1 /* bnx2x_main.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/init.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/bitops.h>
38 #include <linux/irq.h>
39 #include <linux/delay.h>
40 #include <asm/byteorder.h>
41 #include <linux/time.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/crash_dump.h>
49 #include <net/vxlan.h>
50 #include <net/checksum.h>
51 #include <net/ip6_checksum.h>
52 #include <linux/workqueue.h>
53 #include <linux/crc32.h>
54 #include <linux/crc32c.h>
55 #include <linux/prefetch.h>
56 #include <linux/zlib.h>
58 #include <linux/semaphore.h>
59 #include <linux/stringify.h>
60 #include <linux/vmalloc.h>
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
71 #define FW_FILE_VERSION \
72 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
73 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
74 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
75 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_VERSION_V15 \
78 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
79 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
80 __stringify(BCM_5710_FW_REVISION_VERSION_V15) "." \
81 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
83 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
84 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
87 #define FW_FILE_NAME_E1H_V15 "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90 /* Time in jiffies before concluding the transmitter is hung */
91 #define TX_TIMEOUT (5*HZ)
93 MODULE_AUTHOR("Eliezer Tamir");
94 MODULE_DESCRIPTION("QLogic "
95 "BCM57710/57711/57711E/"
96 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
97 "57840/57840_MF Driver");
98 MODULE_LICENSE("GPL");
99 MODULE_FIRMWARE(FW_FILE_NAME_E1);
100 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
101 MODULE_FIRMWARE(FW_FILE_NAME_E2);
102 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106 int bnx2x_num_queues;
107 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
108 MODULE_PARM_DESC(num_queues,
109 " Set number of queues (default is as a number of CPUs)");
111 static int disable_tpa;
112 module_param(disable_tpa, int, 0444);
113 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
116 module_param(int_mode, int, 0444);
117 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
120 static int dropless_fc;
121 module_param(dropless_fc, int, 0444);
122 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124 static int mrrs = -1;
125 module_param(mrrs, int, 0444);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
129 module_param(debug, int, 0444);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
132 static struct workqueue_struct *bnx2x_wq;
133 struct workqueue_struct *bnx2x_iov_wq;
135 struct bnx2x_mac_vals {
146 enum bnx2x_board_type {
170 /* indexed by board_type, above */
174 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
175 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
176 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
177 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
178 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
179 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
180 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
181 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
182 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
183 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
184 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
185 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
186 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
187 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
188 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
189 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
190 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
191 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
192 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
193 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
194 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
197 #ifndef PCI_DEVICE_ID_NX2_57710
198 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
200 #ifndef PCI_DEVICE_ID_NX2_57711
201 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
203 #ifndef PCI_DEVICE_ID_NX2_57711E
204 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
206 #ifndef PCI_DEVICE_ID_NX2_57712
207 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
209 #ifndef PCI_DEVICE_ID_NX2_57712_MF
210 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
212 #ifndef PCI_DEVICE_ID_NX2_57712_VF
213 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
215 #ifndef PCI_DEVICE_ID_NX2_57800
216 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
218 #ifndef PCI_DEVICE_ID_NX2_57800_MF
219 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
221 #ifndef PCI_DEVICE_ID_NX2_57800_VF
222 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
224 #ifndef PCI_DEVICE_ID_NX2_57810
225 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
227 #ifndef PCI_DEVICE_ID_NX2_57810_MF
228 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
230 #ifndef PCI_DEVICE_ID_NX2_57840_O
231 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
233 #ifndef PCI_DEVICE_ID_NX2_57810_VF
234 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
236 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
237 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
239 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
240 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
242 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
243 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
245 #ifndef PCI_DEVICE_ID_NX2_57840_MF
246 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
248 #ifndef PCI_DEVICE_ID_NX2_57840_VF
249 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
251 #ifndef PCI_DEVICE_ID_NX2_57811
252 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
254 #ifndef PCI_DEVICE_ID_NX2_57811_MF
255 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
257 #ifndef PCI_DEVICE_ID_NX2_57811_VF
258 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
261 static const struct pci_device_id bnx2x_pci_tbl[] = {
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
280 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
282 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
284 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
285 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
289 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291 const u32 dmae_reg_go_c[] = {
292 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
293 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
294 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
295 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
298 /* Global resources for unloading a previously loaded device */
299 #define BNX2X_PREV_WAIT_NEEDED 1
300 static DEFINE_SEMAPHORE(bnx2x_prev_sem, 1);
301 static LIST_HEAD(bnx2x_prev_list);
303 /* Forward declaration */
304 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
305 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
306 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308 /****************************************************************************
309 * General service functions
310 ****************************************************************************/
312 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314 static void __storm_memset_dma_mapping(struct bnx2x *bp,
315 u32 addr, dma_addr_t mapping)
317 REG_WR(bp, addr, U64_LO(mapping));
318 REG_WR(bp, addr + 4, U64_HI(mapping));
321 static void storm_memset_spq_addr(struct bnx2x *bp,
322 dma_addr_t mapping, u16 abs_fid)
324 u32 addr = XSEM_REG_FAST_MEMORY +
325 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327 __storm_memset_dma_mapping(bp, addr, mapping);
330 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
333 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
343 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
346 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
356 static void storm_memset_eq_data(struct bnx2x *bp,
357 struct event_ring_data *eq_data,
360 size_t size = sizeof(struct event_ring_data);
362 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
367 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
370 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
371 REG_WR16(bp, addr, eq_prod);
375 * locking is done by mcp
377 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
380 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
381 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
382 PCICFG_VENDOR_ID_OFFSET);
385 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
389 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
390 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
391 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
392 PCICFG_VENDOR_ID_OFFSET);
397 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
398 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
399 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
400 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
401 #define DMAE_DP_DST_NONE "dst_addr [none]"
403 static void bnx2x_dp_dmae(struct bnx2x *bp,
404 struct dmae_command *dmae, int msglvl)
406 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
409 switch (dmae->opcode & DMAE_COMMAND_DST) {
410 case DMAE_CMD_DST_PCI:
411 if (src_type == DMAE_CMD_SRC_PCI)
412 DP(msglvl, "DMAE: opcode 0x%08x\n"
413 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
414 "comp_addr [%x:%08x], comp_val 0x%08x\n",
415 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
417 dmae->comp_addr_hi, dmae->comp_addr_lo,
420 DP(msglvl, "DMAE: opcode 0x%08x\n"
421 "src [%08x], len [%d*4], dst [%x:%08x]\n"
422 "comp_addr [%x:%08x], comp_val 0x%08x\n",
423 dmae->opcode, dmae->src_addr_lo >> 2,
424 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
425 dmae->comp_addr_hi, dmae->comp_addr_lo,
428 case DMAE_CMD_DST_GRC:
429 if (src_type == DMAE_CMD_SRC_PCI)
430 DP(msglvl, "DMAE: opcode 0x%08x\n"
431 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
432 "comp_addr [%x:%08x], comp_val 0x%08x\n",
433 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434 dmae->len, dmae->dst_addr_lo >> 2,
435 dmae->comp_addr_hi, dmae->comp_addr_lo,
438 DP(msglvl, "DMAE: opcode 0x%08x\n"
439 "src [%08x], len [%d*4], dst [%08x]\n"
440 "comp_addr [%x:%08x], comp_val 0x%08x\n",
441 dmae->opcode, dmae->src_addr_lo >> 2,
442 dmae->len, dmae->dst_addr_lo >> 2,
443 dmae->comp_addr_hi, dmae->comp_addr_lo,
447 if (src_type == DMAE_CMD_SRC_PCI)
448 DP(msglvl, "DMAE: opcode 0x%08x\n"
449 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
450 "comp_addr [%x:%08x] comp_val 0x%08x\n",
451 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
452 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
455 DP(msglvl, "DMAE: opcode 0x%08x\n"
456 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
457 "comp_addr [%x:%08x] comp_val 0x%08x\n",
458 dmae->opcode, dmae->src_addr_lo >> 2,
459 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
464 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
465 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
466 i, *(((u32 *)dmae) + i));
469 /* copy command into DMAE command memory and set DMAE command go */
470 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
475 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
476 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
477 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479 REG_WR(bp, dmae_reg_go_c[idx], 1);
482 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
488 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 return opcode & ~DMAE_CMD_SRC_RESET;
493 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
494 bool with_comp, u8 comp_type)
498 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
499 (dst_type << DMAE_COMMAND_DST_SHIFT));
501 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
504 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
505 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
506 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
509 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
514 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
518 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
519 struct dmae_command *dmae,
520 u8 src_type, u8 dst_type)
522 memset(dmae, 0, sizeof(struct dmae_command));
525 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
526 true, DMAE_COMP_PCI);
528 /* fill in the completion parameters */
529 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
530 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
531 dmae->comp_val = DMAE_COMP_VAL;
534 /* issue a dmae command over the init-channel and wait for completion */
535 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
538 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
541 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
544 * as long as this code is called both from syscall context and
545 * from ndo_set_rx_mode() flow that may be called from BH.
548 spin_lock_bh(&bp->dmae_lock);
550 /* reset completion */
553 /* post the command on the channel used for initializations */
554 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556 /* wait for completion */
558 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
561 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
562 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
563 BNX2X_ERR("DMAE timeout!\n");
570 if (*comp & DMAE_PCI_ERR_FLAG) {
571 BNX2X_ERR("DMAE PCI error!\n");
577 spin_unlock_bh(&bp->dmae_lock);
582 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
586 struct dmae_command dmae;
588 if (!bp->dmae_ready) {
589 u32 *data = bnx2x_sp(bp, wb_data[0]);
592 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594 bnx2x_init_str_wr(bp, dst_addr, data, len32);
598 /* set opcode and fixed command fields */
599 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601 /* fill in addresses and len */
602 dmae.src_addr_lo = U64_LO(dma_addr);
603 dmae.src_addr_hi = U64_HI(dma_addr);
604 dmae.dst_addr_lo = dst_addr >> 2;
605 dmae.dst_addr_hi = 0;
608 /* issue the command and wait for completion */
609 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611 BNX2X_ERR("DMAE returned failure %d\n", rc);
612 #ifdef BNX2X_STOP_ON_ERROR
618 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
621 struct dmae_command dmae;
623 if (!bp->dmae_ready) {
624 u32 *data = bnx2x_sp(bp, wb_data[0]);
628 for (i = 0; i < len32; i++)
629 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631 for (i = 0; i < len32; i++)
632 data[i] = REG_RD(bp, src_addr + i*4);
637 /* set opcode and fixed command fields */
638 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640 /* fill in addresses and len */
641 dmae.src_addr_lo = src_addr >> 2;
642 dmae.src_addr_hi = 0;
643 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
644 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
647 /* issue the command and wait for completion */
648 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650 BNX2X_ERR("DMAE returned failure %d\n", rc);
651 #ifdef BNX2X_STOP_ON_ERROR
657 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
660 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
663 while (len > dmae_wr_max) {
664 bnx2x_write_dmae(bp, phys_addr + offset,
665 addr + offset, dmae_wr_max);
666 offset += dmae_wr_max * 4;
670 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
682 #define REGS_IN_ENTRY 4
684 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
690 return XSTORM_ASSERT_LIST_OFFSET(entry);
692 return TSTORM_ASSERT_LIST_OFFSET(entry);
694 return CSTORM_ASSERT_LIST_OFFSET(entry);
696 return USTORM_ASSERT_LIST_OFFSET(entry);
699 BNX2X_ERR("unknown storm\n");
704 static int bnx2x_mc_assert(struct bnx2x *bp)
709 u32 regs[REGS_IN_ENTRY];
710 u32 bar_storm_intmem[STORMS_NUM] = {
716 u32 storm_assert_list_index[STORMS_NUM] = {
717 XSTORM_ASSERT_LIST_INDEX_OFFSET,
718 TSTORM_ASSERT_LIST_INDEX_OFFSET,
719 CSTORM_ASSERT_LIST_INDEX_OFFSET,
720 USTORM_ASSERT_LIST_INDEX_OFFSET
722 char *storms_string[STORMS_NUM] = {
729 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
730 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
731 storm_assert_list_index[storm]);
733 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
734 storms_string[storm], last_idx);
736 /* print the asserts */
737 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
738 /* read a single assert entry */
739 for (j = 0; j < REGS_IN_ENTRY; j++)
740 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
741 bnx2x_get_assert_list_entry(bp,
746 /* log entry if it contains a valid assert */
747 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
748 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
749 storms_string[storm], i, regs[3],
750 regs[2], regs[1], regs[0]);
758 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
759 CHIP_IS_E1(bp) ? "everest1" :
760 CHIP_IS_E1H(bp) ? "everest1h" :
761 CHIP_IS_E2(bp) ? "everest2" : "everest3",
762 bp->fw_major, bp->fw_minor, bp->fw_rev);
767 #define MCPR_TRACE_BUFFER_SIZE (0x800)
768 #define SCRATCH_BUFFER_SIZE(bp) \
769 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
777 u32 trace_shmem_base;
779 BNX2X_ERR("NO MCP - can not dump\n");
782 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
783 (bp->common.bc_ver & 0xff0000) >> 16,
784 (bp->common.bc_ver & 0xff00) >> 8,
785 (bp->common.bc_ver & 0xff));
787 if (pci_channel_offline(bp->pdev)) {
788 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
792 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
793 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
794 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796 if (BP_PATH(bp) == 0)
797 trace_shmem_base = bp->common.shmem_base;
799 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
802 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
803 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
804 SCRATCH_BUFFER_SIZE(bp)) {
805 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
810 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812 /* validate TRCB signature */
813 mark = REG_RD(bp, addr);
814 if (mark != MFW_TRACE_SIGNATURE) {
815 BNX2X_ERR("Trace buffer signature is missing.");
819 /* read cyclic buffer pointer */
821 mark = REG_RD(bp, addr);
822 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
823 if (mark >= trace_shmem_base || mark < addr + 4) {
824 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
827 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
831 /* dump buffer after the mark */
832 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
833 for (word = 0; word < 8; word++)
834 data[word] = htonl(REG_RD(bp, offset + 4*word));
836 pr_cont("%s", (char *)data);
839 /* dump buffer before the mark */
840 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
841 for (word = 0; word < 8; word++)
842 data[word] = htonl(REG_RD(bp, offset + 4*word));
844 pr_cont("%s", (char *)data);
846 printk("%s" "end of fw dump\n", lvl);
849 static void bnx2x_fw_dump(struct bnx2x *bp)
851 bnx2x_fw_dump_lvl(bp, KERN_ERR);
854 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 int port = BP_PORT(bp);
857 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
858 u32 val = REG_RD(bp, addr);
860 /* in E1 we must use only PCI configuration space to disable
861 * MSI/MSIX capability
862 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864 if (CHIP_IS_E1(bp)) {
865 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
866 * Use mask register to prevent from HC sending interrupts
867 * after we exit the function
869 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
872 HC_CONFIG_0_REG_INT_LINE_EN_0 |
873 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
876 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
877 HC_CONFIG_0_REG_INT_LINE_EN_0 |
878 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
881 "write %x to HC %d (addr 0x%x)\n",
884 REG_WR(bp, addr, val);
885 if (REG_RD(bp, addr) != val)
886 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
889 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
894 IGU_PF_CONF_INT_LINE_EN |
895 IGU_PF_CONF_ATTN_BIT_EN);
897 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
904 static void bnx2x_int_disable(struct bnx2x *bp)
906 if (bp->common.int_block == INT_BLOCK_HC)
907 bnx2x_hc_int_disable(bp);
909 bnx2x_igu_int_disable(bp);
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
916 struct hc_sp_status_block_data sp_sb_data;
917 int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919 u16 start = 0, end = 0;
922 if (IS_PF(bp) && disable_int)
923 bnx2x_int_disable(bp);
925 bp->stats_state = STATS_STATE_DISABLED;
926 bp->eth_stats.unrecoverable_error++;
927 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929 BNX2X_ERR("begin crash dump -----------------\n");
934 struct host_sp_status_block *def_sb = bp->def_status_blk;
935 int data_size, cstorm_offset;
937 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938 bp->def_idx, bp->def_att_idx, bp->attn_state,
939 bp->spq_prod_idx, bp->stats_counter);
940 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
941 def_sb->atten_status_block.attn_bits,
942 def_sb->atten_status_block.attn_bits_ack,
943 def_sb->atten_status_block.status_block_id,
944 def_sb->atten_status_block.attn_bits_index);
946 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948 def_sb->sp_sb.index_values[i],
949 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
951 data_size = sizeof(struct hc_sp_status_block_data) /
953 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954 for (i = 0; i < data_size; i++)
955 *((u32 *)&sp_sb_data + i) =
956 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
959 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
960 sp_sb_data.igu_sb_id,
961 sp_sb_data.igu_seg_id,
962 sp_sb_data.p_func.pf_id,
963 sp_sb_data.p_func.vnic_id,
964 sp_sb_data.p_func.vf_id,
965 sp_sb_data.p_func.vf_valid,
969 for_each_eth_queue(bp, i) {
970 struct bnx2x_fastpath *fp = &bp->fp[i];
972 struct hc_status_block_data_e2 sb_data_e2;
973 struct hc_status_block_data_e1x sb_data_e1x;
974 struct hc_status_block_sm *hc_sm_p =
976 sb_data_e1x.common.state_machine :
977 sb_data_e2.common.state_machine;
978 struct hc_index_data *hc_index_p =
980 sb_data_e1x.index_data :
981 sb_data_e2.index_data;
984 struct bnx2x_fp_txdata txdata;
993 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
994 i, fp->rx_bd_prod, fp->rx_bd_cons,
996 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
997 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
998 fp->rx_sge_prod, fp->last_max_sge,
999 le16_to_cpu(fp->fp_hc_idx));
1002 for_each_cos_in_tx_queue(fp, cos)
1004 if (!fp->txdata_ptr[cos])
1007 txdata = *fp->txdata_ptr[cos];
1009 if (!txdata.tx_cons_sb)
1012 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1013 i, txdata.tx_pkt_prod,
1014 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016 le16_to_cpu(*txdata.tx_cons_sb));
1019 loop = CHIP_IS_E1x(bp) ?
1020 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1027 BNX2X_ERR(" run indexes (");
1028 for (j = 0; j < HC_SB_MAX_SM; j++)
1030 fp->sb_running_index[j],
1031 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033 BNX2X_ERR(" indexes (");
1034 for (j = 0; j < loop; j++)
1036 fp->sb_index_values[j],
1037 (j == loop - 1) ? ")" : " ");
1039 /* VF cannot access FW refelection for status block */
1044 data_size = CHIP_IS_E1x(bp) ?
1045 sizeof(struct hc_status_block_data_e1x) :
1046 sizeof(struct hc_status_block_data_e2);
1047 data_size /= sizeof(u32);
1048 sb_data_p = CHIP_IS_E1x(bp) ?
1049 (u32 *)&sb_data_e1x :
1051 /* copy sb data in here */
1052 for (j = 0; j < data_size; j++)
1053 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1054 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1057 if (!CHIP_IS_E1x(bp)) {
1058 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1059 sb_data_e2.common.p_func.pf_id,
1060 sb_data_e2.common.p_func.vf_id,
1061 sb_data_e2.common.p_func.vf_valid,
1062 sb_data_e2.common.p_func.vnic_id,
1063 sb_data_e2.common.same_igu_sb_1b,
1064 sb_data_e2.common.state);
1066 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1067 sb_data_e1x.common.p_func.pf_id,
1068 sb_data_e1x.common.p_func.vf_id,
1069 sb_data_e1x.common.p_func.vf_valid,
1070 sb_data_e1x.common.p_func.vnic_id,
1071 sb_data_e1x.common.same_igu_sb_1b,
1072 sb_data_e1x.common.state);
1076 for (j = 0; j < HC_SB_MAX_SM; j++) {
1077 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1078 j, hc_sm_p[j].__flags,
1079 hc_sm_p[j].igu_sb_id,
1080 hc_sm_p[j].igu_seg_id,
1081 hc_sm_p[j].time_to_expire,
1082 hc_sm_p[j].timer_value);
1086 for (j = 0; j < loop; j++) {
1087 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1088 hc_index_p[j].flags,
1089 hc_index_p[j].timeout);
1093 #ifdef BNX2X_STOP_ON_ERROR
1096 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1097 for (i = 0; i < NUM_EQ_DESC; i++) {
1098 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1101 i, bp->eq_ring[i].message.opcode,
1102 bp->eq_ring[i].message.error);
1103 BNX2X_ERR("data: %x %x %x\n",
1104 data[0], data[1], data[2]);
1110 for_each_valid_rx_queue(bp, i) {
1111 struct bnx2x_fastpath *fp = &bp->fp[i];
1116 if (!fp->rx_cons_sb)
1119 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1120 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1121 for (j = start; j != end; j = RX_BD(j + 1)) {
1122 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1123 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1126 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1129 start = RX_SGE(fp->rx_sge_prod);
1130 end = RX_SGE(fp->last_max_sge);
1131 for (j = start; j != end; j = RX_SGE(j + 1)) {
1132 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1133 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1136 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1139 start = RCQ_BD(fp->rx_comp_cons - 10);
1140 end = RCQ_BD(fp->rx_comp_cons + 503);
1141 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1142 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1145 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1150 for_each_valid_tx_queue(bp, i) {
1151 struct bnx2x_fastpath *fp = &bp->fp[i];
1156 for_each_cos_in_tx_queue(fp, cos) {
1157 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159 if (!fp->txdata_ptr[cos])
1162 if (!txdata->tx_cons_sb)
1165 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1166 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1167 for (j = start; j != end; j = TX_BD(j + 1)) {
1168 struct sw_tx_bd *sw_bd =
1169 &txdata->tx_buf_ring[j];
1171 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1172 i, cos, j, sw_bd->skb,
1176 start = TX_BD(txdata->tx_bd_cons - 10);
1177 end = TX_BD(txdata->tx_bd_cons + 254);
1178 for (j = start; j != end; j = TX_BD(j + 1)) {
1179 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1182 i, cos, j, tx_bd[0], tx_bd[1],
1183 tx_bd[2], tx_bd[3]);
1189 int tmp_msg_en = bp->msg_enable;
1192 bp->msg_enable |= NETIF_MSG_HW;
1193 BNX2X_ERR("Idle check (1st round) ----------\n");
1195 BNX2X_ERR("Idle check (2nd round) ----------\n");
1197 bp->msg_enable = tmp_msg_en;
1198 bnx2x_mc_assert(bp);
1201 BNX2X_ERR("end crash dump -----------------\n");
1205 * FLR Support for E2
1207 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1210 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1211 #define FLR_WAIT_INTERVAL 50 /* usec */
1212 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214 struct pbf_pN_buf_regs {
1221 struct pbf_pN_cmd_regs {
1227 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1228 struct pbf_pN_buf_regs *regs,
1231 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1232 u32 cur_cnt = poll_count;
1234 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1235 crd = crd_start = REG_RD(bp, regs->crd);
1236 init_crd = REG_RD(bp, regs->init_crd);
1238 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1239 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1240 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1243 (init_crd - crd_start))) {
1245 udelay(FLR_WAIT_INTERVAL);
1246 crd = REG_RD(bp, regs->crd);
1247 crd_freed = REG_RD(bp, regs->crd_freed);
1249 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1253 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1254 regs->pN, crd_freed);
1258 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1259 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1262 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1263 struct pbf_pN_cmd_regs *regs,
1266 u32 occup, to_free, freed, freed_start;
1267 u32 cur_cnt = poll_count;
1269 occup = to_free = REG_RD(bp, regs->lines_occup);
1270 freed = freed_start = REG_RD(bp, regs->lines_freed);
1272 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1273 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277 udelay(FLR_WAIT_INTERVAL);
1278 occup = REG_RD(bp, regs->lines_occup);
1279 freed = REG_RD(bp, regs->lines_freed);
1281 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1285 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1290 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1291 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1294 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1295 u32 expected, u32 poll_count)
1297 u32 cur_cnt = poll_count;
1300 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1301 udelay(FLR_WAIT_INTERVAL);
1306 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1307 char *msg, u32 poll_cnt)
1309 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311 BNX2X_ERR("%s usage count=%d\n", msg, val);
1317 /* Common routines with VF FLR cleanup */
1318 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 /* adjust polling timeout */
1321 if (CHIP_REV_IS_EMUL(bp))
1322 return FLR_POLL_CNT * 2000;
1324 if (CHIP_REV_IS_FPGA(bp))
1325 return FLR_POLL_CNT * 120;
1327 return FLR_POLL_CNT;
1330 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 struct pbf_pN_cmd_regs cmd_regs[] = {
1333 {0, (CHIP_IS_E3B0(bp)) ?
1334 PBF_REG_TQ_OCCUPANCY_Q0 :
1335 PBF_REG_P0_TQ_OCCUPANCY,
1336 (CHIP_IS_E3B0(bp)) ?
1337 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1338 PBF_REG_P0_TQ_LINES_FREED_CNT},
1339 {1, (CHIP_IS_E3B0(bp)) ?
1340 PBF_REG_TQ_OCCUPANCY_Q1 :
1341 PBF_REG_P1_TQ_OCCUPANCY,
1342 (CHIP_IS_E3B0(bp)) ?
1343 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1344 PBF_REG_P1_TQ_LINES_FREED_CNT},
1345 {4, (CHIP_IS_E3B0(bp)) ?
1346 PBF_REG_TQ_OCCUPANCY_LB_Q :
1347 PBF_REG_P4_TQ_OCCUPANCY,
1348 (CHIP_IS_E3B0(bp)) ?
1349 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1350 PBF_REG_P4_TQ_LINES_FREED_CNT}
1353 struct pbf_pN_buf_regs buf_regs[] = {
1354 {0, (CHIP_IS_E3B0(bp)) ?
1355 PBF_REG_INIT_CRD_Q0 :
1356 PBF_REG_P0_INIT_CRD ,
1357 (CHIP_IS_E3B0(bp)) ?
1360 (CHIP_IS_E3B0(bp)) ?
1361 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1362 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1363 {1, (CHIP_IS_E3B0(bp)) ?
1364 PBF_REG_INIT_CRD_Q1 :
1365 PBF_REG_P1_INIT_CRD,
1366 (CHIP_IS_E3B0(bp)) ?
1369 (CHIP_IS_E3B0(bp)) ?
1370 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1371 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1372 {4, (CHIP_IS_E3B0(bp)) ?
1373 PBF_REG_INIT_CRD_LB_Q :
1374 PBF_REG_P4_INIT_CRD,
1375 (CHIP_IS_E3B0(bp)) ?
1376 PBF_REG_CREDIT_LB_Q :
1378 (CHIP_IS_E3B0(bp)) ?
1379 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1380 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1385 /* Verify the command queues are flushed P0, P1, P4 */
1386 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1387 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389 /* Verify the transmission buffers are flushed P0, P1, P4 */
1390 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1391 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1394 #define OP_GEN_PARAM(param) \
1395 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397 #define OP_GEN_TYPE(type) \
1398 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400 #define OP_GEN_AGG_VECT(index) \
1401 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 u32 op_gen_command = 0;
1406 u32 comp_addr = BAR_CSTRORM_INTMEM +
1407 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409 if (REG_RD(bp, comp_addr)) {
1410 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1414 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1415 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1416 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1417 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1419 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1420 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1422 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1423 BNX2X_ERR("FW final cleanup did not succeed\n");
1424 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1425 (REG_RD(bp, comp_addr)));
1429 /* Zero completion for next FLR */
1430 REG_WR(bp, comp_addr, 0);
1435 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1439 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1440 return status & PCI_EXP_DEVSTA_TRPND;
1443 /* PF FLR specific routines
1445 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1447 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1448 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 CFC_REG_NUM_LCIDS_INSIDE_PF,
1450 "CFC PF usage counter timed out",
1454 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1455 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 DORQ_REG_PF_USAGE_CNT,
1457 "DQ PF usage counter timed out",
1461 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1462 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1464 "QM PF usage counter timed out",
1468 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1469 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1470 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1471 "Timers VNIC usage counter timed out",
1474 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1475 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1476 "Timers NUM_SCANS usage counter timed out",
1480 /* Wait DMAE PF usage counter to zero */
1481 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1482 dmae_reg_go_c[INIT_DMAE_C(bp)],
1483 "DMAE command register timed out",
1490 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1494 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1495 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1497 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1498 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1500 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1501 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1503 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1504 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1506 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1507 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1509 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1510 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1512 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1513 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1515 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1516 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1520 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1522 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1524 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1526 /* Re-enable PF target read access */
1527 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1529 /* Poll HW usage counters */
1530 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1531 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1534 /* Zero the igu 'trailing edge' and 'leading edge' */
1536 /* Send the FW cleanup command */
1537 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1542 /* Verify TX hw is flushed */
1543 bnx2x_tx_hw_flushed(bp, poll_cnt);
1545 /* Wait 100ms (not adjusted according to platform) */
1548 /* Verify no pending pci transactions */
1549 if (bnx2x_is_pcie_pending(bp->pdev))
1550 BNX2X_ERR("PCIE Transactions still pending\n");
1553 bnx2x_hw_enable_status(bp);
1556 * Master enable - Due to WB DMAE writes performed before this
1557 * register is re-initialized as part of the regular function init
1559 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1564 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1566 int port = BP_PORT(bp);
1567 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1568 u32 val = REG_RD(bp, addr);
1569 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1570 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1571 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1574 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1575 HC_CONFIG_0_REG_INT_LINE_EN_0);
1576 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1577 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1579 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1581 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1582 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1583 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1584 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1586 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1587 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1588 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1589 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1591 if (!CHIP_IS_E1(bp)) {
1593 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1595 REG_WR(bp, addr, val);
1597 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1602 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1605 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1606 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1608 REG_WR(bp, addr, val);
1610 * Ensure that HC_CONFIG is written before leading/trailing edge config
1614 if (!CHIP_IS_E1(bp)) {
1615 /* init leading/trailing edge */
1617 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1619 /* enable nig and gpio3 attention */
1624 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1625 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1629 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1632 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1633 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1634 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1636 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1639 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1640 IGU_PF_CONF_SINGLE_ISR_EN);
1641 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1642 IGU_PF_CONF_ATTN_BIT_EN);
1645 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1647 val &= ~IGU_PF_CONF_INT_LINE_EN;
1648 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1649 IGU_PF_CONF_ATTN_BIT_EN |
1650 IGU_PF_CONF_SINGLE_ISR_EN);
1652 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1653 val |= (IGU_PF_CONF_INT_LINE_EN |
1654 IGU_PF_CONF_ATTN_BIT_EN |
1655 IGU_PF_CONF_SINGLE_ISR_EN);
1658 /* Clean previous status - need to configure igu prior to ack*/
1659 if ((!msix) || single_msix) {
1660 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1664 val |= IGU_PF_CONF_FUNC_EN;
1666 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1667 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1669 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1671 if (val & IGU_PF_CONF_INT_LINE_EN)
1672 pci_intx(bp->pdev, true);
1676 /* init leading/trailing edge */
1678 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1680 /* enable nig and gpio3 attention */
1685 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1686 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1689 void bnx2x_int_enable(struct bnx2x *bp)
1691 if (bp->common.int_block == INT_BLOCK_HC)
1692 bnx2x_hc_int_enable(bp);
1694 bnx2x_igu_int_enable(bp);
1697 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1699 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1703 /* prevent the HW from sending interrupts */
1704 bnx2x_int_disable(bp);
1706 /* make sure all ISRs are done */
1708 synchronize_irq(bp->msix_table[0].vector);
1710 if (CNIC_SUPPORT(bp))
1712 for_each_eth_queue(bp, i)
1713 synchronize_irq(bp->msix_table[offset++].vector);
1715 synchronize_irq(bp->pdev->irq);
1717 /* make sure sp_task is not running */
1718 cancel_delayed_work(&bp->sp_task);
1719 cancel_delayed_work(&bp->period_task);
1720 flush_workqueue(bnx2x_wq);
1726 * General service functions
1729 /* Return true if succeeded to acquire the lock */
1730 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1733 u32 resource_bit = (1 << resource);
1734 int func = BP_FUNC(bp);
1735 u32 hw_lock_control_reg;
1737 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1738 "Trying to take a lock on resource %d\n", resource);
1740 /* Validating that the resource is within range */
1741 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1742 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1743 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1744 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1749 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1751 hw_lock_control_reg =
1752 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1754 /* Try to acquire the lock */
1755 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1756 lock_status = REG_RD(bp, hw_lock_control_reg);
1757 if (lock_status & resource_bit)
1760 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1761 "Failed to get a lock on resource %d\n", resource);
1766 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1768 * @bp: driver handle
1770 * Returns the recovery leader resource id according to the engine this function
1771 * belongs to. Currently only only 2 engines is supported.
1773 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1776 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1778 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1782 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1784 * @bp: driver handle
1786 * Tries to acquire a leader lock for current engine.
1788 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1790 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1793 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1795 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1796 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1798 /* Set the interrupt occurred bit for the sp-task to recognize it
1799 * must ack the interrupt and transition according to the IGU
1802 atomic_set(&bp->interrupt_occurred, 1);
1804 /* The sp_task must execute only after this bit
1805 * is set, otherwise we will get out of sync and miss all
1806 * further interrupts. Hence, the barrier.
1810 /* schedule sp_task to workqueue */
1811 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1814 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1816 struct bnx2x *bp = fp->bp;
1817 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1820 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1823 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1824 fp->index, cid, command, bp->state,
1825 rr_cqe->ramrod_cqe.ramrod_type);
1827 /* If cid is within VF range, replace the slowpath object with the
1828 * one corresponding to this VF
1830 if (cid >= BNX2X_FIRST_VF_CID &&
1831 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1832 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1835 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1836 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1837 drv_cmd = BNX2X_Q_CMD_UPDATE;
1840 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1841 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1842 drv_cmd = BNX2X_Q_CMD_SETUP;
1845 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1846 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1847 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1850 case (RAMROD_CMD_ID_ETH_HALT):
1851 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1852 drv_cmd = BNX2X_Q_CMD_HALT;
1855 case (RAMROD_CMD_ID_ETH_TERMINATE):
1856 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1857 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1860 case (RAMROD_CMD_ID_ETH_EMPTY):
1861 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1862 drv_cmd = BNX2X_Q_CMD_EMPTY;
1865 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1866 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1867 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1871 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1872 command, fp->index);
1876 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1877 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1878 /* q_obj->complete_cmd() failure means that this was
1879 * an unexpected completion.
1881 * In this case we don't want to increase the bp->spq_left
1882 * because apparently we haven't sent this command the first
1885 #ifdef BNX2X_STOP_ON_ERROR
1891 smp_mb__before_atomic();
1892 atomic_inc(&bp->cq_spq_left);
1893 /* push the change in bp->spq_left and towards the memory */
1894 smp_mb__after_atomic();
1896 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1898 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1899 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1900 /* if Q update ramrod is completed for last Q in AFEX vif set
1901 * flow, then ACK MCP at the end
1903 * mark pending ACK to MCP bit.
1904 * prevent case that both bits are cleared.
1905 * At the end of load/unload driver checks that
1906 * sp_state is cleared, and this order prevents
1909 smp_mb__before_atomic();
1910 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1912 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1913 smp_mb__after_atomic();
1915 /* schedule the sp task as mcp ack is required */
1916 bnx2x_schedule_sp_task(bp);
1922 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1924 struct bnx2x *bp = netdev_priv(dev_instance);
1925 u16 status = bnx2x_ack_int(bp);
1930 /* Return here if interrupt is shared and it's not for us */
1931 if (unlikely(status == 0)) {
1932 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1935 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1937 #ifdef BNX2X_STOP_ON_ERROR
1938 if (unlikely(bp->panic))
1942 for_each_eth_queue(bp, i) {
1943 struct bnx2x_fastpath *fp = &bp->fp[i];
1945 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1946 if (status & mask) {
1947 /* Handle Rx or Tx according to SB id */
1948 for_each_cos_in_tx_queue(fp, cos)
1949 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1950 prefetch(&fp->sb_running_index[SM_RX_ID]);
1951 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1956 if (CNIC_SUPPORT(bp)) {
1958 if (status & (mask | 0x1)) {
1959 struct cnic_ops *c_ops = NULL;
1962 c_ops = rcu_dereference(bp->cnic_ops);
1963 if (c_ops && (bp->cnic_eth_dev.drv_state &
1964 CNIC_DRV_STATE_HANDLES_IRQ))
1965 c_ops->cnic_handler(bp->cnic_data, NULL);
1972 if (unlikely(status & 0x1)) {
1974 /* schedule sp task to perform default status block work, ack
1975 * attentions and enable interrupts.
