3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
47 #include <linux/mtd/partitions.h>
50 static int nand_get_device(struct mtd_info *mtd, int new_state);
52 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
53 struct mtd_oob_ops *ops);
55 /* Define default oob placement schemes for large and small page devices */
56 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
59 struct nand_chip *chip = mtd_to_nand(mtd);
60 struct nand_ecc_ctrl *ecc = &chip->ecc;
66 oobregion->offset = 0;
67 oobregion->length = 4;
69 oobregion->offset = 6;
70 oobregion->length = ecc->total - 4;
76 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
77 struct mtd_oob_region *oobregion)
82 if (mtd->oobsize == 16) {
86 oobregion->length = 8;
87 oobregion->offset = 8;
89 oobregion->length = 2;
91 oobregion->offset = 3;
93 oobregion->offset = 6;
99 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
100 .ecc = nand_ooblayout_ecc_sp,
101 .free = nand_ooblayout_free_sp,
103 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
105 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
106 struct mtd_oob_region *oobregion)
108 struct nand_chip *chip = mtd_to_nand(mtd);
109 struct nand_ecc_ctrl *ecc = &chip->ecc;
114 oobregion->length = ecc->total;
115 oobregion->offset = mtd->oobsize - oobregion->length;
120 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
121 struct mtd_oob_region *oobregion)
123 struct nand_chip *chip = mtd_to_nand(mtd);
124 struct nand_ecc_ctrl *ecc = &chip->ecc;
129 oobregion->length = mtd->oobsize - ecc->total - 2;
130 oobregion->offset = 2;
135 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
136 .ecc = nand_ooblayout_ecc_lp,
137 .free = nand_ooblayout_free_lp,
139 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
141 static int check_offs_len(struct mtd_info *mtd,
142 loff_t ofs, uint64_t len)
144 struct nand_chip *chip = mtd_to_nand(mtd);
147 /* Start address must align on block boundary */
148 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
149 pr_debug("%s: unaligned address\n", __func__);
153 /* Length must align on block boundary */
154 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
155 pr_debug("%s: length not block aligned\n", __func__);
163 * nand_release_device - [GENERIC] release chip
164 * @mtd: MTD device structure
166 * Release chip lock and wake up anyone waiting on the device.
168 static void nand_release_device(struct mtd_info *mtd)
170 struct nand_chip *chip = mtd_to_nand(mtd);
172 /* Release the controller and the chip */
173 spin_lock(&chip->controller->lock);
174 chip->controller->active = NULL;
175 chip->state = FL_READY;
176 wake_up(&chip->controller->wq);
177 spin_unlock(&chip->controller->lock);
181 * nand_read_byte - [DEFAULT] read one byte from the chip
182 * @mtd: MTD device structure
184 * Default read function for 8bit buswidth
186 static uint8_t nand_read_byte(struct mtd_info *mtd)
188 struct nand_chip *chip = mtd_to_nand(mtd);
189 return readb(chip->IO_ADDR_R);
193 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
194 * @mtd: MTD device structure
196 * Default read function for 16bit buswidth with endianness conversion.
199 static uint8_t nand_read_byte16(struct mtd_info *mtd)
201 struct nand_chip *chip = mtd_to_nand(mtd);
202 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
206 * nand_read_word - [DEFAULT] read one word from the chip
207 * @mtd: MTD device structure
209 * Default read function for 16bit buswidth without endianness conversion.
211 static u16 nand_read_word(struct mtd_info *mtd)
213 struct nand_chip *chip = mtd_to_nand(mtd);
214 return readw(chip->IO_ADDR_R);
218 * nand_select_chip - [DEFAULT] control CE line
219 * @mtd: MTD device structure
220 * @chipnr: chipnumber to select, -1 for deselect
222 * Default select function for 1 chip devices.
224 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
226 struct nand_chip *chip = mtd_to_nand(mtd);
230 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
241 * nand_write_byte - [DEFAULT] write single byte to chip
242 * @mtd: MTD device structure
243 * @byte: value to write
245 * Default function to write a byte to I/O[7:0]
247 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
249 struct nand_chip *chip = mtd_to_nand(mtd);
251 chip->write_buf(mtd, &byte, 1);
255 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
256 * @mtd: MTD device structure
257 * @byte: value to write
259 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
261 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
263 struct nand_chip *chip = mtd_to_nand(mtd);
264 uint16_t word = byte;
267 * It's not entirely clear what should happen to I/O[15:8] when writing
268 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
270 * When the host supports a 16-bit bus width, only data is
271 * transferred at the 16-bit width. All address and command line
272 * transfers shall use only the lower 8-bits of the data bus. During
273 * command transfers, the host may place any value on the upper
274 * 8-bits of the data bus. During address transfers, the host shall
275 * set the upper 8-bits of the data bus to 00h.
277 * One user of the write_byte callback is nand_onfi_set_features. The
278 * four parameters are specified to be written to I/O[7:0], but this is
279 * neither an address nor a command transfer. Let's assume a 0 on the
280 * upper I/O lines is OK.
282 chip->write_buf(mtd, (uint8_t *)&word, 2);
286 * nand_write_buf - [DEFAULT] write buffer to chip
287 * @mtd: MTD device structure
289 * @len: number of bytes to write
291 * Default write function for 8bit buswidth.
293 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
295 struct nand_chip *chip = mtd_to_nand(mtd);
297 iowrite8_rep(chip->IO_ADDR_W, buf, len);
301 * nand_read_buf - [DEFAULT] read chip data into buffer
302 * @mtd: MTD device structure
303 * @buf: buffer to store date
304 * @len: number of bytes to read
306 * Default read function for 8bit buswidth.
308 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
310 struct nand_chip *chip = mtd_to_nand(mtd);
312 ioread8_rep(chip->IO_ADDR_R, buf, len);
316 * nand_write_buf16 - [DEFAULT] write buffer to chip
317 * @mtd: MTD device structure
319 * @len: number of bytes to write
321 * Default write function for 16bit buswidth.
323 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
325 struct nand_chip *chip = mtd_to_nand(mtd);
326 u16 *p = (u16 *) buf;
328 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
332 * nand_read_buf16 - [DEFAULT] read chip data into buffer
333 * @mtd: MTD device structure
334 * @buf: buffer to store date
335 * @len: number of bytes to read
337 * Default read function for 16bit buswidth.
339 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
341 struct nand_chip *chip = mtd_to_nand(mtd);
342 u16 *p = (u16 *) buf;
344 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
348 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
349 * @mtd: MTD device structure
350 * @ofs: offset from device start
352 * Check, if the block is bad.
354 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
356 int page, res = 0, i = 0;
357 struct nand_chip *chip = mtd_to_nand(mtd);
360 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
361 ofs += mtd->erasesize - mtd->writesize;
363 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
366 if (chip->options & NAND_BUSWIDTH_16) {
367 chip->cmdfunc(mtd, NAND_CMD_READOOB,
368 chip->badblockpos & 0xFE, page);
369 bad = cpu_to_le16(chip->read_word(mtd));
370 if (chip->badblockpos & 0x1)
375 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
377 bad = chip->read_byte(mtd);
380 if (likely(chip->badblockbits == 8))
383 res = hweight8(bad) < chip->badblockbits;
384 ofs += mtd->writesize;
385 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
387 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
393 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
397 * This is the default implementation, which can be overridden by a hardware
398 * specific driver. It provides the details for writing a bad block marker to a
401 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
403 struct nand_chip *chip = mtd_to_nand(mtd);
404 struct mtd_oob_ops ops;
405 uint8_t buf[2] = { 0, 0 };
406 int ret = 0, res, i = 0;
408 memset(&ops, 0, sizeof(ops));
410 ops.ooboffs = chip->badblockpos;
411 if (chip->options & NAND_BUSWIDTH_16) {
412 ops.ooboffs &= ~0x01;
413 ops.len = ops.ooblen = 2;
415 ops.len = ops.ooblen = 1;
417 ops.mode = MTD_OPS_PLACE_OOB;
419 /* Write to first/last page(s) if necessary */
420 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
421 ofs += mtd->erasesize - mtd->writesize;
423 res = nand_do_write_oob(mtd, ofs, &ops);
428 ofs += mtd->writesize;
429 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
435 * nand_block_markbad_lowlevel - mark a block bad
436 * @mtd: MTD device structure
437 * @ofs: offset from device start
439 * This function performs the generic NAND bad block marking steps (i.e., bad
440 * block table(s) and/or marker(s)). We only allow the hardware driver to
441 * specify how to write bad block markers to OOB (chip->block_markbad).
443 * We try operations in the following order:
444 * (1) erase the affected block, to allow OOB marker to be written cleanly
445 * (2) write bad block marker to OOB area of affected block (unless flag
446 * NAND_BBT_NO_OOB_BBM is present)
448 * Note that we retain the first error encountered in (2) or (3), finish the
449 * procedures, and dump the error in the end.
451 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
453 struct nand_chip *chip = mtd_to_nand(mtd);
456 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
457 struct erase_info einfo;
459 /* Attempt erase before marking OOB */
460 memset(&einfo, 0, sizeof(einfo));
463 einfo.len = 1ULL << chip->phys_erase_shift;
464 nand_erase_nand(mtd, &einfo, 0);
466 /* Write bad block marker to OOB */
467 nand_get_device(mtd, FL_WRITING);
468 ret = chip->block_markbad(mtd, ofs);
469 nand_release_device(mtd);
472 /* Mark block bad in BBT */
474 res = nand_markbad_bbt(mtd, ofs);
480 mtd->ecc_stats.badblocks++;
486 * nand_check_wp - [GENERIC] check if the chip is write protected
487 * @mtd: MTD device structure
489 * Check, if the device is write protected. The function expects, that the
490 * device is already selected.
492 static int nand_check_wp(struct mtd_info *mtd)
494 struct nand_chip *chip = mtd_to_nand(mtd);
496 /* Broken xD cards report WP despite being writable */
497 if (chip->options & NAND_BROKEN_XD)
500 /* Check the WP bit */
501 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
502 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
506 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 * @mtd: MTD device structure
508 * @ofs: offset from device start
510 * Check if the block is marked as reserved.
512 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
514 struct nand_chip *chip = mtd_to_nand(mtd);
518 /* Return info from the table */
519 return nand_isreserved_bbt(mtd, ofs);
523 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 * @mtd: MTD device structure
525 * @ofs: offset from device start
526 * @allowbbt: 1, if its allowed to access the bbt area
528 * Check, if the block is bad. Either by reading the bad block table or
529 * calling of the scan function.
531 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
533 struct nand_chip *chip = mtd_to_nand(mtd);
536 return chip->block_bad(mtd, ofs);
538 /* Return info from the table */
539 return nand_isbad_bbt(mtd, ofs, allowbbt);
543 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544 * @mtd: MTD device structure
547 * Helper function for nand_wait_ready used when needing to wait in interrupt
550 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
552 struct nand_chip *chip = mtd_to_nand(mtd);
555 /* Wait for the device to get ready */
556 for (i = 0; i < timeo; i++) {
557 if (chip->dev_ready(mtd))
559 touch_softlockup_watchdog();
565 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
566 * @mtd: MTD device structure
568 * Wait for the ready pin after a command, and warn if a timeout occurs.
570 void nand_wait_ready(struct mtd_info *mtd)
572 struct nand_chip *chip = mtd_to_nand(mtd);
573 unsigned long timeo = 400;
575 if (in_interrupt() || oops_in_progress)
576 return panic_nand_wait_ready(mtd, timeo);
578 /* Wait until command is processed or timeout occurs */
579 timeo = jiffies + msecs_to_jiffies(timeo);
581 if (chip->dev_ready(mtd))
584 } while (time_before(jiffies, timeo));
586 if (!chip->dev_ready(mtd))
587 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
589 EXPORT_SYMBOL_GPL(nand_wait_ready);
592 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
593 * @mtd: MTD device structure
594 * @timeo: Timeout in ms
596 * Wait for status ready (i.e. command done) or timeout.
598 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
600 register struct nand_chip *chip = mtd_to_nand(mtd);
602 timeo = jiffies + msecs_to_jiffies(timeo);
604 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
606 touch_softlockup_watchdog();
607 } while (time_before(jiffies, timeo));
611 * nand_command - [DEFAULT] Send command to NAND device
612 * @mtd: MTD device structure
613 * @command: the command to be sent
614 * @column: the column address for this command, -1 if none
615 * @page_addr: the page address for this command, -1 if none
617 * Send command to NAND device. This function is used for small page devices
618 * (512 Bytes per page).
