2 * drivers/mtd/nand/fsmc_nand.c
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
8 * Copyright © 2010 ST Microelectronics
12 * Based on drivers/mtd/nand/nomadik_nand.c
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
35 #include <linux/mtd/partitions.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/fsmc.h>
39 #include <linux/amba/bus.h>
40 #include <mtd/mtd-abi.h>
42 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
43 struct mtd_oob_region *oobregion)
45 struct nand_chip *chip = mtd_to_nand(mtd);
47 if (section >= chip->ecc.steps)
50 oobregion->offset = (section * 16) + 2;
51 oobregion->length = 3;
56 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
59 struct nand_chip *chip = mtd_to_nand(mtd);
61 if (section >= chip->ecc.steps)
64 oobregion->offset = (section * 16) + 8;
66 if (section < chip->ecc.steps - 1)
67 oobregion->length = 8;
69 oobregion->length = mtd->oobsize - oobregion->offset;
74 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
75 .ecc = fsmc_ecc1_ooblayout_ecc,
76 .free = fsmc_ecc1_ooblayout_free,
80 * ECC placement definitions in oobfree type format.
81 * There are 13 bytes of ecc for every 512 byte block and it has to be read
82 * consecutively and immediately after the 512 byte data block for hardware to
83 * generate the error bit offsets in 512 byte data.
85 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
86 struct mtd_oob_region *oobregion)
88 struct nand_chip *chip = mtd_to_nand(mtd);
90 if (section >= chip->ecc.steps)
93 oobregion->length = chip->ecc.bytes;
95 if (!section && mtd->writesize <= 512)
96 oobregion->offset = 0;
98 oobregion->offset = (section * 16) + 2;
103 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
104 struct mtd_oob_region *oobregion)
106 struct nand_chip *chip = mtd_to_nand(mtd);
108 if (section >= chip->ecc.steps)
111 oobregion->offset = (section * 16) + 15;
113 if (section < chip->ecc.steps - 1)
114 oobregion->length = 3;
116 oobregion->length = mtd->oobsize - oobregion->offset;
121 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
122 .ecc = fsmc_ecc4_ooblayout_ecc,
123 .free = fsmc_ecc4_ooblayout_free,
127 * struct fsmc_nand_data - structure for FSMC NAND device state
129 * @pid: Part ID on the AMBA PrimeCell format
130 * @mtd: MTD info for a NAND flash.
131 * @nand: Chip related info for a NAND flash.
132 * @partitions: Partition info for a NAND Flash.
133 * @nr_partitions: Total number of partition of a NAND flash.
135 * @bank: Bank number for probed device.
136 * @clk: Clock structure for FSMC.
138 * @read_dma_chan: DMA channel for read access
139 * @write_dma_chan: DMA channel for write access to NAND
140 * @dma_access_complete: Completion structure
142 * @data_pa: NAND Physical port for Data.
143 * @data_va: NAND port for Data.
144 * @cmd_va: NAND port for Command.
145 * @addr_va: NAND port for Address.
146 * @regs_va: FSMC regs base address.