1977 bnx2x_schedule_sp_task(bp);
1984 if (unlikely(status))
1985 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1994 * General service functions
1997 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
2000 u32 resource_bit = (1 << resource);
2001 int func = BP_FUNC(bp);
2002 u32 hw_lock_control_reg;
2005 /* Validating that the resource is within range */
2006 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2007 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2008 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2013 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2015 hw_lock_control_reg =
2016 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2019 /* Validating that the resource is not already taken */
2020 lock_status = REG_RD(bp, hw_lock_control_reg);
2021 if (lock_status & resource_bit) {
2022 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2023 lock_status, resource_bit);
2027 /* Try for 5 second every 5ms */
2028 for (cnt = 0; cnt < 1000; cnt++) {
2029 /* Try to acquire the lock */
2030 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2031 lock_status = REG_RD(bp, hw_lock_control_reg);
2032 if (lock_status & resource_bit)
2035 usleep_range(5000, 10000);
2037 BNX2X_ERR("Timeout\n");
2041 int bnx2x_release_leader_lock(struct bnx2x *bp)
2043 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2046 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2049 u32 resource_bit = (1 << resource);
2050 int func = BP_FUNC(bp);
2051 u32 hw_lock_control_reg;
2053 /* Validating that the resource is within range */
2054 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2055 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2056 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2061 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2063 hw_lock_control_reg =
2064 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2067 /* Validating that the resource is currently taken */
2068 lock_status = REG_RD(bp, hw_lock_control_reg);
2069 if (!(lock_status & resource_bit)) {
2070 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2071 lock_status, resource_bit);
2075 REG_WR(bp, hw_lock_control_reg, resource_bit);
2079 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2081 /* The GPIO should be swapped if swap register is set and active */
2082 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084 int gpio_shift = gpio_num +
2085 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086 u32 gpio_mask = (1 << gpio_shift);
2090 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2091 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2095 /* read GPIO value */
2096 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2098 /* get the requested pin value */
2099 if ((gpio_reg & gpio_mask) == gpio_mask)
2107 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2109 /* The GPIO should be swapped if swap register is set and active */
2110 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2111 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2112 int gpio_shift = gpio_num +
2113 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2114 u32 gpio_mask = (1 << gpio_shift);
2117 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2118 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2122 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2123 /* read GPIO and mask except the float bits */
2124 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2127 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2129 "Set GPIO %d (shift %d) -> output low\n",
2130 gpio_num, gpio_shift);
2131 /* clear FLOAT and set CLR */
2132 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2136 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2138 "Set GPIO %d (shift %d) -> output high\n",
2139 gpio_num, gpio_shift);
2140 /* clear FLOAT and set SET */
2141 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2145 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2147 "Set GPIO %d (shift %d) -> input\n",
2148 gpio_num, gpio_shift);
2150 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2157 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2158 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2163 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2168 /* Any port swapping should be handled by caller. */
2170 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2171 /* read GPIO and mask except the float bits */
2172 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2173 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2178 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2179 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2181 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2184 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2185 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2187 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2190 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2191 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2193 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2197 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2203 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2205 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2212 /* The GPIO should be swapped if swap register is set and active */
2213 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2214 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2215 int gpio_shift = gpio_num +
2216 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2217 u32 gpio_mask = (1 << gpio_shift);
2220 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2221 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2225 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2227 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2230 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2232 "Clear GPIO INT %d (shift %d) -> output low\n",
2233 gpio_num, gpio_shift);
2234 /* clear SET and set CLR */
2235 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2239 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2241 "Set GPIO INT %d (shift %d) -> output high\n",
2242 gpio_num, gpio_shift);
2243 /* clear CLR and set SET */
2244 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2245 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2252 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2253 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2258 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2262 /* Only 2 SPIOs are configurable */
2263 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2264 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2268 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2269 /* read SPIO and mask except the float bits */
2270 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2273 case MISC_SPIO_OUTPUT_LOW:
2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2275 /* clear FLOAT and set CLR */
2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2280 case MISC_SPIO_OUTPUT_HIGH:
2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2282 /* clear FLOAT and set SET */
2283 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2284 spio_reg |= (spio << MISC_SPIO_SET_POS);
2287 case MISC_SPIO_INPUT_HI_Z:
2288 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2290 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2297 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2298 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2303 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2305 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2307 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2309 switch (bp->link_vars.ieee_fc &
2310 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2311 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2312 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2316 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2317 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2325 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2327 /* Initialize link parameters structure variables
2328 * It is recommended to turn off RX FC for jumbo frames
2329 * for better performance
2331 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2332 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2334 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2337 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2339 u32 pause_enabled = 0;
2341 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2342 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2345 REG_WR(bp, BAR_USTRORM_INTMEM +
2346 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2350 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2351 pause_enabled ? "enabled" : "disabled");
2354 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2356 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2357 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2359 if (!BP_NOMCP(bp)) {
2360 bnx2x_set_requested_fc(bp);
2361 bnx2x_acquire_phy_lock(bp);
2363 if (load_mode == LOAD_DIAG) {
2364 struct link_params *lp = &bp->link_params;
2365 lp->loopback_mode = LOOPBACK_XGXS;
2366 /* Prefer doing PHY loopback at highest speed */
2367 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2368 if (lp->speed_cap_mask[cfx_idx] &
2369 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2370 lp->req_line_speed[cfx_idx] =
2372 else if (lp->speed_cap_mask[cfx_idx] &
2373 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2374 lp->req_line_speed[cfx_idx] =
2377 lp->req_line_speed[cfx_idx] =
2382 if (load_mode == LOAD_LOOPBACK_EXT) {
2383 struct link_params *lp = &bp->link_params;
2384 lp->loopback_mode = LOOPBACK_EXT;
2387 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2389 bnx2x_release_phy_lock(bp);
2391 bnx2x_init_dropless_fc(bp);
2393 bnx2x_calc_fc_adv(bp);
2395 if (bp->link_vars.link_up) {
2396 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2397 bnx2x_link_report(bp);
2399 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2400 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2403 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2407 void bnx2x_link_set(struct bnx2x *bp)
2409 if (!BP_NOMCP(bp)) {
2410 bnx2x_acquire_phy_lock(bp);
2411 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2412 bnx2x_release_phy_lock(bp);
2414 bnx2x_init_dropless_fc(bp);
2416 bnx2x_calc_fc_adv(bp);
2418 BNX2X_ERR("Bootcode is missing - can not set link\n");
2421 static void bnx2x__link_reset(struct bnx2x *bp)
2423 if (!BP_NOMCP(bp)) {
2424 bnx2x_acquire_phy_lock(bp);
2425 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2426 bnx2x_release_phy_lock(bp);
2428 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2431 void bnx2x_force_link_reset(struct bnx2x *bp)
2433 bnx2x_acquire_phy_lock(bp);
2434 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2435 bnx2x_release_phy_lock(bp);
2438 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2442 if (!BP_NOMCP(bp)) {
2443 bnx2x_acquire_phy_lock(bp);
2444 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2446 bnx2x_release_phy_lock(bp);
2448 BNX2X_ERR("Bootcode is missing - can not test link\n");
2453 /* Calculates the sum of vn_min_rates.
2454 It's needed for further normalizing of the min_rates.
2456 sum of vn_min_rates.
2458 0 - if all the min_rates are 0.
2459 In the later case fairness algorithm should be deactivated.
2460 If not all min_rates are zero then those that are zeroes will be set to 1.
2462 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2463 struct cmng_init_input *input)
2468 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2469 u32 vn_cfg = bp->mf_config[vn];
2470 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2471 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2473 /* Skip hidden vns */
2474 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2476 /* If min rate is zero - set it to 1 */
2477 else if (!vn_min_rate)
2478 vn_min_rate = DEF_MIN_RATE;
2482 input->vnic_min_rate[vn] = vn_min_rate;
2485 /* if ETS or all min rates are zeros - disable fairness */
2486 if (BNX2X_IS_ETS_ENABLED(bp)) {
2487 input->flags.cmng_enables &=
2488 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2490 } else if (all_zero) {
2491 input->flags.cmng_enables &=
2492 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2494 "All MIN values are zeroes fairness will be disabled\n");
2496 input->flags.cmng_enables |=
2497 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2500 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2501 struct cmng_init_input *input)
2504 u32 vn_cfg = bp->mf_config[vn];
2506 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2509 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2511 if (IS_MF_PERCENT_BW(bp)) {
2512 /* maxCfg in percents of linkspeed */
2513 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2514 } else /* SD modes */
2515 /* maxCfg is absolute in 100Mb units */
2516 vn_max_rate = maxCfg * 100;
2519 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2521 input->vnic_max_rate[vn] = vn_max_rate;
2524 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2526 if (CHIP_REV_IS_SLOW(bp))
2527 return CMNG_FNS_NONE;
2529 return CMNG_FNS_MINMAX;
2531 return CMNG_FNS_NONE;
2534 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2536 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2539 return; /* what should be the default value in this case */
2541 /* For 2 port configuration the absolute function number formula
2543 * abs_func = 2 * vn + BP_PORT + BP_PATH
2545 * and there are 4 functions per port
2547 * For 4 port configuration it is
2548 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2550 * and there are 2 functions per port
2552 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2553 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2555 if (func >= E1H_FUNC_MAX)
2559 MF_CFG_RD(bp, func_mf_config[func].config);
2561 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2562 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2563 bp->flags |= MF_FUNC_DIS;
2565 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2566 bp->flags &= ~MF_FUNC_DIS;
2570 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2572 struct cmng_init_input input;
2573 memset(&input, 0, sizeof(struct cmng_init_input));
2575 input.port_rate = bp->link_vars.line_speed;
2577 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2580 /* read mf conf from shmem */
2582 bnx2x_read_mf_cfg(bp);
2584 /* vn_weight_sum and enable fairness if not 0 */
2585 bnx2x_calc_vn_min(bp, &input);
2587 /* calculate and set min-max rate for each vn */
2589 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2590 bnx2x_calc_vn_max(bp, vn, &input);
2592 /* always enable rate shaping and fairness */
2593 input.flags.cmng_enables |=
2594 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2596 bnx2x_init_cmng(&input, &bp->cmng);
2600 /* rate shaping and fairness are disabled */
2602 "rate shaping and fairness are disabled\n");
2605 static void storm_memset_cmng(struct bnx2x *bp,
2606 struct cmng_init *cmng,
2610 size_t size = sizeof(struct cmng_struct_per_port);
2612 u32 addr = BAR_XSTRORM_INTMEM +
2613 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2615 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2617 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2618 int func = func_by_vn(bp, vn);
2620 addr = BAR_XSTRORM_INTMEM +
2621 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2622 size = sizeof(struct rate_shaping_vars_per_vn);
2623 __storm_memset_struct(bp, addr, size,
2624 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2626 addr = BAR_XSTRORM_INTMEM +
2627 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2628 size = sizeof(struct fairness_vars_per_vn);
2629 __storm_memset_struct(bp, addr, size,
2630 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2634 /* init cmng mode in HW according to local configuration */
2635 void bnx2x_set_local_cmng(struct bnx2x *bp)
2637 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2639 if (cmng_fns != CMNG_FNS_NONE) {
2640 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2641 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2643 /* rate shaping and fairness are disabled */
2645 "single function mode without fairness\n");
2649 /* This function is called upon link interrupt */
2650 static void bnx2x_link_attn(struct bnx2x *bp)
2652 /* Make sure that we are synced with the current statistics */
2653 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2655 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2657 bnx2x_init_dropless_fc(bp);
2659 if (bp->link_vars.link_up) {
2661 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2662 struct host_port_stats *pstats;
2664 pstats = bnx2x_sp(bp, port_stats);
2665 /* reset old mac stats */
2666 memset(&(pstats->mac_stx[0]), 0,
2667 sizeof(struct mac_stx));
2669 if (bp->state == BNX2X_STATE_OPEN)
2670 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2674 bnx2x_set_local_cmng(bp);
2676 __bnx2x_link_report(bp);
2679 bnx2x_link_sync_notify(bp);
2682 void bnx2x__link_status_update(struct bnx2x *bp)
2684 if (bp->state != BNX2X_STATE_OPEN)
2687 /* read updated dcb configuration */
2689 bnx2x_dcbx_pmf_update(bp);
2690 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2691 if (bp->link_vars.link_up)
2692 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2694 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2695 /* indicate link status */
2696 bnx2x_link_report(bp);
2699 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2700 SUPPORTED_10baseT_Full |
2701 SUPPORTED_100baseT_Half |
2702 SUPPORTED_100baseT_Full |
2703 SUPPORTED_1000baseT_Full |
2704 SUPPORTED_2500baseX_Full |
2705 SUPPORTED_10000baseT_Full |
2710 SUPPORTED_Asym_Pause);
2711 bp->port.advertising[0] = bp->port.supported[0];
2713 bp->link_params.bp = bp;
2714 bp->link_params.port = BP_PORT(bp);
2715 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2716 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2717 bp->link_params.req_line_speed[0] = SPEED_10000;
2718 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2719 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2720 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2721 bp->link_vars.line_speed = SPEED_10000;
2722 bp->link_vars.link_status =
2723 (LINK_STATUS_LINK_UP |
2724 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2725 bp->link_vars.link_up = 1;
2726 bp->link_vars.duplex = DUPLEX_FULL;
2727 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2728 __bnx2x_link_report(bp);
2730 bnx2x_sample_bulletin(bp);
2732 /* if bulletin board did not have an update for link status
2733 * __bnx2x_link_report will report current status
2734 * but it will NOT duplicate report in case of already reported
2735 * during sampling bulletin board.
2737 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2741 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2742 u16 vlan_val, u8 allowed_prio)
2744 struct bnx2x_func_state_params func_params = {NULL};
2745 struct bnx2x_func_afex_update_params *f_update_params =
2746 &func_params.params.afex_update;
2748 func_params.f_obj = &bp->func_obj;
2749 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2751 /* no need to wait for RAMROD completion, so don't
2752 * set RAMROD_COMP_WAIT flag
2755 f_update_params->vif_id = vifid;
2756 f_update_params->afex_default_vlan = vlan_val;
2757 f_update_params->allowed_priorities = allowed_prio;
2759 /* if ramrod can not be sent, response to MCP immediately */
2760 if (bnx2x_func_state_change(bp, &func_params) < 0)
2761 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2766 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2767 u16 vif_index, u8 func_bit_map)
2769 struct bnx2x_func_state_params func_params = {NULL};
2770 struct bnx2x_func_afex_viflists_params *update_params =
2771 &func_params.params.afex_viflists;
2775 /* validate only LIST_SET and LIST_GET are received from switch */
2776 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2777 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2780 func_params.f_obj = &bp->func_obj;
2781 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2783 /* set parameters according to cmd_type */
2784 update_params->afex_vif_list_command = cmd_type;
2785 update_params->vif_list_index = vif_index;
2786 update_params->func_bit_map =
2787 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2788 update_params->func_to_clear = 0;
2790 (cmd_type == VIF_LIST_RULE_GET) ?
2791 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2792 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2794 /* if ramrod can not be sent, respond to MCP immediately for
2795 * SET and GET requests (other are not triggered from MCP)
2797 rc = bnx2x_func_state_change(bp, &func_params);
2799 bnx2x_fw_command(bp, drv_msg_code, 0);
2804 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2806 struct afex_stats afex_stats;
2807 u32 func = BP_ABS_FUNC(bp);
2814 u32 addr_to_write, vifid, addrs, stats_type, i;
2816 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2819 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2820 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2823 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2824 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2825 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2827 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2829 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2833 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2834 addr_to_write = SHMEM2_RD(bp,
2835 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2836 stats_type = SHMEM2_RD(bp,
2837 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2840 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2843 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2845 /* write response to scratchpad, for MCP */
2846 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2847 REG_WR(bp, addr_to_write + i*sizeof(u32),
2848 *(((u32 *)(&afex_stats))+i));
2850 /* send ack message to MCP */
2851 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2854 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2855 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2856 bp->mf_config[BP_VN(bp)] = mf_config;
2858 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2861 /* if VIF_SET is "enabled" */
2862 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2863 /* set rate limit directly to internal RAM */
2864 struct cmng_init_input cmng_input;
2865 struct rate_shaping_vars_per_vn m_rs_vn;
2866 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2867 u32 addr = BAR_XSTRORM_INTMEM +
2868 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2870 bp->mf_config[BP_VN(bp)] = mf_config;
2872 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2873 m_rs_vn.vn_counter.rate =
2874 cmng_input.vnic_max_rate[BP_VN(bp)];
2875 m_rs_vn.vn_counter.quota =
2876 (m_rs_vn.vn_counter.rate *
2877 RS_PERIODIC_TIMEOUT_USEC) / 8;
2879 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2881 /* read relevant values from mf_cfg struct in shmem */
2883 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2884 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2885 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2887 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2888 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2889 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2890 vlan_prio = (mf_config &
2891 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2892 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2893 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2896 func_mf_config[func].afex_config) &
2897 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2898 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2901 func_mf_config[func].afex_config) &
2902 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2903 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2905 /* send ramrod to FW, return in case of failure */
2906 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2910 bp->afex_def_vlan_tag = vlan_val;
2911 bp->afex_vlan_mode = vlan_mode;
2913 /* notify link down because BP->flags is disabled */
2914 bnx2x_link_report(bp);
2916 /* send INVALID VIF ramrod to FW */
2917 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2919 /* Reset the default afex VLAN */
2920 bp->afex_def_vlan_tag = -1;
2925 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2927 struct bnx2x_func_switch_update_params *switch_update_params;
2928 struct bnx2x_func_state_params func_params;
2930 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2931 switch_update_params = &func_params.params.switch_update;
2932 func_params.f_obj = &bp->func_obj;
2933 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2935 /* Prepare parameters for function state transitions */
2936 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2937 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2939 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2940 int func = BP_ABS_FUNC(bp);
2943 /* Re-learn the S-tag from shmem */
2944 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2945 FUNC_MF_CFG_E1HOV_TAG_MASK;
2946 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2949 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2953 /* Configure new S-tag in LLH */
2954 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2957 /* Send Ramrod to update FW of change */
2958 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2959 &switch_update_params->changes);
2960 switch_update_params->vlan = bp->mf_ov;
2962 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2963 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2967 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2974 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2977 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2980 static void bnx2x_pmf_update(struct bnx2x *bp)
2982 int port = BP_PORT(bp);
2986 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2989 * We need the mb() to ensure the ordering between the writing to
2990 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2994 /* queue a periodic task */
2995 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2997 bnx2x_dcbx_pmf_update(bp);
2999 /* enable nig attention */
3000 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3001 if (bp->common.int_block == INT_BLOCK_HC) {
3002 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3003 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3004 } else if (!CHIP_IS_E1x(bp)) {
3005 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3006 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3009 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3017 * General service functions
3020 /* send the MCP a request, block until there is a reply */
3021 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3023 int mb_idx = BP_FW_MB_IDX(bp);
3027 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3029 mutex_lock(&bp->fw_mb_mutex);
3031 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3032 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3034 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3035 (command | seq), param);
3038 /* let the FW do it's magic ... */
3041 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3043 /* Give the FW up to 5 second (500*10ms) */
3044 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3046 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3047 cnt*delay, rc, seq);
3049 /* is this a reply to our command? */
3050 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3051 rc &= FW_MSG_CODE_MASK;
3054 BNX2X_ERR("FW failed to respond!\n");
3058 mutex_unlock(&bp->fw_mb_mutex);
3063 static void storm_memset_func_cfg(struct bnx2x *bp,
3064 struct tstorm_eth_function_common_config *tcfg,
3067 size_t size = sizeof(struct tstorm_eth_function_common_config);
3069 u32 addr = BAR_TSTRORM_INTMEM +
3070 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3072 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3075 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3077 if (CHIP_IS_E1x(bp)) {
3078 struct tstorm_eth_function_common_config tcfg = {0};
3080 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3083 /* Enable the function in the FW */
3084 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3085 storm_memset_func_en(bp, p->func_id, 1);
3088 if (p->spq_active) {
3089 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3090 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3091 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3096 * bnx2x_get_common_flags - Return common flags
3098 * @bp: device handle
3100 * @zero_stats: TRUE if statistics zeroing is needed
3102 * Return the flags that are common for the Tx-only and not normal connections.
3104 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3105 struct bnx2x_fastpath *fp,
3108 unsigned long flags = 0;
3110 /* PF driver will always initialize the Queue to an ACTIVE state */
3111 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3113 /* tx only connections collect statistics (on the same index as the
3114 * parent connection). The statistics are zeroed when the parent
3115 * connection is initialized.
3118 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3120 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3122 if (bp->flags & TX_SWITCHING)
3123 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3125 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3126 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3128 #ifdef BNX2X_STOP_ON_ERROR
3129 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3135 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3136 struct bnx2x_fastpath *fp,
3139 unsigned long flags = 0;
3141 /* calculate other queue flags */
3143 __set_bit(BNX2X_Q_FLG_OV, &flags);
3145 if (IS_FCOE_FP(fp)) {
3146 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3147 /* For FCoE - force usage of default priority (for afex) */
3148 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3151 if (fp->mode != TPA_MODE_DISABLED) {
3152 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3153 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3154 if (fp->mode == TPA_MODE_GRO)
3155 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3159 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3160 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3163 /* Always set HW VLAN stripping */
3164 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3166 /* configure silent vlan removal */
3168 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3170 return flags | bnx2x_get_common_flags(bp, fp, true);
3173 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3174 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3177 gen_init->stat_id = bnx2x_stats_id(fp);
3178 gen_init->spcl_id = fp->cl_id;
3180 /* Always use mini-jumbo MTU for FCoE L2 ring */
3182 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3184 gen_init->mtu = bp->dev->mtu;
3186 gen_init->cos = cos;
3188 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3191 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3192 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3193 struct bnx2x_rxq_setup_params *rxq_init)
3197 u16 tpa_agg_size = 0;
3199 if (fp->mode != TPA_MODE_DISABLED) {
3200 pause->sge_th_lo = SGE_TH_LO(bp);
3201 pause->sge_th_hi = SGE_TH_HI(bp);
3203 /* validate SGE ring has enough to cross high threshold */
3204 WARN_ON(bp->dropless_fc &&
3205 pause->sge_th_hi + FW_PREFETCH_CNT >
3206 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3208 tpa_agg_size = TPA_AGG_SIZE;
3209 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3211 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3212 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3213 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3216 /* pause - not for e1 */
3217 if (!CHIP_IS_E1(bp)) {
3218 pause->bd_th_lo = BD_TH_LO(bp);
3219 pause->bd_th_hi = BD_TH_HI(bp);
3221 pause->rcq_th_lo = RCQ_TH_LO(bp);
3222 pause->rcq_th_hi = RCQ_TH_HI(bp);
3224 * validate that rings have enough entries to cross
3227 WARN_ON(bp->dropless_fc &&
3228 pause->bd_th_hi + FW_PREFETCH_CNT >
3230 WARN_ON(bp->dropless_fc &&
3231 pause->rcq_th_hi + FW_PREFETCH_CNT >
3232 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3238 rxq_init->dscr_map = fp->rx_desc_mapping;
3239 rxq_init->sge_map = fp->rx_sge_mapping;
3240 rxq_init->rcq_map = fp->rx_comp_mapping;
3241 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3243 /* This should be a maximum number of data bytes that may be
3244 * placed on the BD (not including paddings).
3246 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3247 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3249 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3250 rxq_init->tpa_agg_sz = tpa_agg_size;
3251 rxq_init->sge_buf_sz = sge_sz;
3252 rxq_init->max_sges_pkt = max_sge;
3253 rxq_init->rss_engine_id = BP_FUNC(bp);
3254 rxq_init->mcast_engine_id = BP_FUNC(bp);
3256 /* Maximum number or simultaneous TPA aggregation for this Queue.
3258 * For PF Clients it should be the maximum available number.
3259 * VF driver(s) may want to define it to a smaller value.
3261 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3263 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3264 rxq_init->fw_sb_id = fp->fw_sb_id;
3267 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3269 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3270 /* configure silent vlan removal
3271 * if multi function mode is afex, then mask default vlan
3273 if (IS_MF_AFEX(bp)) {
3274 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3275 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3279 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3280 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3283 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3284 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3285 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3286 txq_init->fw_sb_id = fp->fw_sb_id;
3289 * set the tss leading client id for TX classification ==
3290 * leading RSS client id
3292 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3294 if (IS_FCOE_FP(fp)) {
3295 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3296 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3300 static void bnx2x_pf_init(struct bnx2x *bp)
3302 struct bnx2x_func_init_params func_init = {0};
3303 struct event_ring_data eq_data = { {0} };
3305 if (!CHIP_IS_E1x(bp)) {
3306 /* reset IGU PF statistics: MSIX + ATTN */
3308 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3309 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3310 (CHIP_MODE_IS_4_PORT(bp) ?
3311 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3313 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3314 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3315 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3316 (CHIP_MODE_IS_4_PORT(bp) ?
3317 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3320 func_init.spq_active = true;
3321 func_init.pf_id = BP_FUNC(bp);
3322 func_init.func_id = BP_FUNC(bp);
3323 func_init.spq_map = bp->spq_mapping;
3324 func_init.spq_prod = bp->spq_prod_idx;
3326 bnx2x_func_init(bp, &func_init);
3328 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3331 * Congestion management values depend on the link rate
3332 * There is no active link so initial link rate is set to 10 Gbps.
3333 * When the link comes up The congestion management values are
3334 * re-calculated according to the actual link rate.
3336 bp->link_vars.line_speed = SPEED_10000;
3337 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3339 /* Only the PMF sets the HW */
3341 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3343 /* init Event Queue - PCI bus guarantees correct endianity*/
3344 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3345 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3346 eq_data.producer = bp->eq_prod;
3347 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3348 eq_data.sb_id = DEF_SB_ID;
3349 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3352 static void bnx2x_e1h_disable(struct bnx2x *bp)
3354 int port = BP_PORT(bp);
3356 bnx2x_tx_disable(bp);
3358 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3361 static void bnx2x_e1h_enable(struct bnx2x *bp)
3363 int port = BP_PORT(bp);
3365 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3366 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3368 /* Tx queue should be only re-enabled */
3369 netif_tx_wake_all_queues(bp->dev);
3372 * Should not call netif_carrier_on since it will be called if the link
3373 * is up when checking for link state
3377 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3379 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3381 struct eth_stats_info *ether_stat =
3382 &bp->slowpath->drv_info_to_mcp.ether_stat;
3383 struct bnx2x_vlan_mac_obj *mac_obj =
3384 &bp->sp_objs->mac_obj;
3387 strscpy(ether_stat->version, DRV_MODULE_VERSION,
3388 ETH_STAT_INFO_VERSION_LEN);
3390 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3391 * mac_local field in ether_stat struct. The base address is offset by 2
3392 * bytes to account for the field being 8 bytes but a mac address is
3393 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3394 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3395 * allocated by the ether_stat struct, so the macs will land in their
3398 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3399 memset(ether_stat->mac_local + i, 0,
3400 sizeof(ether_stat->mac_local[0]));
3401 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3402 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3403 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3405 ether_stat->mtu_size = bp->dev->mtu;
3406 if (bp->dev->features & NETIF_F_RXCSUM)
3407 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3408 if (bp->dev->features & NETIF_F_TSO)
3409 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3410 ether_stat->feature_flags |= bp->common.boot_mode;
3412 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3414 ether_stat->txq_size = bp->tx_ring_size;
3415 ether_stat->rxq_size = bp->rx_ring_size;
3417 #ifdef CONFIG_BNX2X_SRIOV
3418 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3422 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3424 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3425 struct fcoe_stats_info *fcoe_stat =
3426 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3428 if (!CNIC_LOADED(bp))
3431 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3433 fcoe_stat->qos_priority =
3434 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3436 /* insert FCoE stats from ramrod response */
3438 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3439 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3440 tstorm_queue_statistics;
3442 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3443 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3444 xstorm_queue_statistics;
3446 struct fcoe_statistics_params *fw_fcoe_stat =
3447 &bp->fw_stats_data->fcoe;
3449 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3450 fcoe_stat->rx_bytes_lo,
3451 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3453 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3455 fcoe_stat->rx_bytes_lo,
3456 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3458 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3459 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3460 fcoe_stat->rx_bytes_lo,
3461 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3463 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3464 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3465 fcoe_stat->rx_bytes_lo,
3466 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3468 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3469 fcoe_stat->rx_frames_lo,
3470 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3472 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3473 fcoe_stat->rx_frames_lo,
3474 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3476 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3477 fcoe_stat->rx_frames_lo,
3478 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3480 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3481 fcoe_stat->rx_frames_lo,
3482 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3484 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3485 fcoe_stat->tx_bytes_lo,
3486 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3488 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3490 fcoe_stat->tx_bytes_lo,
3491 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3493 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3494 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3495 fcoe_stat->tx_bytes_lo,
3496 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3498 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3499 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3500 fcoe_stat->tx_bytes_lo,
3501 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3503 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3504 fcoe_stat->tx_frames_lo,
3505 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3507 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3508 fcoe_stat->tx_frames_lo,
3509 fcoe_q_xstorm_stats->ucast_pkts_sent);
3511 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3512 fcoe_stat->tx_frames_lo,
3513 fcoe_q_xstorm_stats->bcast_pkts_sent);
3515 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3516 fcoe_stat->tx_frames_lo,
3517 fcoe_q_xstorm_stats->mcast_pkts_sent);
3520 /* ask L5 driver to add data to the struct */
3521 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3524 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3526 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3527 struct iscsi_stats_info *iscsi_stat =
3528 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3530 if (!CNIC_LOADED(bp))
3533 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3536 iscsi_stat->qos_priority =
3537 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3539 /* ask L5 driver to add data to the struct */
3540 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3543 /* called due to MCP event (on pmf):
3544 * reread new bandwidth configuration
3546 * notify others function about the change
3548 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3550 /* Workaround for MFW bug.
3551 * MFW is not supposed to generate BW attention in
3552 * single function mode.
3556 "Ignoring MF BW config in single function mode\n");
3560 if (bp->link_vars.link_up) {
3561 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3562 bnx2x_link_sync_notify(bp);
3564 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3567 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3569 bnx2x_config_mf_bw(bp);
3570 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3573 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3575 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3576 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3579 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3580 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3582 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3584 enum drv_info_opcode op_code;
3585 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3586 bool release = false;
3589 /* if drv_info version supported by MFW doesn't match - send NACK */
3590 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3591 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3595 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3596 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3598 /* Must prevent other flows from accessing drv_info_to_mcp */
3599 mutex_lock(&bp->drv_info_mutex);
3601 memset(&bp->slowpath->drv_info_to_mcp, 0,
3602 sizeof(union drv_info_to_mcp));
3605 case ETH_STATS_OPCODE:
3606 bnx2x_drv_info_ether_stat(bp);
3608 case FCOE_STATS_OPCODE:
3609 bnx2x_drv_info_fcoe_stat(bp);
3611 case ISCSI_STATS_OPCODE:
3612 bnx2x_drv_info_iscsi_stat(bp);
3615 /* if op code isn't supported - send NACK */
3616 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3620 /* if we got drv_info attn from MFW then these fields are defined in
3623 SHMEM2_WR(bp, drv_info_host_addr_lo,
3624 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3625 SHMEM2_WR(bp, drv_info_host_addr_hi,
3626 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3630 /* Since possible management wants both this and get_driver_version
3631 * need to wait until management notifies us it finished utilizing
3634 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3635 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3636 } else if (!bp->drv_info_mng_owner) {
3637 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3639 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3640 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3642 /* Management is done; need to clear indication */
3643 if (indication & bit) {
3644 SHMEM2_WR(bp, mfw_drv_indication,
3650 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3654 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3655 bp->drv_info_mng_owner = true;
3659 mutex_unlock(&bp->drv_info_mutex);
3662 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3668 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3669 &vals[0], &vals[1], &vals[2], &vals[3]);
3673 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3674 &vals[0], &vals[1], &vals[2], &vals[3]);
3680 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3683 void bnx2x_update_mng_version(struct bnx2x *bp)
3685 u32 iscsiver = DRV_VER_NOT_LOADED;
3686 u32 fcoever = DRV_VER_NOT_LOADED;
3687 u32 ethver = DRV_VER_NOT_LOADED;
3688 int idx = BP_FW_MB_IDX(bp);
3691 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3694 mutex_lock(&bp->drv_info_mutex);
3695 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3696 if (bp->drv_info_mng_owner)
3699 if (bp->state != BNX2X_STATE_OPEN)
3702 /* Parse ethernet driver version */
3703 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3704 if (!CNIC_LOADED(bp))
3707 /* Try getting storage driver version via cnic */
3708 memset(&bp->slowpath->drv_info_to_mcp, 0,
3709 sizeof(union drv_info_to_mcp));
3710 bnx2x_drv_info_iscsi_stat(bp);
3711 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3712 iscsiver = bnx2x_update_mng_version_utility(version, false);
3714 memset(&bp->slowpath->drv_info_to_mcp, 0,
3715 sizeof(union drv_info_to_mcp));
3716 bnx2x_drv_info_fcoe_stat(bp);
3717 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3718 fcoever = bnx2x_update_mng_version_utility(version, false);
3721 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3722 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3723 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3725 mutex_unlock(&bp->drv_info_mutex);
3727 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3728 ethver, iscsiver, fcoever);
3731 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3736 if (!SHMEM2_HAS(bp, drv_info))
3739 /* Update Driver load time, possibly broken in y2038 */
3740 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3742 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3743 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3745 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3747 /* Check & notify On-Chip dump. */
3748 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3750 if (valid_dump & FIRST_DUMP_VALID)
3751 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3753 if (valid_dump & SECOND_DUMP_VALID)
3754 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3757 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3759 u32 cmd_ok, cmd_fail;
3762 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3763 event & DRV_STATUS_OEM_EVENT_MASK) {
3764 BNX2X_ERR("Received simultaneous events %08x\n", event);
3768 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3769 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3770 cmd_ok = DRV_MSG_CODE_DCC_OK;
3771 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3772 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3773 cmd_ok = DRV_MSG_CODE_OEM_OK;
3776 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3778 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3779 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3780 /* This is the only place besides the function initialization
3781 * where the bp->flags can change so it is done without any
3784 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3785 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3786 bp->flags |= MF_FUNC_DIS;
3788 bnx2x_e1h_disable(bp);
3790 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3791 bp->flags &= ~MF_FUNC_DIS;
3793 bnx2x_e1h_enable(bp);
3795 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3796 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3799 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3800 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3801 bnx2x_config_mf_bw(bp);
3802 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3803 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3806 /* Report results to MCP */
3808 bnx2x_fw_command(bp, cmd_fail, 0);
3810 bnx2x_fw_command(bp, cmd_ok, 0);
3813 /* must be called under the spq lock */
3814 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3816 struct eth_spe *next_spe = bp->spq_prod_bd;
3818 if (bp->spq_prod_bd == bp->spq_last_bd) {
3819 bp->spq_prod_bd = bp->spq;
3820 bp->spq_prod_idx = 0;
3821 DP(BNX2X_MSG_SP, "end of spq\n");
3829 /* must be called under the spq lock */
3830 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3832 int func = BP_FUNC(bp);
3835 * Make sure that BD data is updated before writing the producer:
3836 * BD data is written to the memory, the producer is read from the
3837 * memory, thus we need a full memory barrier to ensure the ordering.
3841 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3846 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3848 * @cmd: command to check
3849 * @cmd_type: command type
3851 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3853 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3854 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3855 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3856 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3857 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3858 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3859 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3866 * bnx2x_sp_post - place a single command on an SP ring
3868 * @bp: driver handle
3869 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3870 * @cid: SW CID the command is related to
3871 * @data_hi: command private data address (high 32 bits)
3872 * @data_lo: command private data address (low 32 bits)
3873 * @cmd_type: command type (e.g. NONE, ETH)
3875 * SP data is handled as if it's always an address pair, thus data fields are
3876 * not swapped to little endian in upper functions. Instead this function swaps
3877 * data as if it's two u32 fields.
3879 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3880 u32 data_hi, u32 data_lo, int cmd_type)
3882 struct eth_spe *spe;
3884 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3886 #ifdef BNX2X_STOP_ON_ERROR
3887 if (unlikely(bp->panic)) {
3888 BNX2X_ERR("Can't post SP when there is panic\n");
3893 spin_lock_bh(&bp->spq_lock);
3896 if (!atomic_read(&bp->eq_spq_left)) {
3897 BNX2X_ERR("BUG! EQ ring full!\n");
3898 spin_unlock_bh(&bp->spq_lock);
3902 } else if (!atomic_read(&bp->cq_spq_left)) {
3903 BNX2X_ERR("BUG! SPQ ring full!\n");
3904 spin_unlock_bh(&bp->spq_lock);
3909 spe = bnx2x_sp_get_next(bp);
3911 /* CID needs port number to be encoded int it */
3912 spe->hdr.conn_and_cmd_data =
3913 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3916 /* In some cases, type may already contain the func-id
3917 * mainly in SRIOV related use cases, so we add it here only
3918 * if it's not already set.
3920 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3921 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3923 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3924 SPE_HDR_FUNCTION_ID);
3929 spe->hdr.type = cpu_to_le16(type);
3931 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3932 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3935 * It's ok if the actual decrement is issued towards the memory
3936 * somewhere between the spin_lock and spin_unlock. Thus no
3937 * more explicit memory barrier is needed.
3940 atomic_dec(&bp->eq_spq_left);
3942 atomic_dec(&bp->cq_spq_left);
3945 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3946 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3947 (u32)(U64_LO(bp->spq_mapping) +
3948 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3949 HW_CID(bp, cid), data_hi, data_lo, type,
3950 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3952 bnx2x_sp_prod_update(bp);
3953 spin_unlock_bh(&bp->spq_lock);
3957 /* acquire split MCP access lock register */
3958 static int bnx2x_acquire_alr(struct bnx2x *bp)
3964 for (j = 0; j < 1000; j++) {
3965 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3966 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3967 if (val & MCPR_ACCESS_LOCK_LOCK)
3970 usleep_range(5000, 10000);
3972 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3973 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3980 /* release split MCP access lock register */
3981 static void bnx2x_release_alr(struct bnx2x *bp)
3983 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3986 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3987 #define BNX2X_DEF_SB_IDX 0x0002
3989 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3991 struct host_sp_status_block *def_sb = bp->def_status_blk;
3994 barrier(); /* status block is written to by the chip */
3995 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3996 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3997 rc |= BNX2X_DEF_SB_ATT_IDX;
4000 if (bp->def_idx != def_sb->sp_sb.running_index) {
4001 bp->def_idx = def_sb->sp_sb.running_index;
4002 rc |= BNX2X_DEF_SB_IDX;
4005 /* Do not reorder: indices reading should complete before handling */
4011 * slow path service functions
4014 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4016 int port = BP_PORT(bp);
4017 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4018 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4019 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4020 NIG_REG_MASK_INTERRUPT_PORT0;
4025 if (bp->attn_state & asserted)
4026 BNX2X_ERR("IGU ERROR\n");
4028 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029 aeu_mask = REG_RD(bp, aeu_addr);
4031 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4032 aeu_mask, asserted);
4033 aeu_mask &= ~(asserted & 0x3ff);
4034 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4036 REG_WR(bp, aeu_addr, aeu_mask);
4037 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4039 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4040 bp->attn_state |= asserted;
4041 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4043 if (asserted & ATTN_HARD_WIRED_MASK) {
4044 if (asserted & ATTN_NIG_FOR_FUNC) {
4046 bnx2x_acquire_phy_lock(bp);
4048 /* save nig interrupt mask */
4049 nig_mask = REG_RD(bp, nig_int_mask_addr);
4051 /* If nig_mask is not set, no need to call the update
4055 REG_WR(bp, nig_int_mask_addr, 0);
4057 bnx2x_link_attn(bp);
4060 /* handle unicore attn? */
4062 if (asserted & ATTN_SW_TIMER_4_FUNC)
4063 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4065 if (asserted & GPIO_2_FUNC)
4066 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4068 if (asserted & GPIO_3_FUNC)
4069 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4071 if (asserted & GPIO_4_FUNC)
4072 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4075 if (asserted & ATTN_GENERAL_ATTN_1) {
4076 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4077 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4079 if (asserted & ATTN_GENERAL_ATTN_2) {
4080 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4081 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4083 if (asserted & ATTN_GENERAL_ATTN_3) {
4084 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4085 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4088 if (asserted & ATTN_GENERAL_ATTN_4) {
4089 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4090 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4092 if (asserted & ATTN_GENERAL_ATTN_5) {
4093 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4094 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4096 if (asserted & ATTN_GENERAL_ATTN_6) {
4097 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4102 } /* if hardwired */
4104 if (bp->common.int_block == INT_BLOCK_HC)
4105 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4106 COMMAND_REG_ATTN_BITS_SET);
4108 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4110 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4111 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4112 REG_WR(bp, reg_addr, asserted);
4114 /* now set back the mask */
4115 if (asserted & ATTN_NIG_FOR_FUNC) {
4116 /* Verify that IGU ack through BAR was written before restoring
4117 * NIG mask. This loop should exit after 2-3 iterations max.