620 static void nand_command(struct mtd_info *mtd, unsigned int command,
621 int column, int page_addr)
623 register struct nand_chip *chip = mtd_to_nand(mtd);
624 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
626 /* Write out the command to the device */
627 if (command == NAND_CMD_SEQIN) {
630 if (column >= mtd->writesize) {
632 column -= mtd->writesize;
633 readcmd = NAND_CMD_READOOB;
634 } else if (column < 256) {
635 /* First 256 bytes --> READ0 */
636 readcmd = NAND_CMD_READ0;
639 readcmd = NAND_CMD_READ1;
641 chip->cmd_ctrl(mtd, readcmd, ctrl);
642 ctrl &= ~NAND_CTRL_CHANGE;
644 chip->cmd_ctrl(mtd, command, ctrl);
646 /* Address cycle, when necessary */
647 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
648 /* Serially input address */
650 /* Adjust columns for 16 bit buswidth */
651 if (chip->options & NAND_BUSWIDTH_16 &&
652 !nand_opcode_8bits(command))
654 chip->cmd_ctrl(mtd, column, ctrl);
655 ctrl &= ~NAND_CTRL_CHANGE;
657 if (page_addr != -1) {
658 chip->cmd_ctrl(mtd, page_addr, ctrl);
659 ctrl &= ~NAND_CTRL_CHANGE;
660 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
661 /* One more address cycle for devices > 32MiB */
662 if (chip->chipsize > (32 << 20))
663 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
665 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
668 * Program and erase have their own busy handlers status and sequential
673 case NAND_CMD_PAGEPROG:
674 case NAND_CMD_ERASE1:
675 case NAND_CMD_ERASE2:
677 case NAND_CMD_STATUS:
683 udelay(chip->chip_delay);
684 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
685 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
687 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
689 nand_wait_status_ready(mtd, 250);
692 /* This applies to read commands */
695 * If we don't have access to the busy pin, we apply the given
698 if (!chip->dev_ready) {
699 udelay(chip->chip_delay);
704 * Apply this short delay always to ensure that we do wait tWB in
705 * any case on any machine.
709 nand_wait_ready(mtd);
713 * nand_command_lp - [DEFAULT] Send command to NAND large page device
714 * @mtd: MTD device structure
715 * @command: the command to be sent
716 * @column: the column address for this command, -1 if none
717 * @page_addr: the page address for this command, -1 if none
719 * Send command to NAND device. This is the version for the new large page
720 * devices. We don't have the separate regions as we have in the small page
721 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
723 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
724 int column, int page_addr)
726 register struct nand_chip *chip = mtd_to_nand(mtd);
728 /* Emulate NAND_CMD_READOOB */
729 if (command == NAND_CMD_READOOB) {
730 column += mtd->writesize;
731 command = NAND_CMD_READ0;
734 /* Command latch cycle */
735 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
737 if (column != -1 || page_addr != -1) {
738 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
740 /* Serially input address */
742 /* Adjust columns for 16 bit buswidth */
743 if (chip->options & NAND_BUSWIDTH_16 &&
744 !nand_opcode_8bits(command))
746 chip->cmd_ctrl(mtd, column, ctrl);
747 ctrl &= ~NAND_CTRL_CHANGE;
749 /* Only output a single addr cycle for 8bits opcodes. */
750 if (!nand_opcode_8bits(command))
751 chip->cmd_ctrl(mtd, column >> 8, ctrl);
753 if (page_addr != -1) {
754 chip->cmd_ctrl(mtd, page_addr, ctrl);
755 chip->cmd_ctrl(mtd, page_addr >> 8,
756 NAND_NCE | NAND_ALE);
757 /* One more address cycle for devices > 128MiB */
758 if (chip->chipsize > (128 << 20))
759 chip->cmd_ctrl(mtd, page_addr >> 16,
760 NAND_NCE | NAND_ALE);
763 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
766 * Program and erase have their own busy handlers status, sequential
767 * in and status need no delay.
771 case NAND_CMD_CACHEDPROG:
772 case NAND_CMD_PAGEPROG:
773 case NAND_CMD_ERASE1:
774 case NAND_CMD_ERASE2:
777 case NAND_CMD_STATUS:
783 udelay(chip->chip_delay);
784 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
785 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
786 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
787 NAND_NCE | NAND_CTRL_CHANGE);
788 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
789 nand_wait_status_ready(mtd, 250);
792 case NAND_CMD_RNDOUT:
793 /* No ready / busy check necessary */
794 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
795 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
796 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
797 NAND_NCE | NAND_CTRL_CHANGE);
801 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
802 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
803 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
804 NAND_NCE | NAND_CTRL_CHANGE);
806 /* This applies to read commands */
809 * If we don't have access to the busy pin, we apply the given
812 if (!chip->dev_ready) {
813 udelay(chip->chip_delay);
819 * Apply this short delay always to ensure that we do wait tWB in
820 * any case on any machine.
824 nand_wait_ready(mtd);
828 * panic_nand_get_device - [GENERIC] Get chip for selected access
829 * @chip: the nand chip descriptor
830 * @mtd: MTD device structure
831 * @new_state: the state which is requested
833 * Used when in panic, no locks are taken.
835 static void panic_nand_get_device(struct nand_chip *chip,
836 struct mtd_info *mtd, int new_state)
838 /* Hardware controller shared among independent devices */
839 chip->controller->active = chip;
840 chip->state = new_state;
844 * nand_get_device - [GENERIC] Get chip for selected access
845 * @mtd: MTD device structure
846 * @new_state: the state which is requested
848 * Get the device and lock it for exclusive access
851 nand_get_device(struct mtd_info *mtd, int new_state)
853 struct nand_chip *chip = mtd_to_nand(mtd);
854 spinlock_t *lock = &chip->controller->lock;
855 wait_queue_head_t *wq = &chip->controller->wq;
856 DECLARE_WAITQUEUE(wait, current);
860 /* Hardware controller shared among independent devices */
861 if (!chip->controller->active)
862 chip->controller->active = chip;
864 if (chip->controller->active == chip && chip->state == FL_READY) {
865 chip->state = new_state;
869 if (new_state == FL_PM_SUSPENDED) {
870 if (chip->controller->active->state == FL_PM_SUSPENDED) {
871 chip->state = FL_PM_SUSPENDED;
876 set_current_state(TASK_UNINTERRUPTIBLE);
877 add_wait_queue(wq, &wait);
880 remove_wait_queue(wq, &wait);
885 * panic_nand_wait - [GENERIC] wait until the command is done
886 * @mtd: MTD device structure
887 * @chip: NAND chip structure
890 * Wait for command done. This is a helper function for nand_wait used when
891 * we are in interrupt context. May happen when in panic and trying to write
892 * an oops through mtdoops.
894 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
898 for (i = 0; i < timeo; i++) {
899 if (chip->dev_ready) {
900 if (chip->dev_ready(mtd))
903 if (chip->read_byte(mtd) & NAND_STATUS_READY)
911 * nand_wait - [DEFAULT] wait until the command is done
912 * @mtd: MTD device structure
913 * @chip: NAND chip structure
915 * Wait for command done. This applies to erase and program only.
917 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
921 unsigned long timeo = 400;
924 * Apply this short delay always to ensure that we do wait tWB in any
925 * case on any machine.
929 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
931 if (in_interrupt() || oops_in_progress)
932 panic_nand_wait(mtd, chip, timeo);
934 timeo = jiffies + msecs_to_jiffies(timeo);
936 if (chip->dev_ready) {
937 if (chip->dev_ready(mtd))
940 if (chip->read_byte(mtd) & NAND_STATUS_READY)
944 } while (time_before(jiffies, timeo));
947 status = (int)chip->read_byte(mtd);
948 /* This can happen if in case of timeout or buggy dev_ready */
949 WARN_ON(!(status & NAND_STATUS_READY));
954 * nand_reset_data_interface - Reset data interface and timings
955 * @chip: The NAND chip
957 * Reset the Data interface and timings to ONFI mode 0.
959 * Returns 0 for success or negative error code otherwise.
961 static int nand_reset_data_interface(struct nand_chip *chip)
963 struct mtd_info *mtd = nand_to_mtd(chip);
964 const struct nand_data_interface *conf;
967 if (!chip->setup_data_interface)
971 * The ONFI specification says:
973 * To transition from NV-DDR or NV-DDR2 to the SDR data
974 * interface, the host shall use the Reset (FFh) command
975 * using SDR timing mode 0. A device in any timing mode is
976 * required to recognize Reset (FFh) command issued in SDR
980 * Configure the data interface in SDR mode and set the
981 * timings to timing mode 0.
984 conf = nand_get_default_data_interface();
985 ret = chip->setup_data_interface(mtd, conf, false);
987 pr_err("Failed to configure data interface to SDR timing mode 0\n");
993 * nand_setup_data_interface - Setup the best data interface and timings
994 * @chip: The NAND chip
996 * Find and configure the best data interface and NAND timings supported by
997 * the chip and the driver.
998 * First tries to retrieve supported timing modes from ONFI information,
999 * and if the NAND chip does not support ONFI, relies on the
1000 * ->onfi_timing_mode_default specified in the nand_ids table.
1002 * Returns 0 for success or negative error code otherwise.
1004 static int nand_setup_data_interface(struct nand_chip *chip)
1006 struct mtd_info *mtd = nand_to_mtd(chip);
1009 if (!chip->setup_data_interface || !chip->data_interface)
1013 * Ensure the timing mode has been changed on the chip side
1014 * before changing timings on the controller side.
1016 if (chip->onfi_version) {
1017 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1018 chip->onfi_timing_mode_default,
1021 ret = chip->onfi_set_features(mtd, chip,
1022 ONFI_FEATURE_ADDR_TIMING_MODE,
1028 ret = chip->setup_data_interface(mtd, chip->data_interface, false);
1034 * nand_init_data_interface - find the best data interface and timings
1035 * @chip: The NAND chip
1037 * Find the best data interface and NAND timings supported by the chip
1039 * First tries to retrieve supported timing modes from ONFI information,
1040 * and if the NAND chip does not support ONFI, relies on the
1041 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1042 * function nand_chip->data_interface is initialized with the best timing mode
1045 * Returns 0 for success or negative error code otherwise.
1047 static int nand_init_data_interface(struct nand_chip *chip)
1049 struct mtd_info *mtd = nand_to_mtd(chip);
1050 int modes, mode, ret;
1052 if (!chip->setup_data_interface)
1056 * First try to identify the best timings from ONFI parameters and
1057 * if the NAND does not support ONFI, fallback to the default ONFI
1060 modes = onfi_get_async_timing_mode(chip);
1061 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1062 if (!chip->onfi_timing_mode_default)
1065 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1068 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1070 if (!chip->data_interface)
1073 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1074 ret = onfi_init_data_interface(chip, chip->data_interface,
1075 NAND_SDR_IFACE, mode);
1079 ret = chip->setup_data_interface(mtd, chip->data_interface,
1082 chip->onfi_timing_mode_default = mode;
1090 static void nand_release_data_interface(struct nand_chip *chip)
1092 kfree(chip->data_interface);
1096 * nand_reset - Reset and initialize a NAND device
1097 * @chip: The NAND chip
1099 * Returns 0 for success or negative error code otherwise
1101 int nand_reset(struct nand_chip *chip)
1103 struct mtd_info *mtd = nand_to_mtd(chip);
1106 ret = nand_reset_data_interface(chip);
1110 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1112 ret = nand_setup_data_interface(chip);
1120 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1122 * @ofs: offset to start unlock from
1123 * @len: length to unlock
1124 * @invert: when = 0, unlock the range of blocks within the lower and
1125 * upper boundary address
1126 * when = 1, unlock the range of blocks outside the boundaries
1127 * of the lower and upper boundary address
1129 * Returs unlock status.
1131 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
1132 uint64_t len, int invert)
1136 struct nand_chip *chip = mtd_to_nand(mtd);
1138 /* Submit address of first page to unlock */
1139 page = ofs >> chip->page_shift;
1140 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
1142 /* Submit address of last page to unlock */
1143 page = (ofs + len) >> chip->page_shift;
1144 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
1145 (page | invert) & chip->pagemask);
1147 /* Call wait ready function */
1148 status = chip->waitfunc(mtd, chip);
1149 /* See if device thinks it succeeded */
1150 if (status & NAND_STATUS_FAIL) {
1151 pr_debug("%s: error status = 0x%08x\n",
1160 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1162 * @ofs: offset to start unlock from
1163 * @len: length to unlock
1165 * Returns unlock status.
1167 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1171 struct nand_chip *chip = mtd_to_nand(mtd);
1173 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1174 __func__, (unsigned long long)ofs, len);
1176 if (check_offs_len(mtd, ofs, len))
1179 /* Align to last block address if size addresses end of the device */
1180 if (ofs + len == mtd->size)
1181 len -= mtd->erasesize;
1183 nand_get_device(mtd, FL_UNLOCKING);
1185 /* Shift to get chip number */
1186 chipnr = ofs >> chip->chip_shift;
1188 chip->select_chip(mtd, chipnr);
1192 * If we want to check the WP through READ STATUS and check the bit 7
1193 * we must reset the chip
1194 * some operation can also clear the bit 7 of status register
1195 * eg. erase/program a locked block
1199 /* Check, if it is write protected */
1200 if (nand_check_wp(mtd)) {
1201 pr_debug("%s: device is write protected!\n",
1207 ret = __nand_unlock(mtd, ofs, len, 0);
1210 chip->select_chip(mtd, -1);
1211 nand_release_device(mtd);
1215 EXPORT_SYMBOL(nand_unlock);
1218 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1220 * @ofs: offset to start unlock from
1221 * @len: length to unlock
1223 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1224 * have this feature, but it allows only to lock all blocks, not for specified
1225 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1228 * Returns lock status.