148 struct fsmc_nand_data {
150 struct nand_chip nand;
151 struct mtd_partition *partitions;
152 unsigned int nr_partitions;
156 enum access_mode mode;
159 /* DMA related objects */
160 struct dma_chan *read_dma_chan;
161 struct dma_chan *write_dma_chan;
162 struct completion dma_access_complete;
164 struct fsmc_nand_timings *dev_timings;
167 void __iomem *data_va;
168 void __iomem *cmd_va;
169 void __iomem *addr_va;
170 void __iomem *regs_va;
172 void (*select_chip)(uint32_t bank, uint32_t busw);
175 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
177 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
180 /* Assert CS signal based on chipnr */
181 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
183 struct nand_chip *chip = mtd_to_nand(mtd);
184 struct fsmc_nand_data *host;
186 host = mtd_to_fsmc(mtd);
190 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196 if (host->select_chip)
197 host->select_chip(chipnr,
198 chip->options & NAND_BUSWIDTH_16);
202 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
207 * fsmc_cmd_ctrl - For facilitaing Hardware access
208 * This routine allows hardware specific access to control-lines(ALE,CLE)
210 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
212 struct nand_chip *this = mtd_to_nand(mtd);
213 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
214 void __iomem *regs = host->regs_va;
215 unsigned int bank = host->bank;
217 if (ctrl & NAND_CTRL_CHANGE) {
220 if (ctrl & NAND_CLE) {
221 this->IO_ADDR_R = host->cmd_va;
222 this->IO_ADDR_W = host->cmd_va;
223 } else if (ctrl & NAND_ALE) {
224 this->IO_ADDR_R = host->addr_va;
225 this->IO_ADDR_W = host->addr_va;
227 this->IO_ADDR_R = host->data_va;
228 this->IO_ADDR_W = host->data_va;
231 pc = readl(FSMC_NAND_REG(regs, bank, PC));
236 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
241 if (cmd != NAND_CMD_NONE)
242 writeb_relaxed(cmd, this->IO_ADDR_W);
246 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
248 * This routine initializes timing parameters related to NAND memory access in
251 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
252 uint32_t busw, struct fsmc_nand_timings *timings)
254 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
255 uint32_t tclr, tar, thiz, thold, twait, tset;
256 struct fsmc_nand_timings *tims;
257 struct fsmc_nand_timings default_timings = {
261 .thold = FSMC_THOLD_4,
262 .twait = FSMC_TWAIT_6,
269 tims = &default_timings;
271 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
272 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
273 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
274 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
275 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
276 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
279 writel_relaxed(value | FSMC_DEVWID_16,
280 FSMC_NAND_REG(regs, bank, PC));
282 writel_relaxed(value | FSMC_DEVWID_8,
283 FSMC_NAND_REG(regs, bank, PC));
285 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
286 FSMC_NAND_REG(regs, bank, PC));
287 writel_relaxed(thiz | thold | twait | tset,
288 FSMC_NAND_REG(regs, bank, COMM));
289 writel_relaxed(thiz | thold | twait | tset,
290 FSMC_NAND_REG(regs, bank, ATTRIB));
294 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
296 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
298 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
299 void __iomem *regs = host->regs_va;
300 uint32_t bank = host->bank;
302 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
303 FSMC_NAND_REG(regs, bank, PC));
304 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
305 FSMC_NAND_REG(regs, bank, PC));
306 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
307 FSMC_NAND_REG(regs, bank, PC));
311 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
312 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
315 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
318 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
319 void __iomem *regs = host->regs_va;
320 uint32_t bank = host->bank;
322 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
325 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
329 } while (!time_after_eq(jiffies, deadline));
331 if (time_after_eq(jiffies, deadline)) {
332 dev_err(host->dev, "calculate ecc timed out\n");
336 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
337 ecc[0] = (uint8_t) (ecc_tmp >> 0);
