_q[FC_Q_MAIN]);
1323
1324         if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1325                 sbi->s_fc_ineligible_tid = 0;
1326                 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1327         }
1328
1329         if (full)
1330                 sbi->s_fc_bytes = 0;
1331         spin_unlock(&sbi->s_fc_lock);
1332         trace_ext4_fc_stats(sb);
1333 }
1334
1335 /* Ext4 Replay Path Routines */
1336
1337 /* Helper struct for dentry replay routines */
1338 struct dentry_info_args {
1339         int parent_ino, dname_len, ino, inode_len;
1340         char *dname;
1341 };
1342
1343 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1344 struct ext4_fc_tl_mem {
1345         u16 fc_tag;
1346         u16 fc_len;
1347 };
1348
1349 static inline void tl_to_darg(struct dentry_info_args *darg,
1350                               struct ext4_fc_tl_mem *tl, u8 *val)
1351 {
1352         struct ext4_fc_dentry_info fcd;
1353
1354         memcpy(&fcd, val, sizeof(fcd));
1355
1356         darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1357         darg->ino = le32_to_cpu(fcd.fc_ino);
1358         darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1359         darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1360 }
1361
1362 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1363 {
1364         struct ext4_fc_tl tl_disk;
1365
1366         memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1367         tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1368         tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1369 }
1370
1371 /* Unlink replay function */
1372 static int ext4_fc_replay_unlink(struct super_block *sb,
1373                                  struct ext4_fc_tl_mem *tl, u8 *val)
1374 {
1375         struct inode *inode, *old_parent;
1376         struct qstr entry;
1377         struct dentry_info_args darg;
1378         int ret = 0;
1379
1380         tl_to_darg(&darg, tl, val);
1381
1382         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1383                         darg.parent_ino, darg.dname_len);
1384
1385         entry.name = darg.dname;
1386         entry.len = darg.dname_len;
1387         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1388
1389         if (IS_ERR(inode)) {
1390                 ext4_debug("Inode %d not found", darg.ino);
1391                 return 0;
1392         }
1393
1394         old_parent = ext4_iget(sb, darg.parent_ino,
1395                                 EXT4_IGET_NORMAL);
1396         if (IS_ERR(old_parent)) {
1397                 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1398                 iput(inode);
1399                 return 0;
1400         }
1401
1402         ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1403         /* -ENOENT ok coz it might not exist anymore. */
1404         if (ret == -ENOENT)
1405                 ret = 0;
1406         iput(old_parent);
1407         iput(inode);
1408         return ret;
1409 }
1410
1411 static int ext4_fc_replay_link_internal(struct super_block *sb,
1412                                 struct dentry_info_args *darg,
1413                                 struct inode *inode)
1414 {
1415         struct inode *dir = NULL;
1416         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1417         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1418         int ret = 0;
1419
1420         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1421         if (IS_ERR(dir)) {
1422                 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1423                 dir = NULL;
1424                 goto out;
1425         }
1426
1427         dentry_dir = d_obtain_alias(dir);
1428         if (IS_ERR(dentry_dir)) {
1429                 ext4_debug("Failed to obtain dentry");
1430                 dentry_dir = NULL;
1431                 goto out;
1432         }
1433
1434         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1435         if (!dentry_inode) {
1436                 ext4_debug("Inode dentry not created.");
1437                 ret = -ENOMEM;
1438                 goto out;
1439         }
1440
1441         ret = __ext4_link(dir, inode, dentry_inode);
1442         /*
1443          * It's possible that link already existed since data blocks
1444          * for the dir in question got persisted before we crashed OR
1445          * we replayed this tag and crashed before the entire replay
1446          * could complete.