1230 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1233 int chipnr, status, page;
1234 struct nand_chip *chip = mtd_to_nand(mtd);
1236 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1237 __func__, (unsigned long long)ofs, len);
1239 if (check_offs_len(mtd, ofs, len))
1242 nand_get_device(mtd, FL_LOCKING);
1244 /* Shift to get chip number */
1245 chipnr = ofs >> chip->chip_shift;
1247 chip->select_chip(mtd, chipnr);
1251 * If we want to check the WP through READ STATUS and check the bit 7
1252 * we must reset the chip
1253 * some operation can also clear the bit 7 of status register
1254 * eg. erase/program a locked block
1258 /* Check, if it is write protected */
1259 if (nand_check_wp(mtd)) {
1260 pr_debug("%s: device is write protected!\n",
1262 status = MTD_ERASE_FAILED;
1267 /* Submit address of first page to lock */
1268 page = ofs >> chip->page_shift;
1269 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1271 /* Call wait ready function */
1272 status = chip->waitfunc(mtd, chip);
1273 /* See if device thinks it succeeded */
1274 if (status & NAND_STATUS_FAIL) {
1275 pr_debug("%s: error status = 0x%08x\n",
1281 ret = __nand_unlock(mtd, ofs, len, 0x1);
1284 chip->select_chip(mtd, -1);
1285 nand_release_device(mtd);
1289 EXPORT_SYMBOL(nand_lock);
1292 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1293 * @buf: buffer to test
1294 * @len: buffer length
1295 * @bitflips_threshold: maximum number of bitflips
1297 * Check if a buffer contains only 0xff, which means the underlying region
1298 * has been erased and is ready to be programmed.
1299 * The bitflips_threshold specify the maximum number of bitflips before
1300 * considering the region is not erased.
1301 * Note: The logic of this function has been extracted from the memweight
1302 * implementation, except that nand_check_erased_buf function exit before
1303 * testing the whole buffer if the number of bitflips exceed the
1304 * bitflips_threshold value.
1306 * Returns a positive number of bitflips less than or equal to
1307 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1310 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1312 const unsigned char *bitmap = buf;
1316 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1318 weight = hweight8(*bitmap);
1319 bitflips += BITS_PER_BYTE - weight;
1320 if (unlikely(bitflips > bitflips_threshold))
1324 for (; len >= sizeof(long);
1325 len -= sizeof(long), bitmap += sizeof(long)) {
1326 weight = hweight_long(*((unsigned long *)bitmap));
1327 bitflips += BITS_PER_LONG - weight;
1328 if (unlikely(bitflips > bitflips_threshold))
1332 for (; len > 0; len--, bitmap++) {
1333 weight = hweight8(*bitmap);
1334 bitflips += BITS_PER_BYTE - weight;
1335 if (unlikely(bitflips > bitflips_threshold))
1343 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1345 * @data: data buffer to test
1346 * @datalen: data length
1348 * @ecclen: ECC length
1349 * @extraoob: extra OOB buffer
1350 * @extraooblen: extra OOB length
1351 * @bitflips_threshold: maximum number of bitflips
1353 * Check if a data buffer and its associated ECC and OOB data contains only
1354 * 0xff pattern, which means the underlying region has been erased and is
1355 * ready to be programmed.
1356 * The bitflips_threshold specify the maximum number of bitflips before
1357 * considering the region as not erased.
1360 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1361 * different from the NAND page size. When fixing bitflips, ECC engines will
1362 * report the number of errors per chunk, and the NAND core infrastructure
1363 * expect you to return the maximum number of bitflips for the whole page.
1364 * This is why you should always use this function on a single chunk and
1365 * not on the whole page. After checking each chunk you should update your
1366 * max_bitflips value accordingly.
1367 * 2/ When checking for bitflips in erased pages you should not only check
1368 * the payload data but also their associated ECC data, because a user might
1369 * have programmed almost all bits to 1 but a few. In this case, we
1370 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1372 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1373 * data are protected by the ECC engine.
1374 * It could also be used if you support subpages and want to attach some
1375 * extra OOB data to an ECC chunk.
1377 * Returns a positive number of bitflips less than or equal to
1378 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1379 * threshold. In case of success, the passed buffers are filled with 0xff.
1381 int nand_check_erased_ecc_chunk(void *data, int datalen,
1382 void *ecc, int ecclen,
1383 void *extraoob, int extraooblen,
1384 int bitflips_threshold)
1386 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1388 data_bitflips = nand_check_erased_buf(data, datalen,
1389 bitflips_threshold);
1390 if (data_bitflips < 0)
1391 return data_bitflips;
1393 bitflips_threshold -= data_bitflips;
1395 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1396 if (ecc_bitflips < 0)
1397 return ecc_bitflips;
1399 bitflips_threshold -= ecc_bitflips;
1401 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1402 bitflips_threshold);
1403 if (extraoob_bitflips < 0)
1404 return extraoob_bitflips;
1407 memset(data, 0xff, datalen);
1410 memset(ecc, 0xff, ecclen);
1412 if (extraoob_bitflips)
1413 memset(extraoob, 0xff, extraooblen);
1415 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1417 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1420 * nand_read_page_raw - [INTERN] read raw page data without ecc
1421 * @mtd: mtd info structure
1422 * @chip: nand chip info structure
1423 * @buf: buffer to store read data
1424 * @oob_required: caller requires OOB data read to chip->oob_poi
1425 * @page: page number to read
1427 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1429 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1430 uint8_t *buf, int oob_required, int page)
1432 chip->read_buf(mtd, buf, mtd->writesize);
1434 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1439 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1440 * @mtd: mtd info structure
1441 * @chip: nand chip info structure
1442 * @buf: buffer to store read data
1443 * @oob_required: caller requires OOB data read to chip->oob_poi
1444 * @page: page number to read
1446 * We need a special oob layout and handling even when OOB isn't used.
1448 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1449 struct nand_chip *chip, uint8_t *buf,
1450 int oob_required, int page)
1452 int eccsize = chip->ecc.size;
1453 int eccbytes = chip->ecc.bytes;
1454 uint8_t *oob = chip->oob_poi;
1457 for (steps = chip->ecc.steps; steps > 0; steps--) {
1458 chip->read_buf(mtd, buf, eccsize);
1461 if (chip->ecc.prepad) {
1462 chip->read_buf(mtd, oob, chip->ecc.prepad);
1463 oob += chip->ecc.prepad;
1466 chip->read_buf(mtd, oob, eccbytes);
1469 if (chip->ecc.postpad) {
1470 chip->read_buf(mtd, oob, chip->ecc.postpad);
1471 oob += chip->ecc.postpad;
1475 size = mtd->oobsize - (oob - chip->oob_poi);
1477 chip->read_buf(mtd, oob, size);
1483 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1484 * @mtd: mtd info structure
1485 * @chip: nand chip info structure
1486 * @buf: buffer to store read data
1487 * @oob_required: caller requires OOB data read to chip->oob_poi
1488 * @page: page number to read
1490 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1491 uint8_t *buf, int oob_required, int page)
1493 int i, eccsize = chip->ecc.size, ret;
1494 int eccbytes = chip->ecc.bytes;
1495 int eccsteps = chip->ecc.steps;
1497 uint8_t *ecc_calc = chip->buffers->ecccalc;
1498 uint8_t *ecc_code = chip->buffers->ecccode;
1499 unsigned int max_bitflips = 0;
1501 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1503 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1504 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1506 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1511 eccsteps = chip->ecc.steps;
1514 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1517 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1519 mtd->ecc_stats.failed++;
1521 mtd->ecc_stats.corrected += stat;
1522 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1525 return max_bitflips;
1529 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1530 * @mtd: mtd info structure
1531 * @chip: nand chip info structure
1532 * @data_offs: offset of requested data within the page
1533 * @readlen: data length
1534 * @bufpoi: buffer to store read data
1535 * @page: page number to read
1537 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1538 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1541 int start_step, end_step, num_steps, ret;
1543 int data_col_addr, i, gaps = 0;
1544 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1545 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1546 int index, section = 0;
1547 unsigned int max_bitflips = 0;
1548 struct mtd_oob_region oobregion = { };
1550 /* Column address within the page aligned to ECC size (256bytes) */
1551 start_step = data_offs / chip->ecc.size;
1552 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1553 num_steps = end_step - start_step + 1;
1554 index = start_step * chip->ecc.bytes;
1556 /* Data size aligned to ECC ecc.size */
1557 datafrag_len = num_steps * chip->ecc.size;
1558 eccfrag_len = num_steps * chip->ecc.bytes;
1560 data_col_addr = start_step * chip->ecc.size;
1561 /* If we read not a page aligned data */
1562 if (data_col_addr != 0)
1563 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1565 p = bufpoi + data_col_addr;
1566 chip->read_buf(mtd, p, datafrag_len);
1569 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1570 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1573 * The performance is faster if we position offsets according to
1574 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1576 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
1580 if (oobregion.length < eccfrag_len)
1584 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1585 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1588 * Send the command to read the particular ECC bytes take care
1589 * about buswidth alignment in read_buf.
1591 aligned_pos = oobregion.offset & ~(busw - 1);
1592 aligned_len = eccfrag_len;
1593 if (oobregion.offset & (busw - 1))
1595 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1599 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1600 mtd->writesize + aligned_pos, -1);
1601 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1604 ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1605 chip->oob_poi, index, eccfrag_len);
1609 p = bufpoi + data_col_addr;
1610 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1613 stat = chip->ecc.correct(mtd, p,
1614 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1615 if (stat == -EBADMSG &&
1616 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1617 /* check for empty pages with bitflips */
1618 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1619 &chip->buffers->ecccode[i],
1622 chip->ecc.strength);
1626 mtd->ecc_stats.failed++;
1628 mtd->ecc_stats.corrected += stat;
1629 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1632 return max_bitflips;
1636 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1637 * @mtd: mtd info structure
1638 * @chip: nand chip info structure
1639 * @buf: buffer to store read data
1640 * @oob_required: caller requires OOB data read to chip->oob_poi
1641 * @page: page number to read
1643 * Not for syndrome calculating ECC controllers which need a special oob layout.
1645 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1646 uint8_t *buf, int oob_required, int page)
1648 int i, eccsize = chip->ecc.size, ret;
1649 int eccbytes = chip->ecc.bytes;
1650 int eccsteps = chip->ecc.steps;
1652 uint8_t *ecc_calc = chip->buffers->ecccalc;
1653 uint8_t *ecc_code = chip->buffers->ecccode;
1654 unsigned int max_bitflips = 0;
1656 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1657 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1658 chip->read_buf(mtd, p, eccsize);
1659 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1661 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1663 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1668 eccsteps = chip->ecc.steps;
1671 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1674 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1675 if (stat == -EBADMSG &&
1676 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1677 /* check for empty pages with bitflips */
1678 stat = nand_check_erased_ecc_chunk(p, eccsize,
1679 &ecc_code[i], eccbytes,
1681 chip->ecc.strength);
1685 mtd->ecc_stats.failed++;
1687 mtd->ecc_stats.corrected += stat;
1688 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1691 return max_bitflips;
1695 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1696 * @mtd: mtd info structure
1697 * @chip: nand chip info structure
1698 * @buf: buffer to store read data
1699 * @oob_required: caller requires OOB data read to chip->oob_poi
1700 * @page: page number to read
1702 * Hardware ECC for large page chips, require OOB to be read first. For this
1703 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1704 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1705 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1706 * the data area, by overwriting the NAND manufacturer bad block markings.
1708 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1709 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1711 int i, eccsize = chip->ecc.size, ret;
1712 int eccbytes = chip->ecc.bytes;
1713 int eccsteps = chip->ecc.steps;
1715 uint8_t *ecc_code = chip->buffers->ecccode;
1716 uint8_t *ecc_calc = chip->buffers->ecccalc;
1717 unsigned int max_bitflips = 0;
1719 /* Read the OOB area first */
1720 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1721 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1722 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1724 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1729 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1732 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1733 chip->read_buf(mtd, p, eccsize);
1734 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1736 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1737 if (stat == -EBADMSG &&
1738 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1739 /* check for empty pages with bitflips */
1740 stat = nand_check_erased_ecc_chunk(p, eccsize,
1741 &ecc_code[i], eccbytes,
1743 chip->ecc.strength);
1747 mtd->ecc_stats.failed++;
1749 mtd->ecc_stats.corrected += stat;
1750 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1753 return max_bitflips;
1757 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1758 * @mtd: mtd info structure
1759 * @chip: nand chip info structure
1760 * @buf: buffer to store read data
1761 * @oob_required: caller requires OOB data read to chip->oob_poi
1762 * @page: page number to read
1764 * The hw generator calculates the error syndrome automatically. Therefore we
1765 * need a special oob layout and handling.
1767 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1768 uint8_t *buf, int oob_required, int page)
1770 int i, eccsize = chip->ecc.size;
1771 int eccbytes = chip->ecc.bytes;
1772 int eccsteps = chip->ecc.steps;
1773 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1775 uint8_t *oob = chip->oob_poi;
1776 unsigned int max_bitflips = 0;
1778 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1781 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1782 chip->read_buf(mtd, p, eccsize);
1784 if (chip->ecc.prepad) {
1785 chip->read_buf(mtd, oob, chip->ecc.prepad);
1786 oob += chip->ecc.prepad;
1789 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1790 chip->read_buf(mtd, oob, eccbytes);
1791 stat = chip->ecc.correct(mtd, p, oob, NULL);
1795 if (chip->ecc.postpad) {
1796 chip->read_buf(mtd, oob, chip->ecc.postpad);
1797 oob += chip->ecc.postpad;
1800 if (stat == -EBADMSG &&
1801 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1802 /* check for empty pages with bitflips */
1803 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1807 chip->ecc.strength);
1811 mtd->ecc_stats.failed++;
1813 mtd->ecc_stats.corrected += stat;
1814 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1818 /* Calculate remaining oob bytes */
1819 i = mtd->oobsize - (oob - chip->oob_poi);
1821 chip->read_buf(mtd, oob, i);
1823 return max_bitflips;
1827 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1828 * @mtd: mtd info structure
1829 * @oob: oob destination address
1830 * @ops: oob ops structure
1831 * @len: size of oob to transfer
1833 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1834 struct mtd_oob_ops *ops, size_t len)
1836 struct nand_chip *chip = mtd_to_nand(mtd);
1839 switch (ops->mode) {
1841 case MTD_OPS_PLACE_OOB:
1843 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1846 case MTD_OPS_AUTO_OOB:
1847 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1859 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1860 * @mtd: MTD device structure
1861 * @retry_mode: the retry mode to use
1863 * Some vendors supply a special command to shift the Vt threshold, to be used
1864 * when there are too many bitflips in a page (i.e., ECC error). After setting
1865 * a new threshold, the host should retry reading the page.