338 ecc[1] = (uint8_t) (ecc_tmp >> 8);
339 ecc[2] = (uint8_t) (ecc_tmp >> 16);
340 ecc[3] = (uint8_t) (ecc_tmp >> 24);
342 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
343 ecc[4] = (uint8_t) (ecc_tmp >> 0);
344 ecc[5] = (uint8_t) (ecc_tmp >> 8);
345 ecc[6] = (uint8_t) (ecc_tmp >> 16);
346 ecc[7] = (uint8_t) (ecc_tmp >> 24);
348 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
349 ecc[8] = (uint8_t) (ecc_tmp >> 0);
350 ecc[9] = (uint8_t) (ecc_tmp >> 8);
351 ecc[10] = (uint8_t) (ecc_tmp >> 16);
352 ecc[11] = (uint8_t) (ecc_tmp >> 24);
354 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
355 ecc[12] = (uint8_t) (ecc_tmp >> 16);
361 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
362 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
365 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
368 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
369 void __iomem *regs = host->regs_va;
370 uint32_t bank = host->bank;
373 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
374 ecc[0] = (uint8_t) (ecc_tmp >> 0);
375 ecc[1] = (uint8_t) (ecc_tmp >> 8);
376 ecc[2] = (uint8_t) (ecc_tmp >> 16);
381 /* Count the number of 0's in buff upto a max of max_bits */
382 static int count_written_bits(uint8_t *buff, int size, int max_bits)
384 int k, written_bits = 0;
386 for (k = 0; k < size; k++) {
387 written_bits += hweight8(~buff[k]);
388 if (written_bits > max_bits)
395 static void dma_complete(void *param)
397 struct fsmc_nand_data *host = param;
399 complete(&host->dma_access_complete);
402 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
403 enum dma_data_direction direction)
405 struct dma_chan *chan;
406 struct dma_device *dma_dev;
407 struct dma_async_tx_descriptor *tx;
408 dma_addr_t dma_dst, dma_src, dma_addr;
410 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
412 unsigned long time_left;
414 if (direction == DMA_TO_DEVICE)
415 chan = host->write_dma_chan;
416 else if (direction == DMA_FROM_DEVICE)
417 chan = host->read_dma_chan;
421 dma_dev = chan->device;
422 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
424 if (direction == DMA_TO_DEVICE) {
426 dma_dst = host->data_pa;
428 dma_src = host->data_pa;
432 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
435 dev_err(host->dev, "device_prep_dma_memcpy error\n");
440 tx->callback = dma_complete;
441 tx->callback_param = host;
442 cookie = tx->tx_submit(tx);
444 ret = dma_submit_error(cookie);
446 dev_err(host->dev, "dma_submit_error %d\n", cookie);
450 dma_async_issue_pending(chan);
453 wait_for_completion_timeout(&host->dma_access_complete,
454 msecs_to_jiffies(3000));
455 if (time_left == 0) {
456 dmaengine_terminate_all(chan);
457 dev_err(host->dev, "wait_for_completion_timeout\n");
465 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
471 * fsmc_write_buf - write buffer to chip
472 * @mtd: MTD device structure
474 * @len: number of bytes to write
476 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
479 struct nand_chip *chip = mtd_to_nand(mtd);
481 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
482 IS_ALIGNED(len, sizeof(uint32_t))) {
483 uint32_t *p = (uint32_t *)buf;
485 for (i = 0; i < len; i++)
486 writel_relaxed(p[i], chip->IO_ADDR_W);
488 for (i = 0; i < len; i++)
489 writeb_relaxed(buf[i], chip->IO_ADDR_W);
494 * fsmc_read_buf - read chip data into buffer
495 * @mtd: MTD device structure
496 * @buf: buffer to store date
497 * @len: number of bytes to read
499 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
502 struct nand_chip *chip = mtd_to_nand(mtd);
504 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
505 IS_ALIGNED(len, sizeof(uint32_t))) {
506 uint32_t *p = (uint32_t *)buf;
508 for (i = 0; i < len; i++)
509 p[i] = readl_relaxed(chip->IO_ADDR_R);
511 for (i = 0; i < len; i++)
512 buf[i] = readb_relaxed(chip->IO_ADDR_R);
517 * fsmc_read_buf_dma - read chip data into buffer
518 * @mtd: MTD device structure
519 * @buf: buffer to store date
520 * @len: number of bytes to read
522 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
524 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
526 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
530 * fsmc_write_buf_dma - write buffer to chip
531 * @mtd: MTD device structure
533 * @len: number of bytes to write
535 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
538 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