1447          */
1448         if (ret && ret != -EEXIST) {
1449                 ext4_debug("Failed to link\n");
1450                 goto out;
1451         }
1452
1453         ret = 0;
1454 out:
1455         if (dentry_dir) {
1456                 d_drop(dentry_dir);
1457                 dput(dentry_dir);
1458         } else if (dir) {
1459                 iput(dir);
1460         }
1461         if (dentry_inode) {
1462                 d_drop(dentry_inode);
1463                 dput(dentry_inode);
1464         }
1465
1466         return ret;
1467 }
1468
1469 /* Link replay function */
1470 static int ext4_fc_replay_link(struct super_block *sb,
1471                                struct ext4_fc_tl_mem *tl, u8 *val)
1472 {
1473         struct inode *inode;
1474         struct dentry_info_args darg;
1475         int ret = 0;
1476
1477         tl_to_darg(&darg, tl, val);
1478         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1479                         darg.parent_ino, darg.dname_len);
1480
1481         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1482         if (IS_ERR(inode)) {
1483                 ext4_debug("Inode not found.");
1484                 return 0;
1485         }
1486
1487         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1488         iput(inode);
1489         return ret;
1490 }
1491
1492 /*
1493  * Record all the modified inodes during replay. We use this later to setup
1494  * block bitmaps correctly.
1495  */
1496 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1497 {
1498         struct ext4_fc_replay_state *state;
1499         int i;
1500
1501         state = &EXT4_SB(sb)->s_fc_replay_state;
1502         for (i = 0; i < state->fc_modified_inodes_used; i++)
1503                 if (state->fc_modified_inodes[i] == ino)
1504                         return 0;
1505         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1506                 int *fc_modified_inodes;
1507
1508                 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1509                                 sizeof(int) * (state->fc_modified_inodes_size +
1510                                 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1511                                 GFP_KERNEL);
1512                 if (!fc_modified_inodes)
1513                         return -ENOMEM;
1514                 state->fc_modified_inodes = fc_modified_inodes;
1515                 state->fc_modified_inodes_size +=
1516                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1517         }
1518         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1519         return 0;
1520 }
1521
1522 /*
1523  * Inode replay function
1524  */
1525 static int ext4_fc_replay_inode(struct super_block *sb,
1526                                 struct ext4_fc_tl_mem *tl, u8 *val)
1527 {
1528         struct ext4_fc_inode fc_inode;
1529         struct ext4_inode *raw_inode;
1530         struct ext4_inode *raw_fc_inode;
1531         struct inode *inode = NULL;
1532         struct ext4_iloc iloc;
1533         int inode_len, ino, ret, tag = tl->fc_tag;
1534         struct ext4_extent_header *eh;
1535         size_t off_gen = offsetof(struct ext4_inode, i_generation);
1536
1537         memcpy(&fc_inode, val, sizeof(fc_inode));
1538
1539         ino = le32_to_cpu(fc_inode.fc_ino);
1540         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1541
1542         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1543         if (!IS_ERR(inode)) {
1544                 ext4_ext_clear_bb(inode);
1545                 iput(inode);
1546         }
1547         inode = NULL;
1548
1549         ret = ext4_fc_record_modified_inode(sb, ino);
1550         if (ret)
1551                 goto out;
1552
1553         raw_fc_inode = (struct ext4_inode *)
1554                 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1555         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1556         if (ret)
1557                 goto out;
1558
1559         inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1560         raw_inode = ext4_raw_inode(&iloc);
1561
1562         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1563         memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1564                inode_len - off_gen);
1565         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1566                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1567                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1568                         memset(eh, 0, sizeof(*eh));
1569                         eh->eh_magic = EXT4_EXT_MAGIC;
1570                         eh->eh_max = cpu_to_le16(
1571                                 (sizeof(raw_inode->i_block) -
1572                                  sizeof(struct ext4_extent_header))
1573                                  / sizeof(struct ext4_extent));
1574                 }
1575         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1576                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1577                         sizeof(raw_inode->i_block));
1578         }
1579
1580         /* Immediately update the inode on disk. */
1581         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1582         if (ret)
1583                 goto out;
1584         ret = sync_dirty_buffer(iloc.bh);
1585         if (ret)
1586                 goto out;
1587         ret = ext4_mark_inode_used(sb, ino);
1588         if (ret)
1589                 goto out;
1590
1591         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1592         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1593         if (IS_ERR(inode)) {
1594                 ext4_debug("Inode not found.");
1595                 return -EFSCORRUPTED;
1596         }
1597
1598         /*
1599          * Our allocator could have made different decisions than before
1600          * crashing. This should be fixed but until then, we calculate
1601          * the number of blocks the inode.