1867 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1869 struct nand_chip *chip = mtd_to_nand(mtd);
1871 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1873 if (retry_mode >= chip->read_retries)
1876 if (!chip->setup_read_retry)
1879 return chip->setup_read_retry(mtd, retry_mode);
1883 * nand_do_read_ops - [INTERN] Read data with ECC
1884 * @mtd: MTD device structure
1885 * @from: offset to read from
1886 * @ops: oob ops structure
1888 * Internal function. Called with chip held.
1890 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1891 struct mtd_oob_ops *ops)
1893 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1894 struct nand_chip *chip = mtd_to_nand(mtd);
1896 uint32_t readlen = ops->len;
1897 uint32_t oobreadlen = ops->ooblen;
1898 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1900 uint8_t *bufpoi, *oob, *buf;
1902 unsigned int max_bitflips = 0;
1904 bool ecc_fail = false;
1906 chipnr = (int)(from >> chip->chip_shift);
1907 chip->select_chip(mtd, chipnr);
1909 realpage = (int)(from >> chip->page_shift);
1910 page = realpage & chip->pagemask;
1912 col = (int)(from & (mtd->writesize - 1));
1916 oob_required = oob ? 1 : 0;
1919 unsigned int ecc_failures = mtd->ecc_stats.failed;
1921 bytes = min(mtd->writesize - col, readlen);
1922 aligned = (bytes == mtd->writesize);
1926 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1927 use_bufpoi = !virt_addr_valid(buf);
1931 /* Is the current page in the buffer? */
1932 if (realpage != chip->pagebuf || oob) {
1933 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1935 if (use_bufpoi && aligned)
1936 pr_debug("%s: using read bounce buffer for buf@%p\n",
1940 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1943 * Now read the page into the buffer. Absent an error,
1944 * the read methods return max bitflips per ecc step.
1946 if (unlikely(ops->mode == MTD_OPS_RAW))
1947 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1950 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1952 ret = chip->ecc.read_subpage(mtd, chip,
1956 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1957 oob_required, page);
1960 /* Invalidate page cache */
1965 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1967 /* Transfer not aligned data */
1969 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1970 !(mtd->ecc_stats.failed - ecc_failures) &&
1971 (ops->mode != MTD_OPS_RAW)) {
1972 chip->pagebuf = realpage;
1973 chip->pagebuf_bitflips = ret;
1975 /* Invalidate page cache */
1978 memcpy(buf, chip->buffers->databuf + col, bytes);
1981 if (unlikely(oob)) {
1982 int toread = min(oobreadlen, max_oobsize);
1985 oob = nand_transfer_oob(mtd,
1987 oobreadlen -= toread;
1991 if (chip->options & NAND_NEED_READRDY) {
1992 /* Apply delay or wait for ready/busy pin */
1993 if (!chip->dev_ready)
1994 udelay(chip->chip_delay);
1996 nand_wait_ready(mtd);
1999 if (mtd->ecc_stats.failed - ecc_failures) {
2000 if (retry_mode + 1 < chip->read_retries) {
2002 ret = nand_setup_read_retry(mtd,
2007 /* Reset failures; retry */
2008 mtd->ecc_stats.failed = ecc_failures;
2011 /* No more retry modes; real failure */
2018 memcpy(buf, chip->buffers->databuf + col, bytes);
2020 max_bitflips = max_t(unsigned int, max_bitflips,
2021 chip->pagebuf_bitflips);
2026 /* Reset to retry mode 0 */
2028 ret = nand_setup_read_retry(mtd, 0);
2037 /* For subsequent reads align to page boundary */
2039 /* Increment page address */
2042 page = realpage & chip->pagemask;
2043 /* Check, if we cross a chip boundary */
2046 chip->select_chip(mtd, -1);
2047 chip->select_chip(mtd, chipnr);
2050 chip->select_chip(mtd, -1);
2052 ops->retlen = ops->len - (size_t) readlen;
2054 ops->oobretlen = ops->ooblen - oobreadlen;
2062 return max_bitflips;
2066 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2067 * @mtd: MTD device structure
2068 * @from: offset to read from
2069 * @len: number of bytes to read
2070 * @retlen: pointer to variable to store the number of read bytes
2071 * @buf: the databuffer to put data
2073 * Get hold of the chip and call nand_do_read.
2075 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2076 size_t *retlen, uint8_t *buf)
2078 struct mtd_oob_ops ops;
2081 nand_get_device(mtd, FL_READING);
2082 memset(&ops, 0, sizeof(ops));
2085 ops.mode = MTD_OPS_PLACE_OOB;
2086 ret = nand_do_read_ops(mtd, from, &ops);
2087 *retlen = ops.retlen;
2088 nand_release_device(mtd);
2093 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2094 * @mtd: mtd info structure
2095 * @chip: nand chip info structure
2096 * @page: page number to read
2098 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2100 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2101 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2104 EXPORT_SYMBOL(nand_read_oob_std);
2107 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2109 * @mtd: mtd info structure
2110 * @chip: nand chip info structure
2111 * @page: page number to read
2113 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2116 int length = mtd->oobsize;
2117 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2118 int eccsize = chip->ecc.size;
2119 uint8_t *bufpoi = chip->oob_poi;
2120 int i, toread, sndrnd = 0, pos;
2122 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2123 for (i = 0; i < chip->ecc.steps; i++) {
2125 pos = eccsize + i * (eccsize + chunk);
2126 if (mtd->writesize > 512)
2127 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2129 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2132 toread = min_t(int, length, chunk);
2133 chip->read_buf(mtd, bufpoi, toread);
2138 chip->read_buf(mtd, bufpoi, length);
2142 EXPORT_SYMBOL(nand_read_oob_syndrome);
2145 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2146 * @mtd: mtd info structure
2147 * @chip: nand chip info structure
2148 * @page: page number to write
2150 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2153 const uint8_t *buf = chip->oob_poi;
2154 int length = mtd->oobsize;
2156 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2157 chip->write_buf(mtd, buf, length);
2158 /* Send command to program the OOB data */
2159 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2161 status = chip->waitfunc(mtd, chip);
2163 return status & NAND_STATUS_FAIL ? -EIO : 0;
2165 EXPORT_SYMBOL(nand_write_oob_std);
2168 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2169 * with syndrome - only for large page flash
2170 * @mtd: mtd info structure
2171 * @chip: nand chip info structure
2172 * @page: page number to write
2174 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2177 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2178 int eccsize = chip->ecc.size, length = mtd->oobsize;
2179 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2180 const uint8_t *bufpoi = chip->oob_poi;
2183 * data-ecc-data-ecc ... ecc-oob
2185 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2187 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2188 pos = steps * (eccsize + chunk);
2193 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2194 for (i = 0; i < steps; i++) {
2196 if (mtd->writesize <= 512) {
2197 uint32_t fill = 0xFFFFFFFF;
2201 int num = min_t(int, len, 4);
2202 chip->write_buf(mtd, (uint8_t *)&fill,
2207 pos = eccsize + i * (eccsize + chunk);
2208 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2212 len = min_t(int, length, chunk);
2213 chip->write_buf(mtd, bufpoi, len);
2218 chip->write_buf(mtd, bufpoi, length);
2220 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2221 status = chip->waitfunc(mtd, chip);
2223 return status & NAND_STATUS_FAIL ? -EIO : 0;
2225 EXPORT_SYMBOL(nand_write_oob_syndrome);
2228 * nand_do_read_oob - [INTERN] NAND read out-of-band
2229 * @mtd: MTD device structure
2230 * @from: offset to read from
2231 * @ops: oob operations description structure
2233 * NAND read out-of-band data from the spare area.
2235 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2236 struct mtd_oob_ops *ops)
2238 int page, realpage, chipnr;
2239 struct nand_chip *chip = mtd_to_nand(mtd);
2240 struct mtd_ecc_stats stats;
2241 int readlen = ops->ooblen;
2243 uint8_t *buf = ops->oobbuf;
2246 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2247 __func__, (unsigned long long)from, readlen);
2249 stats = mtd->ecc_stats;
2251 len = mtd_oobavail(mtd, ops);
2253 if (unlikely(ops->ooboffs >= len)) {
2254 pr_debug("%s: attempt to start read outside oob\n",
2259 /* Do not allow reads past end of device */
2260 if (unlikely(from >= mtd->size ||
2261 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2262 (from >> chip->page_shift)) * len)) {
2263 pr_debug("%s: attempt to read beyond end of device\n",
2268 chipnr = (int)(from >> chip->chip_shift);
2269 chip->select_chip(mtd, chipnr);
2271 /* Shift to get page */
2272 realpage = (int)(from >> chip->page_shift);
2273 page = realpage & chip->pagemask;
2276 if (ops->mode == MTD_OPS_RAW)
2277 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2279 ret = chip->ecc.read_oob(mtd, chip, page);
2284 len = min(len, readlen);
2285 buf = nand_transfer_oob(mtd, buf, ops, len);
2287 if (chip->options & NAND_NEED_READRDY) {
2288 /* Apply delay or wait for ready/busy pin */
2289 if (!chip->dev_ready)
2290 udelay(chip->chip_delay);
2292 nand_wait_ready(mtd);
2299 /* Increment page address */
2302 page = realpage & chip->pagemask;
2303 /* Check, if we cross a chip boundary */
2306 chip->select_chip(mtd, -1);
2307 chip->select_chip(mtd, chipnr);
2310 chip->select_chip(mtd, -1);
2312 ops->oobretlen = ops->ooblen - readlen;
2317 if (mtd->ecc_stats.failed - stats.failed)
2320 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2324 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2325 * @mtd: MTD device structure
2326 * @from: offset to read from
2327 * @ops: oob operation description structure
2329 * NAND read data and/or out-of-band data.
2331 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2332 struct mtd_oob_ops *ops)
2338 /* Do not allow reads past end of device */
2339 if (ops->datbuf && (from + ops->len) > mtd->size) {
2340 pr_debug("%s: attempt to read beyond end of device\n",
2345 if (ops->mode != MTD_OPS_PLACE_OOB &&
2346 ops->mode != MTD_OPS_AUTO_OOB &&
2347 ops->mode != MTD_OPS_RAW)
2350 nand_get_device(mtd, FL_READING);
2353 ret = nand_do_read_oob(mtd, from, ops);
2355 ret = nand_do_read_ops(mtd, from, ops);
2357 nand_release_device(mtd);
2363 * nand_write_page_raw - [INTERN] raw page write function
2364 * @mtd: mtd info structure
2365 * @chip: nand chip info structure
2367 * @oob_required: must write chip->oob_poi to OOB
2368 * @page: page number to write
2370 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2372 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2373 const uint8_t *buf, int oob_required, int page)
2375 chip->write_buf(mtd, buf, mtd->writesize);
2377 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2383 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2384 * @mtd: mtd info structure
2385 * @chip: nand chip info structure
2387 * @oob_required: must write chip->oob_poi to OOB
2388 * @page: page number to write
2390 * We need a special oob layout and handling even when ECC isn't checked.