4119 if (bp->common.int_block != INT_BLOCK_HC) {
4120 u32 cnt = 0, igu_acked;
4122 igu_acked = REG_RD(bp,
4123 IGU_REG_ATTENTION_ACK_BITS);
4124 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4125 (++cnt < MAX_IGU_ATTN_ACK_TO));
4128 "Failed to verify IGU ack on time\n");
4131 REG_WR(bp, nig_int_mask_addr, nig_mask);
4132 bnx2x_release_phy_lock(bp);
4136 static void bnx2x_fan_failure(struct bnx2x *bp)
4138 int port = BP_PORT(bp);
4140 /* mark the failure */
4143 dev_info.port_hw_config[port].external_phy_config);
4145 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4146 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4147 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4150 /* log the failure */
4151 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4152 "Please contact OEM Support for assistance\n");
4154 /* Schedule device reset (unload)
4155 * This is due to some boards consuming sufficient power when driver is
4156 * up to overheat if fan fails.
4158 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4161 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4163 int port = BP_PORT(bp);
4167 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4168 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4170 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4172 val = REG_RD(bp, reg_offset);
4173 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4174 REG_WR(bp, reg_offset, val);
4176 BNX2X_ERR("SPIO5 hw attention\n");
4178 /* Fan failure attention */
4179 bnx2x_hw_reset_phy(&bp->link_params);
4180 bnx2x_fan_failure(bp);
4183 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4184 bnx2x_acquire_phy_lock(bp);
4185 bnx2x_handle_module_detect_int(&bp->link_params);
4186 bnx2x_release_phy_lock(bp);
4189 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4191 val = REG_RD(bp, reg_offset);
4192 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4193 REG_WR(bp, reg_offset, val);
4195 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4196 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4201 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4205 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4207 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4208 BNX2X_ERR("DB hw attention 0x%x\n", val);
4209 /* DORQ discard attention */
4211 BNX2X_ERR("FATAL error from DORQ\n");
4214 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4216 int port = BP_PORT(bp);
4219 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4220 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4222 val = REG_RD(bp, reg_offset);
4223 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4224 REG_WR(bp, reg_offset, val);
4226 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4227 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4232 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4236 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4238 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4239 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4240 /* CFC error attention */
4242 BNX2X_ERR("FATAL error from CFC\n");
4245 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4246 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4247 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4248 /* RQ_USDMDP_FIFO_OVERFLOW */
4250 BNX2X_ERR("FATAL error from PXP\n");
4252 if (!CHIP_IS_E1x(bp)) {
4253 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4254 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4258 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4260 int port = BP_PORT(bp);
4263 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4264 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4266 val = REG_RD(bp, reg_offset);
4267 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4268 REG_WR(bp, reg_offset, val);
4270 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4271 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4276 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4280 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4282 if (attn & BNX2X_PMF_LINK_ASSERT) {
4283 int func = BP_FUNC(bp);
4285 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4286 bnx2x_read_mf_cfg(bp);
4287 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4288 func_mf_config[BP_ABS_FUNC(bp)].config);
4290 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4292 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4293 DRV_STATUS_OEM_EVENT_MASK))
4295 (val & (DRV_STATUS_DCC_EVENT_MASK |
4296 DRV_STATUS_OEM_EVENT_MASK)));
4298 if (val & DRV_STATUS_SET_MF_BW)
4299 bnx2x_set_mf_bw(bp);
4301 if (val & DRV_STATUS_DRV_INFO_REQ)
4302 bnx2x_handle_drv_info_req(bp);
4304 if (val & DRV_STATUS_VF_DISABLED)
4305 bnx2x_schedule_iov_task(bp,
4306 BNX2X_IOV_HANDLE_FLR);
4308 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4309 bnx2x_pmf_update(bp);
4312 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4313 bp->dcbx_enabled > 0)
4314 /* start dcbx state machine */
4315 bnx2x_dcbx_set_params(bp,
4316 BNX2X_DCBX_STATE_NEG_RECEIVED);
4317 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4318 bnx2x_handle_afex_cmd(bp,
4319 val & DRV_STATUS_AFEX_EVENT_MASK);
4320 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4321 bnx2x_handle_eee_event(bp);
4323 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4324 bnx2x_schedule_sp_rtnl(bp,
4325 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4327 if (bp->link_vars.periodic_flags &
4328 PERIODIC_FLAGS_LINK_EVENT) {
4329 /* sync with link */
4330 bnx2x_acquire_phy_lock(bp);
4331 bp->link_vars.periodic_flags &=
4332 ~PERIODIC_FLAGS_LINK_EVENT;
4333 bnx2x_release_phy_lock(bp);
4335 bnx2x_link_sync_notify(bp);
4336 bnx2x_link_report(bp);
4338 /* Always call it here: bnx2x_link_report() will
4339 * prevent the link indication duplication.
4341 bnx2x__link_status_update(bp);
4342 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4344 BNX2X_ERR("MC assert!\n");
4345 bnx2x_mc_assert(bp);
4346 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4347 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4348 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4352 } else if (attn & BNX2X_MCP_ASSERT) {
4354 BNX2X_ERR("MCP assert!\n");
4355 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4359 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4362 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4363 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4364 if (attn & BNX2X_GRC_TIMEOUT) {
4365 val = CHIP_IS_E1(bp) ? 0 :
4366 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4367 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4369 if (attn & BNX2X_GRC_RSV) {
4370 val = CHIP_IS_E1(bp) ? 0 :
4371 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4372 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4374 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4380 * 0-7 - Engine0 load counter.
4381 * 8-15 - Engine1 load counter.
4382 * 16 - Engine0 RESET_IN_PROGRESS bit.
4383 * 17 - Engine1 RESET_IN_PROGRESS bit.
4384 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4386 * 19 - Engine1 ONE_IS_LOADED.
4387 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4388 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4389 * just the one belonging to its engine).
4392 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4394 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4395 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4396 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4397 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4398 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4399 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4400 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4403 * Set the GLOBAL_RESET bit.
4405 * Should be run under rtnl lock
4407 void bnx2x_set_reset_global(struct bnx2x *bp)
4410 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4413 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417 * Clear the GLOBAL_RESET bit.
4419 * Should be run under rtnl lock
4421 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4424 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4426 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4427 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4431 * Checks the GLOBAL_RESET bit.
4433 * should be run under rtnl lock
4435 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4437 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4440 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4444 * Clear RESET_IN_PROGRESS bit for the current engine.
4446 * Should be run under rtnl lock
4448 static void bnx2x_set_reset_done(struct bnx2x *bp)
4451 u32 bit = BP_PATH(bp) ?
4452 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4458 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4460 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4464 * Set RESET_IN_PROGRESS for the current engine.
4466 * should be run under rtnl lock
4468 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4471 u32 bit = BP_PATH(bp) ?
4472 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4473 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4478 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4479 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4483 * Checks the RESET_IN_PROGRESS bit for the given engine.
4484 * should be run under rtnl lock
4486 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4488 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4492 /* return false if bit is set */
4493 return (val & bit) ? false : true;
4497 * set pf load for the current pf.
4499 * should be run under rtnl lock
4501 void bnx2x_set_pf_load(struct bnx2x *bp)
4504 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4505 BNX2X_PATH0_LOAD_CNT_MASK;
4506 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4507 BNX2X_PATH0_LOAD_CNT_SHIFT;
4509 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4510 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4512 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4514 /* get the current counter value */
4515 val1 = (val & mask) >> shift;
4517 /* set bit of that PF */
4518 val1 |= (1 << bp->pf_num);
4520 /* clear the old value */
4523 /* set the new one */
4524 val |= ((val1 << shift) & mask);
4526 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4527 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4531 * bnx2x_clear_pf_load - clear pf load mark
4533 * @bp: driver handle
4535 * Should be run under rtnl lock.
4536 * Decrements the load counter for the current engine. Returns
4537 * whether other functions are still loaded
4539 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4542 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4543 BNX2X_PATH0_LOAD_CNT_MASK;
4544 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4545 BNX2X_PATH0_LOAD_CNT_SHIFT;
4547 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4548 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4549 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4551 /* get the current counter value */
4552 val1 = (val & mask) >> shift;
4554 /* clear bit of that PF */
4555 val1 &= ~(1 << bp->pf_num);
4557 /* clear the old value */
4560 /* set the new one */
4561 val |= ((val1 << shift) & mask);
4563 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4564 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4569 * Read the load status for the current engine.
4571 * should be run under rtnl lock
4573 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4575 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4576 BNX2X_PATH0_LOAD_CNT_MASK);
4577 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4578 BNX2X_PATH0_LOAD_CNT_SHIFT);
4579 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4581 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4583 val = (val & mask) >> shift;
4585 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4591 static void _print_parity(struct bnx2x *bp, u32 reg)
4593 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4596 static void _print_next_block(int idx, const char *blk)
4598 pr_cont("%s%s", idx ? ", " : "", blk);
4601 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4602 int *par_num, bool print)
4610 for (i = 0; sig; i++) {
4611 cur_bit = (0x1UL << i);
4612 if (sig & cur_bit) {
4613 res |= true; /* Each bit is real error! */
4617 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4618 _print_next_block((*par_num)++, "BRB");
4620 BRB1_REG_BRB1_PRTY_STS);
4622 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4623 _print_next_block((*par_num)++,
4625 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4627 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4628 _print_next_block((*par_num)++, "TSDM");
4630 TSDM_REG_TSDM_PRTY_STS);
4632 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4633 _print_next_block((*par_num)++,
4635 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4637 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4638 _print_next_block((*par_num)++, "TCM");
4639 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4641 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4642 _print_next_block((*par_num)++,
4645 TSEM_REG_TSEM_PRTY_STS_0);
4647 TSEM_REG_TSEM_PRTY_STS_1);
4649 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4650 _print_next_block((*par_num)++, "XPB");
4651 _print_parity(bp, GRCBASE_XPB +
4652 PB_REG_PB_PRTY_STS);
4665 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4666 int *par_num, bool *global,
4675 for (i = 0; sig; i++) {
4676 cur_bit = (0x1UL << i);
4677 if (sig & cur_bit) {
4678 res |= true; /* Each bit is real error! */
4680 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4682 _print_next_block((*par_num)++, "PBF");
4683 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4686 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4688 _print_next_block((*par_num)++, "QM");
4689 _print_parity(bp, QM_REG_QM_PRTY_STS);
4692 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4694 _print_next_block((*par_num)++, "TM");
4695 _print_parity(bp, TM_REG_TM_PRTY_STS);
4698 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4700 _print_next_block((*par_num)++, "XSDM");
4702 XSDM_REG_XSDM_PRTY_STS);
4705 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4707 _print_next_block((*par_num)++, "XCM");
4708 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4711 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4713 _print_next_block((*par_num)++,
4716 XSEM_REG_XSEM_PRTY_STS_0);
4718 XSEM_REG_XSEM_PRTY_STS_1);
4721 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4723 _print_next_block((*par_num)++,
4726 DORQ_REG_DORQ_PRTY_STS);
4729 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4731 _print_next_block((*par_num)++, "NIG");
4732 if (CHIP_IS_E1x(bp)) {
4734 NIG_REG_NIG_PRTY_STS);
4737 NIG_REG_NIG_PRTY_STS_0);
4739 NIG_REG_NIG_PRTY_STS_1);
4743 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4745 _print_next_block((*par_num)++,
4749 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4751 _print_next_block((*par_num)++,
4753 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4756 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4758 _print_next_block((*par_num)++, "USDM");
4760 USDM_REG_USDM_PRTY_STS);
4763 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4765 _print_next_block((*par_num)++, "UCM");
4766 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4769 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4771 _print_next_block((*par_num)++,
4774 USEM_REG_USEM_PRTY_STS_0);
4776 USEM_REG_USEM_PRTY_STS_1);
4779 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4781 _print_next_block((*par_num)++, "UPB");
4782 _print_parity(bp, GRCBASE_UPB +
4783 PB_REG_PB_PRTY_STS);
4786 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4788 _print_next_block((*par_num)++, "CSDM");
4790 CSDM_REG_CSDM_PRTY_STS);
4793 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4795 _print_next_block((*par_num)++, "CCM");
4796 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4809 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4810 int *par_num, bool print)
4818 for (i = 0; sig; i++) {
4819 cur_bit = (0x1UL << i);
4820 if (sig & cur_bit) {
4821 res = true; /* Each bit is real error! */
4824 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4825 _print_next_block((*par_num)++,
4828 CSEM_REG_CSEM_PRTY_STS_0);
4830 CSEM_REG_CSEM_PRTY_STS_1);
4832 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4833 _print_next_block((*par_num)++, "PXP");
4834 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4836 PXP2_REG_PXP2_PRTY_STS_0);
4838 PXP2_REG_PXP2_PRTY_STS_1);
4840 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4841 _print_next_block((*par_num)++,
4842 "PXPPCICLOCKCLIENT");
4844 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4845 _print_next_block((*par_num)++, "CFC");
4847 CFC_REG_CFC_PRTY_STS);
4849 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4850 _print_next_block((*par_num)++, "CDU");
4851 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4853 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4854 _print_next_block((*par_num)++, "DMAE");
4856 DMAE_REG_DMAE_PRTY_STS);
4858 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4859 _print_next_block((*par_num)++, "IGU");
4860 if (CHIP_IS_E1x(bp))
4862 HC_REG_HC_PRTY_STS);
4865 IGU_REG_IGU_PRTY_STS);
4867 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4868 _print_next_block((*par_num)++, "MISC");
4870 MISC_REG_MISC_PRTY_STS);
4883 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4884 int *par_num, bool *global,
4891 for (i = 0; sig; i++) {
4892 cur_bit = (0x1UL << i);
4893 if (sig & cur_bit) {
4895 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4897 _print_next_block((*par_num)++,
4902 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4904 _print_next_block((*par_num)++,
4909 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4911 _print_next_block((*par_num)++,
4916 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4918 /* clear latched SCPAD PATIRY from MCP */
4919 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4932 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4933 int *par_num, bool print)
4941 for (i = 0; sig; i++) {
4942 cur_bit = (0x1UL << i);
4943 if (sig & cur_bit) {
4944 res = true; /* Each bit is real error! */
4947 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4948 _print_next_block((*par_num)++,
4951 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4953 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4954 _print_next_block((*par_num)++, "ATC");
4956 ATC_REG_ATC_PRTY_STS);
4968 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4973 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4974 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4975 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4976 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4977 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4980 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4981 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4982 sig[0] & HW_PRTY_ASSERT_SET_0,
4983 sig[1] & HW_PRTY_ASSERT_SET_1,
4984 sig[2] & HW_PRTY_ASSERT_SET_2,
4985 sig[3] & HW_PRTY_ASSERT_SET_3,
4986 sig[4] & HW_PRTY_ASSERT_SET_4);
4988 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4989 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4990 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4991 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4992 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4994 "Parity errors detected in blocks: ");
4999 res |= bnx2x_check_blocks_with_parity0(bp,
5000 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5001 res |= bnx2x_check_blocks_with_parity1(bp,
5002 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5003 res |= bnx2x_check_blocks_with_parity2(bp,
5004 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5005 res |= bnx2x_check_blocks_with_parity3(bp,
5006 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5007 res |= bnx2x_check_blocks_with_parity4(bp,
5008 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5018 * bnx2x_chk_parity_attn - checks for parity attentions.
5020 * @bp: driver handle
5021 * @global: true if there was a global attention
5022 * @print: show parity attention in syslog
5024 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5026 struct attn_route attn = { {0} };
5027 int port = BP_PORT(bp);
5029 attn.sig[0] = REG_RD(bp,
5030 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5032 attn.sig[1] = REG_RD(bp,
5033 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5035 attn.sig[2] = REG_RD(bp,
5036 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5038 attn.sig[3] = REG_RD(bp,
5039 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5041 /* Since MCP attentions can't be disabled inside the block, we need to
5042 * read AEU registers to see whether they're currently disabled
5044 attn.sig[3] &= ((REG_RD(bp,
5045 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5046 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5047 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5048 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5050 if (!CHIP_IS_E1x(bp))
5051 attn.sig[4] = REG_RD(bp,
5052 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5055 return bnx2x_parity_attn(bp, global, print, attn.sig);
5058 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5061 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5063 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5064 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5065 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5067 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5068 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5069 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5070 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5071 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5072 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5074 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5075 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5077 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5079 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5080 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5081 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5082 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5083 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5084 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5086 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5087 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5088 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5089 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5090 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5091 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5092 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5093 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5094 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5095 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5096 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5097 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5098 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5099 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5100 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5103 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5104 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5105 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5106 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5107 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5111 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5113 struct attn_route attn, *group_mask;
5114 int port = BP_PORT(bp);
5119 bool global = false;
5121 /* need to take HW lock because MCP or other port might also
5122 try to handle this event */
5123 bnx2x_acquire_alr(bp);
5125 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5126 #ifndef BNX2X_STOP_ON_ERROR
5127 bp->recovery_state = BNX2X_RECOVERY_INIT;
5128 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5129 /* Disable HW interrupts */
5130 bnx2x_int_disable(bp);
5131 /* In case of parity errors don't handle attentions so that
5132 * other function would "see" parity errors.
5137 bnx2x_release_alr(bp);
5141 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5142 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5143 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5144 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5145 if (!CHIP_IS_E1x(bp))
5147 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5151 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5152 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5154 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5155 if (deasserted & (1 << index)) {
5156 group_mask = &bp->attn_group[index];
5158 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5160 group_mask->sig[0], group_mask->sig[1],
5161 group_mask->sig[2], group_mask->sig[3],
5162 group_mask->sig[4]);
5164 bnx2x_attn_int_deasserted4(bp,
5165 attn.sig[4] & group_mask->sig[4]);
5166 bnx2x_attn_int_deasserted3(bp,
5167 attn.sig[3] & group_mask->sig[3]);
5168 bnx2x_attn_int_deasserted1(bp,
5169 attn.sig[1] & group_mask->sig[1]);
5170 bnx2x_attn_int_deasserted2(bp,
5171 attn.sig[2] & group_mask->sig[2]);
5172 bnx2x_attn_int_deasserted0(bp,
5173 attn.sig[0] & group_mask->sig[0]);
5177 bnx2x_release_alr(bp);
5179 if (bp->common.int_block == INT_BLOCK_HC)
5180 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5181 COMMAND_REG_ATTN_BITS_CLR);
5183 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5186 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5187 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5188 REG_WR(bp, reg_addr, val);
5190 if (~bp->attn_state & deasserted)
5191 BNX2X_ERR("IGU ERROR\n");
5193 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5194 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5196 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197 aeu_mask = REG_RD(bp, reg_addr);
5199 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5200 aeu_mask, deasserted);
5201 aeu_mask |= (deasserted & 0x3ff);
5202 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5204 REG_WR(bp, reg_addr, aeu_mask);
5205 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5207 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5208 bp->attn_state &= ~deasserted;
5209 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5212 static void bnx2x_attn_int(struct bnx2x *bp)
5214 /* read local copy of bits */
5215 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219 u32 attn_state = bp->attn_state;
5221 /* look for changed bits */
5222 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5223 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5226 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5227 attn_bits, attn_ack, asserted, deasserted);
5229 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5230 BNX2X_ERR("BAD attention state\n");
5232 /* handle bits that were raised */
5234 bnx2x_attn_int_asserted(bp, asserted);
5237 bnx2x_attn_int_deasserted(bp, deasserted);
5240 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5241 u16 index, u8 op, u8 update)
5243 u32 igu_addr = bp->igu_base_addr;
5244 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5245 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5249 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5251 /* No memory barriers */
5252 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5255 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5256 union event_ring_elem *elem)
5258 u8 err = elem->message.error;
5260 if (!bp->cnic_eth_dev.starting_cid ||
5261 (cid < bp->cnic_eth_dev.starting_cid &&
5262 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5265 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5267 if (unlikely(err)) {
5269 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5271 bnx2x_panic_dump(bp, false);
5273 bnx2x_cnic_cfc_comp(bp, cid, err);
5277 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5279 struct bnx2x_mcast_ramrod_params rparam;
5282 memset(&rparam, 0, sizeof(rparam));
5284 rparam.mcast_obj = &bp->mcast_obj;
5286 netif_addr_lock_bh(bp->dev);
5288 /* Clear pending state for the last command */
5289 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5291 /* If there are pending mcast commands - send them */
5292 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5293 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5295 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5299 netif_addr_unlock_bh(bp->dev);
5302 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5303 union event_ring_elem *elem)
5305 unsigned long ramrod_flags = 0;
5307 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5308 u32 cid = echo & BNX2X_SWCID_MASK;
5309 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5311 /* Always push next commands out, don't wait here */
5312 __set_bit(RAMROD_CONT, &ramrod_flags);
5314 switch (echo >> BNX2X_SWCID_SHIFT) {
5315 case BNX2X_FILTER_MAC_PENDING:
5316 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5317 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5318 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5320 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5323 case BNX2X_FILTER_VLAN_PENDING:
5324 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5325 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5327 case BNX2X_FILTER_MCAST_PENDING:
5328 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5329 /* This is only relevant for 57710 where multicast MACs are
5330 * configured as unicast MACs using the same ramrod.
5332 bnx2x_handle_mcast_eqe(bp);
5335 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5339 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5342 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5344 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5347 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5349 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5351 netif_addr_lock_bh(bp->dev);
5353 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5355 /* Send rx_mode command again if was requested */
5356 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5357 bnx2x_set_storm_rx_mode(bp);
5358 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5360 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5361 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5363 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5365 netif_addr_unlock_bh(bp->dev);
5368 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5369 union event_ring_elem *elem)
5371 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5373 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5374 elem->message.data.vif_list_event.func_bit_map);
5375 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5376 elem->message.data.vif_list_event.func_bit_map);
5377 } else if (elem->message.data.vif_list_event.echo ==
5378 VIF_LIST_RULE_SET) {
5379 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5380 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5384 /* called with rtnl_lock */
5385 static void bnx2x_after_function_update(struct bnx2x *bp)
5388 struct bnx2x_fastpath *fp;
5389 struct bnx2x_queue_state_params queue_params = {NULL};
5390 struct bnx2x_queue_update_params *q_update_params =
5391 &queue_params.params.update;
5393 /* Send Q update command with afex vlan removal values for all Qs */
5394 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5396 /* set silent vlan removal values according to vlan mode */
5397 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5398 &q_update_params->update_flags);
5399 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5400 &q_update_params->update_flags);
5401 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5403 /* in access mode mark mask and value are 0 to strip all vlans */
5404 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5405 q_update_params->silent_removal_value = 0;
5406 q_update_params->silent_removal_mask = 0;
5408 q_update_params->silent_removal_value =
5409 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5410 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5413 for_each_eth_queue(bp, q) {
5414 /* Set the appropriate Queue object */
5416 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418 /* send the ramrod */
5419 rc = bnx2x_queue_state_change(bp, &queue_params);
5421 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5425 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5426 fp = &bp->fp[FCOE_IDX(bp)];
5427 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5429 /* clear pending completion bit */
5430 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5432 /* mark latest Q bit */
5433 smp_mb__before_atomic();
5434 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5435 smp_mb__after_atomic();
5437 /* send Q update ramrod for FCoE Q */
5438 rc = bnx2x_queue_state_change(bp, &queue_params);
5440 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5443 /* If no FCoE ring - ACK MCP now */
5444 bnx2x_link_report(bp);
5445 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5449 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5450 struct bnx2x *bp, u32 cid)
5452 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5454 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5455 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5457 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5460 static void bnx2x_eq_int(struct bnx2x *bp)
5462 u16 hw_cons, sw_cons, sw_prod;
5463 union event_ring_elem *elem;
5467 int rc, spqe_cnt = 0;
5468 struct bnx2x_queue_sp_obj *q_obj;
5469 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5470 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5472 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5474 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5475 * when we get the next-page we need to adjust so the loop
5476 * condition below will be met. The next element is the size of a
5477 * regular element and hence incrementing by 1
5479 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5482 /* This function may never run in parallel with itself for a
5483 * specific bp, thus there is no need in "paired" read memory
5486 sw_cons = bp->eq_cons;
5487 sw_prod = bp->eq_prod;
5489 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5490 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5492 for (; sw_cons != hw_cons;
5493 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5495 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5497 rc = bnx2x_iov_eq_sp_event(bp, elem);
5499 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5504 opcode = elem->message.opcode;
5506 /* handle eq element */
5508 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5509 bnx2x_vf_mbx_schedule(bp,
5510 &elem->message.data.vf_pf_event);
5513 case EVENT_RING_OPCODE_STAT_QUERY:
5514 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5515 "got statistics comp event %d\n",
5517 /* nothing to do with stats comp */
5520 case EVENT_RING_OPCODE_CFC_DEL:
5521 /* handle according to cid range */
5523 * we may want to verify here that the bp state is
5527 /* elem CID originates from FW; actually LE */
5528 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5531 "got delete ramrod for MULTI[%d]\n", cid);
5533 if (CNIC_LOADED(bp) &&
5534 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5537 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5539 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5544 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5545 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5546 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5547 if (f_obj->complete_cmd(bp, f_obj,
5548 BNX2X_F_CMD_TX_STOP))
5552 case EVENT_RING_OPCODE_START_TRAFFIC:
5553 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5554 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5555 if (f_obj->complete_cmd(bp, f_obj,
5556 BNX2X_F_CMD_TX_START))
5560 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5561 echo = elem->message.data.function_update_event.echo;
5562 if (echo == SWITCH_UPDATE) {
5563 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5564 "got FUNC_SWITCH_UPDATE ramrod\n");
5565 if (f_obj->complete_cmd(
5566 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5570 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5572 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5573 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5574 f_obj->complete_cmd(bp, f_obj,
5575 BNX2X_F_CMD_AFEX_UPDATE);
5577 /* We will perform the Queues update from
5578 * sp_rtnl task as all Queue SP operations
5579 * should run under rtnl_lock.
5581 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5586 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5587 f_obj->complete_cmd(bp, f_obj,
5588 BNX2X_F_CMD_AFEX_VIFLISTS);
5589 bnx2x_after_afex_vif_lists(bp, elem);
5591 case EVENT_RING_OPCODE_FUNCTION_START:
5592 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5593 "got FUNC_START ramrod\n");
5594 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5599 case EVENT_RING_OPCODE_FUNCTION_STOP:
5600 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5601 "got FUNC_STOP ramrod\n");
5602 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5607 case EVENT_RING_OPCODE_SET_TIMESYNC:
5608 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5609 "got set_timesync ramrod completion\n");
5610 if (f_obj->complete_cmd(bp, f_obj,
5611 BNX2X_F_CMD_SET_TIMESYNC))
5616 switch (opcode | bp->state) {
5617 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620 BNX2X_STATE_OPENING_WAIT4_PORT):
5621 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622 BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5624 SW_CID(elem->message.data.eth_event.echo));
5625 rss_raw->clear_pending(rss_raw);
5628 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5629 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5630 case (EVENT_RING_OPCODE_SET_MAC |
5631 BNX2X_STATE_CLOSING_WAIT4_HALT):
5632 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637 BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5639 bnx2x_handle_classification_eqe(bp, elem);
5642 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647 BNX2X_STATE_CLOSING_WAIT4_HALT):
5648 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5649 bnx2x_handle_mcast_eqe(bp);
5652 case (EVENT_RING_OPCODE_FILTERS_RULES |
5654 case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 case (EVENT_RING_OPCODE_FILTERS_RULES |
5657 BNX2X_STATE_CLOSING_WAIT4_HALT):
5658 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5659 bnx2x_handle_rx_mode_eqe(bp);
5662 /* unknown event log error and continue */
5663 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5664 elem->message.opcode, bp->state);
5670 smp_mb__before_atomic();
5671 atomic_add(spqe_cnt, &bp->eq_spq_left);
5673 bp->eq_cons = sw_cons;
5674 bp->eq_prod = sw_prod;
5675 /* Make sure that above mem writes were issued towards the memory */
5678 /* update producer */
5679 bnx2x_update_eq_prod(bp, bp->eq_prod);
5682 static void bnx2x_sp_task(struct work_struct *work)
5684 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5686 DP(BNX2X_MSG_SP, "sp task invoked\n");
5688 /* make sure the atomic interrupt_occurred has been written */
5690 if (atomic_read(&bp->interrupt_occurred)) {
5692 /* what work needs to be performed? */
5693 u16 status = bnx2x_update_dsb_idx(bp);
5695 DP(BNX2X_MSG_SP, "status %x\n", status);
5696 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5697 atomic_set(&bp->interrupt_occurred, 0);
5700 if (status & BNX2X_DEF_SB_ATT_IDX) {
5702 status &= ~BNX2X_DEF_SB_ATT_IDX;
5705 /* SP events: STAT_QUERY and others */
5706 if (status & BNX2X_DEF_SB_IDX) {
5707 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5709 if (FCOE_INIT(bp) &&
5710 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5711 /* Prevent local bottom-halves from running as
5712 * we are going to change the local NAPI list.
5715 napi_schedule(&bnx2x_fcoe(bp, napi));
5719 /* Handle EQ completions */
5721 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5722 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5724 status &= ~BNX2X_DEF_SB_IDX;
5727 /* if status is non zero then perhaps something went wrong */
5728 if (unlikely(status))
5730 "got an unknown interrupt! (status 0x%x)\n", status);
5732 /* ack status block only if something was actually handled */
5733 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5734 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5737 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5738 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5740 bnx2x_link_report(bp);
5741 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5745 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5747 struct net_device *dev = dev_instance;
5748 struct bnx2x *bp = netdev_priv(dev);
5750 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5751 IGU_INT_DISABLE, 0);
5753 #ifdef BNX2X_STOP_ON_ERROR
5754 if (unlikely(bp->panic))
5758 if (CNIC_LOADED(bp)) {
5759 struct cnic_ops *c_ops;
5762 c_ops = rcu_dereference(bp->cnic_ops);
5764 c_ops->cnic_handler(bp->cnic_data, NULL);
5768 /* schedule sp task to perform default status block work, ack
5769 * attentions and enable interrupts.
5771 bnx2x_schedule_sp_task(bp);
5776 /* end of slow path */
5778 void bnx2x_drv_pulse(struct bnx2x *bp)
5780 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5781 bp->fw_drv_pulse_wr_seq);
5784 static void bnx2x_timer(struct timer_list *t)
5786 struct bnx2x *bp = from_timer(bp, t, timer);
5788 if (!netif_running(bp->dev))
5793 int mb_idx = BP_FW_MB_IDX(bp);
5797 ++bp->fw_drv_pulse_wr_seq;
5798 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5799 drv_pulse = bp->fw_drv_pulse_wr_seq;
5800 bnx2x_drv_pulse(bp);
5802 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5803 MCP_PULSE_SEQ_MASK);
5804 /* The delta between driver pulse and mcp response
5805 * should not get too big. If the MFW is more than 5 pulses
5806 * behind, we should worry about it enough to generate an error
5809 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5810 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5811 drv_pulse, mcp_pulse);
5814 if (bp->state == BNX2X_STATE_OPEN)
5815 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5817 /* sample pf vf bulletin board for new posts from pf */
5819 bnx2x_timer_sriov(bp);
5821 mod_timer(&bp->timer, jiffies + bp->current_interval);
5824 /* end of Statistics */
5829 * nic init service functions
5832 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5835 if (!(len%4) && !(addr%4))
5836 for (i = 0; i < len; i += 4)
5837 REG_WR(bp, addr + i, fill);
5839 for (i = 0; i < len; i++)
5840 REG_WR8(bp, addr + i, fill);
5843 /* helper: writes FP SP data to FW - data_size in dwords */
5844 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5850 for (index = 0; index < data_size; index++)
5851 REG_WR(bp, BAR_CSTRORM_INTMEM +
5852 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5854 *(sb_data_p + index));
5857 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5861 struct hc_status_block_data_e2 sb_data_e2;
5862 struct hc_status_block_data_e1x sb_data_e1x;
5864 /* disable the function first */
5865 if (!CHIP_IS_E1x(bp)) {
5866 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5867 sb_data_e2.common.state = SB_DISABLED;
5868 sb_data_e2.common.p_func.vf_valid = false;
5869 sb_data_p = (u32 *)&sb_data_e2;
5870 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5872 memset(&sb_data_e1x, 0,
5873 sizeof(struct hc_status_block_data_e1x));
5874 sb_data_e1x.common.state = SB_DISABLED;
5875 sb_data_e1x.common.p_func.vf_valid = false;
5876 sb_data_p = (u32 *)&sb_data_e1x;
5877 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5879 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5881 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5882 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5883 CSTORM_STATUS_BLOCK_SIZE);
5884 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5885 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5886 CSTORM_SYNC_BLOCK_SIZE);
5889 /* helper: writes SP SB data to FW */
5890 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5891 struct hc_sp_status_block_data *sp_sb_data)
5893 int func = BP_FUNC(bp);
5895 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5896 REG_WR(bp, BAR_CSTRORM_INTMEM +
5897 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5899 *((u32 *)sp_sb_data + i));
5902 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5904 int func = BP_FUNC(bp);
5905 struct hc_sp_status_block_data sp_sb_data;
5906 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5908 sp_sb_data.state = SB_DISABLED;
5909 sp_sb_data.p_func.vf_valid = false;
5911 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5913 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5914 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5915 CSTORM_SP_STATUS_BLOCK_SIZE);
5916 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5917 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5918 CSTORM_SP_SYNC_BLOCK_SIZE);
5921 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5922 int igu_sb_id, int igu_seg_id)
5924 hc_sm->igu_sb_id = igu_sb_id;
5925 hc_sm->igu_seg_id = igu_seg_id;
5926 hc_sm->timer_value = 0xFF;
5927 hc_sm->time_to_expire = 0xFFFFFFFF;
5930 /* allocates state machine ids. */
5931 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5933 /* zero out state machine indices */
5935 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5939 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5940 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5941 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5945 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5946 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5949 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5950 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5951 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5952 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5954 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5956 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5959 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5960 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5964 struct hc_status_block_data_e2 sb_data_e2;
5965 struct hc_status_block_data_e1x sb_data_e1x;
5966 struct hc_status_block_sm *hc_sm_p;
5970 if (CHIP_INT_MODE_IS_BC(bp))
5971 igu_seg_id = HC_SEG_ACCESS_NORM;
5973 igu_seg_id = IGU_SEG_ACCESS_NORM;
5975 bnx2x_zero_fp_sb(bp, fw_sb_id);
5977 if (!CHIP_IS_E1x(bp)) {
5978 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5979 sb_data_e2.common.state = SB_ENABLED;
5980 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5981 sb_data_e2.common.p_func.vf_id = vfid;
5982 sb_data_e2.common.p_func.vf_valid = vf_valid;
5983 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5984 sb_data_e2.common.same_igu_sb_1b = true;
5985 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5986 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5987 hc_sm_p = sb_data_e2.common.state_machine;
5988 sb_data_p = (u32 *)&sb_data_e2;
5989 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5990 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5992 memset(&sb_data_e1x, 0,
5993 sizeof(struct hc_status_block_data_e1x));
5994 sb_data_e1x.common.state = SB_ENABLED;
5995 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5996 sb_data_e1x.common.p_func.vf_id = 0xff;
5997 sb_data_e1x.common.p_func.vf_valid = false;
5998 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5999 sb_data_e1x.common.same_igu_sb_1b = true;
6000 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6001 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6002 hc_sm_p = sb_data_e1x.common.state_machine;
6003 sb_data_p = (u32 *)&sb_data_e1x;
6004 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6005 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6008 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6009 igu_sb_id, igu_seg_id);
6010 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6011 igu_sb_id, igu_seg_id);
6013 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6015 /* write indices to HW - PCI guarantees endianity of regpairs */
6016 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6019 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6020 u16 tx_usec, u16 rx_usec)
6022 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6024 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6025 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6027 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6028 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6030 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6031 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6035 static void bnx2x_init_def_sb(struct bnx2x *bp)
6037 struct host_sp_status_block *def_sb = bp->def_status_blk;
6038 dma_addr_t mapping = bp->def_status_blk_mapping;
6039 int igu_sp_sb_index;
6041 int port = BP_PORT(bp);
6042 int func = BP_FUNC(bp);
6043 int reg_offset, reg_offset_en5;
6046 struct hc_sp_status_block_data sp_sb_data;
6047 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6049 if (CHIP_INT_MODE_IS_BC(bp)) {
6050 igu_sp_sb_index = DEF_SB_IGU_ID;
6051 igu_seg_id = HC_SEG_ACCESS_DEF;
6053 igu_sp_sb_index = bp->igu_dsb_id;
6054 igu_seg_id = IGU_SEG_ACCESS_DEF;
6058 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6059 atten_status_block);
6060 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6064 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6065 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6066 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6067 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6068 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6070 /* take care of sig[0]..sig[4] */
6071 for (sindex = 0; sindex < 4; sindex++)
6072 bp->attn_group[index].sig[sindex] =
6073 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6075 if (!CHIP_IS_E1x(bp))
6077 * enable5 is separate from the rest of the registers,
6078 * and therefore the address skip is 4
6079 * and not 16 between the different groups
6081 bp->attn_group[index].sig[4] = REG_RD(bp,
6082 reg_offset_en5 + 0x4*index);
6084 bp->attn_group[index].sig[4] = 0;
6087 if (bp->common.int_block == INT_BLOCK_HC) {
6088 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6089 HC_REG_ATTN_MSG0_ADDR_L);
6091 REG_WR(bp, reg_offset, U64_LO(section));
6092 REG_WR(bp, reg_offset + 4, U64_HI(section));
6093 } else if (!CHIP_IS_E1x(bp)) {
6094 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6095 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6098 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6101 bnx2x_zero_sp_sb(bp);
6103 /* PCI guarantees endianity of regpairs */
6104 sp_sb_data.state = SB_ENABLED;
6105 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6106 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6107 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6108 sp_sb_data.igu_seg_id = igu_seg_id;
6109 sp_sb_data.p_func.pf_id = func;
6110 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6111 sp_sb_data.p_func.vf_id = 0xff;
6113 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6115 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6118 void bnx2x_update_coalesce(struct bnx2x *bp)
6122 for_each_eth_queue(bp, i)
6123 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6124 bp->tx_ticks, bp->rx_ticks);
6127 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6129 spin_lock_init(&bp->spq_lock);
6130 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6132 bp->spq_prod_idx = 0;
6133 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6134 bp->spq_prod_bd = bp->spq;
6135 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6138 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6141 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6142 union event_ring_elem *elem =
6143 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6145 elem->next_page.addr.hi =
6146 cpu_to_le32(U64_HI(bp->eq_mapping +
6147 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6148 elem->next_page.addr.lo =
6149 cpu_to_le32(U64_LO(bp->eq_mapping +
6150 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6153 bp->eq_prod = NUM_EQ_DESC;
6154 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6155 /* we want a warning message before it gets wrought... */
6156 atomic_set(&bp->eq_spq_left,
6157 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6160 /* called with netif_addr_lock_bh() */
6161 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6162 unsigned long rx_mode_flags,
6163 unsigned long rx_accept_flags,
6164 unsigned long tx_accept_flags,
6165 unsigned long ramrod_flags)
6167 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6170 memset(&ramrod_param, 0, sizeof(ramrod_param));
6172 /* Prepare ramrod parameters */
6173 ramrod_param.cid = 0;
6174 ramrod_param.cl_id = cl_id;
6175 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6176 ramrod_param.func_id = BP_FUNC(bp);
6178 ramrod_param.pstate = &bp->sp_state;
6179 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6181 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6182 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6184 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6186 ramrod_param.ramrod_flags = ramrod_flags;
6187 ramrod_param.rx_mode_flags = rx_mode_flags;
6189 ramrod_param.rx_accept_flags = rx_accept_flags;
6190 ramrod_param.tx_accept_flags = tx_accept_flags;
6192 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6194 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6201 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6202 unsigned long *rx_accept_flags,
6203 unsigned long *tx_accept_flags)
6205 /* Clear the flags first */
6206 *rx_accept_flags = 0;
6207 *tx_accept_flags = 0;
6210 case BNX2X_RX_MODE_NONE:
6212 * 'drop all' supersedes any accept flags that may have been
6213 * passed to the function.