1602          */
1603         if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1604                 ext4_ext_replay_set_iblocks(inode);
1605
1606         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1607         ext4_reset_inode_seed(inode);
1608
1609         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1610         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1611         sync_dirty_buffer(iloc.bh);
1612         brelse(iloc.bh);
1613 out:
1614         iput(inode);
1615         if (!ret)
1616                 blkdev_issue_flush(sb->s_bdev);
1617
1618         return 0;
1619 }
1620
1621 /*
1622  * Dentry create replay function.
1623  *
1624  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1625  * inode for which we are trying to create a dentry here, should already have
1626  * been replayed before we start here.
1627  */
1628 static int ext4_fc_replay_create(struct super_block *sb,
1629                                  struct ext4_fc_tl_mem *tl, u8 *val)
1630 {
1631         int ret = 0;
1632         struct inode *inode = NULL;
1633         struct inode *dir = NULL;
1634         struct dentry_info_args darg;
1635
1636         tl_to_darg(&darg, tl, val);
1637
1638         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1639                         darg.parent_ino, darg.dname_len);
1640
1641         /* This takes care of update group descriptor and other metadata */
1642         ret = ext4_mark_inode_used(sb, darg.ino);
1643         if (ret)
1644                 goto out;
1645
1646         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1647         if (IS_ERR(inode)) {
1648                 ext4_debug("inode %d not found.", darg.ino);
1649                 inode = NULL;
1650                 ret = -EINVAL;
1651                 goto out;
1652         }
1653
1654         if (S_ISDIR(inode->i_mode)) {
1655                 /*
1656                  * If we are creating a directory, we need to make sure that the
1657                  * dot and dot dot dirents are setup properly.
1658                  */
1659                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1660                 if (IS_ERR(dir)) {
1661                         ext4_debug("Dir %d not found.", darg.ino);
1662                         goto out;
1663                 }
1664                 ret = ext4_init_new_dir(NULL, dir, inode);
1665                 iput(dir);
1666                 if (ret) {
1667                         ret = 0;
1668                         goto out;
1669                 }
1670         }
1671         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1672         if (ret)
1673                 goto out;
1674         set_nlink(inode, 1);
1675         ext4_mark_inode_dirty(NULL, inode);
1676 out:
1677         iput(inode);
1678         return ret;
1679 }
1680
1681 /*
1682  * Record physical disk regions which are in use as per fast commit area,
1683  * and used by inodes during replay phase. Our simple replay phase
1684  * allocator excludes these regions from allocation.
1685  */
1686 int ext4_fc_record_regions(struct super_block *sb, int ino,
1687                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1688 {
1689         struct ext4_fc_replay_state *state;
1690         struct ext4_fc_alloc_region *region;
1691
1692         state = &EXT4_SB(sb)->s_fc_replay_state;
1693         /*
1694          * during replay phase, the fc_regions_valid may not same as
1695          * fc_regions_used, update it when do new additions.