540 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
544 * fsmc_read_page_hwecc
545 * @mtd: mtd info structure
546 * @chip: nand chip info structure
547 * @buf: buffer to store read data
548 * @oob_required: caller expects OOB data read to chip->oob_poi
549 * @page: page number to read
551 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
552 * performed in a strict sequence as follows:
553 * data(512 byte) -> ecc(13 byte)
554 * After this read, fsmc hardware generates and reports error data bits(up to a
557 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
558 uint8_t *buf, int oob_required, int page)
560 int i, j, s, stat, eccsize = chip->ecc.size;
561 int eccbytes = chip->ecc.bytes;
562 int eccsteps = chip->ecc.steps;
564 uint8_t *ecc_calc = chip->buffers->ecccalc;
565 uint8_t *ecc_code = chip->buffers->ecccode;
566 int off, len, group = 0;
568 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
569 * end up reading 14 bytes (7 words) from oob. The local array is
570 * to maintain word alignment
573 uint8_t *oob = (uint8_t *)&ecc_oob[0];
574 unsigned int max_bitflips = 0;
576 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
577 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
578 chip->ecc.hwctl(mtd, NAND_ECC_READ);
579 chip->read_buf(mtd, p, eccsize);
581 for (j = 0; j < eccbytes;) {
582 struct mtd_oob_region oobregion;
585 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
589 off = oobregion.offset;
590 len = oobregion.length;
593 * length is intentionally kept a higher multiple of 2
594 * to read at least 13 bytes even in case of 16 bit NAND
597 if (chip->options & NAND_BUSWIDTH_16)
598 len = roundup(len, 2);
600 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
601 chip->read_buf(mtd, oob + j, len);
605 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
606 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
608 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
610 mtd->ecc_stats.failed++;
612 mtd->ecc_stats.corrected += stat;
613 max_bitflips = max_t(unsigned int, max_bitflips, stat);
621 * fsmc_bch8_correct_data
622 * @mtd: mtd info structure
623 * @dat: buffer of read data
624 * @read_ecc: ecc read from device spare area
625 * @calc_ecc: ecc calculated from read data
627 * calc_ecc is a 104 bit information containing maximum of 8 error
628 * offset informations of 13 bits each in 512 bytes of read data.
630 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
631 uint8_t *read_ecc, uint8_t *calc_ecc)
633 struct nand_chip *chip = mtd_to_nand(mtd);
634 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
635 void __iomem *regs = host->regs_va;
636 unsigned int bank = host->bank;
639 uint32_t ecc1, ecc2, ecc3, ecc4;
641 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
643 /* no bit flipping */
644 if (likely(num_err == 0))
647 /* too many errors */
648 if (unlikely(num_err > 8)) {
650 * This is a temporary erase check. A newly erased page read
651 * would result in an ecc error because the oob data is also
652 * erased to FF and the calculated ecc for an FF data is not
654 * This is a workaround to skip performing correction in case
658 * For every page, each bit written as 0 is counted until these
659 * number of bits are greater than 8 (the maximum correction
660 * capability of FSMC for each 512 + 13 bytes)
663 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
664 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
666 if ((bits_ecc + bits_data) <= 8) {
668 memset(dat, 0xff, chip->ecc.size);
676 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
677 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
679 * calc_ecc is a 104 bit information containing maximum of 8 error
680 * offset informations of 13 bits each. calc_ecc is copied into a
681 * uint64_t array and error offset indexes are populated in err_idx
684 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
685 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
686 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
687 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
689 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
690 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
691 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
692 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
693 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