2392 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2393 struct nand_chip *chip,
2394 const uint8_t *buf, int oob_required,
2397 int eccsize = chip->ecc.size;
2398 int eccbytes = chip->ecc.bytes;
2399 uint8_t *oob = chip->oob_poi;
2402 for (steps = chip->ecc.steps; steps > 0; steps--) {
2403 chip->write_buf(mtd, buf, eccsize);
2406 if (chip->ecc.prepad) {
2407 chip->write_buf(mtd, oob, chip->ecc.prepad);
2408 oob += chip->ecc.prepad;
2411 chip->write_buf(mtd, oob, eccbytes);
2414 if (chip->ecc.postpad) {
2415 chip->write_buf(mtd, oob, chip->ecc.postpad);
2416 oob += chip->ecc.postpad;
2420 size = mtd->oobsize - (oob - chip->oob_poi);
2422 chip->write_buf(mtd, oob, size);
2427 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2428 * @mtd: mtd info structure
2429 * @chip: nand chip info structure
2431 * @oob_required: must write chip->oob_poi to OOB
2432 * @page: page number to write
2434 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2435 const uint8_t *buf, int oob_required,
2438 int i, eccsize = chip->ecc.size, ret;
2439 int eccbytes = chip->ecc.bytes;
2440 int eccsteps = chip->ecc.steps;
2441 uint8_t *ecc_calc = chip->buffers->ecccalc;
2442 const uint8_t *p = buf;
2444 /* Software ECC calculation */
2445 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2446 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2448 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2453 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2457 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2458 * @mtd: mtd info structure
2459 * @chip: nand chip info structure
2461 * @oob_required: must write chip->oob_poi to OOB
2462 * @page: page number to write
2464 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2465 const uint8_t *buf, int oob_required,
2468 int i, eccsize = chip->ecc.size, ret;
2469 int eccbytes = chip->ecc.bytes;
2470 int eccsteps = chip->ecc.steps;
2471 uint8_t *ecc_calc = chip->buffers->ecccalc;
2472 const uint8_t *p = buf;
2474 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2475 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2476 chip->write_buf(mtd, p, eccsize);
2477 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2480 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2485 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2492 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2493 * @mtd: mtd info structure
2494 * @chip: nand chip info structure
2495 * @offset: column address of subpage within the page
2496 * @data_len: data length
2498 * @oob_required: must write chip->oob_poi to OOB
2499 * @page: page number to write
2501 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2502 struct nand_chip *chip, uint32_t offset,
2503 uint32_t data_len, const uint8_t *buf,
2504 int oob_required, int page)
2506 uint8_t *oob_buf = chip->oob_poi;
2507 uint8_t *ecc_calc = chip->buffers->ecccalc;
2508 int ecc_size = chip->ecc.size;
2509 int ecc_bytes = chip->ecc.bytes;
2510 int ecc_steps = chip->ecc.steps;
2511 uint32_t start_step = offset / ecc_size;
2512 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2513 int oob_bytes = mtd->oobsize / ecc_steps;
2516 for (step = 0; step < ecc_steps; step++) {
2517 /* configure controller for WRITE access */
2518 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2520 /* write data (untouched subpages already masked by 0xFF) */
2521 chip->write_buf(mtd, buf, ecc_size);
2523 /* mask ECC of un-touched subpages by padding 0xFF */
2524 if ((step < start_step) || (step > end_step))
2525 memset(ecc_calc, 0xff, ecc_bytes);
2527 chip->ecc.calculate(mtd, buf, ecc_calc);
2529 /* mask OOB of un-touched subpages by padding 0xFF */
2530 /* if oob_required, preserve OOB metadata of written subpage */
2531 if (!oob_required || (step < start_step) || (step > end_step))
2532 memset(oob_buf, 0xff, oob_bytes);
2535 ecc_calc += ecc_bytes;
2536 oob_buf += oob_bytes;
2539 /* copy calculated ECC for whole page to chip->buffer->oob */
2540 /* this include masked-value(0xFF) for unwritten subpages */
2541 ecc_calc = chip->buffers->ecccalc;
2542 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2547 /* write OOB buffer to NAND device */
2548 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2555 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2556 * @mtd: mtd info structure
2557 * @chip: nand chip info structure
2559 * @oob_required: must write chip->oob_poi to OOB
2560 * @page: page number to write
2562 * The hw generator calculates the error syndrome automatically. Therefore we
2563 * need a special oob layout and handling.
2565 static int nand_write_page_syndrome(struct mtd_info *mtd,
2566 struct nand_chip *chip,
2567 const uint8_t *buf, int oob_required,
2570 int i, eccsize = chip->ecc.size;
2571 int eccbytes = chip->ecc.bytes;
2572 int eccsteps = chip->ecc.steps;
2573 const uint8_t *p = buf;
2574 uint8_t *oob = chip->oob_poi;
2576 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2578 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2579 chip->write_buf(mtd, p, eccsize);
2581 if (chip->ecc.prepad) {
2582 chip->write_buf(mtd, oob, chip->ecc.prepad);
2583 oob += chip->ecc.prepad;
2586 chip->ecc.calculate(mtd, p, oob);
2587 chip->write_buf(mtd, oob, eccbytes);
2590 if (chip->ecc.postpad) {
2591 chip->write_buf(mtd, oob, chip->ecc.postpad);
2592 oob += chip->ecc.postpad;
2596 /* Calculate remaining oob bytes */
2597 i = mtd->oobsize - (oob - chip->oob_poi);
2599 chip->write_buf(mtd, oob, i);
2605 * nand_write_page - [REPLACEABLE] write one page
2606 * @mtd: MTD device structure
2607 * @chip: NAND chip descriptor
2608 * @offset: address offset within the page
2609 * @data_len: length of actual data to be written
2610 * @buf: the data to write
2611 * @oob_required: must write chip->oob_poi to OOB
2612 * @page: page number to write
2613 * @cached: cached programming
2614 * @raw: use _raw version of write_page
2616 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2617 uint32_t offset, int data_len, const uint8_t *buf,
2618 int oob_required, int page, int cached, int raw)
2620 int status, subpage;
2622 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2623 chip->ecc.write_subpage)
2624 subpage = offset || (data_len < mtd->writesize);
2628 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2631 status = chip->ecc.write_page_raw(mtd, chip, buf,
2632 oob_required, page);
2634 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2635 buf, oob_required, page);
2637 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2644 * Cached progamming disabled for now. Not sure if it's worth the
2645 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2649 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2651 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2652 status = chip->waitfunc(mtd, chip);
2654 * See if operation failed and additional status checks are
2657 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2658 status = chip->errstat(mtd, chip, FL_WRITING, status,
2661 if (status & NAND_STATUS_FAIL)
2664 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2665 status = chip->waitfunc(mtd, chip);
2672 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2673 * @mtd: MTD device structure
2674 * @oob: oob data buffer
2675 * @len: oob data write length
2676 * @ops: oob ops structure
2678 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2679 struct mtd_oob_ops *ops)
2681 struct nand_chip *chip = mtd_to_nand(mtd);
2685 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2686 * data from a previous OOB read.
2688 memset(chip->oob_poi, 0xff, mtd->oobsize);
2690 switch (ops->mode) {
2692 case MTD_OPS_PLACE_OOB:
2694 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2697 case MTD_OPS_AUTO_OOB:
2698 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2709 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2712 * nand_do_write_ops - [INTERN] NAND write with ECC
2713 * @mtd: MTD device structure
2714 * @to: offset to write to
2715 * @ops: oob operations description structure
2717 * NAND write with ECC.
2719 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2720 struct mtd_oob_ops *ops)
2722 int chipnr, realpage, page, blockmask, column;
2723 struct nand_chip *chip = mtd_to_nand(mtd);
2724 uint32_t writelen = ops->len;
2726 uint32_t oobwritelen = ops->ooblen;
2727 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2729 uint8_t *oob = ops->oobbuf;
2730 uint8_t *buf = ops->datbuf;
2732 int oob_required = oob ? 1 : 0;
2738 /* Reject writes, which are not page aligned */
2739 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2740 pr_notice("%s: attempt to write non page aligned data\n",
2745 column = to & (mtd->writesize - 1);
2747 chipnr = (int)(to >> chip->chip_shift);
2748 chip->select_chip(mtd, chipnr);
2750 /* Check, if it is write protected */
2751 if (nand_check_wp(mtd)) {
2756 realpage = (int)(to >> chip->page_shift);
2757 page = realpage & chip->pagemask;
2758 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2760 /* Invalidate the page cache, when we write to the cached page */
2761 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2762 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2765 /* Don't allow multipage oob writes with offset */
2766 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2772 int bytes = mtd->writesize;
2773 int cached = writelen > bytes && page != blockmask;
2774 uint8_t *wbuf = buf;
2776 int part_pagewr = (column || writelen < mtd->writesize);
2780 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2781 use_bufpoi = !virt_addr_valid(buf);
2785 /* Partial page write?, or need to use bounce buffer */
2787 pr_debug("%s: using write bounce buffer for buf@%p\n",
2791 bytes = min_t(int, bytes - column, writelen);
2793 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2794 memcpy(&chip->buffers->databuf[column], buf, bytes);
2795 wbuf = chip->buffers->databuf;
2798 if (unlikely(oob)) {
2799 size_t len = min(oobwritelen, oobmaxlen);
2800 oob = nand_fill_oob(mtd, oob, len, ops);
2803 /* We still need to erase leftover OOB data */
2804 memset(chip->oob_poi, 0xff, mtd->oobsize);
2806 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2807 oob_required, page, cached,
2808 (ops->mode == MTD_OPS_RAW));
2820 page = realpage & chip->pagemask;
2821 /* Check, if we cross a chip boundary */
2824 chip->select_chip(mtd, -1);
2825 chip->select_chip(mtd, chipnr);
2829 ops->retlen = ops->len - writelen;
2831 ops->oobretlen = ops->ooblen;
2834 chip->select_chip(mtd, -1);
2839 * panic_nand_write - [MTD Interface] NAND write with ECC
2840 * @mtd: MTD device structure
2841 * @to: offset to write to
2842 * @len: number of bytes to write
2843 * @retlen: pointer to variable to store the number of written bytes
2844 * @buf: the data to write
2846 * NAND write with ECC. Used when performing writes in interrupt context, this
2847 * may for example be called by mtdoops when writing an oops while in panic.
2849 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2850 size_t *retlen, const uint8_t *buf)
2852 struct nand_chip *chip = mtd_to_nand(mtd);
2853 struct mtd_oob_ops ops;
2856 /* Wait for the device to get ready */
2857 panic_nand_wait(mtd, chip, 400);
2859 /* Grab the device */
2860 panic_nand_get_device(chip, mtd, FL_WRITING);
2862 memset(&ops, 0, sizeof(ops));
2864 ops.datbuf = (uint8_t *)buf;
2865 ops.mode = MTD_OPS_PLACE_OOB;
2867 ret = nand_do_write_ops(mtd, to, &ops);
2869 *retlen = ops.retlen;
2874 * nand_write - [MTD Interface] NAND write with ECC
2875 * @mtd: MTD device structure
2876 * @to: offset to write to
2877 * @len: number of bytes to write
2878 * @retlen: pointer to variable to store the number of written bytes
2879 * @buf: the data to write
2881 * NAND write with ECC.
2883 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2884 size_t *retlen, const uint8_t *buf)
2886 struct mtd_oob_ops ops;
2889 nand_get_device(mtd, FL_WRITING);
2890 memset(&ops, 0, sizeof(ops));
2892 ops.datbuf = (uint8_t *)buf;
2893 ops.mode = MTD_OPS_PLACE_OOB;
2894 ret = nand_do_write_ops(mtd, to, &ops);
2895 *retlen = ops.retlen;
2896 nand_release_device(mtd);
2901 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2902 * @mtd: MTD device structure
2903 * @to: offset to write to
2904 * @ops: oob operation description structure
2906 * NAND write out-of-band.
2908 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2909 struct mtd_oob_ops *ops)
2911 int chipnr, page, status, len;
2912 struct nand_chip *chip = mtd_to_nand(mtd);
2914 pr_debug("%s: to = 0x%08x, len = %i\n",
2915 __func__, (unsigned int)to, (int)ops->ooblen);
2917 len = mtd_oobavail(mtd, ops);
2919 /* Do not allow write past end of page */
2920 if ((ops->ooboffs + ops->ooblen) > len) {
2921 pr_debug("%s: attempt to write past end of page\n",
2926 if (unlikely(ops->ooboffs >= len)) {
2927 pr_debug("%s: attempt to start write outside oob\n",
2932 /* Do not allow write past end of device */
2933 if (unlikely(to >= mtd->size ||
2934 ops->ooboffs + ops->ooblen >
2935 ((mtd->size >> chip->page_shift) -
2936 (to >> chip->page_shift)) * len)) {
2937 pr_debug("%s: attempt to write beyond end of device\n",
2942 chipnr = (int)(to >> chip->chip_shift);
2943 chip->select_chip(mtd, chipnr);
2945 /* Shift to get page */
2946 page = (int)(to >> chip->page_shift);
2949 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2950 * of my DiskOnChip 2000 test units) will clear the whole data page too
2951 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2952 * it in the doc2000 driver in August 1999. dwmw2.
2956 /* Check, if it is write protected */
2957 if (nand_check_wp(mtd)) {
2958 chip->select_chip(mtd, -1);
2962 /* Invalidate the page cache, if we write to the cached page */
2963 if (page == chip->pagebuf)
2966 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2968 if (ops->mode == MTD_OPS_RAW)
2969 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2971 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2973 chip->select_chip(mtd, -1);
2978 ops->oobretlen = ops->ooblen;
2984 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2985 * @mtd: MTD device structure
2986 * @to: offset to write to
2987 * @ops: oob operation description structure
2989 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2990 struct mtd_oob_ops *ops)
2992 int ret = -ENOTSUPP;
2996 /* Do not allow writes past end of device */
2997 if (ops->datbuf && (to + ops->len) > mtd->size) {
2998 pr_debug("%s: attempt to write beyond end of device\n",
3003 nand_get_device(mtd, FL_WRITING);
3005 switch (ops->mode) {
3006 case MTD_OPS_PLACE_OOB:
3007 case MTD_OPS_AUTO_OOB:
3016 ret = nand_do_write_oob(mtd, to, ops);
3018 ret = nand_do_write_ops(mtd, to, ops);
3021 nand_release_device(mtd);
3026 * single_erase - [GENERIC] NAND standard block erase command function
3027 * @mtd: MTD device structure
3028 * @page: the page address of the block which will be erased
3030 * Standard erase command for NAND chips. Returns NAND status.
3032 static int single_erase(struct mtd_info *mtd, int page)
3034 struct nand_chip *chip = mtd_to_nand(mtd);
3035 /* Send commands to erase a block */
3036 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
3037 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3039 return chip->waitfunc(mtd, chip);
3043 * nand_erase - [MTD Interface] erase block(s)
3044 * @mtd: MTD device structure
3045 * @instr: erase instruction
3047 * Erase one ore more blocks.
3049 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3051 return nand_erase_nand(mtd, instr, 0);
3055 * nand_erase_nand - [INTERN] erase block(s)
3056 * @mtd: MTD device structure
3057 * @instr: erase instruction
3058 * @allowbbt: allow erasing the bbt area
3060 * Erase one ore more blocks.