1696          */
1697         if (replay && state->fc_regions_used != state->fc_regions_valid)
1698                 state->fc_regions_used = state->fc_regions_valid;
1699         if (state->fc_regions_used == state->fc_regions_size) {
1700                 struct ext4_fc_alloc_region *fc_regions;
1701
1702                 fc_regions = krealloc(state->fc_regions,
1703                                       sizeof(struct ext4_fc_alloc_region) *
1704                                       (state->fc_regions_size +
1705                                        EXT4_FC_REPLAY_REALLOC_INCREMENT),
1706                                       GFP_KERNEL);
1707                 if (!fc_regions)
1708                         return -ENOMEM;
1709                 state->fc_regions_size +=
1710                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1711                 state->fc_regions = fc_regions;
1712         }
1713         region = &state->fc_regions[state->fc_regions_used++];
1714         region->ino = ino;
1715         region->lblk = lblk;
1716         region->pblk = pblk;
1717         region->len = len;
1718
1719         if (replay)
1720                 state->fc_regions_valid++;
1721
1722         return 0;
1723 }
1724
1725 /* Replay add range tag */
1726 static int ext4_fc_replay_add_range(struct super_block *sb,
1727                                     struct ext4_fc_tl_mem *tl, u8 *val)
1728 {
1729         struct ext4_fc_add_range fc_add_ex;
1730         struct ext4_extent newex, *ex;
1731         struct inode *inode;
1732         ext4_lblk_t start, cur;
1733         int remaining, len;
1734         ext4_fsblk_t start_pblk;
1735         struct ext4_map_blocks map;
1736         struct ext4_ext_path *path = NULL;
1737         int ret;
1738
1739         memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1740         ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1741
1742         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1743                 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1744                 ext4_ext_get_actual_len(ex));
1745
1746         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1747         if (IS_ERR(inode)) {
1748                 ext4_debug("Inode not found.");
1749                 return 0;
1750         }
1751
1752         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1753         if (ret)
1754                 goto out;
1755
1756         start = le32_to_cpu(ex->ee_block);
1757         start_pblk = ext4_ext_pblock(ex);
1758         len = ext4_ext_get_actual_len(ex);
1759
1760         cur = start;
1761         remaining = len;
1762         ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1763                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1764                   inode->i_ino);
1765
1766         while (remaining > 0) {
1767                 map.m_lblk = cur;
1768                 map.m_len = remaining;
1769                 map.m_pblk = 0;
1770                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1771
1772                 if (ret < 0)
1773                         goto out;
1774
1775                 if (ret == 0) {
1776                         /* Range is not mapped */
1777                         path = ext4_find_extent(inode, cur, path, 0);
1778                         if (IS_ERR(path))
1779                                 goto out;
1780                         memset(&newex, 0, sizeof(newex));
1781                         newex.ee_block = cpu_to_le32(cur);
1782                         ext4_ext_store_pblock(
1783                                 &newex, start_pblk + cur - start);
1784                         newex.ee_len = cpu_to_le16(map.m_len);
1785                         if (ext4_ext_is_unwritten(ex))
1786                                 ext4_ext_mark_unwritten(&newex);
1787                         down_write(&EXT4_I(inode)->i_data_sem);
1788                         path = ext4_ext_insert_extent(NULL, inode,
1789                                                       path, &newex, 0);
1790                         up_write((&EXT4_I(inode)->i_data_sem));
1791                         if (IS_ERR(path))
1792                                 goto out;
1793                         goto next;
1794                 }
1795
1796                 if (start_pblk + cur - start != map.m_pblk) {
1797                         /*
1798                          * Logical to physical mapping changed. This can happen
1799                          * if this range was removed and then reallocated to
1800                          * map to new physical blocks during a fast commit.
1801                          */
1802                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1803                                         ext4_ext_is_unwritten(ex),
1804                                         start_pblk + cur - start);
1805                         if (ret)
1806                                 goto out;
1807                         /*
1808                          * Mark the old blocks as free since they aren't used
1809                          * anymore. We maintain an array of all the modified
1810                          * inodes. In case these blocks are still used at either
1811                          * a different logical range in the same inode or in
1812                          * some different inode, we will mark them as allocated
1813                          * at the end of the FC replay using our array of
1814                          * modified inodes.
1815                          */
1816                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1817                         goto next;
1818                 }
1819
1820                 /* Range is mapped and needs a state change */
1821                 ext4_debug("Converting from %ld to %d %lld",
1822                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1823                         ext4_ext_is_unwritten(ex), map.m_pblk);
1824                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1826                 if (ret)
1827                         goto out;
1828                 /*
1829                  * We may have split the extent tree while toggling the state.
1830                  * Try to shrink the extent tree now.