6216 case BNX2X_RX_MODE_NORMAL:
6217 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6218 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221 /* internal switching mode */
6222 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6223 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6224 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226 if (bp->accept_any_vlan) {
6227 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6228 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6232 case BNX2X_RX_MODE_ALLMULTI:
6233 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6234 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237 /* internal switching mode */
6238 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6242 if (bp->accept_any_vlan) {
6243 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6244 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6248 case BNX2X_RX_MODE_PROMISC:
6249 /* According to definition of SI mode, iface in promisc mode
6250 * should receive matched and unmatched (in resolution of port)
6253 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6254 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6255 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6256 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6258 /* internal switching mode */
6259 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6260 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6263 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6265 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6267 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6268 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6272 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6279 /* called with netif_addr_lock_bh() */
6280 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6282 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6283 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6287 /* Configure rx_mode of FCoE Queue */
6288 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6290 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6295 __set_bit(RAMROD_RX, &ramrod_flags);
6296 __set_bit(RAMROD_TX, &ramrod_flags);
6298 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6299 rx_accept_flags, tx_accept_flags,
6303 static void bnx2x_init_internal_common(struct bnx2x *bp)
6307 /* Zero this manually as its initialization is
6308 currently missing in the initTool */
6309 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6310 REG_WR(bp, BAR_USTRORM_INTMEM +
6311 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6312 if (!CHIP_IS_E1x(bp)) {
6313 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6314 CHIP_INT_MODE_IS_BC(bp) ?
6315 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6319 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6321 switch (load_code) {
6322 case FW_MSG_CODE_DRV_LOAD_COMMON:
6323 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6324 bnx2x_init_internal_common(bp);
6327 case FW_MSG_CODE_DRV_LOAD_PORT:
6331 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6332 /* internal memory per function is
6333 initialized inside bnx2x_pf_init */
6337 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6342 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6344 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6347 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6349 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6352 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6354 if (CHIP_IS_E1x(fp->bp))
6355 return BP_L_ID(fp->bp) + fp->index;
6356 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6357 return bnx2x_fp_igu_sb_id(fp);
6360 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6362 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6364 unsigned long q_type = 0;
6365 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6366 fp->rx_queue = fp_idx;
6368 fp->cl_id = bnx2x_fp_cl_id(fp);
6369 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6370 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6371 /* qZone id equals to FW (per path) client id */
6372 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6375 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6377 /* Setup SB indices */
6378 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6380 /* Configure Queue State object */
6381 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6382 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6384 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6387 for_each_cos_in_tx_queue(fp, cos) {
6388 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6389 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6390 FP_COS_TO_TXQ(fp, cos, bp),
6391 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6392 cids[cos] = fp->txdata_ptr[cos]->cid;
6395 /* nothing more for vf to do here */
6399 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6400 fp->fw_sb_id, fp->igu_sb_id);
6401 bnx2x_update_fpsb_idx(fp);
6402 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6403 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6404 bnx2x_sp_mapping(bp, q_rdata), q_type);
6407 * Configure classification DBs: Always enable Tx switching
6409 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6412 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6413 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6417 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6421 for (i = 1; i <= NUM_TX_RINGS; i++) {
6422 struct eth_tx_next_bd *tx_next_bd =
6423 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6425 tx_next_bd->addr_hi =
6426 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6427 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6428 tx_next_bd->addr_lo =
6429 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6430 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6433 *txdata->tx_cons_sb = cpu_to_le16(0);
6435 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6436 txdata->tx_db.data.zero_fill1 = 0;
6437 txdata->tx_db.data.prod = 0;
6439 txdata->tx_pkt_prod = 0;
6440 txdata->tx_pkt_cons = 0;
6441 txdata->tx_bd_prod = 0;
6442 txdata->tx_bd_cons = 0;
6446 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6450 for_each_tx_queue_cnic(bp, i)
6451 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6454 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6459 for_each_eth_queue(bp, i)
6460 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6461 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6464 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6466 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6467 unsigned long q_type = 0;
6469 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6470 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6471 BNX2X_FCOE_ETH_CL_ID_IDX);
6472 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6473 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6474 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6475 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6476 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6477 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6480 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6482 /* qZone id equals to FW (per path) client id */
6483 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6485 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6486 bnx2x_rx_ustorm_prods_offset(fp);
6488 /* Configure Queue State object */
6489 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6490 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6492 /* No multi-CoS for FCoE L2 client */
6493 BUG_ON(fp->max_cos != 1);
6495 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6496 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6497 bnx2x_sp_mapping(bp, q_rdata), q_type);
6500 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6501 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6505 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6508 bnx2x_init_fcoe_fp(bp);
6510 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6511 BNX2X_VF_ID_INVALID, false,
6512 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6514 /* ensure status block indices were read */
6516 bnx2x_init_rx_rings_cnic(bp);
6517 bnx2x_init_tx_rings_cnic(bp);
6523 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6527 /* Setup NIC internals and enable interrupts */
6528 for_each_eth_queue(bp, i)
6529 bnx2x_init_eth_fp(bp, i);
6531 /* ensure status block indices were read */
6533 bnx2x_init_rx_rings(bp);
6534 bnx2x_init_tx_rings(bp);
6537 /* Initialize MOD_ABS interrupts */
6538 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6539 bp->common.shmem_base,
6540 bp->common.shmem2_base, BP_PORT(bp));
6542 /* initialize the default status block and sp ring */
6543 bnx2x_init_def_sb(bp);
6544 bnx2x_update_dsb_idx(bp);
6545 bnx2x_init_sp_ring(bp);
6547 bnx2x_memset_stats(bp);
6551 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6553 bnx2x_init_eq_ring(bp);
6554 bnx2x_init_internal(bp, load_code);
6556 bnx2x_stats_init(bp);
6558 /* flush all before enabling interrupts */
6561 bnx2x_int_enable(bp);
6563 /* Check for SPIO5 */
6564 bnx2x_attn_int_deasserted0(bp,
6565 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6566 AEU_INPUTS_ATTN_BITS_SPIO5);
6569 /* gzip service functions */
6570 static int bnx2x_gunzip_init(struct bnx2x *bp)
6572 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6573 &bp->gunzip_mapping, GFP_KERNEL);
6574 if (bp->gunzip_buf == NULL)
6577 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6578 if (bp->strm == NULL)
6581 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6582 if (bp->strm->workspace == NULL)
6592 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593 bp->gunzip_mapping);
6594 bp->gunzip_buf = NULL;
6597 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6601 static void bnx2x_gunzip_end(struct bnx2x *bp)
6604 vfree(bp->strm->workspace);
6609 if (bp->gunzip_buf) {
6610 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6611 bp->gunzip_mapping);
6612 bp->gunzip_buf = NULL;
6616 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6620 /* check gzip header */
6621 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6622 BNX2X_ERR("Bad gzip header\n");
6630 if (zbuf[3] & FNAME)
6631 while ((zbuf[n++] != 0) && (n < len));
6633 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6634 bp->strm->avail_in = len - n;
6635 bp->strm->next_out = bp->gunzip_buf;
6636 bp->strm->avail_out = FW_BUF_SIZE;
6638 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6642 rc = zlib_inflate(bp->strm, Z_FINISH);
6643 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6644 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6647 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6648 if (bp->gunzip_outlen & 0x3)
6650 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6652 bp->gunzip_outlen >>= 2;
6654 zlib_inflateEnd(bp->strm);
6656 if (rc == Z_STREAM_END)
6662 /* nic load/unload */
6665 * General service functions
6668 /* send a NIG loopback debug packet */
6669 static void bnx2x_lb_pckt(struct bnx2x *bp)
6673 /* Ethernet source and destination addresses */
6674 wb_write[0] = 0x55555555;
6675 wb_write[1] = 0x55555555;
6676 wb_write[2] = 0x20; /* SOP */
6677 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6679 /* NON-IP protocol */
6680 wb_write[0] = 0x09000000;
6681 wb_write[1] = 0x55555555;
6682 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6683 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6686 /* some of the internal memories
6687 * are not directly readable from the driver
6688 * to test them we send debug packets
6690 static int bnx2x_int_mem_test(struct bnx2x *bp)
6696 if (CHIP_REV_IS_FPGA(bp))
6698 else if (CHIP_REV_IS_EMUL(bp))
6703 /* Disable inputs of parser neighbor blocks */
6704 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6709 /* Write 0 to parser credits for CFC search request */
6710 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6712 /* send Ethernet packet */
6715 /* TODO do i reset NIG statistic? */
6716 /* Wait until NIG register shows 1 packet of size 0x10 */
6717 count = 1000 * factor;
6720 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6721 val = *bnx2x_sp(bp, wb_data[0]);
6725 usleep_range(10000, 20000);
6729 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6733 /* Wait until PRS register shows 1 packet */
6734 count = 1000 * factor;
6736 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6740 usleep_range(10000, 20000);
6744 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6748 /* Reset and init BRB, PRS */
6749 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6751 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6753 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6754 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6756 DP(NETIF_MSG_HW, "part2\n");
6758 /* Disable inputs of parser neighbor blocks */
6759 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6760 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6761 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6762 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6764 /* Write 0 to parser credits for CFC search request */
6765 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6767 /* send 10 Ethernet packets */
6768 for (i = 0; i < 10; i++)
6771 /* Wait until NIG register shows 10 + 1
6772 packets of size 11*0x10 = 0xb0 */
6773 count = 1000 * factor;
6776 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6777 val = *bnx2x_sp(bp, wb_data[0]);
6781 usleep_range(10000, 20000);
6785 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6789 /* Wait until PRS register shows 2 packets */
6790 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6794 /* Write 1 to parser credits for CFC search request */
6795 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6797 /* Wait until PRS register shows 3 packets */
6798 msleep(10 * factor);
6799 /* Wait until NIG register shows 1 packet of size 0x10 */
6800 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6802 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6804 /* clear NIG EOP FIFO */
6805 for (i = 0; i < 11; i++)
6806 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6807 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6809 BNX2X_ERR("clear of NIG failed\n");
6813 /* Reset and init BRB, PRS, NIG */
6814 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6816 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6818 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6819 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6820 if (!CNIC_SUPPORT(bp))
6822 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6824 /* Enable inputs of parser neighbor blocks */
6825 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6826 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6827 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6828 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6830 DP(NETIF_MSG_HW, "done\n");
6835 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6839 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6840 if (!CHIP_IS_E1x(bp))
6841 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6843 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6844 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6845 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6847 * mask read length error interrupts in brb for parser
6848 * (parsing unit and 'checksum and crc' unit)
6849 * these errors are legal (PU reads fixed length and CAC can cause
6850 * read length error on truncated packets)
6852 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6853 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6854 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6855 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6856 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6857 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6858 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6859 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6860 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6861 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6862 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6863 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6864 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6865 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6866 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6867 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6868 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6869 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6870 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6872 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6873 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6874 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6875 if (!CHIP_IS_E1x(bp))
6876 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6877 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6878 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6880 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6881 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6882 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6883 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6885 if (!CHIP_IS_E1x(bp))
6886 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6887 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6889 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6890 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6891 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6892 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6895 static void bnx2x_reset_common(struct bnx2x *bp)
6900 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6903 if (CHIP_IS_E3(bp)) {
6904 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6905 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6908 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6911 static void bnx2x_setup_dmae(struct bnx2x *bp)
6914 spin_lock_init(&bp->dmae_lock);
6917 static void bnx2x_init_pxp(struct bnx2x *bp)
6920 int r_order, w_order;
6922 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6923 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6924 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6926 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6928 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6932 bnx2x_init_pxp_arb(bp, r_order, w_order);
6935 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6945 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6946 SHARED_HW_CFG_FAN_FAILURE_MASK;
6948 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6952 * The fan failure mechanism is usually related to the PHY type since
6953 * the power consumption of the board is affected by the PHY. Currently,
6954 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6956 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6957 for (port = PORT_0; port < PORT_MAX; port++) {
6959 bnx2x_fan_failure_det_req(
6961 bp->common.shmem_base,
6962 bp->common.shmem2_base,
6966 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6968 if (is_required == 0)
6971 /* Fan failure is indicated by SPIO 5 */
6972 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6974 /* set to active low mode */
6975 val = REG_RD(bp, MISC_REG_SPIO_INT);
6976 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6977 REG_WR(bp, MISC_REG_SPIO_INT, val);
6979 /* enable interrupt to signal the IGU */
6980 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6981 val |= MISC_SPIO_SPIO5;
6982 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6985 void bnx2x_pf_disable(struct bnx2x *bp)
6987 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6988 val &= ~IGU_PF_CONF_FUNC_EN;
6990 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6991 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6992 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6995 static void bnx2x__common_init_phy(struct bnx2x *bp)
6997 u32 shmem_base[2], shmem2_base[2];
6998 /* Avoid common init in case MFW supports LFA */
6999 if (SHMEM2_RD(bp, size) >
7000 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7002 shmem_base[0] = bp->common.shmem_base;
7003 shmem2_base[0] = bp->common.shmem2_base;
7004 if (!CHIP_IS_E1x(bp)) {
7006 SHMEM2_RD(bp, other_shmem_base_addr);
7008 SHMEM2_RD(bp, other_shmem2_base_addr);
7010 bnx2x_acquire_phy_lock(bp);
7011 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7012 bp->common.chip_id);
7013 bnx2x_release_phy_lock(bp);
7016 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7018 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7019 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7020 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7021 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7022 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7024 /* make sure this value is 0 */
7025 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7027 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7028 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7029 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7030 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7033 static void bnx2x_set_endianity(struct bnx2x *bp)
7036 bnx2x_config_endianity(bp, 1);
7038 bnx2x_config_endianity(bp, 0);
7042 static void bnx2x_reset_endianity(struct bnx2x *bp)
7044 bnx2x_config_endianity(bp, 0);
7048 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7050 * @bp: driver handle
7052 static int bnx2x_init_hw_common(struct bnx2x *bp)
7056 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7059 * take the RESET lock to protect undi_unload flow from accessing
7060 * registers while we're resetting the chip
7062 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7064 bnx2x_reset_common(bp);
7065 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7068 if (CHIP_IS_E3(bp)) {
7069 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7070 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7072 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7074 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7076 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7078 if (!CHIP_IS_E1x(bp)) {
7082 * 4-port mode or 2-port mode we need to turn of master-enable
7083 * for everyone, after that, turn it back on for self.
7084 * so, we disregard multi-function or not, and always disable
7085 * for all functions on the given path, this means 0,2,4,6 for
7086 * path 0 and 1,3,5,7 for path 1
7088 for (abs_func_id = BP_PATH(bp);
7089 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7090 if (abs_func_id == BP_ABS_FUNC(bp)) {
7092 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7097 bnx2x_pretend_func(bp, abs_func_id);
7098 /* clear pf enable */
7099 bnx2x_pf_disable(bp);
7100 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7104 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7105 if (CHIP_IS_E1(bp)) {
7106 /* enable HW interrupt from PXP on USDM overflow
7107 bit 16 on INT_MASK_0 */
7108 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7111 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7113 bnx2x_set_endianity(bp);
7114 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7116 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7117 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7119 /* let the HW do it's magic ... */
7121 /* finish PXP init */
7122 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7124 BNX2X_ERR("PXP2 CFG failed\n");
7127 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7129 BNX2X_ERR("PXP2 RD_INIT failed\n");
7133 /* Timers bug workaround E2 only. We need to set the entire ILT to
7134 * have entries with value "0" and valid bit on.
7135 * This needs to be done by the first PF that is loaded in a path
7136 * (i.e. common phase)
7138 if (!CHIP_IS_E1x(bp)) {
7139 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7140 * (i.e. vnic3) to start even if it is marked as "scan-off".
7141 * This occurs when a different function (func2,3) is being marked
7142 * as "scan-off". Real-life scenario for example: if a driver is being
7143 * load-unloaded while func6,7 are down. This will cause the timer to access
7144 * the ilt, translate to a logical address and send a request to read/write.
7145 * Since the ilt for the function that is down is not valid, this will cause
7146 * a translation error which is unrecoverable.
7147 * The Workaround is intended to make sure that when this happens nothing fatal
7148 * will occur. The workaround:
7149 * 1. First PF driver which loads on a path will:
7150 * a. After taking the chip out of reset, by using pretend,
7151 * it will write "0" to the following registers of
7153 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7154 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7155 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7156 * And for itself it will write '1' to
7157 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7158 * dmae-operations (writing to pram for example.)
7159 * note: can be done for only function 6,7 but cleaner this
7161 * b. Write zero+valid to the entire ILT.
7162 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7163 * VNIC3 (of that port). The range allocated will be the
7164 * entire ILT. This is needed to prevent ILT range error.
7165 * 2. Any PF driver load flow:
7166 * a. ILT update with the physical addresses of the allocated
7168 * b. Wait 20msec. - note that this timeout is needed to make
7169 * sure there are no requests in one of the PXP internal
7170 * queues with "old" ILT addresses.
7171 * c. PF enable in the PGLC.
7172 * d. Clear the was_error of the PF in the PGLC. (could have
7173 * occurred while driver was down)
7174 * e. PF enable in the CFC (WEAK + STRONG)
7175 * f. Timers scan enable
7176 * 3. PF driver unload flow:
7177 * a. Clear the Timers scan_en.
7178 * b. Polling for scan_on=0 for that PF.
7179 * c. Clear the PF enable bit in the PXP.
7180 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7181 * e. Write zero+valid to all ILT entries (The valid bit must
7183 * f. If this is VNIC 3 of a port then also init
7184 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7185 * to the last entry in the ILT.
7188 * Currently the PF error in the PGLC is non recoverable.
7189 * In the future the there will be a recovery routine for this error.
7190 * Currently attention is masked.
7191 * Having an MCP lock on the load/unload process does not guarantee that
7192 * there is no Timer disable during Func6/7 enable. This is because the
7193 * Timers scan is currently being cleared by the MCP on FLR.
7194 * Step 2.d can be done only for PF6/7 and the driver can also check if
7195 * there is error before clearing it. But the flow above is simpler and
7197 * All ILT entries are written by zero+valid and not just PF6/7
7198 * ILT entries since in the future the ILT entries allocation for
7199 * PF-s might be dynamic.
7201 struct ilt_client_info ilt_cli;
7202 struct bnx2x_ilt ilt;
7203 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7204 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7206 /* initialize dummy TM client */
7208 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7209 ilt_cli.client_num = ILT_CLIENT_TM;
7211 /* Step 1: set zeroes to all ilt page entries with valid bit on
7212 * Step 2: set the timers first/last ilt entry to point
7213 * to the entire range to prevent ILT range error for 3rd/4th
7214 * vnic (this code assumes existence of the vnic)
7216 * both steps performed by call to bnx2x_ilt_client_init_op()
7217 * with dummy TM client
7219 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7220 * and his brother are split registers
7222 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7223 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7224 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7226 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7227 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7228 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7231 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7232 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7234 if (!CHIP_IS_E1x(bp)) {
7235 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7236 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7237 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7239 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7241 /* let the HW do it's magic ... */
7244 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7245 } while (factor-- && (val != 1));
7248 BNX2X_ERR("ATC_INIT failed\n");
7253 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7255 bnx2x_iov_init_dmae(bp);
7257 /* clean the DMAE memory */
7259 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7261 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7263 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7265 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7267 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7269 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7270 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7271 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7272 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7274 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7276 /* QM queues pointers table */
7277 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7279 /* soft reset pulse */
7280 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7281 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7283 if (CNIC_SUPPORT(bp))
7284 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7286 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7288 if (!CHIP_REV_IS_SLOW(bp))
7289 /* enable hw interrupt from doorbell Q */
7290 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7292 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7294 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7295 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7297 if (!CHIP_IS_E1(bp))
7298 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7300 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7301 if (IS_MF_AFEX(bp)) {
7302 /* configure that VNTag and VLAN headers must be
7303 * received in afex mode
7305 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7306 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7307 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7308 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7309 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7311 /* Bit-map indicating which L2 hdrs may appear
7312 * after the basic Ethernet header
7314 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7315 bp->path_has_ovlan ? 7 : 6);
7319 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7320 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7321 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7322 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7324 if (!CHIP_IS_E1x(bp)) {
7325 /* reset VFC memories */
7326 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327 VFC_MEMORIES_RST_REG_CAM_RST |
7328 VFC_MEMORIES_RST_REG_RAM_RST);
7329 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7330 VFC_MEMORIES_RST_REG_CAM_RST |
7331 VFC_MEMORIES_RST_REG_RAM_RST);
7336 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7337 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7338 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7339 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7342 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7344 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7347 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7348 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7349 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7351 if (!CHIP_IS_E1x(bp)) {
7352 if (IS_MF_AFEX(bp)) {
7353 /* configure that VNTag and VLAN headers must be
7356 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7357 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7358 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7359 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7360 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7362 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7363 bp->path_has_ovlan ? 7 : 6);
7367 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7369 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7371 if (CNIC_SUPPORT(bp)) {
7372 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7373 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7374 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7375 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7376 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7377 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7378 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7379 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7380 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7381 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7383 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7385 if (sizeof(union cdu_context) != 1024)
7386 /* we currently assume that a context is 1024 bytes */
7387 dev_alert(&bp->pdev->dev,
7388 "please adjust the size of cdu_context(%ld)\n",
7389 (long)sizeof(union cdu_context));
7391 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7392 val = (4 << 24) + (0 << 12) + 1024;
7393 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7395 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7396 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7397 /* enable context validation interrupt from CFC */
7398 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7400 /* set the thresholds to prevent CFC/CDU race */
7401 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7403 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7405 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7406 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7408 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7409 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7411 /* Reset PCIE errors for debug */
7412 REG_WR(bp, 0x2814, 0xffffffff);
7413 REG_WR(bp, 0x3820, 0xffffffff);
7415 if (!CHIP_IS_E1x(bp)) {
7416 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7417 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7418 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7419 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7420 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7421 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7422 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7423 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7424 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7425 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7426 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7429 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7430 if (!CHIP_IS_E1(bp)) {
7431 /* in E3 this done in per-port section */
7432 if (!CHIP_IS_E3(bp))
7433 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7435 if (CHIP_IS_E1H(bp))
7436 /* not applicable for E2 (and above ...) */
7437 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7439 if (CHIP_REV_IS_SLOW(bp))
7442 /* finish CFC init */
7443 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7445 BNX2X_ERR("CFC LL_INIT failed\n");
7448 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7450 BNX2X_ERR("CFC AC_INIT failed\n");
7453 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7455 BNX2X_ERR("CFC CAM_INIT failed\n");
7458 REG_WR(bp, CFC_REG_DEBUG0, 0);
7460 if (CHIP_IS_E1(bp)) {
7461 /* read NIG statistic
7462 to see if this is our first up since powerup */
7463 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7464 val = *bnx2x_sp(bp, wb_data[0]);
7466 /* do internal memory self test */
7467 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7468 BNX2X_ERR("internal mem self test failed\n");
7473 bnx2x_setup_fan_failure_detection(bp);
7475 /* clear PXP2 attentions */
7476 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7478 bnx2x_enable_blocks_attention(bp);
7479 bnx2x_enable_blocks_parity(bp);
7481 if (!BP_NOMCP(bp)) {
7482 if (CHIP_IS_E1x(bp))
7483 bnx2x__common_init_phy(bp);
7485 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7487 if (SHMEM2_HAS(bp, netproc_fw_ver))
7488 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7494 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7496 * @bp: driver handle
7498 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7500 int rc = bnx2x_init_hw_common(bp);
7505 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7507 bnx2x__common_init_phy(bp);
7512 static int bnx2x_init_hw_port(struct bnx2x *bp)
7514 int port = BP_PORT(bp);
7515 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7519 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7521 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7523 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7524 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7525 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7527 /* Timers bug workaround: disables the pf_master bit in pglue at
7528 * common phase, we need to enable it here before any dmae access are
7529 * attempted. Therefore we manually added the enable-master to the
7530 * port phase (it also happens in the function phase)
7532 if (!CHIP_IS_E1x(bp))
7533 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7535 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7536 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7537 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7538 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7540 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7541 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7542 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7543 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7545 /* QM cid (connection) count */
7546 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7548 if (CNIC_SUPPORT(bp)) {
7549 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7550 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7551 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7554 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7556 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7558 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7561 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7562 else if (bp->dev->mtu > 4096) {
7563 if (bp->flags & ONE_PORT_FLAG)
7567 /* (24*1024 + val*4)/256 */
7568 low = 96 + (val/64) +
7569 ((val % 64) ? 1 : 0);
7572 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7573 high = low + 56; /* 14*1024/256 */
7574 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7575 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7578 if (CHIP_MODE_IS_4_PORT(bp))
7579 REG_WR(bp, (BP_PORT(bp) ?
7580 BRB1_REG_MAC_GUARANTIED_1 :
7581 BRB1_REG_MAC_GUARANTIED_0), 40);
7583 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7584 if (CHIP_IS_E3B0(bp)) {
7585 if (IS_MF_AFEX(bp)) {
7586 /* configure headers for AFEX mode */
7587 REG_WR(bp, BP_PORT(bp) ?
7588 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7589 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7590 REG_WR(bp, BP_PORT(bp) ?
7591 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7592 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7593 REG_WR(bp, BP_PORT(bp) ?
7594 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7595 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7597 /* Ovlan exists only if we are in multi-function +
7598 * switch-dependent mode, in switch-independent there
7599 * is no ovlan headers
7601 REG_WR(bp, BP_PORT(bp) ?
7602 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7603 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7604 (bp->path_has_ovlan ? 7 : 6));
7608 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7609 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7610 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7611 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7613 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7614 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7615 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7616 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7619 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7621 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7623 if (CHIP_IS_E1x(bp)) {
7624 /* configure PBF to work without PAUSE mtu 9000 */
7625 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7627 /* update threshold */
7628 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7629 /* update init credit */
7630 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7633 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7635 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7638 if (CNIC_SUPPORT(bp))
7639 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7641 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7642 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7644 if (CHIP_IS_E1(bp)) {
7645 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7646 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7648 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7650 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7652 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7653 /* init aeu_mask_attn_func_0/1:
7654 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7655 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7656 * bits 4-7 are used for "per vn group attention" */
7657 val = IS_MF(bp) ? 0xF7 : 0x7;
7658 /* Enable DCBX attention for all but E1 */
7659 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7660 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7662 /* SCPAD_PARITY should NOT trigger close the gates */
7663 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7666 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7668 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7671 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7673 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7675 if (!CHIP_IS_E1x(bp)) {
7676 /* Bit-map indicating which L2 hdrs may appear after the
7677 * basic Ethernet header
7680 REG_WR(bp, BP_PORT(bp) ?
7681 NIG_REG_P1_HDRS_AFTER_BASIC :
7682 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7684 REG_WR(bp, BP_PORT(bp) ?
7685 NIG_REG_P1_HDRS_AFTER_BASIC :
7686 NIG_REG_P0_HDRS_AFTER_BASIC,
7687 IS_MF_SD(bp) ? 7 : 6);
7690 REG_WR(bp, BP_PORT(bp) ?
7691 NIG_REG_LLH1_MF_MODE :
7692 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7694 if (!CHIP_IS_E3(bp))
7695 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7697 if (!CHIP_IS_E1(bp)) {
7698 /* 0x2 disable mf_ov, 0x1 enable */
7699 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7700 (IS_MF_SD(bp) ? 0x1 : 0x2));
7702 if (!CHIP_IS_E1x(bp)) {
7704 switch (bp->mf_mode) {
7705 case MULTI_FUNCTION_SD:
7708 case MULTI_FUNCTION_SI:
7709 case MULTI_FUNCTION_AFEX:
7714 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7715 NIG_REG_LLH0_CLS_TYPE), val);
7718 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7719 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7720 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7724 /* If SPIO5 is set to generate interrupts, enable it for this port */
7725 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7726 if (val & MISC_SPIO_SPIO5) {
7727 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7728 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7729 val = REG_RD(bp, reg_addr);
7730 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7731 REG_WR(bp, reg_addr, val);
7734 if (CHIP_IS_E3B0(bp))
7735 bp->flags |= PTP_SUPPORTED;
7740 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7746 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7748 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7750 wb_write[0] = ONCHIP_ADDR1(addr);
7751 wb_write[1] = ONCHIP_ADDR2(addr);
7752 REG_WR_DMAE(bp, reg, wb_write, 2);
7755 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7757 u32 data, ctl, cnt = 100;
7758 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7759 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7760 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7761 u32 sb_bit = 1 << (idu_sb_id%32);
7762 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7763 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7765 /* Not supported in BC mode */
7766 if (CHIP_INT_MODE_IS_BC(bp))
7769 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7770 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7771 IGU_REGULAR_CLEANUP_SET |
7772 IGU_REGULAR_BCLEANUP;
7774 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7775 func_encode << IGU_CTRL_REG_FID_SHIFT |
7776 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7778 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7779 data, igu_addr_data);
7780 REG_WR(bp, igu_addr_data, data);
7782 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7784 REG_WR(bp, igu_addr_ctl, ctl);
7787 /* wait for clean up to finish */
7788 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7791 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7793 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7794 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7798 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7800 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7803 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7805 u32 i, base = FUNC_ILT_BASE(func);
7806 for (i = base; i < base + ILT_PER_FUNC; i++)
7807 bnx2x_ilt_wr(bp, i, 0);
7810 static void bnx2x_init_searcher(struct bnx2x *bp)
7812 int port = BP_PORT(bp);
7813 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7814 /* T1 hash bits value determines the T1 number of entries */
7815 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7818 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7821 struct bnx2x_func_state_params func_params = {NULL};
7822 struct bnx2x_func_switch_update_params *switch_update_params =
7823 &func_params.params.switch_update;
7825 /* Prepare parameters for function state transitions */
7826 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7827 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7829 func_params.f_obj = &bp->func_obj;
7830 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7832 /* Function parameters */
7833 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7834 &switch_update_params->changes);
7836 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7837 &switch_update_params->changes);
7839 rc = bnx2x_func_state_change(bp, &func_params);
7844 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7846 int rc, i, port = BP_PORT(bp);
7847 int vlan_en = 0, mac_en[NUM_MACS];
7849 /* Close input from network */
7850 if (bp->mf_mode == SINGLE_FUNCTION) {
7851 bnx2x_set_rx_filter(&bp->link_params, 0);
7853 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7854 NIG_REG_LLH0_FUNC_EN);
7855 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856 NIG_REG_LLH0_FUNC_EN, 0);
7857 for (i = 0; i < NUM_MACS; i++) {
7858 mac_en[i] = REG_RD(bp, port ?
7859 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7861 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7863 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7865 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7869 /* Close BMC to host */
7870 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7871 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7873 /* Suspend Tx switching to the PF. Completion of this ramrod
7874 * further guarantees that all the packets of that PF / child
7875 * VFs in BRB were processed by the Parser, so it is safe to
7876 * change the NIC_MODE register.
7878 rc = bnx2x_func_switch_update(bp, 1);
7880 BNX2X_ERR("Can't suspend tx-switching!\n");
7884 /* Change NIC_MODE register */
7885 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7887 /* Open input from network */
7888 if (bp->mf_mode == SINGLE_FUNCTION) {
7889 bnx2x_set_rx_filter(&bp->link_params, 1);
7891 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7892 NIG_REG_LLH0_FUNC_EN, vlan_en);
7893 for (i = 0; i < NUM_MACS; i++) {
7894 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7896 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7901 /* Enable BMC to host */
7902 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7903 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7905 /* Resume Tx switching to the PF */
7906 rc = bnx2x_func_switch_update(bp, 0);
7908 BNX2X_ERR("Can't resume tx-switching!\n");
7912 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7916 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7920 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7922 if (CONFIGURE_NIC_MODE(bp)) {
7923 /* Configure searcher as part of function hw init */
7924 bnx2x_init_searcher(bp);
7926 /* Reset NIC mode */
7927 rc = bnx2x_reset_nic_mode(bp);
7929 BNX2X_ERR("Can't change NIC mode!\n");
7936 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7937 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7938 * the addresses of the transaction, resulting in was-error bit set in the pci
7939 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7940 * to clear the interrupt which detected this from the pglueb and the was done
7943 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7945 if (!CHIP_IS_E1x(bp))
7946 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7947 1 << BP_ABS_FUNC(bp));
7950 static int bnx2x_init_hw_func(struct bnx2x *bp)
7952 int port = BP_PORT(bp);
7953 int func = BP_FUNC(bp);
7954 int init_phase = PHASE_PF0 + func;
7955 struct bnx2x_ilt *ilt = BP_ILT(bp);
7958 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7959 int i, main_mem_width, rc;
7961 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7963 /* FLR cleanup - hmmm */
7964 if (!CHIP_IS_E1x(bp)) {
7965 rc = bnx2x_pf_flr_clnup(bp);
7972 /* set MSI reconfigure capability */
7973 if (bp->common.int_block == INT_BLOCK_HC) {
7974 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7975 val = REG_RD(bp, addr);
7976 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7977 REG_WR(bp, addr, val);
7980 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7981 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7984 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7987 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7988 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7990 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7991 * those of the VFs, so start line should be reset
7993 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7994 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7995 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7996 ilt->lines[cdu_ilt_start + i].page_mapping =
7997 bp->context[i].cxt_mapping;
7998 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8001 bnx2x_ilt_init_op(bp, INITOP_SET);
8003 if (!CONFIGURE_NIC_MODE(bp)) {
8004 bnx2x_init_searcher(bp);
8005 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8006 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8009 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8010 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8013 if (!CHIP_IS_E1x(bp)) {
8014 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8016 /* Turn on a single ISR mode in IGU if driver is going to use
8019 if (!(bp->flags & USING_MSIX_FLAG))
8020 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8022 * Timers workaround bug: function init part.