3062 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3065 int page, status, pages_per_block, ret, chipnr;
3066 struct nand_chip *chip = mtd_to_nand(mtd);
3069 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3070 __func__, (unsigned long long)instr->addr,
3071 (unsigned long long)instr->len);
3073 if (check_offs_len(mtd, instr->addr, instr->len))
3076 /* Grab the lock and see if the device is available */
3077 nand_get_device(mtd, FL_ERASING);
3079 /* Shift to get first page */
3080 page = (int)(instr->addr >> chip->page_shift);
3081 chipnr = (int)(instr->addr >> chip->chip_shift);
3083 /* Calculate pages in each block */
3084 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3086 /* Select the NAND device */
3087 chip->select_chip(mtd, chipnr);
3089 /* Check, if it is write protected */
3090 if (nand_check_wp(mtd)) {
3091 pr_debug("%s: device is write protected!\n",
3093 instr->state = MTD_ERASE_FAILED;
3097 /* Loop through the pages */
3100 instr->state = MTD_ERASING;
3103 /* Check if we have a bad block, we do not erase bad blocks! */
3104 if (nand_block_checkbad(mtd, ((loff_t) page) <<
3105 chip->page_shift, allowbbt)) {
3106 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3108 instr->state = MTD_ERASE_FAILED;
3113 * Invalidate the page cache, if we erase the block which
3114 * contains the current cached page.
3116 if (page <= chip->pagebuf && chip->pagebuf <
3117 (page + pages_per_block))
3120 status = chip->erase(mtd, page & chip->pagemask);
3123 * See if operation failed and additional status checks are
3126 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
3127 status = chip->errstat(mtd, chip, FL_ERASING,
3130 /* See if block erase succeeded */
3131 if (status & NAND_STATUS_FAIL) {
3132 pr_debug("%s: failed erase, page 0x%08x\n",
3134 instr->state = MTD_ERASE_FAILED;
3136 ((loff_t)page << chip->page_shift);
3140 /* Increment page address and decrement length */
3141 len -= (1ULL << chip->phys_erase_shift);
3142 page += pages_per_block;
3144 /* Check, if we cross a chip boundary */
3145 if (len && !(page & chip->pagemask)) {
3147 chip->select_chip(mtd, -1);
3148 chip->select_chip(mtd, chipnr);
3151 instr->state = MTD_ERASE_DONE;
3155 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3157 /* Deselect and wake up anyone waiting on the device */
3158 chip->select_chip(mtd, -1);
3159 nand_release_device(mtd);
3161 /* Do call back function */
3163 mtd_erase_callback(instr);
3165 /* Return more or less happy */
3170 * nand_sync - [MTD Interface] sync
3171 * @mtd: MTD device structure
3173 * Sync is actually a wait for chip ready function.
3175 static void nand_sync(struct mtd_info *mtd)
3177 pr_debug("%s: called\n", __func__);
3179 /* Grab the lock and see if the device is available */
3180 nand_get_device(mtd, FL_SYNCING);
3181 /* Release it and go back */
3182 nand_release_device(mtd);
3186 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3187 * @mtd: MTD device structure
3188 * @offs: offset relative to mtd start
3190 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3192 struct nand_chip *chip = mtd_to_nand(mtd);
3193 int chipnr = (int)(offs >> chip->chip_shift);
3196 /* Select the NAND device */
3197 nand_get_device(mtd, FL_READING);
3198 chip->select_chip(mtd, chipnr);
3200 ret = nand_block_checkbad(mtd, offs, 0);
3202 chip->select_chip(mtd, -1);
3203 nand_release_device(mtd);
3209 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3210 * @mtd: MTD device structure
3211 * @ofs: offset relative to mtd start
3213 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3217 ret = nand_block_isbad(mtd, ofs);
3219 /* If it was bad already, return success and do nothing */
3225 return nand_block_markbad_lowlevel(mtd, ofs);
3229 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3230 * @mtd: MTD device structure
3231 * @chip: nand chip info structure
3232 * @addr: feature address.
3233 * @subfeature_param: the subfeature parameters, a four bytes array.
3235 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3236 int addr, uint8_t *subfeature_param)
3241 if (!chip->onfi_version ||
3242 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3243 & ONFI_OPT_CMD_SET_GET_FEATURES))
3246 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3247 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3248 chip->write_byte(mtd, subfeature_param[i]);
3250 status = chip->waitfunc(mtd, chip);
3251 if (status & NAND_STATUS_FAIL)
3257 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3258 * @mtd: MTD device structure
3259 * @chip: nand chip info structure
3260 * @addr: feature address.
3261 * @subfeature_param: the subfeature parameters, a four bytes array.
3263 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3264 int addr, uint8_t *subfeature_param)
3268 if (!chip->onfi_version ||
3269 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3270 & ONFI_OPT_CMD_SET_GET_FEATURES))
3273 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3274 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3275 *subfeature_param++ = chip->read_byte(mtd);
3280 * nand_suspend - [MTD Interface] Suspend the NAND flash
3281 * @mtd: MTD device structure
3283 static int nand_suspend(struct mtd_info *mtd)
3285 return nand_get_device(mtd, FL_PM_SUSPENDED);
3289 * nand_resume - [MTD Interface] Resume the NAND flash
3290 * @mtd: MTD device structure
3292 static void nand_resume(struct mtd_info *mtd)
3294 struct nand_chip *chip = mtd_to_nand(mtd);
3296 if (chip->state == FL_PM_SUSPENDED)
3297 nand_release_device(mtd);
3299 pr_err("%s called for a chip which is not in suspended state\n",
3304 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3305 * prevent further operations
3306 * @mtd: MTD device structure
3308 static void nand_shutdown(struct mtd_info *mtd)
3310 nand_get_device(mtd, FL_PM_SUSPENDED);
3313 /* Set default functions */
3314 static void nand_set_defaults(struct nand_chip *chip, int busw)
3316 /* check for proper chip_delay setup, set 20us if not */
3317 if (!chip->chip_delay)
3318 chip->chip_delay = 20;
3320 /* check, if a user supplied command function given */
3321 if (chip->cmdfunc == NULL)
3322 chip->cmdfunc = nand_command;
3324 /* check, if a user supplied wait function given */
3325 if (chip->waitfunc == NULL)
3326 chip->waitfunc = nand_wait;
3328 if (!chip->select_chip)
3329 chip->select_chip = nand_select_chip;
3331 /* set for ONFI nand */
3332 if (!chip->onfi_set_features)
3333 chip->onfi_set_features = nand_onfi_set_features;
3334 if (!chip->onfi_get_features)
3335 chip->onfi_get_features = nand_onfi_get_features;
3337 /* If called twice, pointers that depend on busw may need to be reset */
3338 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3339 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3340 if (!chip->read_word)
3341 chip->read_word = nand_read_word;
3342 if (!chip->block_bad)
3343 chip->block_bad = nand_block_bad;
3344 if (!chip->block_markbad)
3345 chip->block_markbad = nand_default_block_markbad;
3346 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3347 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3348 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3349 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3350 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3351 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3352 if (!chip->scan_bbt)
3353 chip->scan_bbt = nand_default_bbt;
3355 if (!chip->controller) {
3356 chip->controller = &chip->hwcontrol;
3357 nand_hw_control_init(chip->controller);
3362 /* Sanitize ONFI strings so we can safely print them */
3363 static void sanitize_string(uint8_t *s, size_t len)
3367 /* Null terminate */
3370 /* Remove non printable chars */
3371 for (i = 0; i < len - 1; i++) {
3372 if (s[i] < ' ' || s[i] > 127)
3376 /* Remove trailing spaces */
3380 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3385 for (i = 0; i < 8; i++)
3386 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3392 /* Parse the Extended Parameter Page. */
3393 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3394 struct nand_chip *chip, struct nand_onfi_params *p)
3396 struct onfi_ext_param_page *ep;
3397 struct onfi_ext_section *s;
3398 struct onfi_ext_ecc_info *ecc;
3404 len = le16_to_cpu(p->ext_param_page_length) * 16;
3405 ep = kmalloc(len, GFP_KERNEL);
3409 /* Send our own NAND_CMD_PARAM. */
3410 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3412 /* Use the Change Read Column command to skip the ONFI param pages. */
3413 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3414 sizeof(*p) * p->num_of_param_pages , -1);
3416 /* Read out the Extended Parameter Page. */
3417 chip->read_buf(mtd, (uint8_t *)ep, len);
3418 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3419 != le16_to_cpu(ep->crc))) {
3420 pr_debug("fail in the CRC.\n");
3425 * Check the signature.
3426 * Do not strictly follow the ONFI spec, maybe changed in future.
3428 if (strncmp(ep->sig, "EPPS", 4)) {
3429 pr_debug("The signature is invalid.\n");
3433 /* find the ECC section. */
3434 cursor = (uint8_t *)(ep + 1);
3435 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3436 s = ep->sections + i;
3437 if (s->type == ONFI_SECTION_TYPE_2)
3439 cursor += s->length * 16;
3441 if (i == ONFI_EXT_SECTION_MAX) {
3442 pr_debug("We can not find the ECC section.\n");
3446 /* get the info we want. */
3447 ecc = (struct onfi_ext_ecc_info *)cursor;
3449 if (!ecc->codeword_size) {
3450 pr_debug("Invalid codeword size\n");
3454 chip->ecc_strength_ds = ecc->ecc_bits;
3455 chip->ecc_step_ds = 1 << ecc->codeword_size;
3463 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3465 struct nand_chip *chip = mtd_to_nand(mtd);
3466 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3468 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3473 * Configure chip properties from Micron vendor-specific ONFI table
3475 static void nand_onfi_detect_micron(struct nand_chip *chip,
3476 struct nand_onfi_params *p)
3478 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3480 if (le16_to_cpu(p->vendor_revision) < 1)
3483 chip->read_retries = micron->read_retry_options;
3484 chip->setup_read_retry = nand_setup_read_retry_micron;
3488 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3490 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3493 struct nand_onfi_params *p = &chip->onfi_params;
3497 /* Try ONFI for unknown chip or LP */
3498 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3499 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3500 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3503 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3504 for (i = 0; i < 3; i++) {
3505 for (j = 0; j < sizeof(*p); j++)
3506 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3507 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3508 le16_to_cpu(p->crc)) {
3514 pr_err("Could not find valid ONFI parameter page; aborting\n");
3519 val = le16_to_cpu(p->revision);
3521 chip->onfi_version = 23;
3522 else if (val & (1 << 4))
3523 chip->onfi_version = 22;
3524 else if (val & (1 << 3))
3525 chip->onfi_version = 21;
3526 else if (val & (1 << 2))
3527 chip->onfi_version = 20;
3528 else if (val & (1 << 1))
3529 chip->onfi_version = 10;
3531 if (!chip->onfi_version) {
3532 pr_info("unsupported ONFI version: %d\n", val);
3536 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3537 sanitize_string(p->model, sizeof(p->model));
3539 mtd->name = p->model;
3541 mtd->writesize = le32_to_cpu(p->byte_per_page);
3544 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3545 * (don't ask me who thought of this...). MTD assumes that these
3546 * dimensions will be power-of-2, so just truncate the remaining area.
3548 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3549 mtd->erasesize *= mtd->writesize;
3551 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3553 /* See erasesize comment */
3554 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3555 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3556 chip->bits_per_cell = p->bits_per_cell;
3558 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3559 *busw = NAND_BUSWIDTH_16;
3563 if (p->ecc_bits != 0xff) {
3564 chip->ecc_strength_ds = p->ecc_bits;
3565 chip->ecc_step_ds = 512;
3566 } else if (chip->onfi_version >= 21 &&
3567 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3570 * The nand_flash_detect_ext_param_page() uses the
3571 * Change Read Column command which maybe not supported
3572 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3573 * now. We do not replace user supplied command function.
3575 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3576 chip->cmdfunc = nand_command_lp;
3578 /* The Extended Parameter Page is supported since ONFI 2.1. */
3579 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3580 pr_warn("Failed to detect ONFI extended param page\n");
3582 pr_warn("Could not retrieve ONFI ECC requirements\n");
3585 if (p->jedec_id == NAND_MFR_MICRON)
3586 nand_onfi_detect_micron(chip, p);
3592 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3594 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3597 struct nand_jedec_params *p = &chip->jedec_params;
3598 struct jedec_ecc_info *ecc;
3602 /* Try JEDEC for unknown chip or LP */
3603 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3604 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3605 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3606 chip->read_byte(mtd) != 'C')
3609 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3610 for (i = 0; i < 3; i++) {
3611 for (j = 0; j < sizeof(*p); j++)
3612 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3614 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3615 le16_to_cpu(p->crc))
3620 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3625 val = le16_to_cpu(p->revision);
3627 chip->jedec_version = 10;
3628 else if (val & (1 << 1))
3629 chip->jedec_version = 1; /* vendor specific version */
3631 if (!chip->jedec_version) {
3632 pr_info("unsupported JEDEC version: %d\n", val);
3636 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3637 sanitize_string(p->model, sizeof(p->model));
3639 mtd->name = p->model;
3641 mtd->writesize = le32_to_cpu(p->byte_per_page);
3643 /* Please reference to the comment for nand_flash_detect_onfi. */
3644 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3645 mtd->erasesize *= mtd->writesize;
3647 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3649 /* Please reference to the comment for nand_flash_detect_onfi. */
3650 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3651 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3652 chip->bits_per_cell = p->bits_per_cell;
3654 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3655 *busw = NAND_BUSWIDTH_16;
3660 ecc = &p->ecc_info[0];
3662 if (ecc->codeword_size >= 9) {
3663 chip->ecc_strength_ds = ecc->ecc_bits;
3664 chip->ecc_step_ds = 1 << ecc->codeword_size;
3666 pr_warn("Invalid codeword size\n");
3673 * nand_id_has_period - Check if an ID string has a given wraparound period
3674 * @id_data: the ID string
3675 * @arrlen: the length of the @id_data array
3676 * @period: the period of repitition
3678 * Check if an ID string is repeated within a given sequence of bytes at
3679 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3680 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3681 * if the repetition has a period of @period; otherwise, returns zero.