1831                  */
1832                 ext4_ext_replay_shrink_inode(inode, start + len);
1833 next:
1834                 cur += map.m_len;
1835                 remaining -= map.m_len;
1836         }
1837         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1838                                         sb->s_blocksize_bits);
1839 out:
1840         ext4_free_ext_path(path);
1841         iput(inode);
1842         return 0;
1843 }
1844
1845 /* Replay DEL_RANGE tag */
1846 static int
1847 ext4_fc_replay_del_range(struct super_block *sb,
1848                          struct ext4_fc_tl_mem *tl, u8 *val)
1849 {
1850         struct inode *inode;
1851         struct ext4_fc_del_range lrange;
1852         struct ext4_map_blocks map;
1853         ext4_lblk_t cur, remaining;
1854         int ret;
1855
1856         memcpy(&lrange, val, sizeof(lrange));
1857         cur = le32_to_cpu(lrange.fc_lblk);
1858         remaining = le32_to_cpu(lrange.fc_len);
1859
1860         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1861                 le32_to_cpu(lrange.fc_ino), cur, remaining);
1862
1863         inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1864         if (IS_ERR(inode)) {
1865                 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1866                 return 0;
1867         }
1868
1869         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1870         if (ret)
1871                 goto out;
1872
1873         ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1874                         inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1875                         le32_to_cpu(lrange.fc_len));
1876         while (remaining > 0) {
1877                 map.m_lblk = cur;
1878                 map.m_len = remaining;
1879
1880                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1881                 if (ret < 0)
1882                         goto out;
1883                 if (ret > 0) {
1884                         remaining -= ret;
1885                         cur += ret;
1886                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1887                 } else {
1888                         remaining -= map.m_len;
1889                         cur += map.m_len;
1890                 }
1891         }
1892
1893         down_write(&EXT4_I(inode)->i_data_sem);
1894         ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1895                                 le32_to_cpu(lrange.fc_lblk) +
1896                                 le32_to_cpu(lrange.fc_len) - 1);
1897         up_write(&EXT4_I(inode)->i_data_sem);
1898         if (ret)
1899                 goto out;
1900         ext4_ext_replay_shrink_inode(inode,
1901                 i_size_read(inode) >> sb->s_blocksize_bits);
1902         ext4_mark_inode_dirty(NULL, inode);
1903 out:
1904         iput(inode);
1905         return 0;
1906 }
1907
1908 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1909 {
1910         struct ext4_fc_replay_state *state;
1911         struct inode *inode;
1912         struct ext4_ext_path *path = NULL;
1913         struct ext4_map_blocks map;
1914         int i, ret, j;
1915         ext4_lblk_t cur, end;
1916
1917         state = &EXT4_SB(sb)->s_fc_replay_state;
1918         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1919                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1920                         EXT4_IGET_NORMAL);
1921                 if (IS_ERR(inode)) {
1922                         ext4_debug("Inode %d not found.",
1923                                 state->fc_modified_inodes[i]);
1924                         continue;
1925                 }
1926                 cur = 0;
1927                 end = EXT_MAX_BLOCKS;
1928                 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1929                         iput(inode);
1930                         continue;
1931                 }
1932                 while (cur < end) {
1933                         map.m_lblk = cur;
1934                         map.m_len = end - cur;
1935
1936                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1937                         if (ret < 0)
1938                                 break;
1939
1940                         if (ret > 0) {
1941                                 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1942                                 if (!IS_ERR(path)) {
1943                                         for (j = 0; j < path->p_depth; j++)
1944                                                 ext4_mb_mark_bb(inode->i_sb,
1945                                                         path[j].p_block, 1, true);
1946                                 } else {
1947                                         path = NULL;
1948                                 }
1949                                 cur += ret;
1950                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1951                                                         map.m_len, true);
1952                         } else {
1953                                 cur = cur + (map.m_len ? map.m_len : 1);
1954                         }
1955                 }
1956                 iput(inode);
1957         }
1958
1959         ext4_free_ext_path(path);
1960 }
1961
1962 /*
1963  * Check if block is in excluded regions for block allocation. The simple
1964  * allocator that runs during replay phase is calls this function to see
1965  * if it is okay to use a block.