694 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
695 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
696 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
700 change_bit(0, (unsigned long *)&err_idx[i]);
701 change_bit(1, (unsigned long *)&err_idx[i]);
703 if (err_idx[i] < chip->ecc.size * 8) {
704 change_bit(err_idx[i], (unsigned long *)dat);
711 static bool filter(struct dma_chan *chan, void *slave)
713 chan->private = slave;
718 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
719 struct device_node *np)
721 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
725 /* Set default NAND width to 8 bits */
727 if (!of_property_read_u32(np, "bank-width", &val)) {
730 } else if (val != 1) {
731 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
735 if (of_get_property(np, "nand-skip-bbtscan", NULL))
736 pdata->options = NAND_SKIP_BBTSCAN;
738 pdata->nand_timings = devm_kzalloc(&pdev->dev,
739 sizeof(*pdata->nand_timings), GFP_KERNEL);
740 if (!pdata->nand_timings)
742 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
743 sizeof(*pdata->nand_timings));
745 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
746 pdata->nand_timings = NULL;
749 /* Set default NAND bank to 0 */
751 if (!of_property_read_u32(np, "bank", &val)) {
753 dev_err(&pdev->dev, "invalid bank %u\n", val);
761 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
762 struct device_node *np)
769 * fsmc_nand_probe - Probe function
770 * @pdev: platform device structure
772 static int __init fsmc_nand_probe(struct platform_device *pdev)
774 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
775 struct device_node __maybe_unused *np = pdev->dev.of_node;
776 struct fsmc_nand_data *host;
777 struct mtd_info *mtd;
778 struct nand_chip *nand;
779 struct resource *res;
786 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
787 pdev->dev.platform_data = pdata;
788 ret = fsmc_nand_probe_config_dt(pdev, np);
790 dev_err(&pdev->dev, "no platform data\n");
796 dev_err(&pdev->dev, "platform data is NULL\n");
800 /* Allocate memory for the device structure (and zero it) */
801 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
805 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
806 host->data_va = devm_ioremap_resource(&pdev->dev, res);
807 if (IS_ERR(host->data_va))
808 return PTR_ERR(host->data_va);
810 host->data_pa = (dma_addr_t)res->start;
812 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
813 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
814 if (IS_ERR(host->addr_va))
815 return PTR_ERR(host->addr_va);
817 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
818 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
819 if (IS_ERR(host->cmd_va))
820 return PTR_ERR(host->cmd_va);
822 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
823 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
824 if (IS_ERR(host->regs_va))
825 return PTR_ERR(host->regs_va);
827 host->clk = clk_get(&pdev->dev, NULL);
828 if (IS_ERR(host->clk)) {
829 dev_err(&pdev->dev, "failed to fetch block clock\n");
830 return PTR_ERR(host->clk);
833 ret = clk_prepare_enable(host->clk);
835 goto err_clk_prepare_enable;
838 * This device ID is actually a common AMBA ID as used on the
839 * AMBA PrimeCell bus. However it is not a PrimeCell.
841 for (pid = 0, i = 0; i < 4; i++)
842 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
844 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
845 "revision %02x, config %02x\n",
846 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
847 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
849 host->bank = pdata->bank;
850 host->select_chip = pdata->select_bank;
851 host->partitions = pdata->partitions;
852 host->nr_partitions = pdata->nr_partitions;
853 host->dev = &pdev->dev;
854 host->dev_timings = pdata->nand_timings;
855 host->mode = pdata->mode;
857 if (host->mode == USE_DMA_ACCESS)
858 init_completion(&host->dma_access_complete);
860 /* Link all private pointers */
861 mtd = nand_to_mtd(&host->nand);
863 nand_set_controller_data(nand, host);
864 nand_set_flash_node(nand, np);
866 mtd->dev.parent = &pdev->dev;
867 nand->IO_ADDR_R = host->data_va;
868 nand->IO_ADDR_W = host->data_va;
869 nand->cmd_ctrl = fsmc_cmd_ctrl;
870 nand->chip_delay = 30;
873 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
874 * can overwrite this value if the DT provides a different value.