3683 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3686 for (i = 0; i < period; i++)
3687 for (j = i + period; j < arrlen; j += period)
3688 if (id_data[i] != id_data[j])
3694 * nand_id_len - Get the length of an ID string returned by CMD_READID
3695 * @id_data: the ID string
3696 * @arrlen: the length of the @id_data array
3698 * Returns the length of the ID string, according to known wraparound/trailing
3699 * zero patterns. If no pattern exists, returns the length of the array.
3701 static int nand_id_len(u8 *id_data, int arrlen)
3703 int last_nonzero, period;
3705 /* Find last non-zero byte */
3706 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3707 if (id_data[last_nonzero])
3711 if (last_nonzero < 0)
3714 /* Calculate wraparound period */
3715 for (period = 1; period < arrlen; period++)
3716 if (nand_id_has_period(id_data, arrlen, period))
3719 /* There's a repeated pattern */
3720 if (period < arrlen)
3723 /* There are trailing zeros */
3724 if (last_nonzero < arrlen - 1)
3725 return last_nonzero + 1;
3727 /* No pattern detected */
3731 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3732 static int nand_get_bits_per_cell(u8 cellinfo)
3736 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3737 bits >>= NAND_CI_CELLTYPE_SHIFT;
3742 * Many new NAND share similar device ID codes, which represent the size of the
3743 * chip. The rest of the parameters must be decoded according to generic or
3744 * manufacturer-specific "extended ID" decoding patterns.
3746 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3747 u8 id_data[8], int *busw)
3750 /* The 3rd id byte holds MLC / multichip data */
3751 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3752 /* The 4th id byte is the important one */
3755 id_len = nand_id_len(id_data, 8);
3758 * Field definitions are in the following datasheets:
3759 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3760 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3761 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3763 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3764 * ID to decide what to do.
3766 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3767 !nand_is_slc(chip) && id_data[5] != 0x00) {
3769 mtd->writesize = 2048 << (extid & 0x03);
3772 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3792 default: /* Other cases are "reserved" (unknown) */
3793 mtd->oobsize = 1024;
3797 /* Calc blocksize */
3798 mtd->erasesize = (128 * 1024) <<
3799 (((extid >> 1) & 0x04) | (extid & 0x03));
3801 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3802 !nand_is_slc(chip)) {
3806 mtd->writesize = 2048 << (extid & 0x03);
3809 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3833 /* Calc blocksize */
3834 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3836 mtd->erasesize = (128 * 1024) << tmp;
3837 else if (tmp == 0x03)
3838 mtd->erasesize = 768 * 1024;
3840 mtd->erasesize = (64 * 1024) << tmp;
3844 mtd->writesize = 1024 << (extid & 0x03);
3847 mtd->oobsize = (8 << (extid & 0x01)) *
3848 (mtd->writesize >> 9);
3850 /* Calc blocksize. Blocksize is multiples of 64KiB */
3851 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3853 /* Get buswidth information */
3854 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3857 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3858 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3860 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3862 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3864 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3865 nand_is_slc(chip) &&
3866 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3867 !(id_data[4] & 0x80) /* !BENAND */) {
3868 mtd->oobsize = 32 * mtd->writesize >> 9;
3875 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3876 * decodes a matching ID table entry and assigns the MTD size parameters for
3879 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3880 struct nand_flash_dev *type, u8 id_data[8],
3883 int maf_id = id_data[0];
3885 mtd->erasesize = type->erasesize;
3886 mtd->writesize = type->pagesize;
3887 mtd->oobsize = mtd->writesize / 32;
3888 *busw = type->options & NAND_BUSWIDTH_16;
3890 /* All legacy ID NAND are small-page, SLC */
3891 chip->bits_per_cell = 1;
3894 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3895 * some Spansion chips have erasesize that conflicts with size
3896 * listed in nand_ids table.
3897 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3899 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3900 && id_data[6] == 0x00 && id_data[7] == 0x00
3901 && mtd->writesize == 512) {
3902 mtd->erasesize = 128 * 1024;
3903 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3908 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3909 * heuristic patterns using various detected parameters (e.g., manufacturer,
3910 * page size, cell-type information).
3912 static void nand_decode_bbm_options(struct mtd_info *mtd,
3913 struct nand_chip *chip, u8 id_data[8])
3915 int maf_id = id_data[0];
3917 /* Set the bad block position */
3918 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3919 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3921 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3924 * Bad block marker is stored in the last page of each block on Samsung
3925 * and Hynix MLC devices; stored in first two pages of each block on
3926 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3927 * AMD/Spansion, and Macronix. All others scan only the first page.
3929 if (!nand_is_slc(chip) &&
3930 (maf_id == NAND_MFR_SAMSUNG ||
3931 maf_id == NAND_MFR_HYNIX))
3932 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3933 else if ((nand_is_slc(chip) &&
3934 (maf_id == NAND_MFR_SAMSUNG ||
3935 maf_id == NAND_MFR_HYNIX ||
3936 maf_id == NAND_MFR_TOSHIBA ||
3937 maf_id == NAND_MFR_AMD ||
3938 maf_id == NAND_MFR_MACRONIX)) ||
3939 (mtd->writesize == 2048 &&
3940 maf_id == NAND_MFR_MICRON))
3941 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3944 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3946 return type->id_len;
3949 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3950 struct nand_flash_dev *type, u8 *id_data, int *busw)
3952 if (!strncmp(type->id, id_data, type->id_len)) {
3953 mtd->writesize = type->pagesize;
3954 mtd->erasesize = type->erasesize;
3955 mtd->oobsize = type->oobsize;
3957 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3958 chip->chipsize = (uint64_t)type->chipsize << 20;
3959 chip->options |= type->options;
3960 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3961 chip->ecc_step_ds = NAND_ECC_STEP(type);
3962 chip->onfi_timing_mode_default =
3963 type->onfi_timing_mode_default;
3965 *busw = type->options & NAND_BUSWIDTH_16;
3968 mtd->name = type->name;
3976 * Get the flash and manufacturer id and lookup if the type is supported.
3978 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3979 struct nand_chip *chip,
3980 int *maf_id, int *dev_id,
3981 struct nand_flash_dev *type)
3987 /* Select the device */
3988 chip->select_chip(mtd, 0);
3991 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3996 /* Send the command for reading device ID */
3997 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3999 /* Read manufacturer and device IDs */
4000 *maf_id = chip->read_byte(mtd);
4001 *dev_id = chip->read_byte(mtd);
4004 * Try again to make sure, as some systems the bus-hold or other
4005 * interface concerns can cause random data which looks like a
4006 * possibly credible NAND flash to appear. If the two results do
4007 * not match, ignore the device completely.
4010 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4012 /* Read entire ID string */
4013 for (i = 0; i < 8; i++)
4014 id_data[i] = chip->read_byte(mtd);
4016 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4017 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4018 *maf_id, *dev_id, id_data[0], id_data[1]);
4019 return ERR_PTR(-ENODEV);
4023 type = nand_flash_ids;
4025 for (; type->name != NULL; type++) {
4026 if (is_full_id_nand(type)) {
4027 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
4029 } else if (*dev_id == type->dev_id) {
4034 chip->onfi_version = 0;
4035 if (!type->name || !type->pagesize) {
4036 /* Check if the chip is ONFI compliant */
4037 if (nand_flash_detect_onfi(mtd, chip, &busw))
4040 /* Check if the chip is JEDEC compliant */
4041 if (nand_flash_detect_jedec(mtd, chip, &busw))
4046 return ERR_PTR(-ENODEV);
4049 mtd->name = type->name;
4051 chip->chipsize = (uint64_t)type->chipsize << 20;
4053 if (!type->pagesize) {
4054 /* Decode parameters from extended ID */
4055 nand_decode_ext_id(mtd, chip, id_data, &busw);
4057 nand_decode_id(mtd, chip, type, id_data, &busw);
4059 /* Get chip options */
4060 chip->options |= type->options;
4063 * Check if chip is not a Samsung device. Do not clear the
4064 * options for chips which do not have an extended id.
4066 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
4067 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
4070 /* Try to identify manufacturer */
4071 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
4072 if (nand_manuf_ids[maf_idx].id == *maf_id)
4076 if (chip->options & NAND_BUSWIDTH_AUTO) {
4077 WARN_ON(chip->options & NAND_BUSWIDTH_16);
4078 chip->options |= busw;
4079 nand_set_defaults(chip, busw);
4080 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4082 * Check, if buswidth is correct. Hardware drivers should set
4085 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4087 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
4088 pr_warn("bus width %d instead %d bit\n",
4089 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
4091 return ERR_PTR(-EINVAL);
4094 nand_decode_bbm_options(mtd, chip, id_data);
4096 /* Calculate the address shift from the page size */
4097 chip->page_shift = ffs(mtd->writesize) - 1;
4098 /* Convert chipsize to number of pages per chip -1 */
4099 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4101 chip->bbt_erase_shift = chip->phys_erase_shift =
4102 ffs(mtd->erasesize) - 1;
4103 if (chip->chipsize & 0xffffffff)
4104 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4106 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4107 chip->chip_shift += 32 - 1;
4110 chip->badblockbits = 8;
4111 chip->erase = single_erase;
4113 /* Do not replace user supplied command function! */
4114 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4115 chip->cmdfunc = nand_command_lp;
4117 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4120 if (chip->onfi_version)
4121 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4122 chip->onfi_params.model);
4123 else if (chip->jedec_version)
4124 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4125 chip->jedec_params.model);
4127 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4130 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4131 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4132 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4136 static const char * const nand_ecc_modes[] = {
4137 [NAND_ECC_NONE] = "none",
4138 [NAND_ECC_SOFT] = "soft",
4139 [NAND_ECC_HW] = "hw",
4140 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
4141 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4144 static int of_get_nand_ecc_mode(struct device_node *np)
4149 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4153 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4154 if (!strcasecmp(pm, nand_ecc_modes[i]))
4158 * For backward compatibility we support few obsoleted values that don't
4159 * have their mappings into nand_ecc_modes_t anymore (they were merged
4160 * with other enums).
4162 if (!strcasecmp(pm, "soft_bch"))
4163 return NAND_ECC_SOFT;
4168 static const char * const nand_ecc_algos[] = {
4169 [NAND_ECC_HAMMING] = "hamming",
4170 [NAND_ECC_BCH] = "bch",
4173 static int of_get_nand_ecc_algo(struct device_node *np)
4178 err = of_property_read_string(np, "nand-ecc-algo", &pm);
4180 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4181 if (!strcasecmp(pm, nand_ecc_algos[i]))
4187 * For backward compatibility we also read "nand-ecc-mode" checking
4188 * for some obsoleted values that were specifying ECC algorithm.
4190 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4194 if (!strcasecmp(pm, "soft"))
4195 return NAND_ECC_HAMMING;
4196 else if (!strcasecmp(pm, "soft_bch"))
4197 return NAND_ECC_BCH;
4202 static int of_get_nand_ecc_step_size(struct device_node *np)
4207 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4208 return ret ? ret : val;
4211 static int of_get_nand_ecc_strength(struct device_node *np)
4216 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4217 return ret ? ret : val;
4220 static int of_get_nand_bus_width(struct device_node *np)
4224 if (of_property_read_u32(np, "nand-bus-width", &val))
4236 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4238 return of_property_read_bool(np, "nand-on-flash-bbt");
4241 static int nand_dt_init(struct nand_chip *chip)
4243 struct device_node *dn = nand_get_flash_node(chip);
4244 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4249 if (of_get_nand_bus_width(dn) == 16)
4250 chip->options |= NAND_BUSWIDTH_16;
4252 if (of_get_nand_on_flash_bbt(dn))
4253 chip->bbt_options |= NAND_BBT_USE_FLASH;
4255 ecc_mode = of_get_nand_ecc_mode(dn);
4256 ecc_algo = of_get_nand_ecc_algo(dn);
4257 ecc_strength = of_get_nand_ecc_strength(dn);
4258 ecc_step = of_get_nand_ecc_step_size(dn);
4260 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
4261 (!(ecc_step >= 0) && ecc_strength >= 0)) {
4262 pr_err("must set both strength and step size in DT\n");
4267 chip->ecc.mode = ecc_mode;
4270 chip->ecc.algo = ecc_algo;
4272 if (ecc_strength >= 0)
4273 chip->ecc.strength = ecc_strength;
4276 chip->ecc.size = ecc_step;
4278 if (of_property_read_bool(dn, "nand-ecc-maximize"))
4279 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4285 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4286 * @mtd: MTD device structure
4287 * @maxchips: number of chips to scan for
4288 * @table: alternative NAND ID table
4290 * This is the first phase of the normal nand_scan() function. It reads the
4291 * flash ID and sets up MTD fields accordingly.