1966  */
1967 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1968 {
1969         int i;
1970         struct ext4_fc_replay_state *state;
1971
1972         state = &EXT4_SB(sb)->s_fc_replay_state;
1973         for (i = 0; i < state->fc_regions_valid; i++) {
1974                 if (state->fc_regions[i].ino == 0 ||
1975                         state->fc_regions[i].len == 0)
1976                         continue;
1977                 if (in_range(blk, state->fc_regions[i].pblk,
1978                                         state->fc_regions[i].len))
1979                         return true;
1980         }
1981         return false;
1982 }
1983
1984 /* Cleanup function called after replay */
1985 void ext4_fc_replay_cleanup(struct super_block *sb)
1986 {
1987         struct ext4_sb_info *sbi = EXT4_SB(sb);
1988
1989         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1990         kfree(sbi->s_fc_replay_state.fc_regions);
1991         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1992 }
1993
1994 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1995                                       int tag, int len)
1996 {
1997         switch (tag) {
1998         case EXT4_FC_TAG_ADD_RANGE:
1999                 return len == sizeof(struct ext4_fc_add_range);
2000         case EXT4_FC_TAG_DEL_RANGE:
2001                 return len == sizeof(struct ext4_fc_del_range);
2002         case EXT4_FC_TAG_CREAT:
2003         case EXT4_FC_TAG_LINK:
2004         case EXT4_FC_TAG_UNLINK:
2005                 len -= sizeof(struct ext4_fc_dentry_info);
2006                 return len >= 1 && len <= EXT4_NAME_LEN;
2007         case EXT4_FC_TAG_INODE:
2008                 len -= sizeof(struct ext4_fc_inode);
2009                 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2010                         len <= sbi->s_inode_size;
2011         case EXT4_FC_TAG_PAD:
2012                 return true; /* padding can have any length */
2013         case EXT4_FC_TAG_TAIL:
2014                 return len >= sizeof(struct ext4_fc_tail);
2015         case EXT4_FC_TAG_HEAD:
2016                 return len == sizeof(struct ext4_fc_head);
2017         }
2018         return false;
2019 }
2020
2021 /*
2022  * Recovery Scan phase handler
2023  *
2024  * This function is called during the scan phase and is responsible
2025  * for doing following things:
2026  * - Make sure the fast commit area has valid tags for replay
2027  * - Count number of tags that need to be replayed by the replay handler
2028  * - Verify CRC
2029  * - Create a list of excluded blocks for allocation during replay phase
2030  *
2031  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2032  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2033  * to indicate that scan has finished and JBD2 can now start replay phase.
2034  * It returns a negative error to indicate that there was an error. At the end
2035  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2036  * to indicate the number of tags that need to replayed during the replay phase.
2037  */
2038 static int ext4_fc_replay_scan(journal_t *journal,
2039                                 struct buffer_head *bh, int off,
2040                                 tid_t expected_tid)
2041 {
2042         struct super_block *sb = journal->j_private;
2043         struct ext4_sb_info *sbi = EXT4_SB(sb);
2044         struct ext4_fc_replay_state *state;
2045         int ret = JBD2_FC_REPLAY_CONTINUE;
2046         struct ext4_fc_add_range ext;
2047         struct ext4_fc_tl_mem tl;
2048         struct ext4_fc_tail tail;
2049         __u8 *start, *end, *cur, *val;
2050         struct ext4_fc_head head;
2051         struct ext4_extent *ex;
2052
2053         state = &sbi->s_fc_replay_state;
2054
2055         start = (u8 *)bh->b_data;
2056         end = start + journal->j_blocksize;
2057
2058         if (state->fc_replay_expected_off == 0) {
2059                 state->fc_cur_tag = 0;
2060                 state->fc_replay_num_tags = 0;
2061                 state->fc_crc = 0;
2062                 state->fc_regions = NULL;
2063                 state->fc_regions_valid = state->fc_regions_used =
2064                         state->fc_regions_size = 0;
2065                 /* Check if we can stop early */
2066                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2067                         != EXT4_FC_TAG_HEAD)
2068                         return 0;
2069         }
2070
2071         if (off != state->fc_replay_expected_off) {
2072                 ret = -EFSCORRUPTED;
2073                 goto out_err;
2074         }
2075
2076         state->fc_replay_expected_off++;
2077         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2078              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2079                 ext4_fc_get_tl(&tl, cur);
2080                 val = cur + EXT4_FC_TAG_BASE_LEN;
2081                 if (tl.fc_len > end - val ||
2082                     !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2083                         ret = state->fc_replay_num_tags ?