8023 * Need to wait 20msec after initializing ILT,
8024 * needed to make sure there are no requests in
8025 * one of the PXP internal queues with "old" ILT addresses
8029 * Master enable - Due to WB DMAE writes performed before this
8030 * register is re-initialized as part of the regular function
8033 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8034 /* Enable the function in IGU */
8035 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8040 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8042 bnx2x_clean_pglue_errors(bp);
8044 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8045 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8046 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8047 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8048 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8049 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8050 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8051 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8052 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8053 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8054 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8055 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8056 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8058 if (!CHIP_IS_E1x(bp))
8059 REG_WR(bp, QM_REG_PF_EN, 1);
8061 if (!CHIP_IS_E1x(bp)) {
8062 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8069 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8070 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8071 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8073 bnx2x_iov_init_dq(bp);
8075 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8076 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8077 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8078 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8079 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8080 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8081 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8082 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8083 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8084 if (!CHIP_IS_E1x(bp))
8085 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8087 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8089 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8091 if (!CHIP_IS_E1x(bp))
8092 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8095 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8096 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8097 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8102 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8104 /* HC init per function */
8105 if (bp->common.int_block == INT_BLOCK_HC) {
8106 if (CHIP_IS_E1H(bp)) {
8107 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8110 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8112 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8115 int num_segs, sb_idx, prod_offset;
8117 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8119 if (!CHIP_IS_E1x(bp)) {
8120 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8121 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8124 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8126 if (!CHIP_IS_E1x(bp)) {
8130 * E2 mode: address 0-135 match to the mapping memory;
8131 * 136 - PF0 default prod; 137 - PF1 default prod;
8132 * 138 - PF2 default prod; 139 - PF3 default prod;
8133 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8134 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8137 * E1.5 mode - In backward compatible mode;
8138 * for non default SB; each even line in the memory
8139 * holds the U producer and each odd line hold
8140 * the C producer. The first 128 producers are for
8141 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8142 * producers are for the DSB for each PF.
8143 * Each PF has five segments: (the order inside each
8144 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8145 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8146 * 144-147 attn prods;
8148 /* non-default-status-blocks */
8149 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8151 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8152 prod_offset = (bp->igu_base_sb + sb_idx) *
8155 for (i = 0; i < num_segs; i++) {
8156 addr = IGU_REG_PROD_CONS_MEMORY +
8157 (prod_offset + i) * 4;
8158 REG_WR(bp, addr, 0);
8160 /* send consumer update with value 0 */
8161 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8162 USTORM_ID, 0, IGU_INT_NOP, 1);
8163 bnx2x_igu_clear_sb(bp,
8164 bp->igu_base_sb + sb_idx);
8167 /* default-status-blocks */
8168 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8169 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8171 if (CHIP_MODE_IS_4_PORT(bp))
8172 dsb_idx = BP_FUNC(bp);
8174 dsb_idx = BP_VN(bp);
8176 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8177 IGU_BC_BASE_DSB_PROD + dsb_idx :
8178 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8181 * igu prods come in chunks of E1HVN_MAX (4) -
8182 * does not matters what is the current chip mode
8184 for (i = 0; i < (num_segs * E1HVN_MAX);
8186 addr = IGU_REG_PROD_CONS_MEMORY +
8187 (prod_offset + i)*4;
8188 REG_WR(bp, addr, 0);
8190 /* send consumer update with 0 */
8191 if (CHIP_INT_MODE_IS_BC(bp)) {
8192 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8193 USTORM_ID, 0, IGU_INT_NOP, 1);
8194 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 CSTORM_ID, 0, IGU_INT_NOP, 1);
8196 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 XSTORM_ID, 0, IGU_INT_NOP, 1);
8198 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199 TSTORM_ID, 0, IGU_INT_NOP, 1);
8200 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8204 USTORM_ID, 0, IGU_INT_NOP, 1);
8205 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8208 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8210 /* !!! These should become driver const once
8211 rf-tool supports split-68 const */
8212 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8213 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8214 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8215 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8216 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8217 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8221 /* Reset PCIE errors for debug */
8222 REG_WR(bp, 0x2114, 0xffffffff);
8223 REG_WR(bp, 0x2120, 0xffffffff);
8225 if (CHIP_IS_E1x(bp)) {
8226 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8227 main_mem_base = HC_REG_MAIN_MEMORY +
8228 BP_PORT(bp) * (main_mem_size * 4);
8229 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8232 val = REG_RD(bp, main_mem_prty_clr);
8235 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8238 /* Clear "false" parity errors in MSI-X table */
8239 for (i = main_mem_base;
8240 i < main_mem_base + main_mem_size * 4;
8241 i += main_mem_width) {
8242 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8243 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8244 i, main_mem_width / 4);
8246 /* Clear HC parity attention */
8247 REG_RD(bp, main_mem_prty_clr);
8250 #ifdef BNX2X_STOP_ON_ERROR
8251 /* Enable STORMs SP logging */
8252 REG_WR8(bp, BAR_USTRORM_INTMEM +
8253 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8254 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8255 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8257 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8259 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8262 bnx2x_phy_probe(&bp->link_params);
8267 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8269 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8271 if (!CHIP_IS_E1x(bp))
8272 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8273 sizeof(struct host_hc_status_block_e2));
8275 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8276 sizeof(struct host_hc_status_block_e1x));
8278 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8281 void bnx2x_free_mem(struct bnx2x *bp)
8285 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8286 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8291 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8292 sizeof(struct host_sp_status_block));
8294 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8295 sizeof(struct bnx2x_slowpath));
8297 for (i = 0; i < L2_ILT_LINES(bp); i++)
8298 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8299 bp->context[i].size);
8300 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8302 BNX2X_FREE(bp->ilt->lines);
8304 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8306 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8307 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8309 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8311 bnx2x_iov_free_mem(bp);
8314 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8316 if (!CHIP_IS_E1x(bp)) {
8317 /* size = the status block + ramrod buffers */
8318 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8319 sizeof(struct host_hc_status_block_e2));
8320 if (!bp->cnic_sb.e2_sb)
8323 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8324 sizeof(struct host_hc_status_block_e1x));
8325 if (!bp->cnic_sb.e1x_sb)
8329 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8330 /* allocate searcher T2 table, as it wasn't allocated before */
8331 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8336 /* write address to which L5 should insert its values */
8337 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8338 &bp->slowpath->drv_info_to_mcp;
8340 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8346 bnx2x_free_mem_cnic(bp);
8347 BNX2X_ERR("Can't allocate memory\n");
8351 int bnx2x_alloc_mem(struct bnx2x *bp)
8353 int i, allocated, context_size;
8355 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8356 /* allocate searcher T2 table */
8357 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8362 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8363 sizeof(struct host_sp_status_block));
8364 if (!bp->def_status_blk)
8367 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8368 sizeof(struct bnx2x_slowpath));
8372 /* Allocate memory for CDU context:
8373 * This memory is allocated separately and not in the generic ILT
8374 * functions because CDU differs in few aspects:
8375 * 1. There are multiple entities allocating memory for context -
8376 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8377 * its own ILT lines.
8378 * 2. Since CDU page-size is not a single 4KB page (which is the case
8379 * for the other ILT clients), to be efficient we want to support
8380 * allocation of sub-page-size in the last entry.
8381 * 3. Context pointers are used by the driver to pass to FW / update
8382 * the context (for the other ILT clients the pointers are used just to
8383 * free the memory during unload).
8385 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8387 for (i = 0, allocated = 0; allocated < context_size; i++) {
8388 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8389 (context_size - allocated));
8390 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8391 bp->context[i].size);
8392 if (!bp->context[i].vcxt)
8394 allocated += bp->context[i].size;
8396 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8398 if (!bp->ilt->lines)
8401 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8404 if (bnx2x_iov_alloc_mem(bp))
8407 /* Slow path ring */
8408 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8413 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8414 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8422 BNX2X_ERR("Can't allocate memory\n");
8427 * Init service functions
8430 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8431 struct bnx2x_vlan_mac_obj *obj, bool set,
8432 int mac_type, unsigned long *ramrod_flags)
8435 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8437 memset(&ramrod_param, 0, sizeof(ramrod_param));
8439 /* Fill general parameters */
8440 ramrod_param.vlan_mac_obj = obj;
8441 ramrod_param.ramrod_flags = *ramrod_flags;
8443 /* Fill a user request section if needed */
8444 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8445 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8447 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8449 /* Set the command: ADD or DEL */
8451 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8453 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8456 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8458 if (rc == -EEXIST) {
8459 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8460 /* do not treat adding same MAC as error */
8463 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8468 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8469 struct bnx2x_vlan_mac_obj *obj, bool set,
8470 unsigned long *ramrod_flags)
8473 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8475 memset(&ramrod_param, 0, sizeof(ramrod_param));
8477 /* Fill general parameters */
8478 ramrod_param.vlan_mac_obj = obj;
8479 ramrod_param.ramrod_flags = *ramrod_flags;
8481 /* Fill a user request section if needed */
8482 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8483 ramrod_param.user_req.u.vlan.vlan = vlan;
8484 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8485 /* Set the command: ADD or DEL */
8487 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8489 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8492 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8494 if (rc == -EEXIST) {
8495 /* Do not treat adding same vlan as error. */
8496 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8498 } else if (rc < 0) {
8499 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8505 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8507 struct bnx2x_vlan_entry *vlan;
8509 /* Mark that hw forgot all entries */
8510 list_for_each_entry(vlan, &bp->vlan_reg, link)
8516 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8518 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8519 unsigned long ramrod_flags = 0, vlan_flags = 0;
8522 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523 __set_bit(BNX2X_VLAN, &vlan_flags);
8524 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8528 bnx2x_clear_vlan_info(bp);
8533 int bnx2x_del_all_macs(struct bnx2x *bp,
8534 struct bnx2x_vlan_mac_obj *mac_obj,
8535 int mac_type, bool wait_for_comp)
8538 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8540 /* Wait for completion of requested */
8542 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8544 /* Set the mac type of addresses we want to clear */
8545 __set_bit(mac_type, &vlan_mac_flags);
8547 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8549 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8554 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8557 unsigned long ramrod_flags = 0;
8559 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8560 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8561 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8562 &bp->sp_objs->mac_obj, set,
8563 BNX2X_ETH_MAC, &ramrod_flags);
8565 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8566 bp->fp->index, set);
8570 int bnx2x_setup_leading(struct bnx2x *bp)
8573 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8575 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8579 * bnx2x_set_int_mode - configure interrupt mode
8581 * @bp: driver handle
8583 * In case of MSI-X it will also try to enable MSI-X.
8585 int bnx2x_set_int_mode(struct bnx2x *bp)
8589 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8590 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8595 case BNX2X_INT_MODE_MSIX:
8596 /* attempt to enable msix */
8597 rc = bnx2x_enable_msix(bp);
8603 /* vfs use only msix */
8604 if (rc && IS_VF(bp))
8607 /* failed to enable multiple MSI-X */
8608 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8610 1 + bp->num_cnic_queues);
8613 case BNX2X_INT_MODE_MSI:
8614 bnx2x_enable_msi(bp);
8617 case BNX2X_INT_MODE_INTX:
8618 bp->num_ethernet_queues = 1;
8619 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8620 BNX2X_DEV_INFO("set number of queues to 1\n");
8623 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8629 /* must be called prior to any HW initializations */
8630 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8633 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8634 return L2_ILT_LINES(bp);
8637 void bnx2x_ilt_set_info(struct bnx2x *bp)
8639 struct ilt_client_info *ilt_client;
8640 struct bnx2x_ilt *ilt = BP_ILT(bp);
8643 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8644 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8647 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8648 ilt_client->client_num = ILT_CLIENT_CDU;
8649 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8650 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8651 ilt_client->start = line;
8652 line += bnx2x_cid_ilt_lines(bp);
8654 if (CNIC_SUPPORT(bp))
8655 line += CNIC_ILT_LINES;
8656 ilt_client->end = line - 1;
8658 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661 ilt_client->page_size,
8663 ilog2(ilt_client->page_size >> 12));
8666 if (QM_INIT(bp->qm_cid_count)) {
8667 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8668 ilt_client->client_num = ILT_CLIENT_QM;
8669 ilt_client->page_size = QM_ILT_PAGE_SZ;
8670 ilt_client->flags = 0;
8671 ilt_client->start = line;
8673 /* 4 bytes for each cid */
8674 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8677 ilt_client->end = line - 1;
8680 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8683 ilt_client->page_size,
8685 ilog2(ilt_client->page_size >> 12));
8688 if (CNIC_SUPPORT(bp)) {
8690 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8691 ilt_client->client_num = ILT_CLIENT_SRC;
8692 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8693 ilt_client->flags = 0;
8694 ilt_client->start = line;
8695 line += SRC_ILT_LINES;
8696 ilt_client->end = line - 1;
8699 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8702 ilt_client->page_size,
8704 ilog2(ilt_client->page_size >> 12));
8707 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8708 ilt_client->client_num = ILT_CLIENT_TM;
8709 ilt_client->page_size = TM_ILT_PAGE_SZ;
8710 ilt_client->flags = 0;
8711 ilt_client->start = line;
8712 line += TM_ILT_LINES;
8713 ilt_client->end = line - 1;
8716 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8719 ilt_client->page_size,
8721 ilog2(ilt_client->page_size >> 12));
8724 BUG_ON(line > ILT_MAX_LINES);
8728 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8730 * @bp: driver handle
8731 * @fp: pointer to fastpath
8732 * @init_params: pointer to parameters structure
8734 * parameters configured:
8735 * - HC configuration
8736 * - Queue's CDU context
8738 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8739 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8742 int cxt_index, cxt_offset;
8744 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8745 if (!IS_FCOE_FP(fp)) {
8746 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8747 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8749 /* If HC is supported, enable host coalescing in the transition
8752 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8753 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8756 init_params->rx.hc_rate = bp->rx_ticks ?
8757 (1000000 / bp->rx_ticks) : 0;
8758 init_params->tx.hc_rate = bp->tx_ticks ?
8759 (1000000 / bp->tx_ticks) : 0;
8762 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8766 * CQ index among the SB indices: FCoE clients uses the default
8767 * SB, therefore it's different.
8769 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8770 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8773 /* set maximum number of COSs supported by this queue */
8774 init_params->max_cos = fp->max_cos;
8776 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8777 fp->index, init_params->max_cos);
8779 /* set the context pointers queue object */
8780 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8781 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8782 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8784 init_params->cxts[cos] =
8785 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8789 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8790 struct bnx2x_queue_state_params *q_params,
8791 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8792 int tx_index, bool leading)
8794 memset(tx_only_params, 0, sizeof(*tx_only_params));
8796 /* Set the command */
8797 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8799 /* Set tx-only QUEUE flags: don't zero statistics */
8800 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8802 /* choose the index of the cid to send the slow path on */
8803 tx_only_params->cid_index = tx_index;
8805 /* Set general TX_ONLY_SETUP parameters */
8806 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8808 /* Set Tx TX_ONLY_SETUP parameters */
8809 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8812 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8813 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8814 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8815 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8817 /* send the ramrod */
8818 return bnx2x_queue_state_change(bp, q_params);
8822 * bnx2x_setup_queue - setup queue
8824 * @bp: driver handle
8825 * @fp: pointer to fastpath
8826 * @leading: is leading
8828 * This function performs 2 steps in a Queue state machine
8829 * actually: 1) RESET->INIT 2) INIT->SETUP
8832 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8835 struct bnx2x_queue_state_params q_params = {NULL};
8836 struct bnx2x_queue_setup_params *setup_params =
8837 &q_params.params.setup;
8838 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8839 &q_params.params.tx_only;
8843 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8845 /* reset IGU state skip FCoE L2 queue */
8846 if (!IS_FCOE_FP(fp))
8847 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8850 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8851 /* We want to wait for completion in this context */
8852 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8854 /* Prepare the INIT parameters */
8855 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8857 /* Set the command */
8858 q_params.cmd = BNX2X_Q_CMD_INIT;
8860 /* Change the state to INIT */
8861 rc = bnx2x_queue_state_change(bp, &q_params);
8863 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8867 DP(NETIF_MSG_IFUP, "init complete\n");
8869 /* Now move the Queue to the SETUP state... */
8870 memset(setup_params, 0, sizeof(*setup_params));
8872 /* Set QUEUE flags */
8873 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8875 /* Set general SETUP parameters */
8876 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8877 FIRST_TX_COS_INDEX);
8879 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8880 &setup_params->rxq_params);
8882 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8883 FIRST_TX_COS_INDEX);
8885 /* Set the command */
8886 q_params.cmd = BNX2X_Q_CMD_SETUP;
8889 bp->fcoe_init = true;
8891 /* Change the state to SETUP */
8892 rc = bnx2x_queue_state_change(bp, &q_params);
8894 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8898 /* loop through the relevant tx-only indices */
8899 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8900 tx_index < fp->max_cos;
8903 /* prepare and send tx-only ramrod*/
8904 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8905 tx_only_params, tx_index, leading);
8907 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8908 fp->index, tx_index);
8916 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8918 struct bnx2x_fastpath *fp = &bp->fp[index];
8919 struct bnx2x_fp_txdata *txdata;
8920 struct bnx2x_queue_state_params q_params = {NULL};
8923 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8925 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8926 /* We want to wait for completion in this context */
8927 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8929 /* close tx-only connections */
8930 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8931 tx_index < fp->max_cos;
8934 /* ascertain this is a normal queue*/
8935 txdata = fp->txdata_ptr[tx_index];
8937 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8940 /* send halt terminate on tx-only connection */
8941 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8942 memset(&q_params.params.terminate, 0,
8943 sizeof(q_params.params.terminate));
8944 q_params.params.terminate.cid_index = tx_index;
8946 rc = bnx2x_queue_state_change(bp, &q_params);
8950 /* send halt terminate on tx-only connection */
8951 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8952 memset(&q_params.params.cfc_del, 0,
8953 sizeof(q_params.params.cfc_del));
8954 q_params.params.cfc_del.cid_index = tx_index;
8955 rc = bnx2x_queue_state_change(bp, &q_params);
8959 /* Stop the primary connection: */
8960 /* ...halt the connection */
8961 q_params.cmd = BNX2X_Q_CMD_HALT;
8962 rc = bnx2x_queue_state_change(bp, &q_params);
8966 /* ...terminate the connection */
8967 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8968 memset(&q_params.params.terminate, 0,
8969 sizeof(q_params.params.terminate));
8970 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8971 rc = bnx2x_queue_state_change(bp, &q_params);
8974 /* ...delete cfc entry */
8975 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8976 memset(&q_params.params.cfc_del, 0,
8977 sizeof(q_params.params.cfc_del));
8978 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8979 return bnx2x_queue_state_change(bp, &q_params);
8982 static void bnx2x_reset_func(struct bnx2x *bp)
8984 int port = BP_PORT(bp);
8985 int func = BP_FUNC(bp);
8988 /* Disable the function in the FW */
8989 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8990 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8991 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8992 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8995 for_each_eth_queue(bp, i) {
8996 struct bnx2x_fastpath *fp = &bp->fp[i];
8997 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8998 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9002 if (CNIC_LOADED(bp))
9004 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9005 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9006 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9009 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9010 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9013 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9014 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9018 if (bp->common.int_block == INT_BLOCK_HC) {
9019 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9020 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9022 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9023 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9026 if (CNIC_LOADED(bp)) {
9027 /* Disable Timer scan */
9028 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9030 * Wait for at least 10ms and up to 2 second for the timers
9033 for (i = 0; i < 200; i++) {
9034 usleep_range(10000, 20000);
9035 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9040 bnx2x_clear_func_ilt(bp, func);
9042 /* Timers workaround bug for E2: if this is vnic-3,
9043 * we need to set the entire ilt range for this timers.
9045 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9046 struct ilt_client_info ilt_cli;
9047 /* use dummy TM client */
9048 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9050 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9051 ilt_cli.client_num = ILT_CLIENT_TM;
9053 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9056 /* this assumes that reset_port() called before reset_func()*/
9057 if (!CHIP_IS_E1x(bp))
9058 bnx2x_pf_disable(bp);
9063 static void bnx2x_reset_port(struct bnx2x *bp)
9065 int port = BP_PORT(bp);
9068 /* Reset physical Link */
9069 bnx2x__link_reset(bp);
9071 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9073 /* Do not rcv packets to BRB */
9074 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9075 /* Do not direct rcv packets that are not for MCP to the BRB */
9076 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9077 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9080 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9083 /* Check for BRB port occupancy */
9084 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9086 DP(NETIF_MSG_IFDOWN,
9087 "BRB1 is not empty %d blocks are occupied\n", val);
9089 /* TODO: Close Doorbell port? */
9092 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9094 struct bnx2x_func_state_params func_params = {NULL};
9096 /* Prepare parameters for function state transitions */
9097 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9099 func_params.f_obj = &bp->func_obj;
9100 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9102 func_params.params.hw_init.load_phase = load_code;
9104 return bnx2x_func_state_change(bp, &func_params);
9107 static int bnx2x_func_stop(struct bnx2x *bp)
9109 struct bnx2x_func_state_params func_params = {NULL};
9112 /* Prepare parameters for function state transitions */
9113 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9114 func_params.f_obj = &bp->func_obj;
9115 func_params.cmd = BNX2X_F_CMD_STOP;
9118 * Try to stop the function the 'good way'. If fails (in case
9119 * of a parity error during bnx2x_chip_cleanup()) and we are
9120 * not in a debug mode, perform a state transaction in order to
9121 * enable further HW_RESET transaction.
9123 rc = bnx2x_func_state_change(bp, &func_params);
9125 #ifdef BNX2X_STOP_ON_ERROR
9128 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9129 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9130 return bnx2x_func_state_change(bp, &func_params);
9138 * bnx2x_send_unload_req - request unload mode from the MCP.
9140 * @bp: driver handle
9141 * @unload_mode: requested function's unload mode
9143 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9145 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9148 int port = BP_PORT(bp);
9150 /* Select the UNLOAD request mode */
9151 if (unload_mode == UNLOAD_NORMAL)
9152 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9154 else if (bp->flags & NO_WOL_FLAG)
9155 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9158 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9159 const u8 *mac_addr = bp->dev->dev_addr;
9160 struct pci_dev *pdev = bp->pdev;
9164 /* The mac address is written to entries 1-4 to
9165 * preserve entry 0 which is used by the PMF
9167 u8 entry = (BP_VN(bp) + 1)*8;
9169 val = (mac_addr[0] << 8) | mac_addr[1];
9170 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9172 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9173 (mac_addr[4] << 8) | mac_addr[5];
9174 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9176 /* Enable the PME and clear the status */
9177 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9178 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9179 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9181 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9184 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9186 /* Send the request to the MCP */
9188 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9190 int path = BP_PATH(bp);
9192 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9193 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9194 bnx2x_load_count[path][2]);
9195 bnx2x_load_count[path][0]--;
9196 bnx2x_load_count[path][1 + port]--;
9197 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9198 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9199 bnx2x_load_count[path][2]);
9200 if (bnx2x_load_count[path][0] == 0)
9201 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9202 else if (bnx2x_load_count[path][1 + port] == 0)
9203 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9205 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9212 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9214 * @bp: driver handle
9215 * @keep_link: true iff link should be kept up
9217 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9219 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9221 /* Report UNLOAD_DONE to MCP */
9223 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9226 static int bnx2x_func_wait_started(struct bnx2x *bp)
9229 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9235 * (assumption: No Attention from MCP at this stage)
9236 * PMF probably in the middle of TX disable/enable transaction
9237 * 1. Sync IRS for default SB
9238 * 2. Sync SP queue - this guarantees us that attention handling started
9239 * 3. Wait, that TX disable/enable transaction completes
9241 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9242 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9243 * received completion for the transaction the state is TX_STOPPED.
9244 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9248 /* make sure default SB ISR is done */
9250 synchronize_irq(bp->msix_table[0].vector);
9252 synchronize_irq(bp->pdev->irq);
9254 flush_workqueue(bnx2x_wq);
9255 flush_workqueue(bnx2x_iov_wq);
9257 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9258 BNX2X_F_STATE_STARTED && tout--)
9261 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9262 BNX2X_F_STATE_STARTED) {
9263 #ifdef BNX2X_STOP_ON_ERROR
9264 BNX2X_ERR("Wrong function state\n");
9268 * Failed to complete the transaction in a "good way"
9269 * Force both transactions with CLR bit
9271 struct bnx2x_func_state_params func_params = {NULL};
9273 DP(NETIF_MSG_IFDOWN,
9274 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9276 func_params.f_obj = &bp->func_obj;
9277 __set_bit(RAMROD_DRV_CLR_ONLY,
9278 &func_params.ramrod_flags);
9280 /* STARTED-->TX_ST0PPED */
9281 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9282 bnx2x_func_state_change(bp, &func_params);
9284 /* TX_ST0PPED-->STARTED */
9285 func_params.cmd = BNX2X_F_CMD_TX_START;
9286 return bnx2x_func_state_change(bp, &func_params);
9293 static void bnx2x_disable_ptp(struct bnx2x *bp)
9295 int port = BP_PORT(bp);
9297 /* Disable sending PTP packets to host */
9298 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9299 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9301 /* Reset PTP event detection rules */
9302 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9303 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9304 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9305 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9306 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9307 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9308 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9309 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9311 /* Disable the PTP feature */
9312 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9313 NIG_REG_P0_PTP_EN, 0x0);
9316 /* Called during unload, to stop PTP-related stuff */
9317 static void bnx2x_stop_ptp(struct bnx2x *bp)
9319 /* Cancel PTP work queue. Should be done after the Tx queues are
9320 * drained to prevent additional scheduling.
9322 cancel_work_sync(&bp->ptp_task);
9324 if (bp->ptp_tx_skb) {
9325 dev_kfree_skb_any(bp->ptp_tx_skb);
9326 bp->ptp_tx_skb = NULL;
9329 /* Disable PTP in HW */
9330 bnx2x_disable_ptp(bp);
9332 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9335 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9337 int port = BP_PORT(bp);
9340 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9343 /* Wait until tx fastpath tasks complete */
9344 for_each_tx_queue(bp, i) {
9345 struct bnx2x_fastpath *fp = &bp->fp[i];
9347 for_each_cos_in_tx_queue(fp, cos)
9348 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9349 #ifdef BNX2X_STOP_ON_ERROR
9355 /* Give HW time to discard old tx messages */
9356 usleep_range(1000, 2000);
9358 /* Clean all ETH MACs */
9359 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9362 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9364 /* Clean up UC list */
9365 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9368 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9371 /* The whole *vlan_obj structure may be not initialized if VLAN
9372 * filtering offload is not supported by hardware. Currently this is
9373 * true for all hardware covered by CHIP_IS_E1x().
9375 if (!CHIP_IS_E1x(bp)) {
9376 /* Remove all currently configured VLANs */
9377 rc = bnx2x_del_all_vlans(bp);
9379 BNX2X_ERR("Failed to delete all VLANs\n");
9383 if (!CHIP_IS_E1(bp))
9384 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9386 /* Set "drop all" (stop Rx).
9387 * We need to take a netif_addr_lock() here in order to prevent
9388 * a race between the completion code and this code.
9390 netif_addr_lock_bh(bp->dev);
9391 /* Schedule the rx_mode command */
9392 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9393 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9394 else if (bp->slowpath)
9395 bnx2x_set_storm_rx_mode(bp);
9397 /* Cleanup multicast configuration */
9398 rparam.mcast_obj = &bp->mcast_obj;
9399 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9401 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9403 netif_addr_unlock_bh(bp->dev);
9405 bnx2x_iov_chip_cleanup(bp);
9408 * Send the UNLOAD_REQUEST to the MCP. This will return if
9409 * this function should perform FUNC, PORT or COMMON HW
9412 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9415 * (assumption: No Attention from MCP at this stage)
9416 * PMF probably in the middle of TX disable/enable transaction
9418 rc = bnx2x_func_wait_started(bp);
9420 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9421 #ifdef BNX2X_STOP_ON_ERROR
9426 /* Close multi and leading connections
9427 * Completions for ramrods are collected in a synchronous way
9429 for_each_eth_queue(bp, i)
9430 if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9437 if (CNIC_LOADED(bp)) {
9438 for_each_cnic_queue(bp, i)
9439 if (bnx2x_stop_queue(bp, i))
9440 #ifdef BNX2X_STOP_ON_ERROR
9447 /* If SP settings didn't get completed so far - something
9448 * very wrong has happen.
9450 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9451 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9453 #ifndef BNX2X_STOP_ON_ERROR
9456 rc = bnx2x_func_stop(bp);
9458 BNX2X_ERR("Function stop failed!\n");
9459 #ifdef BNX2X_STOP_ON_ERROR
9464 /* stop_ptp should be after the Tx queues are drained to prevent
9465 * scheduling to the cancelled PTP work queue. It should also be after
9466 * function stop ramrod is sent, since as part of this ramrod FW access
9469 if (bp->flags & PTP_SUPPORTED) {
9471 if (bp->ptp_clock) {
9472 ptp_clock_unregister(bp->ptp_clock);
9473 bp->ptp_clock = NULL;
9477 /* Disable HW interrupts, NAPI */
9478 bnx2x_netif_stop(bp, 1);
9479 /* Delete all NAPI objects */
9480 bnx2x_del_all_napi(bp);
9481 if (CNIC_LOADED(bp))
9482 bnx2x_del_all_napi_cnic(bp);
9487 /* Reset the chip, unless PCI function is offline. If we reach this
9488 * point following a PCI error handling, it means device is really
9489 * in a bad state and we're about to remove it, so reset the chip
9490 * is not a good idea.
9492 if (!pci_channel_offline(bp->pdev)) {
9493 rc = bnx2x_reset_hw(bp, reset_code);
9495 BNX2X_ERR("HW_RESET failed\n");
9498 /* Report UNLOAD_DONE to MCP */
9499 bnx2x_send_unload_done(bp, keep_link);
9502 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9506 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9508 if (CHIP_IS_E1(bp)) {
9509 int port = BP_PORT(bp);
9510 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9511 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9513 val = REG_RD(bp, addr);
9515 REG_WR(bp, addr, val);
9517 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9518 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9519 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9520 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9524 /* Close gates #2, #3 and #4: */
9525 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9529 /* Gates #2 and #4a are closed/opened for "not E1" only */
9530 if (!CHIP_IS_E1(bp)) {
9532 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9534 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9538 if (CHIP_IS_E1x(bp)) {
9539 /* Prevent interrupts from HC on both ports */
9540 val = REG_RD(bp, HC_REG_CONFIG_1);
9541 REG_WR(bp, HC_REG_CONFIG_1,
9542 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9543 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9545 val = REG_RD(bp, HC_REG_CONFIG_0);
9546 REG_WR(bp, HC_REG_CONFIG_0,
9547 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9548 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9550 /* Prevent incoming interrupts in IGU */
9551 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9553 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9555 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9556 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9559 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9560 close ? "closing" : "opening");
9563 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9565 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9567 /* Do some magic... */
9568 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9569 *magic_val = val & SHARED_MF_CLP_MAGIC;
9570 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9574 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9576 * @bp: driver handle
9577 * @magic_val: old value of the `magic' bit.
9579 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9581 /* Restore the `magic' bit value... */
9582 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9583 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9584 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9588 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9590 * @bp: driver handle
9591 * @magic_val: old value of 'magic' bit.
9593 * Takes care of CLP configurations.
9595 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9598 u32 validity_offset;
9600 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9602 /* Set `magic' bit in order to save MF config */
9603 if (!CHIP_IS_E1(bp))
9604 bnx2x_clp_reset_prep(bp, magic_val);
9606 /* Get shmem offset */
9607 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9609 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9611 /* Clear validity map flags */
9613 REG_WR(bp, shmem + validity_offset, 0);
9616 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9617 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9620 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9622 * @bp: driver handle
9624 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9626 /* special handling for emulation and FPGA,
9627 wait 10 times longer */
9628 if (CHIP_REV_IS_SLOW(bp))
9629 msleep(MCP_ONE_TIMEOUT*10);
9631 msleep(MCP_ONE_TIMEOUT);
9635 * initializes bp->common.shmem_base and waits for validity signature to appear
9637 static int bnx2x_init_shmem(struct bnx2x *bp)
9643 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9645 /* If we read all 0xFFs, means we are in PCI error state and
9646 * should bail out to avoid crashes on adapter's FW reads.
9648 if (bp->common.shmem_base == 0xFFFFFFFF) {
9649 bp->flags |= NO_MCP_FLAG;
9653 if (bp->common.shmem_base) {
9654 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9655 if (val & SHR_MEM_VALIDITY_MB)
9659 bnx2x_mcp_wait_one(bp);
9661 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9663 BNX2X_ERR("BAD MCP validity signature\n");
9668 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9670 int rc = bnx2x_init_shmem(bp);
9672 /* Restore the `magic' bit value */
9673 if (!CHIP_IS_E1(bp))
9674 bnx2x_clp_reset_done(bp, magic_val);
9679 static void bnx2x_pxp_prep(struct bnx2x *bp)
9681 if (!CHIP_IS_E1(bp)) {
9682 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9683 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9688 * Reset the whole chip except for:
9690 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9693 * - MISC (including AEU)
9697 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9699 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9700 u32 global_bits2, stay_reset2;
9703 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9704 * (per chip) blocks.
9707 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9708 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9710 /* Don't reset the following blocks.
9711 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9712 * reset, as in 4 port device they might still be owned
9713 * by the MCP (there is only one leader per path).
9716 MISC_REGISTERS_RESET_REG_1_RST_HC |
9717 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9718 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9721 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9722 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9723 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9724 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9725 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9726 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9727 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9728 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9729 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9730 MISC_REGISTERS_RESET_REG_2_PGLC |
9731 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9732 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9733 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9734 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9735 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9736 MISC_REGISTERS_RESET_REG_2_UMAC1;
9739 * Keep the following blocks in reset:
9740 * - all xxMACs are handled by the bnx2x_link code.
9743 MISC_REGISTERS_RESET_REG_2_XMAC |
9744 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9746 /* Full reset masks according to the chip */
9747 reset_mask1 = 0xffffffff;
9750 reset_mask2 = 0xffff;
9751 else if (CHIP_IS_E1H(bp))
9752 reset_mask2 = 0x1ffff;
9753 else if (CHIP_IS_E2(bp))
9754 reset_mask2 = 0xfffff;
9755 else /* CHIP_IS_E3 */
9756 reset_mask2 = 0x3ffffff;
9758 /* Don't reset global blocks unless we need to */
9760 reset_mask2 &= ~global_bits2;
9763 * In case of attention in the QM, we need to reset PXP
9764 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9765 * because otherwise QM reset would release 'close the gates' shortly
9766 * before resetting the PXP, then the PSWRQ would send a write
9767 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9768 * read the payload data from PSWWR, but PSWWR would not
9769 * respond. The write queue in PGLUE would stuck, dmae commands
9770 * would not return. Therefore it's important to reset the second
9771 * reset register (containing the
9772 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9773 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9776 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9777 reset_mask2 & (~not_reset_mask2));
9779 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9780 reset_mask1 & (~not_reset_mask1));
9784 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9785 reset_mask2 & (~stay_reset2));
9789 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9793 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9794 * It should get cleared in no more than 1s.
9796 * @bp: driver handle
9798 * It should get cleared in no more than 1s. Returns 0 if
9799 * pending writes bit gets cleared.
9801 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9807 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9812 usleep_range(1000, 2000);
9813 } while (cnt-- > 0);
9816 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9824 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9828 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9831 /* Empty the Tetris buffer, wait for 1s */
9833 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9834 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9835 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9836 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9837 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9839 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9841 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9842 ((port_is_idle_0 & 0x1) == 0x1) &&
9843 ((port_is_idle_1 & 0x1) == 0x1) &&
9844 (pgl_exp_rom2 == 0xffffffff) &&
9845 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9847 usleep_range(1000, 2000);
9848 } while (cnt-- > 0);
9851 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9852 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9853 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9860 /* Close gates #2, #3 and #4 */
9861 bnx2x_set_234_gates(bp, true);
9863 /* Poll for IGU VQs for 57712 and newer chips */
9864 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9867 /* TBD: Indicate that "process kill" is in progress to MCP */
9869 /* Clear "unprepared" bit */
9870 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9873 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9874 * PSWHST, GRC and PSWRD Tetris buffer.
9876 usleep_range(1000, 2000);
9878 /* Prepare to chip reset: */
9881 bnx2x_reset_mcp_prep(bp, &val);
9887 /* reset the chip */
9888 bnx2x_process_kill_chip_reset(bp, global);
9891 /* clear errors in PGB */
9892 if (!CHIP_IS_E1x(bp))
9893 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9895 /* Recover after reset: */
9897 if (global && bnx2x_reset_mcp_comp(bp, val))
9900 /* TBD: Add resetting the NO_MCP mode DB here */
9902 /* Open the gates #2, #3 and #4 */
9903 bnx2x_set_234_gates(bp, false);
9905 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9906 * reset state, re-enable attentions. */
9911 static int bnx2x_leader_reset(struct bnx2x *bp)
9914 bool global = bnx2x_reset_is_global(bp);
9917 /* if not going to reset MCP - load "fake" driver to reset HW while
9918 * driver is owner of the HW
9920 if (!global && !BP_NOMCP(bp)) {
9921 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9922 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9924 BNX2X_ERR("MCP response failure, aborting\n");
9926 goto exit_leader_reset;
9928 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9929 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9930 BNX2X_ERR("MCP unexpected resp, aborting\n");
9932 goto exit_leader_reset2;
9934 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9936 BNX2X_ERR("MCP response failure, aborting\n");
9938 goto exit_leader_reset2;
9942 /* Try to recover after the failure */
9943 if (bnx2x_process_kill(bp, global)) {
9944 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9947 goto exit_leader_reset2;
9951 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9954 bnx2x_set_reset_done(bp);
9956 bnx2x_clear_reset_global(bp);
9959 /* unload "fake driver" if it was loaded */
9960 if (!global && !BP_NOMCP(bp)) {
9961 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9962 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9966 bnx2x_release_leader_lock(bp);
9971 static void bnx2x_recovery_failed(struct bnx2x *bp)
9973 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9975 /* Disconnect this device */
9976 netif_device_detach(bp->dev);
9979 * Block ifup for all function on this engine until "process kill"
9982 bnx2x_set_reset_in_progress(bp);
9984 /* Shut down the power */
9985 bnx2x_set_power_state(bp, PCI_D3hot);
9987 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9993 * Assumption: runs under rtnl lock. This together with the fact
9994 * that it's called only from bnx2x_sp_rtnl() ensure that it
9995 * will never be called when netif_running(bp->dev) is false.