4294 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4295 struct nand_flash_dev *table)
4297 int i, nand_maf_id, nand_dev_id;
4298 struct nand_chip *chip = mtd_to_nand(mtd);
4299 struct nand_flash_dev *type;
4302 ret = nand_dt_init(chip);
4306 if (!mtd->name && mtd->dev.parent)
4307 mtd->name = dev_name(mtd->dev.parent);
4309 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4311 * Default functions assigned for chip_select() and
4312 * cmdfunc() both expect cmd_ctrl() to be populated,
4313 * so we need to check that that's the case
4315 pr_err("chip.cmd_ctrl() callback is not provided");
4318 /* Set the default functions */
4319 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4321 /* Read the flash type */
4322 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4323 &nand_dev_id, table);
4326 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4327 pr_warn("No NAND device found\n");
4328 chip->select_chip(mtd, -1);
4329 return PTR_ERR(type);
4332 ret = nand_init_data_interface(chip);
4336 chip->select_chip(mtd, -1);
4338 /* Check for a chip array */
4339 for (i = 1; i < maxchips; i++) {
4340 chip->select_chip(mtd, i);
4341 /* See comment in nand_get_flash_type for reset */
4343 /* Send the command for reading device ID */
4344 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4345 /* Read manufacturer and device IDs */
4346 if (nand_maf_id != chip->read_byte(mtd) ||
4347 nand_dev_id != chip->read_byte(mtd)) {
4348 chip->select_chip(mtd, -1);
4351 chip->select_chip(mtd, -1);
4354 pr_info("%d chips detected\n", i);
4356 /* Store the number of chips and calc total size for mtd */
4358 mtd->size = i * chip->chipsize;
4362 EXPORT_SYMBOL(nand_scan_ident);
4364 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4366 struct nand_chip *chip = mtd_to_nand(mtd);
4367 struct nand_ecc_ctrl *ecc = &chip->ecc;
4369 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4372 switch (ecc->algo) {
4373 case NAND_ECC_HAMMING:
4374 ecc->calculate = nand_calculate_ecc;
4375 ecc->correct = nand_correct_data;
4376 ecc->read_page = nand_read_page_swecc;
4377 ecc->read_subpage = nand_read_subpage;
4378 ecc->write_page = nand_write_page_swecc;
4379 ecc->read_page_raw = nand_read_page_raw;
4380 ecc->write_page_raw = nand_write_page_raw;
4381 ecc->read_oob = nand_read_oob_std;
4382 ecc->write_oob = nand_write_oob_std;
4389 if (!mtd_nand_has_bch()) {
4390 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4393 ecc->calculate = nand_bch_calculate_ecc;
4394 ecc->correct = nand_bch_correct_data;
4395 ecc->read_page = nand_read_page_swecc;
4396 ecc->read_subpage = nand_read_subpage;
4397 ecc->write_page = nand_write_page_swecc;
4398 ecc->read_page_raw = nand_read_page_raw;
4399 ecc->write_page_raw = nand_write_page_raw;
4400 ecc->read_oob = nand_read_oob_std;
4401 ecc->write_oob = nand_write_oob_std;
4404 * Board driver should supply ecc.size and ecc.strength
4405 * values to select how many bits are correctable.
4406 * Otherwise, default to 4 bits for large page devices.
4408 if (!ecc->size && (mtd->oobsize >= 64)) {
4414 * if no ecc placement scheme was provided pickup the default
4417 if (!mtd->ooblayout) {
4418 /* handle large page devices only */
4419 if (mtd->oobsize < 64) {
4420 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4424 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4429 * We can only maximize ECC config when the default layout is
4430 * used, otherwise we don't know how many bytes can really be
4433 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4434 ecc->options & NAND_ECC_MAXIMIZE) {
4437 /* Always prefer 1k blocks over 512bytes ones */
4439 steps = mtd->writesize / ecc->size;
4441 /* Reserve 2 bytes for the BBM */
4442 bytes = (mtd->oobsize - 2) / steps;
4443 ecc->strength = bytes * 8 / fls(8 * ecc->size);
4446 /* See nand_bch_init() for details. */
4448 ecc->priv = nand_bch_init(mtd);
4450 WARN(1, "BCH ECC initialization failed!\n");
4455 WARN(1, "Unsupported ECC algorithm!\n");
4461 * Check if the chip configuration meet the datasheet requirements.
4463 * If our configuration corrects A bits per B bytes and the minimum
4464 * required correction level is X bits per Y bytes, then we must ensure
4465 * both of the following are true:
4467 * (1) A / B >= X / Y
4470 * Requirement (1) ensures we can correct for the required bitflip density.
4471 * Requirement (2) ensures we can correct even when all bitflips are clumped
4472 * in the same sector.
4474 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4476 struct nand_chip *chip = mtd_to_nand(mtd);
4477 struct nand_ecc_ctrl *ecc = &chip->ecc;
4480 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4481 /* Not enough information */
4485 * We get the number of corrected bits per page to compare
4486 * the correction density.
4488 corr = (mtd->writesize * ecc->strength) / ecc->size;
4489 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4491 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4495 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4496 * @mtd: MTD device structure
4498 * This is the second phase of the normal nand_scan() function. It fills out
4499 * all the uninitialized function pointers with the defaults and scans for a
4500 * bad block table if appropriate.
4502 int nand_scan_tail(struct mtd_info *mtd)
4504 struct nand_chip *chip = mtd_to_nand(mtd);
4505 struct nand_ecc_ctrl *ecc = &chip->ecc;
4506 struct nand_buffers *nbuf;
4509 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4510 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4511 !(chip->bbt_options & NAND_BBT_USE_FLASH)))
4514 if (!(chip->options & NAND_OWN_BUFFERS)) {
4515 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4516 + mtd->oobsize * 3, GFP_KERNEL);
4519 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4520 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4521 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4523 chip->buffers = nbuf;
4529 /* Set the internal oob buffer location, just after the page data */
4530 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4533 * If no default placement scheme is given, select an appropriate one.
4535 if (!mtd->ooblayout &&
4536 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4537 switch (mtd->oobsize) {
4540 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
4544 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4547 WARN(1, "No oob scheme defined for oobsize %d\n",
4554 if (!chip->write_page)
4555 chip->write_page = nand_write_page;
4558 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4559 * selected and we have 256 byte pagesize fallback to software ECC
4562 switch (ecc->mode) {
4563 case NAND_ECC_HW_OOB_FIRST:
4564 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4565 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4566 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4570 if (!ecc->read_page)
4571 ecc->read_page = nand_read_page_hwecc_oob_first;
4574 /* Use standard hwecc read page function? */
4575 if (!ecc->read_page)
4576 ecc->read_page = nand_read_page_hwecc;
4577 if (!ecc->write_page)
4578 ecc->write_page = nand_write_page_hwecc;
4579 if (!ecc->read_page_raw)
4580 ecc->read_page_raw = nand_read_page_raw;
4581 if (!ecc->write_page_raw)
4582 ecc->write_page_raw = nand_write_page_raw;
4584 ecc->read_oob = nand_read_oob_std;
4585 if (!ecc->write_oob)
4586 ecc->write_oob = nand_write_oob_std;
4587 if (!ecc->read_subpage)
4588 ecc->read_subpage = nand_read_subpage;
4589 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4590 ecc->write_subpage = nand_write_subpage_hwecc;
4592 case NAND_ECC_HW_SYNDROME:
4593 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4595 ecc->read_page == nand_read_page_hwecc ||
4597 ecc->write_page == nand_write_page_hwecc)) {
4598 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4602 /* Use standard syndrome read/write page function? */
4603 if (!ecc->read_page)
4604 ecc->read_page = nand_read_page_syndrome;
4605 if (!ecc->write_page)
4606 ecc->write_page = nand_write_page_syndrome;
4607 if (!ecc->read_page_raw)
4608 ecc->read_page_raw = nand_read_page_raw_syndrome;
4609 if (!ecc->write_page_raw)
4610 ecc->write_page_raw = nand_write_page_raw_syndrome;
4612 ecc->read_oob = nand_read_oob_syndrome;
4613 if (!ecc->write_oob)
4614 ecc->write_oob = nand_write_oob_syndrome;
4616 if (mtd->writesize >= ecc->size) {
4617 if (!ecc->strength) {
4618 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4624 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4625 ecc->size, mtd->writesize);
4626 ecc->mode = NAND_ECC_SOFT;
4627 ecc->algo = NAND_ECC_HAMMING;
4630 ret = nand_set_ecc_soft_ops(mtd);
4638 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4639 ecc->read_page = nand_read_page_raw;
4640 ecc->write_page = nand_write_page_raw;
4641 ecc->read_oob = nand_read_oob_std;
4642 ecc->read_page_raw = nand_read_page_raw;
4643 ecc->write_page_raw = nand_write_page_raw;
4644 ecc->write_oob = nand_write_oob_std;
4645 ecc->size = mtd->writesize;
4651 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4656 /* For many systems, the standard OOB write also works for raw */
4657 if (!ecc->read_oob_raw)
4658 ecc->read_oob_raw = ecc->read_oob;
4659 if (!ecc->write_oob_raw)
4660 ecc->write_oob_raw = ecc->write_oob;
4662 /* propagate ecc info to mtd_info */
4663 mtd->ecc_strength = ecc->strength;
4664 mtd->ecc_step_size = ecc->size;
4667 * Set the number of read / write steps for one page depending on ECC
4670 ecc->steps = mtd->writesize / ecc->size;
4671 if (ecc->steps * ecc->size != mtd->writesize) {
4672 WARN(1, "Invalid ECC parameters\n");
4676 ecc->total = ecc->steps * ecc->bytes;
4679 * The number of bytes available for a client to place data into
4680 * the out of band area.
4682 ret = mtd_ooblayout_count_freebytes(mtd);
4686 mtd->oobavail = ret;
4688 /* ECC sanity check: warn if it's too weak */
4689 if (!nand_ecc_strength_good(mtd))
4690 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4693 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4694 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4695 switch (ecc->steps) {
4697 mtd->subpage_sft = 1;
4702 mtd->subpage_sft = 2;
4706 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4708 /* Initialize state */
4709 chip->state = FL_READY;
4711 /* Invalidate the pagebuffer reference */
4714 /* Large page NAND with SOFT_ECC should support subpage reads */
4715 switch (ecc->mode) {
4717 if (chip->page_shift > 9)
4718 chip->options |= NAND_SUBPAGE_READ;
4725 /* Fill in remaining MTD driver data */
4726 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4727 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4729 mtd->_erase = nand_erase;
4731 mtd->_unpoint = NULL;
4732 mtd->_read = nand_read;
4733 mtd->_write = nand_write;
4734 mtd->_panic_write = panic_nand_write;
4735 mtd->_read_oob = nand_read_oob;
4736 mtd->_write_oob = nand_write_oob;
4737 mtd->_sync = nand_sync;
4739 mtd->_unlock = NULL;
4740 mtd->_suspend = nand_suspend;
4741 mtd->_resume = nand_resume;
4742 mtd->_reboot = nand_shutdown;
4743 mtd->_block_isreserved = nand_block_isreserved;
4744 mtd->_block_isbad = nand_block_isbad;
4745 mtd->_block_markbad = nand_block_markbad;
4746 mtd->writebufsize = mtd->writesize;
4749 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4750 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4753 if (!mtd->bitflip_threshold)
4754 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4756 /* Check, if we should skip the bad block table scan */
4757 if (chip->options & NAND_SKIP_BBTSCAN)
4760 /* Build bad block table */
4761 return chip->scan_bbt(mtd);
4763 if (!(chip->options & NAND_OWN_BUFFERS))
4764 kfree(chip->buffers);
4767 EXPORT_SYMBOL(nand_scan_tail);
4770 * is_module_text_address() isn't exported, and it's mostly a pointless
4771 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4772 * to call us from in-kernel code if the core NAND support is modular.
4775 #define caller_is_module() (1)
4777 #define caller_is_module() \
4778 is_module_text_address((unsigned long)__builtin_return_address(0))
4782 * nand_scan - [NAND Interface] Scan for the NAND device
4783 * @mtd: MTD device structure
4784 * @maxchips: number of chips to scan for
4786 * This fills out all the uninitialized function pointers with the defaults.
4787 * The flash ID is read and the mtd/chip structures are filled with the
4788 * appropriate values.
4790 int nand_scan(struct mtd_info *mtd, int maxchips)
4794 ret = nand_scan_ident(mtd, maxchips, NULL);
4796 ret = nand_scan_tail(mtd);
4799 EXPORT_SYMBOL(nand_scan);
4802 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
4803 * @chip: NAND chip object
4805 void nand_cleanup(struct nand_chip *chip)
4807 if (chip->ecc.mode == NAND_ECC_SOFT &&
4808 chip->ecc.algo == NAND_ECC_BCH)
4809 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4811 nand_release_data_interface(chip);
4813 /* Free bad block table memory */
4815 if (!(chip->options & NAND_OWN_BUFFERS))
4816 kfree(chip->buffers);
4818 /* Free bad block descriptor memory */
4819 if (chip->badblock_pattern && chip->badblock_pattern->options
4820 & NAND_BBT_DYNAMICSTRUCT)
4821 kfree(chip->badblock_pattern);
4823 EXPORT_SYMBOL_GPL(nand_cleanup);
4826 * nand_release - [NAND Interface] Unregister the MTD device and free resources
4827 * held by the NAND device
4828 * @mtd: MTD device structure
4830 void nand_release(struct mtd_info *mtd)
4832 mtd_device_unregister(mtd);
4833 nand_cleanup(mtd_to_nand(mtd));
4835 EXPORT_SYMBOL_GPL(nand_release);
4837 MODULE_LICENSE("GPL");
4840 MODULE_DESCRIPTION("Generic NAND flash driver code");