2084                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2085                         goto out_err;
2086                 }
2087                 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2088                            tag2str(tl.fc_tag), bh->b_blocknr);
2089                 switch (tl.fc_tag) {
2090                 case EXT4_FC_TAG_ADD_RANGE:
2091                         memcpy(&ext, val, sizeof(ext));
2092                         ex = (struct ext4_extent *)&ext.fc_ex;
2093                         ret = ext4_fc_record_regions(sb,
2094                                 le32_to_cpu(ext.fc_ino),
2095                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2096                                 ext4_ext_get_actual_len(ex), 0);
2097                         if (ret < 0)
2098                                 break;
2099                         ret = JBD2_FC_REPLAY_CONTINUE;
2100                         fallthrough;
2101                 case EXT4_FC_TAG_DEL_RANGE:
2102                 case EXT4_FC_TAG_LINK:
2103                 case EXT4_FC_TAG_UNLINK:
2104                 case EXT4_FC_TAG_CREAT:
2105                 case EXT4_FC_TAG_INODE:
2106                 case EXT4_FC_TAG_PAD:
2107                         state->fc_cur_tag++;
2108                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2109                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2110                         break;
2111                 case EXT4_FC_TAG_TAIL:
2112                         state->fc_cur_tag++;
2113                         memcpy(&tail, val, sizeof(tail));
2114                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2115                                                 EXT4_FC_TAG_BASE_LEN +
2116                                                 offsetof(struct ext4_fc_tail,
2117                                                 fc_crc));
2118                         if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2119                                 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2120                                 state->fc_replay_num_tags = state->fc_cur_tag;
2121                                 state->fc_regions_valid =
2122                                         state->fc_regions_used;
2123                         } else {
2124                                 ret = state->fc_replay_num_tags ?
2125                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2126                         }
2127                         state->fc_crc = 0;
2128                         break;
2129                 case EXT4_FC_TAG_HEAD:
2130                         memcpy(&head, val, sizeof(head));
2131                         if (le32_to_cpu(head.fc_features) &
2132                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2133                                 ret = -EOPNOTSUPP;
2134                                 break;
2135                         }
2136                         if (le32_to_cpu(head.fc_tid) != expected_tid) {
2137                                 ret = JBD2_FC_REPLAY_STOP;
2138                                 break;
2139                         }
2140                         state->fc_cur_tag++;
2141                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2142                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2143                         break;
2144                 default:
2145                         ret = state->fc_replay_num_tags ?
2146                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2147                 }
2148                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2149                         break;
2150         }
2151
2152 out_err:
2153         trace_ext4_fc_replay_scan(sb, ret, off);
2154         return ret;
2155 }
2156
2157 /*
2158  * Main recovery path entry point.
2159  * The meaning of return codes is similar as above.