9997 static void bnx2x_parity_recover(struct bnx2x *bp)
9999 u32 error_recovered, error_unrecovered;
10000 bool is_parity, global = false;
10001 #ifdef CONFIG_BNX2X_SRIOV
10004 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10005 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10008 vf->state = VF_LOST;
10011 DP(NETIF_MSG_HW, "Handling parity\n");
10013 switch (bp->recovery_state) {
10014 case BNX2X_RECOVERY_INIT:
10015 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10016 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10017 WARN_ON(!is_parity);
10019 /* Try to get a LEADER_LOCK HW lock */
10020 if (bnx2x_trylock_leader_lock(bp)) {
10021 bnx2x_set_reset_in_progress(bp);
10023 * Check if there is a global attention and if
10024 * there was a global attention, set the global
10029 bnx2x_set_reset_global(bp);
10034 /* Stop the driver */
10035 /* If interface has been removed - break */
10036 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10039 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10041 /* Ensure "is_leader", MCP command sequence and
10042 * "recovery_state" update values are seen on other
10048 case BNX2X_RECOVERY_WAIT:
10049 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10050 if (bp->is_leader) {
10051 int other_engine = BP_PATH(bp) ? 0 : 1;
10052 bool other_load_status =
10053 bnx2x_get_load_status(bp, other_engine);
10055 bnx2x_get_load_status(bp, BP_PATH(bp));
10056 global = bnx2x_reset_is_global(bp);
10059 * In case of a parity in a global block, let
10060 * the first leader that performs a
10061 * leader_reset() reset the global blocks in
10062 * order to clear global attentions. Otherwise
10063 * the gates will remain closed for that
10067 (global && other_load_status)) {
10068 /* Wait until all other functions get
10071 schedule_delayed_work(&bp->sp_rtnl_task,
10075 /* If all other functions got down -
10076 * try to bring the chip back to
10077 * normal. In any case it's an exit
10078 * point for a leader.
10080 if (bnx2x_leader_reset(bp)) {
10081 bnx2x_recovery_failed(bp);
10085 /* If we are here, means that the
10086 * leader has succeeded and doesn't
10087 * want to be a leader any more. Try
10088 * to continue as a none-leader.
10092 } else { /* non-leader */
10093 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10094 /* Try to get a LEADER_LOCK HW lock as
10095 * long as a former leader may have
10096 * been unloaded by the user or
10097 * released a leadership by another
10100 if (bnx2x_trylock_leader_lock(bp)) {
10101 /* I'm a leader now! Restart a
10108 schedule_delayed_work(&bp->sp_rtnl_task,
10114 * If there was a global attention, wait
10115 * for it to be cleared.
10117 if (bnx2x_reset_is_global(bp)) {
10118 schedule_delayed_work(
10125 bp->eth_stats.recoverable_error;
10126 error_unrecovered =
10127 bp->eth_stats.unrecoverable_error;
10128 bp->recovery_state =
10129 BNX2X_RECOVERY_NIC_LOADING;
10130 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10131 error_unrecovered++;
10132 netdev_err(bp->dev,
10133 "Recovery failed. Power cycle needed\n");
10134 /* Disconnect this device */
10135 netif_device_detach(bp->dev);
10136 /* Shut down the power */
10137 bnx2x_set_power_state(
10141 bp->recovery_state =
10142 BNX2X_RECOVERY_DONE;
10146 bp->eth_stats.recoverable_error =
10148 bp->eth_stats.unrecoverable_error =
10160 static int bnx2x_udp_port_update(struct bnx2x *bp)
10162 struct bnx2x_func_switch_update_params *switch_update_params;
10163 struct bnx2x_func_state_params func_params = {NULL};
10164 u16 vxlan_port = 0, geneve_port = 0;
10167 switch_update_params = &func_params.params.switch_update;
10169 /* Prepare parameters for function state transitions */
10170 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10171 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10173 func_params.f_obj = &bp->func_obj;
10174 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10176 /* Function parameters */
10177 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10178 &switch_update_params->changes);
10180 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10181 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10182 switch_update_params->geneve_dst_port = geneve_port;
10185 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10186 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10187 switch_update_params->vxlan_dst_port = vxlan_port;
10190 /* Re-enable inner-rss for the offloaded UDP tunnels */
10191 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10192 &switch_update_params->changes);
10194 rc = bnx2x_func_state_change(bp, &func_params);
10196 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10197 vxlan_port, geneve_port, rc);
10200 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10201 vxlan_port, geneve_port);
10206 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10208 struct bnx2x *bp = netdev_priv(netdev);
10209 struct udp_tunnel_info ti;
10211 udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10212 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10214 return bnx2x_udp_port_update(bp);
10217 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10218 .sync_table = bnx2x_udp_tunnel_sync,
10219 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10220 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10222 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
10223 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10227 static int bnx2x_close(struct net_device *dev);
10229 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10230 * scheduled on a general queue in order to prevent a dead lock.
10232 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10234 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10238 if (!netif_running(bp->dev)) {
10243 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10244 #ifdef BNX2X_STOP_ON_ERROR
10245 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10246 "you will need to reboot when done\n");
10247 goto sp_rtnl_not_reset;
10250 * Clear all pending SP commands as we are going to reset the
10253 bp->sp_rtnl_state = 0;
10256 bnx2x_parity_recover(bp);
10262 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10263 #ifdef BNX2X_STOP_ON_ERROR
10264 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10265 "you will need to reboot when done\n");
10266 goto sp_rtnl_not_reset;
10270 * Clear all pending SP commands as we are going to reset the
10273 bp->sp_rtnl_state = 0;
10276 /* Immediately indicate link as down */
10277 bp->link_vars.link_up = 0;
10278 bp->force_link_down = true;
10279 netif_carrier_off(bp->dev);
10280 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10282 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10283 /* When ret value shows failure of allocation failure,
10284 * the nic is rebooted again. If open still fails, a error
10285 * message to notify the user.
10287 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10288 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10289 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10290 BNX2X_ERR("Open the NIC fails again!\n");
10295 #ifdef BNX2X_STOP_ON_ERROR
10298 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10299 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10300 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10301 bnx2x_after_function_update(bp);
10303 * in case of fan failure we need to reset id if the "stop on error"
10304 * debug flag is set, since we trying to prevent permanent overheating
10307 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10308 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10309 netif_device_detach(bp->dev);
10310 bnx2x_close(bp->dev);
10315 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10317 "sending set mcast vf pf channel message from rtnl sp-task\n");
10318 bnx2x_vfpf_set_mcast(bp->dev);
10320 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10321 &bp->sp_rtnl_state)){
10322 if (netif_carrier_ok(bp->dev)) {
10323 bnx2x_tx_disable(bp);
10324 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10328 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10329 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10330 bnx2x_set_rx_mode_inner(bp);
10333 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10334 &bp->sp_rtnl_state))
10335 bnx2x_pf_set_vfs_vlan(bp);
10337 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10338 bnx2x_dcbx_stop_hw_tx(bp);
10339 bnx2x_dcbx_resume_hw_tx(bp);
10342 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10343 &bp->sp_rtnl_state))
10344 bnx2x_update_mng_version(bp);
10346 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10347 bnx2x_handle_update_svid_cmd(bp);
10349 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10350 * can be called from other contexts as well)
10354 /* enable SR-IOV if applicable */
10355 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10356 &bp->sp_rtnl_state)) {
10357 bnx2x_disable_sriov(bp);
10358 bnx2x_enable_sriov(bp);
10362 static void bnx2x_period_task(struct work_struct *work)
10364 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10366 if (!netif_running(bp->dev))
10367 goto period_task_exit;
10369 if (CHIP_REV_IS_SLOW(bp)) {
10370 BNX2X_ERR("period task called on emulation, ignoring\n");
10371 goto period_task_exit;
10374 bnx2x_acquire_phy_lock(bp);
10376 * The barrier is needed to ensure the ordering between the writing to
10377 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10378 * the reading here.
10381 if (bp->port.pmf) {
10382 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10384 /* Re-queue task in 1 sec */
10385 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10388 bnx2x_release_phy_lock(bp);
10394 * Init service functions
10397 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10399 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10400 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10401 return base + (BP_ABS_FUNC(bp)) * stride;
10404 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10405 u8 port, u32 reset_reg,
10406 struct bnx2x_mac_vals *vals)
10408 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10411 if (!(mask & reset_reg))
10414 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10415 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10416 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10417 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10418 REG_WR(bp, vals->umac_addr[port], 0);
10423 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10424 struct bnx2x_mac_vals *vals)
10426 u32 val, base_addr, offset, mask, reset_reg;
10427 bool mac_stopped = false;
10428 u8 port = BP_PORT(bp);
10430 /* reset addresses as they also mark which values were changed */
10431 memset(vals, 0, sizeof(*vals));
10433 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10435 if (!CHIP_IS_E3(bp)) {
10436 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10437 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10438 if ((mask & reset_reg) && val) {
10440 BNX2X_DEV_INFO("Disable bmac Rx\n");
10441 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10442 : NIG_REG_INGRESS_BMAC0_MEM;
10443 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10444 : BIGMAC_REGISTER_BMAC_CONTROL;
10447 * use rd/wr since we cannot use dmae. This is safe
10448 * since MCP won't access the bus due to the request
10449 * to unload, and no function on the path can be
10450 * loaded at this time.
10452 wb_data[0] = REG_RD(bp, base_addr + offset);
10453 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10454 vals->bmac_addr = base_addr + offset;
10455 vals->bmac_val[0] = wb_data[0];
10456 vals->bmac_val[1] = wb_data[1];
10457 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10458 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10459 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10461 BNX2X_DEV_INFO("Disable emac Rx\n");
10462 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10463 vals->emac_val = REG_RD(bp, vals->emac_addr);
10464 REG_WR(bp, vals->emac_addr, 0);
10465 mac_stopped = true;
10467 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10468 BNX2X_DEV_INFO("Disable xmac Rx\n");
10469 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10470 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10471 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10476 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10477 REG_WR(bp, vals->xmac_addr, 0);
10478 mac_stopped = true;
10481 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10483 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10491 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10492 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10493 0x1848 + ((f) << 4))
10494 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10495 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10496 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10498 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10499 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10500 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10502 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10504 /* UNDI marks its presence in DORQ -
10505 * it initializes CID offset for normal bell to 0x7
10507 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10508 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10511 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10512 BNX2X_DEV_INFO("UNDI previously loaded\n");
10519 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10524 if (BP_FUNC(bp) < 2)
10525 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10527 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10529 tmp_reg = REG_RD(bp, addr);
10530 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10531 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10533 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10534 REG_WR(bp, addr, tmp_reg);
10536 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10537 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10540 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10542 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10543 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10545 BNX2X_ERR("MCP response failure, aborting\n");
10552 static struct bnx2x_prev_path_list *
10553 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10555 struct bnx2x_prev_path_list *tmp_list;
10557 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10558 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10559 bp->pdev->bus->number == tmp_list->bus &&
10560 BP_PATH(bp) == tmp_list->path)
10566 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10568 struct bnx2x_prev_path_list *tmp_list;
10571 rc = down_interruptible(&bnx2x_prev_sem);
10573 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10577 tmp_list = bnx2x_prev_path_get_entry(bp);
10582 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10586 up(&bnx2x_prev_sem);
10591 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10593 struct bnx2x_prev_path_list *tmp_list;
10596 if (down_trylock(&bnx2x_prev_sem))
10599 tmp_list = bnx2x_prev_path_get_entry(bp);
10601 if (tmp_list->aer) {
10602 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10606 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10611 up(&bnx2x_prev_sem);
10616 bool bnx2x_port_after_undi(struct bnx2x *bp)
10618 struct bnx2x_prev_path_list *entry;
10621 down(&bnx2x_prev_sem);
10623 entry = bnx2x_prev_path_get_entry(bp);
10624 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10626 up(&bnx2x_prev_sem);
10631 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10633 struct bnx2x_prev_path_list *tmp_list;
10636 rc = down_interruptible(&bnx2x_prev_sem);
10638 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10642 /* Check whether the entry for this path already exists */
10643 tmp_list = bnx2x_prev_path_get_entry(bp);
10645 if (!tmp_list->aer) {
10646 BNX2X_ERR("Re-Marking the path.\n");
10648 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10652 up(&bnx2x_prev_sem);
10655 up(&bnx2x_prev_sem);
10657 /* Create an entry for this path and add it */
10658 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10660 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10664 tmp_list->bus = bp->pdev->bus->number;
10665 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10666 tmp_list->path = BP_PATH(bp);
10668 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10670 rc = down_interruptible(&bnx2x_prev_sem);
10672 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10675 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10677 list_add(&tmp_list->list, &bnx2x_prev_list);
10678 up(&bnx2x_prev_sem);
10684 static int bnx2x_do_flr(struct bnx2x *bp)
10686 struct pci_dev *dev = bp->pdev;
10688 if (CHIP_IS_E1x(bp)) {
10689 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10693 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10694 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10695 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10696 bp->common.bc_ver);
10700 if (!pci_wait_for_pending_transaction(dev))
10701 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10703 BNX2X_DEV_INFO("Initiating FLR\n");
10704 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10709 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10713 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10715 /* Test if previous unload process was already finished for this path */
10716 if (bnx2x_prev_is_path_marked(bp))
10717 return bnx2x_prev_mcp_done(bp);
10719 BNX2X_DEV_INFO("Path is unmarked\n");
10721 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10722 if (bnx2x_prev_is_after_undi(bp))
10725 /* If function has FLR capabilities, and existing FW version matches
10726 * the one required, then FLR will be sufficient to clean any residue
10727 * left by previous driver
10729 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10732 /* fw version is good */
10733 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10734 rc = bnx2x_do_flr(bp);
10738 /* FLR was performed */
10739 BNX2X_DEV_INFO("FLR successful\n");
10743 BNX2X_DEV_INFO("Could not FLR\n");
10746 /* Close the MCP request, return failure*/
10747 rc = bnx2x_prev_mcp_done(bp);
10749 rc = BNX2X_PREV_WAIT_NEEDED;
10754 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10756 u32 reset_reg, tmp_reg = 0, rc;
10757 bool prev_undi = false;
10758 struct bnx2x_mac_vals mac_vals;
10760 /* It is possible a previous function received 'common' answer,
10761 * but hasn't loaded yet, therefore creating a scenario of
10762 * multiple functions receiving 'common' on the same path.
10764 BNX2X_DEV_INFO("Common unload Flow\n");
10766 memset(&mac_vals, 0, sizeof(mac_vals));
10768 if (bnx2x_prev_is_path_marked(bp))
10769 return bnx2x_prev_mcp_done(bp);
10771 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10773 /* Reset should be performed after BRB is emptied */
10774 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10775 u32 timer_count = 1000;
10777 /* Close the MAC Rx to prevent BRB from filling up */
10778 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10780 /* close LLH filters for both ports towards the BRB */
10781 bnx2x_set_rx_filter(&bp->link_params, 0);
10782 bp->link_params.port ^= 1;
10783 bnx2x_set_rx_filter(&bp->link_params, 0);
10784 bp->link_params.port ^= 1;
10786 /* Check if the UNDI driver was previously loaded */
10787 if (bnx2x_prev_is_after_undi(bp)) {
10789 /* clear the UNDI indication */
10790 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10791 /* clear possible idle check errors */
10792 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10794 if (!CHIP_IS_E1x(bp))
10795 /* block FW from writing to host */
10796 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10798 /* wait until BRB is empty */
10799 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10800 while (timer_count) {
10801 u32 prev_brb = tmp_reg;
10803 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10807 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10809 /* reset timer as long as BRB actually gets emptied */
10810 if (prev_brb > tmp_reg)
10811 timer_count = 1000;
10815 /* If UNDI resides in memory, manually increment it */
10817 bnx2x_prev_unload_undi_inc(bp, 1);
10823 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10826 /* No packets are in the pipeline, path is ready for reset */
10827 bnx2x_reset_common(bp);
10829 if (mac_vals.xmac_addr)
10830 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10831 if (mac_vals.umac_addr[0])
10832 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10833 if (mac_vals.umac_addr[1])
10834 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10835 if (mac_vals.emac_addr)
10836 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10837 if (mac_vals.bmac_addr) {
10838 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10839 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10842 rc = bnx2x_prev_mark_path(bp, prev_undi);
10844 bnx2x_prev_mcp_done(bp);
10848 return bnx2x_prev_mcp_done(bp);
10851 static int bnx2x_prev_unload(struct bnx2x *bp)
10853 int time_counter = 10;
10854 u32 rc, fw, hw_lock_reg, hw_lock_val;
10855 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10857 /* clear hw from errors which may have resulted from an interrupted
10858 * dmae transaction.
10860 bnx2x_clean_pglue_errors(bp);
10862 /* Release previously held locks */
10863 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10864 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10865 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10867 hw_lock_val = REG_RD(bp, hw_lock_reg);
10869 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10870 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10871 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10872 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10875 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10876 REG_WR(bp, hw_lock_reg, 0xffffffff);
10878 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10880 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10881 BNX2X_DEV_INFO("Release previously held alr\n");
10882 bnx2x_release_alr(bp);
10887 /* Lock MCP using an unload request */
10888 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10890 BNX2X_ERR("MCP response failure, aborting\n");
10895 rc = down_interruptible(&bnx2x_prev_sem);
10897 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10900 /* If Path is marked by EEH, ignore unload status */
10901 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10902 bnx2x_prev_path_get_entry(bp)->aer);
10903 up(&bnx2x_prev_sem);
10906 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10907 rc = bnx2x_prev_unload_common(bp);
10911 /* non-common reply from MCP might require looping */
10912 rc = bnx2x_prev_unload_uncommon(bp);
10913 if (rc != BNX2X_PREV_WAIT_NEEDED)
10917 } while (--time_counter);
10919 if (!time_counter || rc) {
10920 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10921 rc = -EPROBE_DEFER;
10924 /* Mark function if its port was used to boot from SAN */
10925 if (bnx2x_port_after_undi(bp))
10926 bp->link_params.feature_config_flags |=
10927 FEATURE_CONFIG_BOOT_FROM_SAN;
10929 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10934 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10936 u32 val, val2, val3, val4, id, boot_mode;
10939 /* Get the chip revision id and number. */
10940 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10941 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10942 id = ((val & 0xffff) << 16);
10943 val = REG_RD(bp, MISC_REG_CHIP_REV);
10944 id |= ((val & 0xf) << 12);
10946 /* Metal is read from PCI regs, but we can't access >=0x400 from
10947 * the configuration space (so we need to reg_rd)
10949 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10950 id |= (((val >> 24) & 0xf) << 4);
10951 val = REG_RD(bp, MISC_REG_BOND_ID);
10953 bp->common.chip_id = id;
10955 /* force 57811 according to MISC register */
10956 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10957 if (CHIP_IS_57810(bp))
10958 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10959 (bp->common.chip_id & 0x0000FFFF);
10960 else if (CHIP_IS_57810_MF(bp))
10961 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10962 (bp->common.chip_id & 0x0000FFFF);
10963 bp->common.chip_id |= 0x1;
10966 /* Set doorbell size */
10967 bp->db_size = (1 << BNX2X_DB_SHIFT);
10969 if (!CHIP_IS_E1x(bp)) {
10970 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10971 if ((val & 1) == 0)
10972 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10974 val = (val >> 1) & 1;
10975 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10977 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10980 if (CHIP_MODE_IS_4_PORT(bp))
10981 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10983 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10985 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10986 bp->pfid = bp->pf_num; /* 0..7 */
10989 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10991 bp->link_params.chip_id = bp->common.chip_id;
10992 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10994 val = (REG_RD(bp, 0x2874) & 0x55);
10995 if ((bp->common.chip_id & 0x1) ||
10996 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10997 bp->flags |= ONE_PORT_FLAG;
10998 BNX2X_DEV_INFO("single port device\n");
11001 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11002 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11003 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11004 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11005 bp->common.flash_size, bp->common.flash_size);
11007 bnx2x_init_shmem(bp);
11009 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11010 MISC_REG_GENERIC_CR_1 :
11011 MISC_REG_GENERIC_CR_0));
11013 bp->link_params.shmem_base = bp->common.shmem_base;
11014 bp->link_params.shmem2_base = bp->common.shmem2_base;
11015 if (SHMEM2_RD(bp, size) >
11016 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11017 bp->link_params.lfa_base =
11018 REG_RD(bp, bp->common.shmem2_base +
11019 (u32)offsetof(struct shmem2_region,
11020 lfa_host_addr[BP_PORT(bp)]));
11022 bp->link_params.lfa_base = 0;
11023 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11024 bp->common.shmem_base, bp->common.shmem2_base);
11026 if (!bp->common.shmem_base) {
11027 BNX2X_DEV_INFO("MCP not active\n");
11028 bp->flags |= NO_MCP_FLAG;
11032 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11033 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11035 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11036 SHARED_HW_CFG_LED_MODE_MASK) >>
11037 SHARED_HW_CFG_LED_MODE_SHIFT);
11039 bp->link_params.feature_config_flags = 0;
11040 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11041 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11042 bp->link_params.feature_config_flags |=
11043 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11045 bp->link_params.feature_config_flags &=
11046 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11049 bp->common.bc_ver = val;
11050 BNX2X_DEV_INFO("bc_ver %X\n", val);
11051 if (val < BNX2X_BC_VER) {
11052 /* for now only warn
11053 * later we might need to enforce this */
11054 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11055 BNX2X_BC_VER, val);
11057 bp->link_params.feature_config_flags |=
11058 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11059 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11061 bp->link_params.feature_config_flags |=
11062 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11063 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11064 bp->link_params.feature_config_flags |=
11065 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11066 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11067 bp->link_params.feature_config_flags |=
11068 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11069 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11071 bp->link_params.feature_config_flags |=
11072 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11073 FEATURE_CONFIG_MT_SUPPORT : 0;
11075 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11076 BC_SUPPORTS_PFC_STATS : 0;
11078 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11079 BC_SUPPORTS_FCOE_FEATURES : 0;
11081 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11082 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11084 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11085 BC_SUPPORTS_RMMOD_CMD : 0;
11087 boot_mode = SHMEM_RD(bp,
11088 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11089 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11090 switch (boot_mode) {
11091 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11092 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11094 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11095 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11097 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11098 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11100 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11101 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11105 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11106 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11108 BNX2X_DEV_INFO("%sWoL capable\n",
11109 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11111 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11112 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11113 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11114 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11116 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11117 val, val2, val3, val4);
11120 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11121 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11123 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11125 int pfid = BP_FUNC(bp);
11128 u8 fid, igu_sb_cnt = 0;
11130 bp->igu_base_sb = 0xff;
11131 if (CHIP_INT_MODE_IS_BC(bp)) {
11132 int vn = BP_VN(bp);
11133 igu_sb_cnt = bp->igu_sb_cnt;
11134 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11137 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11138 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11143 /* IGU in normal mode - read CAM */
11144 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11146 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11147 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11149 fid = IGU_FID(val);
11150 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11151 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11153 if (IGU_VEC(val) == 0)
11154 /* default status block */
11155 bp->igu_dsb_id = igu_sb_id;
11157 if (bp->igu_base_sb == 0xff)
11158 bp->igu_base_sb = igu_sb_id;
11164 #ifdef CONFIG_PCI_MSI
11165 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11166 * optional that number of CAM entries will not be equal to the value
11167 * advertised in PCI.
11168 * Driver should use the minimal value of both as the actual status
11171 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11174 if (igu_sb_cnt == 0) {
11175 BNX2X_ERR("CAM configuration error\n");
11182 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11184 int cfg_size = 0, idx, port = BP_PORT(bp);
11186 /* Aggregation of supported attributes of all external phys */
11187 bp->port.supported[0] = 0;
11188 bp->port.supported[1] = 0;
11189 switch (bp->link_params.num_phys) {
11191 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11195 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11199 if (bp->link_params.multi_phy_config &
11200 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11201 bp->port.supported[1] =
11202 bp->link_params.phy[EXT_PHY1].supported;
11203 bp->port.supported[0] =
11204 bp->link_params.phy[EXT_PHY2].supported;
11206 bp->port.supported[0] =
11207 bp->link_params.phy[EXT_PHY1].supported;
11208 bp->port.supported[1] =
11209 bp->link_params.phy[EXT_PHY2].supported;
11215 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11216 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11218 dev_info.port_hw_config[port].external_phy_config),
11220 dev_info.port_hw_config[port].external_phy_config2));
11224 if (CHIP_IS_E3(bp))
11225 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11227 switch (switch_cfg) {
11228 case SWITCH_CFG_1G:
11229 bp->port.phy_addr = REG_RD(
11230 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11232 case SWITCH_CFG_10G:
11233 bp->port.phy_addr = REG_RD(
11234 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11237 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11238 bp->port.link_config[0]);
11242 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11243 /* mask what we support according to speed_cap_mask per configuration */
11244 for (idx = 0; idx < cfg_size; idx++) {
11245 if (!(bp->link_params.speed_cap_mask[idx] &
11246 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11247 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11249 if (!(bp->link_params.speed_cap_mask[idx] &
11250 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11251 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11253 if (!(bp->link_params.speed_cap_mask[idx] &
11254 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11255 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11257 if (!(bp->link_params.speed_cap_mask[idx] &
11258 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11259 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11261 if (!(bp->link_params.speed_cap_mask[idx] &
11262 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11263 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11264 SUPPORTED_1000baseT_Full);
11266 if (!(bp->link_params.speed_cap_mask[idx] &
11267 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11268 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11270 if (!(bp->link_params.speed_cap_mask[idx] &
11271 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11272 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11274 if (!(bp->link_params.speed_cap_mask[idx] &
11275 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11276 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11279 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11280 bp->port.supported[1]);
11283 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11285 u32 link_config, idx, cfg_size = 0;
11286 bp->port.advertising[0] = 0;
11287 bp->port.advertising[1] = 0;
11288 switch (bp->link_params.num_phys) {
11297 for (idx = 0; idx < cfg_size; idx++) {
11298 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11299 link_config = bp->port.link_config[idx];
11300 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11301 case PORT_FEATURE_LINK_SPEED_AUTO:
11302 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11303 bp->link_params.req_line_speed[idx] =
11305 bp->port.advertising[idx] |=
11306 bp->port.supported[idx];
11307 if (bp->link_params.phy[EXT_PHY1].type ==
11308 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11309 bp->port.advertising[idx] |=
11310 (SUPPORTED_100baseT_Half |
11311 SUPPORTED_100baseT_Full);
11313 /* force 10G, no AN */
11314 bp->link_params.req_line_speed[idx] =
11316 bp->port.advertising[idx] |=
11317 (ADVERTISED_10000baseT_Full |
11323 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11324 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11325 bp->link_params.req_line_speed[idx] =
11327 bp->port.advertising[idx] |=
11328 (ADVERTISED_10baseT_Full |
11331 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11333 bp->link_params.speed_cap_mask[idx]);
11338 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11339 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11340 bp->link_params.req_line_speed[idx] =
11342 bp->link_params.req_duplex[idx] =
11344 bp->port.advertising[idx] |=
11345 (ADVERTISED_10baseT_Half |
11348 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11350 bp->link_params.speed_cap_mask[idx]);
11355 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11356 if (bp->port.supported[idx] &
11357 SUPPORTED_100baseT_Full) {
11358 bp->link_params.req_line_speed[idx] =
11360 bp->port.advertising[idx] |=
11361 (ADVERTISED_100baseT_Full |
11364 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11366 bp->link_params.speed_cap_mask[idx]);
11371 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11372 if (bp->port.supported[idx] &
11373 SUPPORTED_100baseT_Half) {
11374 bp->link_params.req_line_speed[idx] =
11376 bp->link_params.req_duplex[idx] =
11378 bp->port.advertising[idx] |=
11379 (ADVERTISED_100baseT_Half |
11382 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11384 bp->link_params.speed_cap_mask[idx]);
11389 case PORT_FEATURE_LINK_SPEED_1G:
11390 if (bp->port.supported[idx] &
11391 SUPPORTED_1000baseT_Full) {
11392 bp->link_params.req_line_speed[idx] =
11394 bp->port.advertising[idx] |=
11395 (ADVERTISED_1000baseT_Full |
11397 } else if (bp->port.supported[idx] &
11398 SUPPORTED_1000baseKX_Full) {
11399 bp->link_params.req_line_speed[idx] =
11401 bp->port.advertising[idx] |=
11402 ADVERTISED_1000baseKX_Full;
11404 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11406 bp->link_params.speed_cap_mask[idx]);
11411 case PORT_FEATURE_LINK_SPEED_2_5G:
11412 if (bp->port.supported[idx] &
11413 SUPPORTED_2500baseX_Full) {
11414 bp->link_params.req_line_speed[idx] =
11416 bp->port.advertising[idx] |=
11417 (ADVERTISED_2500baseX_Full |
11420 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11422 bp->link_params.speed_cap_mask[idx]);
11427 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11428 if (bp->port.supported[idx] &
11429 SUPPORTED_10000baseT_Full) {
11430 bp->link_params.req_line_speed[idx] =
11432 bp->port.advertising[idx] |=
11433 (ADVERTISED_10000baseT_Full |
11435 } else if (bp->port.supported[idx] &
11436 SUPPORTED_10000baseKR_Full) {
11437 bp->link_params.req_line_speed[idx] =
11439 bp->port.advertising[idx] |=
11440 (ADVERTISED_10000baseKR_Full |
11443 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11445 bp->link_params.speed_cap_mask[idx]);
11449 case PORT_FEATURE_LINK_SPEED_20G:
11450 bp->link_params.req_line_speed[idx] = SPEED_20000;
11454 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11456 bp->link_params.req_line_speed[idx] =
11458 bp->port.advertising[idx] =
11459 bp->port.supported[idx];
11463 bp->link_params.req_flow_ctrl[idx] = (link_config &
11464 PORT_FEATURE_FLOW_CONTROL_MASK);
11465 if (bp->link_params.req_flow_ctrl[idx] ==
11466 BNX2X_FLOW_CTRL_AUTO) {
11467 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11468 bp->link_params.req_flow_ctrl[idx] =
11469 BNX2X_FLOW_CTRL_NONE;
11471 bnx2x_set_requested_fc(bp);
11474 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11475 bp->link_params.req_line_speed[idx],
11476 bp->link_params.req_duplex[idx],
11477 bp->link_params.req_flow_ctrl[idx],
11478 bp->port.advertising[idx]);
11482 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11484 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11485 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11486 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11487 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11490 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11492 int port = BP_PORT(bp);
11494 u32 ext_phy_type, ext_phy_config, eee_mode;
11496 bp->link_params.bp = bp;
11497 bp->link_params.port = port;
11499 bp->link_params.lane_config =
11500 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11502 bp->link_params.speed_cap_mask[0] =
11504 dev_info.port_hw_config[port].speed_capability_mask) &
11505 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11506 bp->link_params.speed_cap_mask[1] =
11508 dev_info.port_hw_config[port].speed_capability_mask2) &
11509 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11510 bp->port.link_config[0] =
11511 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11513 bp->port.link_config[1] =
11514 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11516 bp->link_params.multi_phy_config =
11517 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11518 /* If the device is capable of WoL, set the default state according
11521 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11522 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11523 (config & PORT_FEATURE_WOL_ENABLED));
11525 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11526 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11527 bp->flags |= NO_ISCSI_FLAG;
11528 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11529 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11530 bp->flags |= NO_FCOE_FLAG;
11532 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11533 bp->link_params.lane_config,
11534 bp->link_params.speed_cap_mask[0],
11535 bp->port.link_config[0]);
11537 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11538 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11539 bnx2x_phy_probe(&bp->link_params);
11540 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11542 bnx2x_link_settings_requested(bp);
11545 * If connected directly, work with the internal PHY, otherwise, work
11546 * with the external PHY
11550 dev_info.port_hw_config[port].external_phy_config);
11551 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11552 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11553 bp->mdio.prtad = bp->port.phy_addr;
11555 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11556 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11558 XGXS_EXT_PHY_ADDR(ext_phy_config);
11560 /* Configure link feature according to nvram value */
11561 eee_mode = (((SHMEM_RD(bp, dev_info.
11562 port_feature_config[port].eee_power_mode)) &
11563 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11564 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11565 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11566 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11567 EEE_MODE_ENABLE_LPI |
11568 EEE_MODE_OUTPUT_TIME;
11570 bp->link_params.eee_mode = 0;
11574 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11576 u32 no_flags = NO_ISCSI_FLAG;
11577 int port = BP_PORT(bp);
11578 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11579 drv_lic_key[port].max_iscsi_conn);
11581 if (!CNIC_SUPPORT(bp)) {
11582 bp->flags |= no_flags;
11586 /* Get the number of maximum allowed iSCSI connections */
11587 bp->cnic_eth_dev.max_iscsi_conn =
11588 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11589 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11591 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11592 bp->cnic_eth_dev.max_iscsi_conn);
11595 * If maximum allowed number of connections is zero -
11596 * disable the feature.
11598 if (!bp->cnic_eth_dev.max_iscsi_conn)
11599 bp->flags |= no_flags;
11602 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11605 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11606 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11607 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11608 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11611 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11612 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11613 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11614 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11617 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11624 /* iterate over absolute function ids for this path: */
11625 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11626 if (IS_MF_SD(bp)) {
11627 u32 cfg = MF_CFG_RD(bp,
11628 func_mf_config[fid].config);
11630 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11631 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11632 FUNC_MF_CFG_PROTOCOL_FCOE))
11635 u32 cfg = MF_CFG_RD(bp,
11636 func_ext_config[fid].
11639 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11640 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11645 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11647 for (port = 0; port < port_cnt; port++) {
11648 u32 lic = SHMEM_RD(bp,
11649 drv_lic_key[port].max_fcoe_conn) ^
11650 FW_ENCODE_32BIT_PATTERN;
11659 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11661 int port = BP_PORT(bp);
11662 int func = BP_ABS_FUNC(bp);
11663 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11664 drv_lic_key[port].max_fcoe_conn);
11665 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11667 if (!CNIC_SUPPORT(bp)) {
11668 bp->flags |= NO_FCOE_FLAG;
11672 /* Get the number of maximum allowed FCoE connections */
11673 bp->cnic_eth_dev.max_fcoe_conn =
11674 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11675 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11677 /* Calculate the number of maximum allowed FCoE tasks */
11678 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11680 /* check if FCoE resources must be shared between different functions */
11682 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11684 /* Read the WWN: */
11687 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11689 dev_info.port_hw_config[port].
11690 fcoe_wwn_port_name_upper);
11691 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11693 dev_info.port_hw_config[port].
11694 fcoe_wwn_port_name_lower);
11697 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11699 dev_info.port_hw_config[port].
11700 fcoe_wwn_node_name_upper);
11701 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11703 dev_info.port_hw_config[port].
11704 fcoe_wwn_node_name_lower);
11705 } else if (!IS_MF_SD(bp)) {
11706 /* Read the WWN info only if the FCoE feature is enabled for
11709 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11710 bnx2x_get_ext_wwn_info(bp, func);
11712 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11713 bnx2x_get_ext_wwn_info(bp, func);
11716 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11719 * If maximum allowed number of connections is zero -
11720 * disable the feature.
11722 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11723 bp->flags |= NO_FCOE_FLAG;
11724 eth_zero_addr(bp->fip_mac);
11728 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731 * iSCSI may be dynamically disabled but reading
11732 * info here we will decrease memory usage by driver
11733 * if the feature is disabled for good
11735 bnx2x_get_iscsi_info(bp);
11736 bnx2x_get_fcoe_info(bp);
11739 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742 int func = BP_ABS_FUNC(bp);
11743 int port = BP_PORT(bp);
11744 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11745 u8 *fip_mac = bp->fip_mac;
11748 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11749 * FCoE MAC then the appropriate feature should be disabled.
11750 * In non SD mode features configuration comes from struct
11753 if (!IS_MF_SD(bp)) {
11754 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11755 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11756 val2 = MF_CFG_RD(bp, func_ext_config[func].
11757 iscsi_mac_addr_upper);
11758 val = MF_CFG_RD(bp, func_ext_config[func].
11759 iscsi_mac_addr_lower);
11760 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11762 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11764 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11768 val2 = MF_CFG_RD(bp, func_ext_config[func].
11769 fcoe_mac_addr_upper);
11770 val = MF_CFG_RD(bp, func_ext_config[func].
11771 fcoe_mac_addr_lower);
11772 bnx2x_set_mac_buf(fip_mac, val, val2);
11774 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11776 bp->flags |= NO_FCOE_FLAG;
11779 bp->mf_ext_config = cfg;
11781 } else { /* SD MODE */
11782 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11783 /* use primary mac as iscsi mac */
11784 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11786 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11788 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11789 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11790 /* use primary mac as fip mac */
11791 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11792 BNX2X_DEV_INFO("SD FCoE MODE\n");
11794 ("Read FIP MAC: %pM\n", fip_mac);
11798 /* If this is a storage-only interface, use SAN mac as
11799 * primary MAC. Notice that for SD this is already the case,
11800 * as the SAN mac was copied from the primary MAC.