876 nand->ecc.mode = NAND_ECC_HW;
877 nand->ecc.hwctl = fsmc_enable_hwecc;
878 nand->ecc.size = 512;
879 nand->options = pdata->options;
880 nand->select_chip = fsmc_select_chip;
881 nand->badblockbits = 7;
882 nand_set_flash_node(nand, np);
884 if (pdata->width == FSMC_NAND_BW16)
885 nand->options |= NAND_BUSWIDTH_16;
887 switch (host->mode) {
890 dma_cap_set(DMA_MEMCPY, mask);
891 host->read_dma_chan = dma_request_channel(mask, filter,
892 pdata->read_dma_priv);
893 if (!host->read_dma_chan) {
894 dev_err(&pdev->dev, "Unable to get read dma channel\n");
895 goto err_req_read_chnl;
897 host->write_dma_chan = dma_request_channel(mask, filter,
898 pdata->write_dma_priv);
899 if (!host->write_dma_chan) {
900 dev_err(&pdev->dev, "Unable to get write dma channel\n");
901 goto err_req_write_chnl;
903 nand->read_buf = fsmc_read_buf_dma;
904 nand->write_buf = fsmc_write_buf_dma;
908 case USE_WORD_ACCESS:
909 nand->read_buf = fsmc_read_buf;
910 nand->write_buf = fsmc_write_buf;
914 fsmc_nand_setup(host->regs_va, host->bank,
915 nand->options & NAND_BUSWIDTH_16,
918 if (AMBA_REV_BITS(host->pid) >= 8) {
919 nand->ecc.read_page = fsmc_read_page_hwecc;
920 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
921 nand->ecc.correct = fsmc_bch8_correct_data;
922 nand->ecc.bytes = 13;
923 nand->ecc.strength = 8;
927 * Scan to find existence of the device
929 if (nand_scan_ident(mtd, 1, NULL)) {
931 dev_err(&pdev->dev, "No NAND Device found!\n");
935 if (AMBA_REV_BITS(host->pid) >= 8) {
936 switch (mtd->oobsize) {
944 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
950 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
952 switch (nand->ecc.mode) {
954 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
955 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
956 nand->ecc.correct = nand_correct_data;
958 nand->ecc.strength = 1;
962 if (nand->ecc.algo == NAND_ECC_BCH) {
963 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
968 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
973 * Don't set layout for BCH4 SW ECC. This will be
974 * generated later in nand_bch_init() later.
976 if (nand->ecc.mode == NAND_ECC_HW) {
977 switch (mtd->oobsize) {
981 mtd_set_ooblayout(mtd,
982 &fsmc_ecc1_ooblayout_ops);
986 "No oob scheme defined for oobsize %d\n",
994 /* Second stage of scan to fill MTD data-structures */
995 if (nand_scan_tail(mtd)) {
1001 * The partition information can is accessed by (in the same precedence)
1003 * command line through Bootloader,
1005 * default partition information present in driver.
1008 * Check for partition info passed
1011 ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
1015 platform_set_drvdata(pdev, host);
1016 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1021 if (host->mode == USE_DMA_ACCESS)
1022 dma_release_channel(host->write_dma_chan);
1024 if (host->mode == USE_DMA_ACCESS)
1025 dma_release_channel(host->read_dma_chan);
1027 clk_disable_unprepare(host->clk);
1028 err_clk_prepare_enable:
1036 static int fsmc_nand_remove(struct platform_device *pdev)
1038 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1041 nand_release(nand_to_mtd(&host->nand));
1043 if (host->mode == USE_DMA_ACCESS) {
1044 dma_release_channel(host->write_dma_chan);
1045 dma_release_channel(host->read_dma_chan);
1047 clk_disable_unprepare(host->clk);
1054 #ifdef CONFIG_PM_SLEEP
1055 static int fsmc_nand_suspend(struct device *dev)
1057 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1059 clk_disable_unprepare(host->clk);
1063 static int fsmc_nand_resume(struct device *dev)
1065 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1067 clk_prepare_enable(host->clk);
1068 fsmc_nand_setup(host->regs_va, host->bank,
1069 host->nand.options & NAND_BUSWIDTH_16,
1076 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1079 static const struct of_device_id fsmc_nand_id_table[] = {
1080 { .compatible = "st,spear600-fsmc-nand" },
1081 { .compatible = "stericsson,fsmc-nand" },
1084 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1087 static struct platform_driver fsmc_nand_driver = {
1088 .remove = fsmc_nand_remove,
1090 .name = "fsmc-nand",
1091 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1092 .pm = &fsmc_nand_pm_ops,
1096 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1098 MODULE_LICENSE("GPL");
1100 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");