2160  */
2161 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2162                                 enum passtype pass, int off, tid_t expected_tid)
2163 {
2164         struct super_block *sb = journal->j_private;
2165         struct ext4_sb_info *sbi = EXT4_SB(sb);
2166         struct ext4_fc_tl_mem tl;
2167         __u8 *start, *end, *cur, *val;
2168         int ret = JBD2_FC_REPLAY_CONTINUE;
2169         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2170         struct ext4_fc_tail tail;
2171
2172         if (pass == PASS_SCAN) {
2173                 state->fc_current_pass = PASS_SCAN;
2174                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2175         }
2176
2177         if (state->fc_current_pass != pass) {
2178                 state->fc_current_pass = pass;
2179                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2180         }
2181         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2182                 ext4_debug("Replay stops\n");
2183                 ext4_fc_set_bitmaps_and_counters(sb);
2184                 return 0;
2185         }
2186
2187 #ifdef CONFIG_EXT4_DEBUG
2188         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2189                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2190                 return JBD2_FC_REPLAY_STOP;
2191         }
2192 #endif
2193
2194         start = (u8 *)bh->b_data;
2195         end = start + journal->j_blocksize;
2196
2197         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2198              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2199                 ext4_fc_get_tl(&tl, cur);
2200                 val = cur + EXT4_FC_TAG_BASE_LEN;
2201
2202                 if (state->fc_replay_num_tags == 0) {
2203                         ret = JBD2_FC_REPLAY_STOP;
2204                         ext4_fc_set_bitmaps_and_counters(sb);
2205                         break;
2206                 }
2207
2208                 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2209                 state->fc_replay_num_tags--;
2210                 switch (tl.fc_tag) {
2211                 case EXT4_FC_TAG_LINK:
2212                         ret = ext4_fc_replay_link(sb, &tl, val);
2213                         break;
2214                 case EXT4_FC_TAG_UNLINK:
2215                         ret = ext4_fc_replay_unlink(sb, &tl, val);
2216                         break;
2217                 case EXT4_FC_TAG_ADD_RANGE:
2218                         ret = ext4_fc_replay_add_range(sb, &tl, val);
2219                         break;
2220                 case EXT4_FC_TAG_CREAT:
2221                         ret = ext4_fc_replay_create(sb, &tl, val);
2222                         break;
2223                 case EXT4_FC_TAG_DEL_RANGE:
2224                         ret = ext4_fc_replay_del_range(sb, &tl, val);
2225                         break;
2226                 case EXT4_FC_TAG_INODE:
2227                         ret = ext4_fc_replay_inode(sb, &tl, val);
2228                         break;
2229                 case EXT4_FC_TAG_PAD:
2230                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2231                                              tl.fc_len, 0);
2232                         break;
2233                 case EXT4_FC_TAG_TAIL:
2234                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2235                                              0, tl.fc_len, 0);
2236                         memcpy(&tail, val, sizeof(tail));
2237                         WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2238                         break;
2239                 case EXT4_FC_TAG_HEAD:
2240                         break;
2241                 default:
2242                         trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2243                         ret = -ECANCELED;
2244                         break;
2245                 }
2246                 if (ret < 0)
2247                         break;
2248                 ret = JBD2_FC_REPLAY_CONTINUE;
2249         }
2250         return ret;
2251 }
2252
2253 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2254 {
2255         /*
2256          * We set replay callback even if fast commit disabled because we may
2257          * could still have fast commit blocks that need to be replayed even if
2258          * fast commit has now been turned off.
2259          */
2260         journal->j_fc_replay_callback = ext4_fc_replay;
2261         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2262                 return;
2263         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2264 }
2265
2266 static const char * const fc_ineligible_reasons[] = {
2267         [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2268         [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2269         [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2270         [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2271         [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2272         [EXT4_FC_REASON_RESIZE] = "Resize",
2273         [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2274         [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2275         [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2276         [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2277 };
2278
2279 int ext4_fc_info_show(struct seq_file *seq, void *v)
2280 {
2281         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2282         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2283         int i;
2284
2285         if (v != SEQ_START_TOKEN)
2286                 return 0;
2287
2288         seq_printf(seq,
2289                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2290                    stats->fc_num_commits, stats->fc_ineligible_commits,
2291                    stats->fc_numblks,
2292                    div_u64(stats->s_fc_avg_commit_time, 1000));
2293         seq_puts(seq, "Ineligible reasons:\n");
2294         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2295                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2296                         stats->fc_ineligible_reason_count[i]);
2297
2298         return 0;
2299 }
2300
2301 int __init ext4_fc_init_dentry_cache(void)
2302 {
2303         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2304                                            SLAB_RECLAIM_ACCOUNT);
2305
2306         if (ext4_fc_dentry_cachep == NULL)
2307                 return -ENOMEM;
2308
2309         return 0;
2310 }
2311
2312 void ext4_fc_destroy_dentry_cache(void)
2313 {
2314         kmem_cache_destroy(ext4_fc_dentry_cachep);
2315 }
This page took 0.176857 seconds and 4 git commands to generate.