11802 if (IS_MF_FCOE_AFEX(bp))
11803 eth_hw_addr_set(bp->dev, fip_mac);
11805 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11811 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11812 fcoe_fip_mac_upper);
11813 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814 fcoe_fip_mac_lower);
11815 bnx2x_set_mac_buf(fip_mac, val, val2);
11818 /* Disable iSCSI OOO if MAC configuration is invalid. */
11819 if (!is_valid_ether_addr(iscsi_mac)) {
11820 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11821 eth_zero_addr(iscsi_mac);
11824 /* Disable FCoE if MAC configuration is invalid. */
11825 if (!is_valid_ether_addr(fip_mac)) {
11826 bp->flags |= NO_FCOE_FLAG;
11827 eth_zero_addr(bp->fip_mac);
11831 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834 int func = BP_ABS_FUNC(bp);
11835 int port = BP_PORT(bp);
11836 u8 addr[ETH_ALEN] = {};
11838 /* Zero primary MAC configuration */
11839 eth_hw_addr_set(bp->dev, addr);
11841 if (BP_NOMCP(bp)) {
11842 BNX2X_ERROR("warning: random MAC workaround active\n");
11843 eth_hw_addr_random(bp->dev);
11844 } else if (IS_MF(bp)) {
11845 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11846 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11847 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11848 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11849 bnx2x_set_mac_buf(addr, val, val2);
11850 eth_hw_addr_set(bp->dev, addr);
11853 if (CNIC_SUPPORT(bp))
11854 bnx2x_get_cnic_mac_hwinfo(bp);
11856 /* in SF read MACs from port configuration */
11857 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11858 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11859 bnx2x_set_mac_buf(addr, val, val2);
11860 eth_hw_addr_set(bp->dev, addr);
11862 if (CNIC_SUPPORT(bp))
11863 bnx2x_get_cnic_mac_hwinfo(bp);
11866 if (!BP_NOMCP(bp)) {
11867 /* Read physical port identifier from shmem */
11868 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11869 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11870 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11871 bp->flags |= HAS_PHYS_PORT_ID;
11874 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11876 if (!is_valid_ether_addr(bp->dev->dev_addr))
11877 dev_err(&bp->pdev->dev,
11878 "bad Ethernet MAC address configuration: %pM\n"
11879 "change it manually before bringing up the appropriate network interface\n",
11880 bp->dev->dev_addr);
11883 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11891 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11892 /* Take function: tmp = func */
11893 tmp = BP_ABS_FUNC(bp);
11894 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11895 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11897 /* Take port: tmp = port */
11900 dev_info.port_hw_config[tmp].generic_features);
11901 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11906 static void validate_set_si_mode(struct bnx2x *bp)
11908 u8 func = BP_ABS_FUNC(bp);
11911 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11913 /* check for legal mac (upper bytes) */
11914 if (val != 0xffff) {
11915 bp->mf_mode = MULTI_FUNCTION_SI;
11916 bp->mf_config[BP_VN(bp)] =
11917 MF_CFG_RD(bp, func_mf_config[func].config);
11919 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11922 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11924 int /*abs*/func = BP_ABS_FUNC(bp);
11926 u32 val = 0, val2 = 0;
11929 /* Validate that chip access is feasible */
11930 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11931 dev_err(&bp->pdev->dev,
11932 "Chip read returns all Fs. Preventing probe from continuing\n");
11936 bnx2x_get_common_hwinfo(bp);
11939 * initialize IGU parameters
11941 if (CHIP_IS_E1x(bp)) {
11942 bp->common.int_block = INT_BLOCK_HC;
11944 bp->igu_dsb_id = DEF_SB_IGU_ID;
11945 bp->igu_base_sb = 0;
11947 bp->common.int_block = INT_BLOCK_IGU;
11949 /* do not allow device reset during IGU info processing */
11950 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11952 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11954 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11957 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11959 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11960 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11961 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11963 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11965 usleep_range(1000, 2000);
11968 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11969 dev_err(&bp->pdev->dev,
11970 "FORCING Normal Mode failed!!!\n");
11971 bnx2x_release_hw_lock(bp,
11972 HW_LOCK_RESOURCE_RESET);
11977 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11978 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11979 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11981 BNX2X_DEV_INFO("IGU Normal Mode\n");
11983 rc = bnx2x_get_igu_cam_info(bp);
11984 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11990 * set base FW non-default (fast path) status block id, this value is
11991 * used to initialize the fw_sb_id saved on the fp/queue structure to
11992 * determine the id used by the FW.
11994 if (CHIP_IS_E1x(bp))
11995 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11997 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11998 * the same queue are indicated on the same IGU SB). So we prefer
11999 * FW and IGU SBs to be the same value.
12001 bp->base_fw_ndsb = bp->igu_base_sb;
12003 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
12004 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12005 bp->igu_sb_cnt, bp->base_fw_ndsb);
12008 * Initialize MF configuration
12012 bp->mf_sub_mode = 0;
12015 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12016 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12017 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12018 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12020 if (SHMEM2_HAS(bp, mf_cfg_addr))
12021 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12023 bp->common.mf_cfg_base = bp->common.shmem_base +
12024 offsetof(struct shmem_region, func_mb) +
12025 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12027 * get mf configuration:
12028 * 1. Existence of MF configuration
12029 * 2. MAC address must be legal (check only upper bytes)
12030 * for Switch-Independent mode;
12031 * OVLAN must be legal for Switch-Dependent mode
12032 * 3. SF_MODE configures specific MF mode
12034 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12035 /* get mf configuration */
12037 dev_info.shared_feature_config.config);
12038 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12041 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12042 validate_set_si_mode(bp);
12044 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12045 if ((!CHIP_IS_E1x(bp)) &&
12046 (MF_CFG_RD(bp, func_mf_config[func].
12047 mac_upper) != 0xffff) &&
12049 afex_driver_support))) {
12050 bp->mf_mode = MULTI_FUNCTION_AFEX;
12051 bp->mf_config[vn] = MF_CFG_RD(bp,
12052 func_mf_config[func].config);
12054 BNX2X_DEV_INFO("can not configure afex mode\n");
12057 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12058 /* get OV configuration */
12059 val = MF_CFG_RD(bp,
12060 func_mf_config[FUNC_0].e1hov_tag);
12061 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12063 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12064 bp->mf_mode = MULTI_FUNCTION_SD;
12065 bp->mf_config[vn] = MF_CFG_RD(bp,
12066 func_mf_config[func].config);
12068 BNX2X_DEV_INFO("illegal OV for SD\n");
12070 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12071 bp->mf_mode = MULTI_FUNCTION_SD;
12072 bp->mf_sub_mode = SUB_MF_MODE_BD;
12073 bp->mf_config[vn] =
12075 func_mf_config[func].config);
12077 if (SHMEM2_HAS(bp, mtu_size)) {
12078 int mtu_idx = BP_FW_MB_IDX(bp);
12082 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12083 mtu_size = (u16)mtu;
12084 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12087 /* if valid: update device mtu */
12088 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12090 ETH_MAX_JUMBO_PACKET_SIZE))
12091 bp->dev->mtu = mtu_size;
12094 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12095 bp->mf_mode = MULTI_FUNCTION_SD;
12096 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12097 bp->mf_config[vn] =
12099 func_mf_config[func].config);
12101 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12102 bp->mf_config[vn] = 0;
12104 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12105 val2 = SHMEM_RD(bp,
12106 dev_info.shared_hw_config.config_3);
12107 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12110 validate_set_si_mode(bp);
12112 SUB_MF_MODE_NPAR1_DOT_5;
12115 /* Unknown configuration */
12116 bp->mf_config[vn] = 0;
12117 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12122 /* Unknown configuration: reset mf_config */
12123 bp->mf_config[vn] = 0;
12124 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12128 BNX2X_DEV_INFO("%s function mode\n",
12129 IS_MF(bp) ? "multi" : "single");
12131 switch (bp->mf_mode) {
12132 case MULTI_FUNCTION_SD:
12133 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12134 FUNC_MF_CFG_E1HOV_TAG_MASK;
12135 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137 bp->path_has_ovlan = true;
12139 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12140 func, bp->mf_ov, bp->mf_ov);
12141 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12142 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12143 dev_err(&bp->pdev->dev,
12144 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146 bp->path_has_ovlan = true;
12148 dev_err(&bp->pdev->dev,
12149 "No valid MF OV for func %d, aborting\n",
12154 case MULTI_FUNCTION_AFEX:
12155 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157 case MULTI_FUNCTION_SI:
12158 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12163 dev_err(&bp->pdev->dev,
12164 "VN %d is in a single function mode, aborting\n",
12171 /* check if other port on the path needs ovlan:
12172 * Since MF configuration is shared between ports
12173 * Possible mixed modes are only
12174 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176 if (CHIP_MODE_IS_4_PORT(bp) &&
12177 !bp->path_has_ovlan &&
12179 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12180 u8 other_port = !BP_PORT(bp);
12181 u8 other_func = BP_PATH(bp) + 2*other_port;
12182 val = MF_CFG_RD(bp,
12183 func_mf_config[other_func].e1hov_tag);
12184 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12185 bp->path_has_ovlan = true;
12189 /* adjust igu_sb_cnt to MF for E1H */
12190 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12191 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12194 bnx2x_get_port_hwinfo(bp);
12196 /* Get MAC addresses */
12197 bnx2x_get_mac_hwinfo(bp);
12199 bnx2x_get_cnic_info(bp);
12204 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 char str_id[VENDOR_ID_LEN + 1];
12207 unsigned int vpd_len, kw_len;
12211 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12213 vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12214 if (IS_ERR(vpd_data))
12217 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12218 PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12219 if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12220 goto out_not_found;
12222 /* vendor specific info */
12223 snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12224 if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12225 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12226 PCI_VPD_RO_KEYWORD_VENDOR0,
12228 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12229 memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12230 bp->fw_ver[kw_len] = ' ';
12237 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12241 if (CHIP_REV_IS_FPGA(bp))
12242 SET_FLAGS(flags, MODE_FPGA);
12243 else if (CHIP_REV_IS_EMUL(bp))
12244 SET_FLAGS(flags, MODE_EMUL);
12246 SET_FLAGS(flags, MODE_ASIC);
12248 if (CHIP_MODE_IS_4_PORT(bp))
12249 SET_FLAGS(flags, MODE_PORT4);
12251 SET_FLAGS(flags, MODE_PORT2);
12253 if (CHIP_IS_E2(bp))
12254 SET_FLAGS(flags, MODE_E2);
12255 else if (CHIP_IS_E3(bp)) {
12256 SET_FLAGS(flags, MODE_E3);
12257 if (CHIP_REV(bp) == CHIP_REV_Ax)
12258 SET_FLAGS(flags, MODE_E3_A0);
12259 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12260 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12264 SET_FLAGS(flags, MODE_MF);
12265 switch (bp->mf_mode) {
12266 case MULTI_FUNCTION_SD:
12267 SET_FLAGS(flags, MODE_MF_SD);
12269 case MULTI_FUNCTION_SI:
12270 SET_FLAGS(flags, MODE_MF_SI);
12272 case MULTI_FUNCTION_AFEX:
12273 SET_FLAGS(flags, MODE_MF_AFEX);
12277 SET_FLAGS(flags, MODE_SF);
12279 #if defined(__LITTLE_ENDIAN)
12280 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12281 #else /*(__BIG_ENDIAN)*/
12282 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12284 INIT_MODE_FLAGS(bp) = flags;
12287 static int bnx2x_init_bp(struct bnx2x *bp)
12292 mutex_init(&bp->port.phy_mutex);
12293 mutex_init(&bp->fw_mb_mutex);
12294 mutex_init(&bp->drv_info_mutex);
12295 sema_init(&bp->stats_lock, 1);
12296 bp->drv_info_mng_owner = false;
12297 INIT_LIST_HEAD(&bp->vlan_reg);
12299 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12300 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12301 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12302 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12304 rc = bnx2x_get_hwinfo(bp);
12308 static const u8 zero_addr[ETH_ALEN] = {};
12310 eth_hw_addr_set(bp->dev, zero_addr);
12313 bnx2x_set_modes_bitmap(bp);
12315 rc = bnx2x_alloc_mem_bp(bp);
12319 bnx2x_read_fwinfo(bp);
12321 func = BP_FUNC(bp);
12323 /* need to reset chip if undi was active */
12324 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12327 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12328 DRV_MSG_SEQ_NUMBER_MASK;
12329 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12331 rc = bnx2x_prev_unload(bp);
12333 bnx2x_free_mem_bp(bp);
12338 if (CHIP_REV_IS_FPGA(bp))
12339 dev_err(&bp->pdev->dev, "FPGA detected\n");
12341 if (BP_NOMCP(bp) && (func == 0))
12342 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12344 bp->disable_tpa = disable_tpa;
12345 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12346 /* Reduce memory usage in kdump environment by disabling TPA */
12347 bp->disable_tpa |= is_kdump_kernel();
12349 /* Set TPA flags */
12350 if (bp->disable_tpa) {
12351 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12352 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12355 if (CHIP_IS_E1(bp))
12356 bp->dropless_fc = false;
12358 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12362 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12364 bp->rx_ring_size = MAX_RX_AVAIL;
12366 /* make sure that the numbers are in the right granularity */
12367 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12368 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12370 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12372 timer_setup(&bp->timer, bnx2x_timer, 0);
12373 bp->timer.expires = jiffies + bp->current_interval;
12375 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12376 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12377 SHMEM2_HAS(bp, dcbx_en) &&
12378 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12379 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12380 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12381 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12382 bnx2x_dcbx_init_params(bp);
12384 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12387 if (CHIP_IS_E1x(bp))
12388 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12390 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12392 /* multiple tx priority */
12395 else if (CHIP_IS_E1x(bp))
12396 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12397 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12398 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12399 else if (CHIP_IS_E3B0(bp))
12400 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12402 BNX2X_ERR("unknown chip %x revision %x\n",
12403 CHIP_NUM(bp), CHIP_REV(bp));
12404 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12406 /* We need at least one default status block for slow-path events,
12407 * second status block for the L2 queue, and a third status block for
12408 * CNIC if supported.
12411 bp->min_msix_vec_cnt = 1;
12412 else if (CNIC_SUPPORT(bp))
12413 bp->min_msix_vec_cnt = 3;
12414 else /* PF w/o cnic */
12415 bp->min_msix_vec_cnt = 2;
12416 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12418 bp->dump_preset_idx = 1;
12423 /****************************************************************************
12424 * General service functions
12425 ****************************************************************************/
12428 * net_device service functions
12431 /* called with rtnl_lock */
12432 static int bnx2x_open(struct net_device *dev)
12434 struct bnx2x *bp = netdev_priv(dev);
12437 bp->stats_init = true;
12439 netif_carrier_off(dev);
12441 bnx2x_set_power_state(bp, PCI_D0);
12443 /* If parity had happen during the unload, then attentions
12444 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12445 * want the first function loaded on the current engine to
12446 * complete the recovery.
12447 * Parity recovery is only relevant for PF driver.
12450 int other_engine = BP_PATH(bp) ? 0 : 1;
12451 bool other_load_status, load_status;
12452 bool global = false;
12454 other_load_status = bnx2x_get_load_status(bp, other_engine);
12455 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12456 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12457 bnx2x_chk_parity_attn(bp, &global, true)) {
12459 /* If there are attentions and they are in a
12460 * global blocks, set the GLOBAL_RESET bit
12461 * regardless whether it will be this function
12462 * that will complete the recovery or not.
12465 bnx2x_set_reset_global(bp);
12467 /* Only the first function on the current
12468 * engine should try to recover in open. In case
12469 * of attentions in global blocks only the first
12470 * in the chip should try to recover.
12472 if ((!load_status &&
12473 (!global || !other_load_status)) &&
12474 bnx2x_trylock_leader_lock(bp) &&
12475 !bnx2x_leader_reset(bp)) {
12476 netdev_info(bp->dev,
12477 "Recovered in open\n");
12481 /* recovery has failed... */
12482 bnx2x_set_power_state(bp, PCI_D3hot);
12483 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12485 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12486 "If you still see this message after a few retries then power cycle is required.\n");
12493 bp->recovery_state = BNX2X_RECOVERY_DONE;
12494 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12501 /* called with rtnl_lock */
12502 static int bnx2x_close(struct net_device *dev)
12504 struct bnx2x *bp = netdev_priv(dev);
12506 /* Unload the driver, release IRQs */
12507 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12512 struct bnx2x_mcast_list_elem_group
12514 struct list_head mcast_group_link;
12515 struct bnx2x_mcast_list_elem mcast_elems[];
12518 #define MCAST_ELEMS_PER_PG \
12519 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12520 sizeof(struct bnx2x_mcast_list_elem))
12522 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12524 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12526 while (!list_empty(mcast_group_list)) {
12527 current_mcast_group = list_first_entry(mcast_group_list,
12528 struct bnx2x_mcast_list_elem_group,
12530 list_del(¤t_mcast_group->mcast_group_link);
12531 free_page((unsigned long)current_mcast_group);
12535 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12536 struct bnx2x_mcast_ramrod_params *p,
12537 struct list_head *mcast_group_list)
12539 struct bnx2x_mcast_list_elem *mc_mac;
12540 struct netdev_hw_addr *ha;
12541 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12542 int mc_count = netdev_mc_count(bp->dev);
12545 INIT_LIST_HEAD(&p->mcast_list);
12546 netdev_for_each_mc_addr(ha, bp->dev) {
12548 current_mcast_group =
12549 (struct bnx2x_mcast_list_elem_group *)
12550 __get_free_page(GFP_ATOMIC);
12551 if (!current_mcast_group) {
12552 bnx2x_free_mcast_macs_list(mcast_group_list);
12553 BNX2X_ERR("Failed to allocate mc MAC list\n");
12556 list_add(¤t_mcast_group->mcast_group_link,
12559 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12560 mc_mac->mac = bnx2x_mc_addr(ha);
12561 list_add_tail(&mc_mac->link, &p->mcast_list);
12563 if (offset == MCAST_ELEMS_PER_PG)
12566 p->mcast_list_len = mc_count;
12571 * bnx2x_set_uc_list - configure a new unicast MACs list.
12573 * @bp: driver handle
12575 * We will use zero (0) as a MAC type for these MACs.
12577 static int bnx2x_set_uc_list(struct bnx2x *bp)
12580 struct net_device *dev = bp->dev;
12581 struct netdev_hw_addr *ha;
12582 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12583 unsigned long ramrod_flags = 0;
12585 /* First schedule a cleanup up of old configuration */
12586 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12588 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12592 netdev_for_each_uc_addr(ha, dev) {
12593 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12594 BNX2X_UC_LIST_MAC, &ramrod_flags);
12595 if (rc == -EEXIST) {
12597 "Failed to schedule ADD operations: %d\n", rc);
12598 /* do not treat adding same MAC as error */
12601 } else if (rc < 0) {
12603 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12609 /* Execute the pending commands */
12610 __set_bit(RAMROD_CONT, &ramrod_flags);
12611 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12612 BNX2X_UC_LIST_MAC, &ramrod_flags);
12615 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12617 LIST_HEAD(mcast_group_list);
12618 struct net_device *dev = bp->dev;
12619 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12622 rparam.mcast_obj = &bp->mcast_obj;
12624 /* first, clear all configured multicast MACs */
12625 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12627 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12631 /* then, configure a new MACs list */
12632 if (netdev_mc_count(dev)) {
12633 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12637 /* Now add the new MACs */
12638 rc = bnx2x_config_mcast(bp, &rparam,
12639 BNX2X_MCAST_CMD_ADD);
12641 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12644 bnx2x_free_mcast_macs_list(&mcast_group_list);
12650 static int bnx2x_set_mc_list(struct bnx2x *bp)
12652 LIST_HEAD(mcast_group_list);
12653 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12654 struct net_device *dev = bp->dev;
12657 /* On older adapters, we need to flush and re-add filters */
12658 if (CHIP_IS_E1x(bp))
12659 return bnx2x_set_mc_list_e1x(bp);
12661 rparam.mcast_obj = &bp->mcast_obj;
12663 if (netdev_mc_count(dev)) {
12664 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12668 /* Override the curently configured set of mc filters */
12669 rc = bnx2x_config_mcast(bp, &rparam,
12670 BNX2X_MCAST_CMD_SET);
12672 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12675 bnx2x_free_mcast_macs_list(&mcast_group_list);
12677 /* If no mc addresses are required, flush the configuration */
12678 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12680 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12687 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12688 static void bnx2x_set_rx_mode(struct net_device *dev)
12690 struct bnx2x *bp = netdev_priv(dev);
12692 if (bp->state != BNX2X_STATE_OPEN) {
12693 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12696 /* Schedule an SP task to handle rest of change */
12697 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12702 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12704 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12706 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12708 netif_addr_lock_bh(bp->dev);
12710 if (bp->dev->flags & IFF_PROMISC) {
12711 rx_mode = BNX2X_RX_MODE_PROMISC;
12712 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12713 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12715 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12718 /* some multicasts */
12719 if (bnx2x_set_mc_list(bp) < 0)
12720 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12722 /* release bh lock, as bnx2x_set_uc_list might sleep */
12723 netif_addr_unlock_bh(bp->dev);
12724 if (bnx2x_set_uc_list(bp) < 0)
12725 rx_mode = BNX2X_RX_MODE_PROMISC;
12726 netif_addr_lock_bh(bp->dev);
12728 /* configuring mcast to a vf involves sleeping (when we
12729 * wait for the pf's response).
12731 bnx2x_schedule_sp_rtnl(bp,
12732 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12736 bp->rx_mode = rx_mode;
12737 /* handle ISCSI SD mode */
12738 if (IS_MF_ISCSI_ONLY(bp))
12739 bp->rx_mode = BNX2X_RX_MODE_NONE;
12741 /* Schedule the rx_mode command */
12742 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12743 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12744 netif_addr_unlock_bh(bp->dev);
12749 bnx2x_set_storm_rx_mode(bp);
12750 netif_addr_unlock_bh(bp->dev);
12752 /* VF will need to request the PF to make this change, and so
12753 * the VF needs to release the bottom-half lock prior to the
12754 * request (as it will likely require sleep on the VF side)
12756 netif_addr_unlock_bh(bp->dev);
12757 bnx2x_vfpf_storm_rx_mode(bp);
12761 /* called with rtnl_lock */
12762 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12763 int devad, u16 addr)
12765 struct bnx2x *bp = netdev_priv(netdev);
12769 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12770 prtad, devad, addr);
12772 /* The HW expects different devad if CL22 is used */
12773 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12775 bnx2x_acquire_phy_lock(bp);
12776 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12777 bnx2x_release_phy_lock(bp);
12778 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12785 /* called with rtnl_lock */
12786 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12787 u16 addr, u16 value)
12789 struct bnx2x *bp = netdev_priv(netdev);
12793 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12794 prtad, devad, addr, value);
12796 /* The HW expects different devad if CL22 is used */
12797 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12799 bnx2x_acquire_phy_lock(bp);
12800 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12801 bnx2x_release_phy_lock(bp);
12805 /* called with rtnl_lock */
12806 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12808 struct bnx2x *bp = netdev_priv(dev);
12809 struct mii_ioctl_data *mdio = if_mii(ifr);
12811 if (!netif_running(dev))
12815 case SIOCSHWTSTAMP:
12816 return bnx2x_hwtstamp_ioctl(bp, ifr);
12818 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12819 mdio->phy_id, mdio->reg_num, mdio->val_in);
12820 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12824 static int bnx2x_validate_addr(struct net_device *dev)
12826 struct bnx2x *bp = netdev_priv(dev);
12828 /* query the bulletin board for mac address configured by the PF */
12830 bnx2x_sample_bulletin(bp);
12832 if (!is_valid_ether_addr(dev->dev_addr)) {
12833 BNX2X_ERR("Non-valid Ethernet address\n");
12834 return -EADDRNOTAVAIL;
12839 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12840 struct netdev_phys_item_id *ppid)
12842 struct bnx2x *bp = netdev_priv(netdev);
12844 if (!(bp->flags & HAS_PHYS_PORT_ID))
12845 return -EOPNOTSUPP;
12847 ppid->id_len = sizeof(bp->phys_port_id);
12848 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12853 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12854 struct net_device *dev,
12855 netdev_features_t features)
12858 * A skb with gso_size + header length > 9700 will cause a
12859 * firmware panic. Drop GSO support.
12861 * Eventually the upper layer should not pass these packets down.
12863 * For speed, if the gso_size is <= 9000, assume there will
12864 * not be 700 bytes of headers and pass it through. Only do a
12865 * full (slow) validation if the gso_size is > 9000.
12867 * (Due to the way SKB_BY_FRAGS works this will also do a full
12868 * validation in that case.)
12870 if (unlikely(skb_is_gso(skb) &&
12871 (skb_shinfo(skb)->gso_size > 9000) &&
12872 !skb_gso_validate_mac_len(skb, 9700)))
12873 features &= ~NETIF_F_GSO_MASK;
12875 features = vlan_features_check(skb, features);
12876 return vxlan_features_check(skb, features);
12879 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12884 unsigned long ramrod_flags = 0;
12886 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12887 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12888 add, &ramrod_flags);
12890 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12896 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12898 struct bnx2x_vlan_entry *vlan;
12901 /* Configure all non-configured entries */
12902 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12906 if (bp->vlan_cnt >= bp->vlan_credit)
12909 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12911 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12915 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12923 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12925 bool need_accept_any_vlan;
12927 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12929 if (bp->accept_any_vlan != need_accept_any_vlan) {
12930 bp->accept_any_vlan = need_accept_any_vlan;
12931 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12932 bp->accept_any_vlan ? "raised" : "cleared");
12935 bnx2x_set_rx_mode_inner(bp);
12937 bnx2x_vfpf_storm_rx_mode(bp);
12942 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12944 /* Don't set rx mode here. Our caller will do it. */
12945 bnx2x_vlan_configure(bp, false);
12950 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12952 struct bnx2x *bp = netdev_priv(dev);
12953 struct bnx2x_vlan_entry *vlan;
12955 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12957 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12963 list_add_tail(&vlan->link, &bp->vlan_reg);
12965 if (netif_running(dev))
12966 bnx2x_vlan_configure(bp, true);
12971 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12973 struct bnx2x *bp = netdev_priv(dev);
12974 struct bnx2x_vlan_entry *vlan;
12975 bool found = false;
12978 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12980 list_for_each_entry(vlan, &bp->vlan_reg, link)
12981 if (vlan->vid == vid) {
12987 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12991 if (netif_running(dev) && vlan->hw) {
12992 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12993 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12997 list_del(&vlan->link);
13000 if (netif_running(dev))
13001 bnx2x_vlan_configure(bp, true);
13003 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13008 static const struct net_device_ops bnx2x_netdev_ops = {
13009 .ndo_open = bnx2x_open,
13010 .ndo_stop = bnx2x_close,
13011 .ndo_start_xmit = bnx2x_start_xmit,
13012 .ndo_select_queue = bnx2x_select_queue,
13013 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13014 .ndo_set_mac_address = bnx2x_change_mac_addr,
13015 .ndo_validate_addr = bnx2x_validate_addr,
13016 .ndo_eth_ioctl = bnx2x_ioctl,
13017 .ndo_change_mtu = bnx2x_change_mtu,
13018 .ndo_fix_features = bnx2x_fix_features,
13019 .ndo_set_features = bnx2x_set_features,
13020 .ndo_tx_timeout = bnx2x_tx_timeout,
13021 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13022 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13023 .ndo_setup_tc = __bnx2x_setup_tc,
13024 #ifdef CONFIG_BNX2X_SRIOV
13025 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13026 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13027 .ndo_get_vf_config = bnx2x_get_vf_config,
13028 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13030 #ifdef NETDEV_FCOE_WWNN
13031 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13034 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13035 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13036 .ndo_features_check = bnx2x_features_check,
13039 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13040 struct net_device *dev, unsigned long board_type)
13044 bool chip_is_e1x = (board_type == BCM57710 ||
13045 board_type == BCM57711 ||
13046 board_type == BCM57711E);
13048 SET_NETDEV_DEV(dev, &pdev->dev);
13053 rc = pci_enable_device(pdev);
13055 dev_err(&bp->pdev->dev,
13056 "Cannot enable PCI device, aborting\n");
13060 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13061 dev_err(&bp->pdev->dev,
13062 "Cannot find PCI device base address, aborting\n");
13064 goto err_out_disable;
13067 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13068 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13070 goto err_out_disable;
13073 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13074 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13075 PCICFG_REVESION_ID_ERROR_VAL) {
13076 pr_err("PCI device error, probably due to fan failure, aborting\n");
13078 goto err_out_disable;
13081 if (atomic_read(&pdev->enable_cnt) == 1) {
13082 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13084 dev_err(&bp->pdev->dev,
13085 "Cannot obtain PCI resources, aborting\n");
13086 goto err_out_disable;
13089 pci_set_master(pdev);
13090 pci_save_state(pdev);
13094 if (!pdev->pm_cap) {
13095 dev_err(&bp->pdev->dev,
13096 "Cannot find power management capability, aborting\n");
13098 goto err_out_release;
13102 if (!pci_is_pcie(pdev)) {
13103 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13105 goto err_out_release;
13108 rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13110 dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13111 goto err_out_release;
13114 dev->mem_start = pci_resource_start(pdev, 0);
13115 dev->base_addr = dev->mem_start;
13116 dev->mem_end = pci_resource_end(pdev, 0);
13118 dev->irq = pdev->irq;
13120 bp->regview = pci_ioremap_bar(pdev, 0);
13121 if (!bp->regview) {
13122 dev_err(&bp->pdev->dev,
13123 "Cannot map register space, aborting\n");
13125 goto err_out_release;
13128 /* In E1/E1H use pci device function given by kernel.
13129 * In E2/E3 read physical function from ME register since these chips
13130 * support Physical Device Assignment where kernel BDF maybe arbitrary
13131 * (depending on hypervisor).
13134 bp->pf_num = PCI_FUNC(pdev->devfn);
13137 pci_read_config_dword(bp->pdev,
13138 PCICFG_ME_REGISTER, &pci_cfg_dword);
13139 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13140 ME_REG_ABS_PF_NUM_SHIFT);
13142 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13144 /* clean indirect addresses */
13145 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13146 PCICFG_VENDOR_ID_OFFSET);
13148 /* Set PCIe reset type to fundamental for EEH recovery */
13149 pdev->needs_freset = 1;
13152 * Clean the following indirect addresses for all functions since it
13153 * is not used by the driver.
13156 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13157 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13158 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13159 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13162 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13163 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13164 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13165 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13168 /* Enable internal target-read (in case we are probed after PF
13169 * FLR). Must be done prior to any BAR read access. Only for
13174 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13177 dev->watchdog_timeo = TX_TIMEOUT;
13179 dev->netdev_ops = &bnx2x_netdev_ops;
13180 bnx2x_set_ethtool_ops(bp, dev);
13182 dev->priv_flags |= IFF_UNICAST_FLT;
13184 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13185 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13186 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13187 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13188 if (!chip_is_e1x) {
13189 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13190 NETIF_F_GSO_IPXIP4 |
13191 NETIF_F_GSO_UDP_TUNNEL |
13192 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13193 NETIF_F_GSO_PARTIAL;
13195 dev->hw_enc_features =
13196 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13197 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13198 NETIF_F_GSO_IPXIP4 |
13199 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13200 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13201 NETIF_F_GSO_PARTIAL;
13203 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13204 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13207 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13210 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13211 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13215 bp->accept_any_vlan = true;
13217 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13219 /* For VF we'll know whether to enable VLAN filtering after
13220 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13223 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13224 dev->features |= NETIF_F_HIGHDMA;
13225 if (dev->features & NETIF_F_LRO)
13226 dev->features &= ~NETIF_F_GRO_HW;
13228 /* Add Loopback capability to the device */
13229 dev->hw_features |= NETIF_F_LOOPBACK;
13232 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13235 /* MTU range, 46 - 9600 */
13236 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13237 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13239 /* get_port_hwinfo() will set prtad and mmds properly */
13240 bp->mdio.prtad = MDIO_PRTAD_NONE;
13242 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13243 bp->mdio.dev = dev;
13244 bp->mdio.mdio_read = bnx2x_mdio_read;
13245 bp->mdio.mdio_write = bnx2x_mdio_write;
13250 if (atomic_read(&pdev->enable_cnt) == 1)
13251 pci_release_regions(pdev);
13254 pci_disable_device(pdev);
13260 static int bnx2x_check_firmware(struct bnx2x *bp)
13262 const struct firmware *firmware = bp->firmware;
13263 struct bnx2x_fw_file_hdr *fw_hdr;
13264 struct bnx2x_fw_file_section *sections;
13265 u32 offset, len, num_ops;
13266 __be16 *ops_offsets;
13270 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13271 BNX2X_ERR("Wrong FW size\n");
13275 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13276 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13278 /* Make sure none of the offsets and sizes make us read beyond
13279 * the end of the firmware data */
13280 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13281 offset = be32_to_cpu(sections[i].offset);
13282 len = be32_to_cpu(sections[i].len);
13283 if (offset + len > firmware->size) {
13284 BNX2X_ERR("Section %d length is out of bounds\n", i);
13289 /* Likewise for the init_ops offsets */
13290 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13291 ops_offsets = (__force __be16 *)(firmware->data + offset);
13292 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13294 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13295 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13296 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13301 /* Check FW version */
13302 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13303 fw_ver = firmware->data + offset;
13304 if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13305 fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13306 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13307 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13308 bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13315 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13317 const __be32 *source = (const __be32 *)_source;
13318 u32 *target = (u32 *)_target;
13321 for (i = 0; i < n/4; i++)
13322 target[i] = be32_to_cpu(source[i]);
13326 Ops array is stored in the following format:
13327 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13329 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13331 const __be32 *source = (const __be32 *)_source;
13332 struct raw_op *target = (struct raw_op *)_target;
13335 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13336 tmp = be32_to_cpu(source[j]);
13337 target[i].op = (tmp >> 24) & 0xff;
13338 target[i].offset = tmp & 0xffffff;
13339 target[i].raw_data = be32_to_cpu(source[j + 1]);
13343 /* IRO array is stored in the following format:
13344 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13346 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13348 const __be32 *source = (const __be32 *)_source;
13349 struct iro *target = (struct iro *)_target;
13352 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13353 target[i].base = be32_to_cpu(source[j]);
13355 tmp = be32_to_cpu(source[j]);
13356 target[i].m1 = (tmp >> 16) & 0xffff;
13357 target[i].m2 = tmp & 0xffff;
13359 tmp = be32_to_cpu(source[j]);
13360 target[i].m3 = (tmp >> 16) & 0xffff;
13361 target[i].size = tmp & 0xffff;
13366 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13368 const __be16 *source = (const __be16 *)_source;
13369 u16 *target = (u16 *)_target;
13372 for (i = 0; i < n/2; i++)
13373 target[i] = be16_to_cpu(source[i]);
13376 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13378 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13379 bp->arr = kmalloc(len, GFP_KERNEL); \
13382 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13383 (u8 *)bp->arr, len); \
13386 static int bnx2x_init_firmware(struct bnx2x *bp)
13388 const char *fw_file_name, *fw_file_name_v15;
13389 struct bnx2x_fw_file_hdr *fw_hdr;
13395 if (CHIP_IS_E1(bp)) {
13396 fw_file_name = FW_FILE_NAME_E1;
13397 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13398 } else if (CHIP_IS_E1H(bp)) {
13399 fw_file_name = FW_FILE_NAME_E1H;
13400 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13401 } else if (!CHIP_IS_E1x(bp)) {
13402 fw_file_name = FW_FILE_NAME_E2;
13403 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13405 BNX2X_ERR("Unsupported chip revision\n");
13409 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13411 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13413 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13415 /* try to load prev version */
13416 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13419 goto request_firmware_exit;
13421 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13423 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13424 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13427 bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13428 bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13429 bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13431 rc = bnx2x_check_firmware(bp);
13433 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13434 goto request_firmware_exit;
13437 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13439 /* Initialize the pointers to the init arrays */
13442 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13445 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13448 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13451 /* STORMs firmware */
13452 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13453 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13454 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13455 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13456 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13457 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13458 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13459 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13460 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13461 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13462 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13463 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13464 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13465 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13466 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13467 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13469 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13474 kfree(bp->init_ops_offsets);
13475 init_offsets_alloc_err:
13476 kfree(bp->init_ops);
13477 init_ops_alloc_err:
13478 kfree(bp->init_data);
13479 request_firmware_exit:
13480 release_firmware(bp->firmware);
13481 bp->firmware = NULL;
13486 static void bnx2x_release_firmware(struct bnx2x *bp)
13488 kfree(bp->init_ops_offsets);
13489 kfree(bp->init_ops);
13490 kfree(bp->init_data);
13491 release_firmware(bp->firmware);
13492 bp->firmware = NULL;
13495 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13496 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13497 .init_hw_cmn = bnx2x_init_hw_common,
13498 .init_hw_port = bnx2x_init_hw_port,
13499 .init_hw_func = bnx2x_init_hw_func,
13501 .reset_hw_cmn = bnx2x_reset_common,
13502 .reset_hw_port = bnx2x_reset_port,
13503 .reset_hw_func = bnx2x_reset_func,
13505 .gunzip_init = bnx2x_gunzip_init,
13506 .gunzip_end = bnx2x_gunzip_end,
13508 .init_fw = bnx2x_init_firmware,
13509 .release_fw = bnx2x_release_firmware,
13512 void bnx2x__init_func_obj(struct bnx2x *bp)
13514 /* Prepare DMAE related driver resources */
13515 bnx2x_setup_dmae(bp);
13517 bnx2x_init_func_obj(bp, &bp->func_obj,
13518 bnx2x_sp(bp, func_rdata),
13519 bnx2x_sp_mapping(bp, func_rdata),
13520 bnx2x_sp(bp, func_afex_rdata),
13521 bnx2x_sp_mapping(bp, func_afex_rdata),
13522 &bnx2x_func_sp_drv);
13525 /* must be called after sriov-enable */
13526 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13528 int cid_count = BNX2X_L2_MAX_CID(bp);
13531 cid_count += BNX2X_VF_CIDS;
13533 if (CNIC_SUPPORT(bp))
13534 cid_count += CNIC_CID_MAX;
13536 return roundup(cid_count, QM_CID_ROUND);
13540 * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13541 * @pdev: pci device
13545 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13551 * If MSI-X is not supported - return number of SBs needed to support
13552 * one fast path queue: one FP queue + SB for CNIC
13554 if (!pdev->msix_cap) {
13555 dev_info(&pdev->dev, "no msix capability found\n");
13556 return 1 + cnic_cnt;
13558 dev_info(&pdev->dev, "msix capability found\n");
13561 * The value in the PCI configuration space is the index of the last
13562 * entry, namely one less than the actual size of the table, which is
13563 * exactly what we want to return from this function: number of all SBs
13564 * without the default SB.
13565 * For VFs there is no default SB, then we return (index+1).
13567 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13569 index = control & PCI_MSIX_FLAGS_QSIZE;
13574 static int set_max_cos_est(int chip_id)
13580 return BNX2X_MULTI_TX_COS_E1X;
13583 return BNX2X_MULTI_TX_COS_E2_E3A0;
13588 case BCM57840_4_10:
13589 case BCM57840_2_20:
13595 return BNX2X_MULTI_TX_COS_E3B0;
13603 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13608 static int set_is_vf(int chip_id)
13622 /* nig_tsgen registers relative address */
13623 #define tsgen_ctrl 0x0
13624 #define tsgen_freecount 0x10
13625 #define tsgen_synctime_t0 0x20
13626 #define tsgen_offset_t0 0x28
13627 #define tsgen_drift_t0 0x30
13628 #define tsgen_synctime_t1 0x58
13629 #define tsgen_offset_t1 0x60
13630 #define tsgen_drift_t1 0x68
13632 /* FW workaround for setting drift */
13633 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13634 int best_val, int best_period)
13636 struct bnx2x_func_state_params func_params = {NULL};
13637 struct bnx2x_func_set_timesync_params *set_timesync_params =
13638 &func_params.params.set_timesync;
13640 /* Prepare parameters for function state transitions */
13641 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13642 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13644 func_params.f_obj = &bp->func_obj;
13645 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13647 /* Function parameters */
13648 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13649 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13650 set_timesync_params->add_sub_drift_adjust_value =
13651 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13652 set_timesync_params->drift_adjust_value = best_val;
13653 set_timesync_params->drift_adjust_period = best_period;
13655 return bnx2x_func_state_change(bp, &func_params);
13658 static int bnx2x_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
13660 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13663 int val, period, period1, period2, dif, dif1, dif2;
13664 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13665 s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
13667 DP(BNX2X_MSG_PTP, "PTP adjfine called, ppb = %d\n", ppb);
13669 if (!netif_running(bp->dev)) {
13671 "PTP adjfine called while the interface is down\n");
13682 best_period = 0x1FFFFFF;
13683 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13687 /* Changed not to allow val = 8, 16, 24 as these values
13688 * are not supported in workaround.
13690 for (val = 0; val <= 31; val++) {
13691 if ((val & 0x7) == 0)
13693 period1 = val * 1000000 / ppb;
13694 period2 = period1 + 1;
13696 dif1 = ppb - (val * 1000000 / period1);
13698 dif1 = BNX2X_MAX_PHC_DRIFT;
13701 dif2 = ppb - (val * 1000000 / period2);
13704 dif = (dif1 < dif2) ? dif1 : dif2;
13705 period = (dif1 < dif2) ? period1 : period2;
13706 if (dif < best_dif) {
13709 best_period = period;
13714 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13717 BNX2X_ERR("Failed to set drift\n");
13721 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13727 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13729 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13731 if (!netif_running(bp->dev)) {
13733 "PTP adjtime called while the interface is down\n");
13737 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13739 timecounter_adjtime(&bp->timecounter, delta);
13744 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13746 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13749 if (!netif_running(bp->dev)) {
13751 "PTP gettime called while the interface is down\n");
13755 ns = timecounter_read(&bp->timecounter);
13757 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13759 *ts = ns_to_timespec64(ns);
13764 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13765 const struct timespec64 *ts)
13767 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13770 if (!netif_running(bp->dev)) {
13772 "PTP settime called while the interface is down\n");
13776 ns = timespec64_to_ns(ts);
13778 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13780 /* Re-init the timecounter */
13781 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13786 /* Enable (or disable) ancillary features of the phc subsystem */
13787 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13788 struct ptp_clock_request *rq, int on)
13790 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13792 BNX2X_ERR("PHC ancillary features are not supported\n");
13796 void bnx2x_register_phc(struct bnx2x *bp)
13798 /* Fill the ptp_clock_info struct and register PTP clock*/
13799 bp->ptp_clock_info.owner = THIS_MODULE;
13800 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13801 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13802 bp->ptp_clock_info.n_alarm = 0;
13803 bp->ptp_clock_info.n_ext_ts = 0;
13804 bp->ptp_clock_info.n_per_out = 0;
13805 bp->ptp_clock_info.pps = 0;
13806 bp->ptp_clock_info.adjfine = bnx2x_ptp_adjfine;
13807 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13808 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13809 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13810 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13812 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13813 if (IS_ERR(bp->ptp_clock)) {
13814 bp->ptp_clock = NULL;
13815 BNX2X_ERR("PTP clock registration failed\n");
13819 static int bnx2x_init_one(struct pci_dev *pdev,
13820 const struct pci_device_id *ent)
13822 struct net_device *dev = NULL;
13824 int rc, max_non_def_sbs;
13825 int rx_count, tx_count, rss_count, doorbell_size;
13830 /* Management FW 'remembers' living interfaces. Allow it some time
13831 * to forget previously living interfaces, allowing a proper re-load.
13833 if (is_kdump_kernel()) {
13834 ktime_t now = ktime_get_boottime();
13835 ktime_t fw_ready_time = ktime_set(5, 0);
13837 if (ktime_before(now, fw_ready_time))
13838 msleep(ktime_ms_delta(fw_ready_time, now));
13841 /* An estimated maximum supported CoS number according to the chip
13843 * We will try to roughly estimate the maximum number of CoSes this chip
13844 * may support in order to minimize the memory allocated for Tx
13845 * netdev_queue's. This number will be accurately calculated during the
13846 * initialization of bp->max_cos based on the chip versions AND chip
13847 * revision in the bnx2x_init_bp().
13849 max_cos_est = set_max_cos_est(ent->driver_data);
13850 if (max_cos_est < 0)
13851 return max_cos_est;
13852 is_vf = set_is_vf(ent->driver_data);
13853 cnic_cnt = is_vf ? 0 : 1;
13855 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13857 /* add another SB for VF as it has no default SB */
13858 max_non_def_sbs += is_vf ? 1 : 0;
13860 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13861 rss_count = max_non_def_sbs - cnic_cnt;
13866 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13867 rx_count = rss_count + cnic_cnt;
13869 /* Maximum number of netdev Tx queues:
13870 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13872 tx_count = rss_count * max_cos_est + cnic_cnt;
13874 /* dev zeroed in init_etherdev */
13875 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13879 bp = netdev_priv(dev);
13883 bp->flags |= IS_VF_FLAG;
13885 bp->igu_sb_cnt = max_non_def_sbs;
13886 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13887 bp->msg_enable = debug;
13888 bp->cnic_support = cnic_cnt;
13889 bp->cnic_probe = bnx2x_cnic_probe;
13891 pci_set_drvdata(pdev, dev);
13893 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13899 BNX2X_DEV_INFO("This is a %s function\n",
13900 IS_PF(bp) ? "physical" : "virtual");
13901 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13902 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13903 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13904 tx_count, rx_count);
13906 rc = bnx2x_init_bp(bp);
13908 goto init_one_exit;
13910 /* Map doorbells here as we need the real value of bp->max_cos which
13911 * is initialized in bnx2x_init_bp() to determine the number of
13915 bp->doorbells = bnx2x_vf_doorbells(bp);
13916 rc = bnx2x_vf_pci_alloc(bp);
13918 goto init_one_freemem;
13920 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13921 if (doorbell_size > pci_resource_len(pdev, 2)) {
13922 dev_err(&bp->pdev->dev,
13923 "Cannot map doorbells, bar size too small, aborting\n");
13925 goto init_one_freemem;
13927 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13930 if (!bp->doorbells) {
13931 dev_err(&bp->pdev->dev,
13932 "Cannot map doorbell space, aborting\n");
13934 goto init_one_freemem;
13938 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13940 goto init_one_freemem;
13942 #ifdef CONFIG_BNX2X_SRIOV
13943 /* VF with OLD Hypervisor or old PF do not support filtering */
13944 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13945 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13946 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13951 /* Enable SRIOV if capability found in configuration space */
13952 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13954 goto init_one_freemem;
13956 /* calc qm_cid_count */
13957 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13958 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13960 /* disable FCOE L2 queue for E1x*/
13961 if (CHIP_IS_E1x(bp))
13962 bp->flags |= NO_FCOE_FLAG;
13964 /* Set bp->num_queues for MSI-X mode*/
13965 bnx2x_set_num_queues(bp);
13967 /* Configure interrupt mode: try to enable MSI-X/MSI if
13970 rc = bnx2x_set_int_mode(bp);
13972 dev_err(&pdev->dev, "Cannot set interrupts\n");
13973 goto init_one_freemem;
13975 BNX2X_DEV_INFO("set interrupts successfully\n");
13977 /* register the net device */
13978 rc = register_netdev(dev);
13980 dev_err(&pdev->dev, "Cannot register net device\n");
13981 goto init_one_freemem;
13983 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13985 if (!NO_FCOE(bp)) {
13986 /* Add storage MAC address */
13988 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13992 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13993 board_info[ent->driver_data].name,
13994 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13995 dev->base_addr, bp->pdev->irq, dev->dev_addr);
13996 pcie_print_link_status(bp->pdev);
13998 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13999 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14004 bnx2x_free_mem_bp(bp);
14008 iounmap(bp->regview);
14010 if (IS_PF(bp) && bp->doorbells)
14011 iounmap(bp->doorbells);
14015 if (atomic_read(&pdev->enable_cnt) == 1)
14016 pci_release_regions(pdev);
14018 pci_disable_device(pdev);
14023 static void __bnx2x_remove(struct pci_dev *pdev,
14024 struct net_device *dev,
14026 bool remove_netdev)
14028 /* Delete storage MAC address */
14029 if (!NO_FCOE(bp)) {
14031 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14036 /* Delete app tlvs from dcbnl */
14037 bnx2x_dcbnl_update_applist(bp, true);
14042 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14043 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14045 /* Close the interface - either directly or implicitly */
14046 if (remove_netdev) {
14047 unregister_netdev(dev);
14054 bnx2x_iov_remove_one(bp);
14056 /* Power on: we can't let PCI layer write to us while we are in D3 */
14058 bnx2x_set_power_state(bp, PCI_D0);
14059 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14061 /* Set endianity registers to reset values in case next driver
14062 * boots in different endianty environment.
14064 bnx2x_reset_endianity(bp);
14067 /* Disable MSI/MSI-X */
14068 bnx2x_disable_msi(bp);
14072 bnx2x_set_power_state(bp, PCI_D3hot);
14074 /* Make sure RESET task is not scheduled before continuing */
14075 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14077 /* send message via vfpf channel to release the resources of this vf */
14079 bnx2x_vfpf_release(bp);
14081 /* Assumes no further PCIe PM changes will occur */
14082 if (system_state == SYSTEM_POWER_OFF) {
14083 pci_wake_from_d3(pdev, bp->wol);
14084 pci_set_power_state(pdev, PCI_D3hot);
14087 if (remove_netdev) {
14089 iounmap(bp->regview);
14091 /* For vfs, doorbells are part of the regview and were unmapped
14092 * along with it. FW is only loaded by PF.
14096 iounmap(bp->doorbells);
14098 bnx2x_release_firmware(bp);
14100 bnx2x_vf_pci_dealloc(bp);
14102 bnx2x_free_mem_bp(bp);
14106 if (atomic_read(&pdev->enable_cnt) == 1)
14107 pci_release_regions(pdev);
14109 pci_disable_device(pdev);
14113 static void bnx2x_remove_one(struct pci_dev *pdev)
14115 struct net_device *dev = pci_get_drvdata(pdev);
14119 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14122 bp = netdev_priv(dev);
14124 __bnx2x_remove(pdev, dev, bp, true);
14127 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14129 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14131 bp->rx_mode = BNX2X_RX_MODE_NONE;
14133 if (CNIC_LOADED(bp))
14134 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14137 bnx2x_tx_disable(bp);
14138 netdev_reset_tc(bp->dev);
14140 del_timer_sync(&bp->timer);
14141 cancel_delayed_work_sync(&bp->sp_task);
14142 cancel_delayed_work_sync(&bp->period_task);
14144 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14145 bp->stats_state = STATS_STATE_DISABLED;
14146 up(&bp->stats_lock);
14149 bnx2x_save_statistics(bp);
14151 netif_carrier_off(bp->dev);
14157 * bnx2x_io_error_detected - called when PCI error is detected
14158 * @pdev: Pointer to PCI device
14159 * @state: The current pci connection state
14161 * This function is called after a PCI bus error affecting
14162 * this device has been detected.
14164 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14165 pci_channel_state_t state)
14167 struct net_device *dev = pci_get_drvdata(pdev);
14168 struct bnx2x *bp = netdev_priv(dev);
14172 BNX2X_ERR("IO error detected\n");
14174 netif_device_detach(dev);
14176 if (state == pci_channel_io_perm_failure) {
14178 return PCI_ERS_RESULT_DISCONNECT;
14181 if (netif_running(dev))
14182 bnx2x_eeh_nic_unload(bp);
14184 bnx2x_prev_path_mark_eeh(bp);
14186 pci_disable_device(pdev);
14190 /* Request a slot reset */
14191 return PCI_ERS_RESULT_NEED_RESET;
14195 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14196 * @pdev: Pointer to PCI device
14198 * Restart the card from scratch, as if from a cold-boot.
14200 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14202 struct net_device *dev = pci_get_drvdata(pdev);
14203 struct bnx2x *bp = netdev_priv(dev);
14207 BNX2X_ERR("IO slot reset initializing...\n");
14208 if (pci_enable_device(pdev)) {
14209 dev_err(&pdev->dev,
14210 "Cannot re-enable PCI device after reset\n");
14212 return PCI_ERS_RESULT_DISCONNECT;
14215 pci_set_master(pdev);
14216 pci_restore_state(pdev);
14217 pci_save_state(pdev);
14219 if (netif_running(dev))
14220 bnx2x_set_power_state(bp, PCI_D0);
14222 if (netif_running(dev)) {
14223 BNX2X_ERR("IO slot reset --> driver unload\n");
14225 /* MCP should have been reset; Need to wait for validity */
14226 if (bnx2x_init_shmem(bp)) {
14228 return PCI_ERS_RESULT_DISCONNECT;
14231 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14235 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14236 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14237 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14239 bnx2x_drain_tx_queues(bp);
14240 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14241 bnx2x_netif_stop(bp, 1);
14242 bnx2x_del_all_napi(bp);
14244 if (CNIC_LOADED(bp))
14245 bnx2x_del_all_napi_cnic(bp);
14247 bnx2x_free_irq(bp);
14249 /* Report UNLOAD_DONE to MCP */
14250 bnx2x_send_unload_done(bp, true);
14255 bnx2x_prev_unload(bp);
14257 /* We should have reseted the engine, so It's fair to
14258 * assume the FW will no longer write to the bnx2x driver.
14260 bnx2x_squeeze_objects(bp);
14261 bnx2x_free_skbs(bp);
14262 for_each_rx_queue(bp, i)
14263 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14264 bnx2x_free_fp_mem(bp);
14265 bnx2x_free_mem(bp);
14267 bp->state = BNX2X_STATE_CLOSED;
14272 return PCI_ERS_RESULT_RECOVERED;
14276 * bnx2x_io_resume - called when traffic can start flowing again
14277 * @pdev: Pointer to PCI device
14279 * This callback is called when the error recovery driver tells us that
14280 * its OK to resume normal operation.
14282 static void bnx2x_io_resume(struct pci_dev *pdev)
14284 struct net_device *dev = pci_get_drvdata(pdev);
14285 struct bnx2x *bp = netdev_priv(dev);
14287 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14288 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14294 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14295 DRV_MSG_SEQ_NUMBER_MASK;
14297 if (netif_running(dev))
14298 bnx2x_nic_load(bp, LOAD_NORMAL);
14300 netif_device_attach(dev);
14305 static const struct pci_error_handlers bnx2x_err_handler = {
14306 .error_detected = bnx2x_io_error_detected,
14307 .slot_reset = bnx2x_io_slot_reset,
14308 .resume = bnx2x_io_resume,
14311 static void bnx2x_shutdown(struct pci_dev *pdev)
14313 struct net_device *dev = pci_get_drvdata(pdev);
14319 bp = netdev_priv(dev);
14324 netif_device_detach(dev);
14327 /* Don't remove the netdevice, as there are scenarios which will cause
14328 * the kernel to hang, e.g., when trying to remove bnx2i while the
14329 * rootfs is mounted from SAN.
14331 __bnx2x_remove(pdev, dev, bp, false);
14334 static struct pci_driver bnx2x_pci_driver = {
14335 .name = DRV_MODULE_NAME,
14336 .id_table = bnx2x_pci_tbl,
14337 .probe = bnx2x_init_one,
14338 .remove = bnx2x_remove_one,
14339 .driver.pm = &bnx2x_pm_ops,
14340 .err_handler = &bnx2x_err_handler,
14341 #ifdef CONFIG_BNX2X_SRIOV
14342 .sriov_configure = bnx2x_sriov_configure,
14344 .shutdown = bnx2x_shutdown,
14347 static int __init bnx2x_init(void)
14351 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14352 if (bnx2x_wq == NULL) {
14353 pr_err("Cannot create workqueue\n");
14356 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14357 if (!bnx2x_iov_wq) {
14358 pr_err("Cannot create iov workqueue\n");
14359 destroy_workqueue(bnx2x_wq);
14363 ret = pci_register_driver(&bnx2x_pci_driver);
14365 pr_err("Cannot register driver\n");
14366 destroy_workqueue(bnx2x_wq);
14367 destroy_workqueue(bnx2x_iov_wq);
14372 static void __exit bnx2x_cleanup(void)
14374 struct list_head *pos, *q;
14376 pci_unregister_driver(&bnx2x_pci_driver);
14378 destroy_workqueue(bnx2x_wq);
14379 destroy_workqueue(bnx2x_iov_wq);
14381 /* Free globally allocated resources */
14382 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14383 struct bnx2x_prev_path_list *tmp =
14384 list_entry(pos, struct bnx2x_prev_path_list, list);
14390 void bnx2x_notify_link_changed(struct bnx2x *bp)
14392 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14395 module_init(bnx2x_init);
14396 module_exit(bnx2x_cleanup);
14399 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14400 * @bp: driver handle
14402 * This function will wait until the ramrod completion returns.
14403 * Return 0 if success, -ENODEV if ramrod doesn't return.
14405 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14407 unsigned long ramrod_flags = 0;
14409 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14410 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14411 &bp->iscsi_l2_mac_obj, true,
14412 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14415 /* count denotes the number of new completions we have seen */
14416 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14418 struct eth_spe *spe;
14419 int cxt_index, cxt_offset;
14421 #ifdef BNX2X_STOP_ON_ERROR
14422 if (unlikely(bp->panic))
14426 spin_lock_bh(&bp->spq_lock);
14427 BUG_ON(bp->cnic_spq_pending < count);
14428 bp->cnic_spq_pending -= count;
14430 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14431 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14432 & SPE_HDR_CONN_TYPE) >>
14433 SPE_HDR_CONN_TYPE_SHIFT;
14434 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14435 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14437 /* Set validation for iSCSI L2 client before sending SETUP
14440 if (type == ETH_CONNECTION_TYPE) {
14441 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14442 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14444 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14445 (cxt_index * ILT_PAGE_CIDS);
14446 bnx2x_set_ctx_validation(bp,
14447 &bp->context[cxt_index].
14448 vcxt[cxt_offset].eth,
14449 BNX2X_ISCSI_ETH_CID(bp));
14454 * There may be not more than 8 L2, not more than 8 L5 SPEs
14455 * and in the air. We also check that number of outstanding
14456 * COMMON ramrods is not more than the EQ and SPQ can
14459 if (type == ETH_CONNECTION_TYPE) {
14460 if (!atomic_read(&bp->cq_spq_left))
14463 atomic_dec(&bp->cq_spq_left);
14464 } else if (type == NONE_CONNECTION_TYPE) {
14465 if (!atomic_read(&bp->eq_spq_left))
14468 atomic_dec(&bp->eq_spq_left);
14469 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14470 (type == FCOE_CONNECTION_TYPE)) {
14471 if (bp->cnic_spq_pending >=
14472 bp->cnic_eth_dev.max_kwqe_pending)
14475 bp->cnic_spq_pending++;
14477 BNX2X_ERR("Unknown SPE type: %d\n", type);
14482 spe = bnx2x_sp_get_next(bp);
14483 *spe = *bp->cnic_kwq_cons;
14485 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14486 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14488 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14489 bp->cnic_kwq_cons = bp->cnic_kwq;
14491 bp->cnic_kwq_cons++;
14493 bnx2x_sp_prod_update(bp);
14494 spin_unlock_bh(&bp->spq_lock);
14497 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14498 struct kwqe_16 *kwqes[], u32 count)
14500 struct bnx2x *bp = netdev_priv(dev);
14503 #ifdef BNX2X_STOP_ON_ERROR
14504 if (unlikely(bp->panic)) {
14505 BNX2X_ERR("Can't post to SP queue while panic\n");
14510 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14511 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14512 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14516 spin_lock_bh(&bp->spq_lock);
14518 for (i = 0; i < count; i++) {
14519 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14521 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14524 *bp->cnic_kwq_prod = *spe;
14526 bp->cnic_kwq_pending++;
14528 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14529 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14530 spe->data.update_data_addr.hi,
14531 spe->data.update_data_addr.lo,
14532 bp->cnic_kwq_pending);
14534 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14535 bp->cnic_kwq_prod = bp->cnic_kwq;
14537 bp->cnic_kwq_prod++;
14540 spin_unlock_bh(&bp->spq_lock);
14542 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14543 bnx2x_cnic_sp_post(bp, 0);
14548 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14550 struct cnic_ops *c_ops;
14553 mutex_lock(&bp->cnic_mutex);
14554 c_ops = rcu_dereference_protected(bp->cnic_ops,
14555 lockdep_is_held(&bp->cnic_mutex));
14557 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14558 mutex_unlock(&bp->cnic_mutex);
14563 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14565 struct cnic_ops *c_ops;
14569 c_ops = rcu_dereference(bp->cnic_ops);
14571 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14578 * for commands that have no data
14580 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14582 struct cnic_ctl_info ctl = {0};
14586 return bnx2x_cnic_ctl_send(bp, &ctl);
14589 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14591 struct cnic_ctl_info ctl = {0};
14593 /* first we tell CNIC and only then we count this as a completion */
14594 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14595 ctl.data.comp.cid = cid;
14596 ctl.data.comp.error = err;
14598 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14599 bnx2x_cnic_sp_post(bp, 0);
14602 /* Called with netif_addr_lock_bh() taken.
14603 * Sets an rx_mode config for an iSCSI ETH client.
14605 * Completion should be checked outside.
14607 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14609 unsigned long accept_flags = 0, ramrod_flags = 0;
14610 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14611 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14614 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14615 * because it's the only way for UIO Queue to accept
14616 * multicasts (in non-promiscuous mode only one Queue per
14617 * function will receive multicast packets (leading in our
14620 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14621 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14622 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14623 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14625 /* Clear STOP_PENDING bit if START is requested */
14626 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14628 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14630 /* Clear START_PENDING bit if STOP is requested */
14631 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14633 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14634 set_bit(sched_state, &bp->sp_state);
14636 __set_bit(RAMROD_RX, &ramrod_flags);
14637 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14642 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14644 struct bnx2x *bp = netdev_priv(dev);
14647 switch (ctl->cmd) {
14648 case DRV_CTL_CTXTBL_WR_CMD: {
14649 u32 index = ctl->data.io.offset;
14650 dma_addr_t addr = ctl->data.io.dma_addr;
14652 bnx2x_ilt_wr(bp, index, addr);
14656 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14657 int count = ctl->data.credit.credit_count;
14659 bnx2x_cnic_sp_post(bp, count);
14663 /* rtnl_lock is held. */
14664 case DRV_CTL_START_L2_CMD: {
14665 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14666 unsigned long sp_bits = 0;
14668 /* Configure the iSCSI classification object */
14669 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14670 cp->iscsi_l2_client_id,
14671 cp->iscsi_l2_cid, BP_FUNC(bp),
14672 bnx2x_sp(bp, mac_rdata),
14673 bnx2x_sp_mapping(bp, mac_rdata),
14674 BNX2X_FILTER_MAC_PENDING,
14675 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14678 /* Set iSCSI MAC address */
14679 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14685 /* Start accepting on iSCSI L2 ring */
14687 netif_addr_lock_bh(dev);
14688 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14689 netif_addr_unlock_bh(dev);
14691 /* bits to wait on */
14692 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14693 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14695 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14696 BNX2X_ERR("rx_mode completion timed out!\n");
14701 /* rtnl_lock is held. */
14702 case DRV_CTL_STOP_L2_CMD: {
14703 unsigned long sp_bits = 0;
14705 /* Stop accepting on iSCSI L2 ring */
14706 netif_addr_lock_bh(dev);
14707 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14708 netif_addr_unlock_bh(dev);
14710 /* bits to wait on */
14711 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14712 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14714 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14715 BNX2X_ERR("rx_mode completion timed out!\n");
14719 /* Unset iSCSI L2 MAC */
14720 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14721 BNX2X_ISCSI_ETH_MAC, true);
14724 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14725 int count = ctl->data.credit.credit_count;
14727 smp_mb__before_atomic();
14728 atomic_add(count, &bp->cq_spq_left);
14729 smp_mb__after_atomic();
14732 case DRV_CTL_ULP_REGISTER_CMD: {
14733 int ulp_type = ctl->data.register_data.ulp_type;
14735 if (CHIP_IS_E3(bp)) {
14736 int idx = BP_FW_MB_IDX(bp);
14737 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14738 int path = BP_PATH(bp);
14739 int port = BP_PORT(bp);
14741 u32 scratch_offset;
14744 /* first write capability to shmem2 */
14745 if (ulp_type == CNIC_ULP_ISCSI)
14746 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14747 else if (ulp_type == CNIC_ULP_FCOE)
14748 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14749 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14751 if ((ulp_type != CNIC_ULP_FCOE) ||
14752 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14753 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14756 /* if reached here - should write fcoe capabilities */
14757 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14758 if (!scratch_offset)
14760 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14761 fcoe_features[path][port]);
14762 host_addr = (u32 *) &(ctl->data.register_data.
14764 for (i = 0; i < sizeof(struct fcoe_capabilities);
14766 REG_WR(bp, scratch_offset + i,
14767 *(host_addr + i/4));
14769 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14773 case DRV_CTL_ULP_UNREGISTER_CMD: {
14774 int ulp_type = ctl->data.ulp_type;
14776 if (CHIP_IS_E3(bp)) {
14777 int idx = BP_FW_MB_IDX(bp);
14780 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14781 if (ulp_type == CNIC_ULP_ISCSI)
14782 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14783 else if (ulp_type == CNIC_ULP_FCOE)
14784 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14785 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14787 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14792 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14796 /* For storage-only interfaces, change driver state */
14797 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14798 switch (ctl->drv_state) {
14802 bnx2x_set_os_driver_state(bp,
14803 OS_DRIVER_STATE_ACTIVE);
14806 bnx2x_set_os_driver_state(bp,
14807 OS_DRIVER_STATE_DISABLED);
14810 bnx2x_set_os_driver_state(bp,
14811 OS_DRIVER_STATE_NOT_LOADED);
14814 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14821 static int bnx2x_get_fc_npiv(struct net_device *dev,
14822 struct cnic_fc_npiv_tbl *cnic_tbl)
14824 struct bnx2x *bp = netdev_priv(dev);
14825 struct bdn_fc_npiv_tbl *tbl = NULL;
14826 u32 offset, entries;
14830 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14833 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14835 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14837 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14841 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14843 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14846 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14848 /* Read the table contents from nvram */
14849 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14850 BNX2X_ERR("Failed to read FC-NPIV table\n");
14854 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14855 * the number of entries back to cpu endianness.
14857 entries = tbl->fc_npiv_cfg.num_of_npiv;
14858 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14859 tbl->fc_npiv_cfg.num_of_npiv = entries;
14861 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14863 "No FC-NPIV table [valid, simply not present]\n");
14865 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14866 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14867 tbl->fc_npiv_cfg.num_of_npiv);
14870 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14871 tbl->fc_npiv_cfg.num_of_npiv);
14874 /* Copy the data into cnic-provided struct */
14875 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14876 for (i = 0; i < cnic_tbl->count; i++) {
14877 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14878 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14887 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14889 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14891 if (bp->flags & USING_MSIX_FLAG) {
14892 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14893 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14894 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14896 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14897 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14899 if (!CHIP_IS_E1x(bp))
14900 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14902 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14904 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14905 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14906 cp->irq_arr[1].status_blk = bp->def_status_blk;
14907 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14908 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14913 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14915 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14917 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14918 bnx2x_cid_ilt_lines(bp);
14919 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14920 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14921 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14923 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14924 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14927 if (NO_ISCSI_OOO(bp))
14928 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14931 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14934 struct bnx2x *bp = netdev_priv(dev);
14935 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14938 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14941 BNX2X_ERR("NULL ops received\n");
14945 if (!CNIC_SUPPORT(bp)) {
14946 BNX2X_ERR("Can't register CNIC when not supported\n");
14947 return -EOPNOTSUPP;
14950 if (!CNIC_LOADED(bp)) {
14951 rc = bnx2x_load_cnic(bp);
14953 BNX2X_ERR("CNIC-related load failed\n");
14958 bp->cnic_enabled = true;
14960 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14964 bp->cnic_kwq_cons = bp->cnic_kwq;
14965 bp->cnic_kwq_prod = bp->cnic_kwq;
14966 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14968 bp->cnic_spq_pending = 0;
14969 bp->cnic_kwq_pending = 0;
14971 bp->cnic_data = data;
14974 cp->drv_state |= CNIC_DRV_STATE_REGD;
14975 cp->iro_arr = bp->iro_arr;
14977 bnx2x_setup_cnic_irq_info(bp);
14979 rcu_assign_pointer(bp->cnic_ops, ops);
14981 /* Schedule driver to read CNIC driver versions */
14982 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14987 static int bnx2x_unregister_cnic(struct net_device *dev)
14989 struct bnx2x *bp = netdev_priv(dev);
14990 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14992 mutex_lock(&bp->cnic_mutex);
14994 RCU_INIT_POINTER(bp->cnic_ops, NULL);
14995 mutex_unlock(&bp->cnic_mutex);
14997 bp->cnic_enabled = false;
14998 kfree(bp->cnic_kwq);
14999 bp->cnic_kwq = NULL;
15004 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15006 struct bnx2x *bp = netdev_priv(dev);
15007 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15009 /* If both iSCSI and FCoE are disabled - return NULL in
15010 * order to indicate CNIC that it should not try to work
15011 * with this device.
15013 if (NO_ISCSI(bp) && NO_FCOE(bp))
15016 cp->drv_owner = THIS_MODULE;
15017 cp->chip_id = CHIP_ID(bp);
15018 cp->pdev = bp->pdev;
15019 cp->io_base = bp->regview;
15020 cp->io_base2 = bp->doorbells;
15021 cp->max_kwqe_pending = 8;
15022 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15023 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15024 bnx2x_cid_ilt_lines(bp);
15025 cp->ctx_tbl_len = CNIC_ILT_LINES;
15026 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15027 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15028 cp->drv_ctl = bnx2x_drv_ctl;
15029 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15030 cp->drv_register_cnic = bnx2x_register_cnic;
15031 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15032 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15033 cp->iscsi_l2_client_id =
15034 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15035 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15037 if (NO_ISCSI_OOO(bp))
15038 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15041 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15044 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15047 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15049 cp->ctx_tbl_offset,
15055 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15057 struct bnx2x *bp = fp->bp;
15058 u32 offset = BAR_USTRORM_INTMEM;
15061 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15062 else if (!CHIP_IS_E1x(bp))
15063 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15065 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15070 /* called only on E1H or E2.
15071 * When pretending to be PF, the pretend value is the function number 0...7
15072 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15075 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15079 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15082 /* get my own pretend register */
15083 pretend_reg = bnx2x_get_pretend_reg(bp);
15084 REG_WR(bp, pretend_reg, pretend_func_val);
15085 REG_RD(bp, pretend_reg);
15089 static void bnx2x_ptp_task(struct work_struct *work)
15091 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15092 int port = BP_PORT(bp);
15095 struct skb_shared_hwtstamps shhwtstamps;
15099 /* FW may take a while to complete timestamping; try a bit and if it's
15100 * still not complete, may indicate an error state - bail out then.
15102 for (i = 0; i < 10; i++) {
15103 /* Read Tx timestamp registers */
15104 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15105 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15106 if (val_seq & 0x10000) {
15114 /* There is a valid timestamp value */
15115 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15116 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15118 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15119 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15120 /* Reset timestamp register to allow new timestamp */
15121 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15122 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15123 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15125 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15126 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15127 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15129 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15133 "Tx timestamp is not recorded (register read=%u)\n",
15135 bp->eth_stats.ptp_skip_tx_ts++;
15138 dev_kfree_skb_any(bp->ptp_tx_skb);
15139 bp->ptp_tx_skb = NULL;
15142 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15144 int port = BP_PORT(bp);
15147 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15148 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15150 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15151 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15153 /* Reset timestamp register to allow new timestamp */
15154 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15155 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15157 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15159 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15161 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15166 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15168 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15169 int port = BP_PORT(bp);
15173 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15174 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15175 phc_cycles = wb_data[1];
15176 phc_cycles = (phc_cycles << 32) + wb_data[0];
15178 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15183 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15185 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15186 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15187 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15188 bp->cyclecounter.shift = 0;
15189 bp->cyclecounter.mult = 1;
15192 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15194 struct bnx2x_func_state_params func_params = {NULL};
15195 struct bnx2x_func_set_timesync_params *set_timesync_params =
15196 &func_params.params.set_timesync;
15198 /* Prepare parameters for function state transitions */
15199 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15200 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15202 func_params.f_obj = &bp->func_obj;
15203 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15205 /* Function parameters */
15206 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15207 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15209 return bnx2x_func_state_change(bp, &func_params);
15212 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15214 struct bnx2x_queue_state_params q_params;
15217 /* send queue update ramrod to enable PTP packets */
15218 memset(&q_params, 0, sizeof(q_params));
15219 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15220 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15221 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15222 &q_params.params.update.update_flags);
15223 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15224 &q_params.params.update.update_flags);
15226 /* send the ramrod on all the queues of the PF */
15227 for_each_eth_queue(bp, i) {
15228 struct bnx2x_fastpath *fp = &bp->fp[i];
15230 /* Set the appropriate Queue object */
15231 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15233 /* Update the Queue state */
15234 rc = bnx2x_queue_state_change(bp, &q_params);
15236 BNX2X_ERR("Failed to enable PTP packets\n");
15244 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15245 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15246 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15247 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15248 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15249 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15250 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15251 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15252 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15253 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15254 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15255 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15257 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15259 int port = BP_PORT(bp);
15263 if (!bp->hwtstamp_ioctl_called)
15266 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15267 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15268 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15269 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15270 switch (bp->tx_type) {
15271 case HWTSTAMP_TX_ON:
15272 bp->flags |= TX_TIMESTAMPING_EN;
15273 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15274 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15276 case HWTSTAMP_TX_ONESTEP_SYNC:
15277 case HWTSTAMP_TX_ONESTEP_P2P:
15278 BNX2X_ERR("One-step timestamping is not supported\n");
15282 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15283 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15284 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15285 NIG_REG_P0_LLH_PTP_RULE_MASK;
15286 switch (bp->rx_filter) {
15287 case HWTSTAMP_FILTER_NONE:
15289 case HWTSTAMP_FILTER_ALL:
15290 case HWTSTAMP_FILTER_SOME:
15291 case HWTSTAMP_FILTER_NTP_ALL:
15292 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15294 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15295 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15296 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15297 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15298 /* Initialize PTP detection for UDP/IPv4 events */
15299 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15300 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15302 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15303 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15304 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15305 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15306 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15307 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15308 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15310 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15311 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15312 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15313 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15314 /* Initialize PTP detection L2 events */
15315 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15316 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15319 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15320 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15321 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15322 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15323 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15324 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15325 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15329 /* Indicate to FW that this PF expects recorded PTP packets */
15330 rc = bnx2x_enable_ptp_packets(bp);
15334 /* Enable sending PTP packets to host */
15335 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15336 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15341 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15343 struct hwtstamp_config config;
15346 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15348 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15351 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15352 config.tx_type, config.rx_filter);
15354 bp->hwtstamp_ioctl_called = true;
15355 bp->tx_type = config.tx_type;
15356 bp->rx_filter = config.rx_filter;
15358 rc = bnx2x_configure_ptp_filters(bp);
15362 config.rx_filter = bp->rx_filter;
15364 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15368 /* Configures HW for PTP */
15369 static int bnx2x_configure_ptp(struct bnx2x *bp)
15371 int rc, port = BP_PORT(bp);
15374 /* Reset PTP event detection rules - will be configured in the IOCTL */
15375 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15376 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15377 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15378 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15379 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15380 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15381 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15382 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15384 /* Disable PTP packets to host - will be configured in the IOCTL*/
15385 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15386 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15388 /* Enable the PTP feature */
15389 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15390 NIG_REG_P0_PTP_EN, 0x3F);
15392 /* Enable the free-running counter */
15395 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15397 /* Reset drift register (offset register is not reset) */
15398 rc = bnx2x_send_reset_timesync_ramrod(bp);
15400 BNX2X_ERR("Failed to reset PHC drift register\n");
15404 /* Reset possibly old timestamps */
15405 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15406 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15407 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15408 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15413 /* Called during load, to initialize PTP-related stuff */
15414 void bnx2x_init_ptp(struct bnx2x *bp)
15418 /* Configure PTP in HW */
15419 rc = bnx2x_configure_ptp(bp);
15421 BNX2X_ERR("Stopping PTP initialization\n");
15425 /* Init work queue for Tx timestamping */
15426 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15428 /* Init cyclecounter and timecounter. This is done only in the first
15429 * load. If done in every load, PTP application will fail when doing
15430 * unload / load (e.g. MTU change) while it is running.
15432 if (!bp->timecounter_init_done) {
15433 bnx2x_init_cyclecounter(bp);
15434 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15435 ktime_to_ns(ktime_get_real()));
15436 bp->timecounter_init_done = true;
15439 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");