2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
34 #include <drm/i915_drm.h>
37 #include "i915_gem_dmabuf.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include "intel_frontbuffer.h"
42 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
44 #define __EXEC_OBJECT_HAS_PIN (1<<31)
45 #define __EXEC_OBJECT_HAS_FENCE (1<<30)
46 #define __EXEC_OBJECT_NEEDS_MAP (1<<29)
47 #define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
48 #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
50 #define BATCH_OFFSET_BIAS (256*1024)
52 struct i915_execbuffer_params {
53 struct drm_device *dev;
54 struct drm_file *file;
55 struct i915_vma *batch;
57 u32 args_batch_start_offset;
58 struct intel_engine_cs *engine;
59 struct i915_gem_context *ctx;
60 struct drm_i915_gem_request *request;
64 struct drm_i915_private *i915;
65 struct list_head vmas;
68 struct i915_vma *lut[0];
69 struct hlist_head buckets[0];
73 static struct eb_vmas *
74 eb_create(struct drm_i915_private *i915,
75 struct drm_i915_gem_execbuffer2 *args)
77 struct eb_vmas *eb = NULL;
79 if (args->flags & I915_EXEC_HANDLE_LUT) {
80 unsigned size = args->buffer_count;
81 size *= sizeof(struct i915_vma *);
82 size += sizeof(struct eb_vmas);
83 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
87 unsigned size = args->buffer_count;
88 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
89 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
90 while (count > 2*size)
92 eb = kzalloc(count*sizeof(struct hlist_head) +
93 sizeof(struct eb_vmas),
100 eb->and = -args->buffer_count;
103 INIT_LIST_HEAD(&eb->vmas);
108 eb_reset(struct eb_vmas *eb)
111 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
114 static struct i915_vma *
115 eb_get_batch(struct eb_vmas *eb)
117 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
120 * SNA is doing fancy tricks with compressing batch buffers, which leads
121 * to negative relocation deltas. Usually that works out ok since the
122 * relocate address is still positive, except when the batch is placed
123 * very low in the GTT. Ensure this doesn't happen.
125 * Note that actual hangs have only been observed on gen7, but for
126 * paranoia do it everywhere.
128 if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
129 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
135 eb_lookup_vmas(struct eb_vmas *eb,
136 struct drm_i915_gem_exec_object2 *exec,
137 const struct drm_i915_gem_execbuffer2 *args,
138 struct i915_address_space *vm,
139 struct drm_file *file)
141 struct drm_i915_gem_object *obj;
142 struct list_head objects;
145 INIT_LIST_HEAD(&objects);
146 spin_lock(&file->table_lock);
147 /* Grab a reference to the object and release the lock so we can lookup
148 * or create the VMA without using GFP_ATOMIC */
149 for (i = 0; i < args->buffer_count; i++) {
150 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
152 spin_unlock(&file->table_lock);
153 DRM_DEBUG("Invalid object handle %d at index %d\n",
159 if (!list_empty(&obj->obj_exec_link)) {
160 spin_unlock(&file->table_lock);
161 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
162 obj, exec[i].handle, i);
167 i915_gem_object_get(obj);
168 list_add_tail(&obj->obj_exec_link, &objects);
170 spin_unlock(&file->table_lock);
173 while (!list_empty(&objects)) {
174 struct i915_vma *vma;
176 obj = list_first_entry(&objects,
177 struct drm_i915_gem_object,
181 * NOTE: We can leak any vmas created here when something fails
182 * later on. But that's no issue since vma_unbind can deal with
183 * vmas which are not actually bound. And since only
184 * lookup_or_create exists as an interface to get at the vma
185 * from the (obj, vm) we don't run the risk of creating
186 * duplicated vmas for the same vm.
188 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
189 if (unlikely(IS_ERR(vma))) {
190 DRM_DEBUG("Failed to lookup VMA\n");
195 /* Transfer ownership from the objects list to the vmas list. */
196 list_add_tail(&vma->exec_list, &eb->vmas);
197 list_del_init(&obj->obj_exec_link);
199 vma->exec_entry = &exec[i];
203 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
204 vma->exec_handle = handle;
205 hlist_add_head(&vma->exec_node,
206 &eb->buckets[handle & eb->and]);
215 while (!list_empty(&objects)) {
216 obj = list_first_entry(&objects,
217 struct drm_i915_gem_object,
219 list_del_init(&obj->obj_exec_link);
220 i915_gem_object_put(obj);
223 * Objects already transfered to the vmas list will be unreferenced by
230 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
233 if (handle >= -eb->and)
235 return eb->lut[handle];
237 struct hlist_head *head;
238 struct i915_vma *vma;
240 head = &eb->buckets[handle & eb->and];
241 hlist_for_each_entry(vma, head, exec_node) {
242 if (vma->exec_handle == handle)
250 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
252 struct drm_i915_gem_exec_object2 *entry;
254 if (!drm_mm_node_allocated(&vma->node))
257 entry = vma->exec_entry;
259 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
260 i915_vma_unpin_fence(vma);
262 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
263 __i915_vma_unpin(vma);
265 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
268 static void eb_destroy(struct eb_vmas *eb)
270 while (!list_empty(&eb->vmas)) {
271 struct i915_vma *vma;
273 vma = list_first_entry(&eb->vmas,
276 list_del_init(&vma->exec_list);
277 i915_gem_execbuffer_unreserve_vma(vma);
283 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
285 if (!i915_gem_object_has_struct_page(obj))
288 if (DBG_USE_CPU_RELOC)
289 return DBG_USE_CPU_RELOC > 0;
291 return (HAS_LLC(obj->base.dev) ||
292 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
293 obj->cache_level != I915_CACHE_NONE);
296 /* Used to convert any address to canonical form.
297 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
298 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
299 * addresses to be in a canonical form:
300 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
301 * canonical form [63:48] == [47]."
303 #define GEN8_HIGH_ADDRESS_BIT 47
304 static inline uint64_t gen8_canonical_addr(uint64_t address)
306 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
309 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
311 return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
314 static inline uint64_t
315 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
316 uint64_t target_offset)
318 return gen8_canonical_addr((int)reloc->delta + target_offset);
322 struct drm_i915_private *i915;
323 struct drm_mm_node node;
326 bool use_64bit_reloc;
329 static void reloc_cache_init(struct reloc_cache *cache,
330 struct drm_i915_private *i915)
335 cache->use_64bit_reloc = INTEL_GEN(cache->i915) >= 8;
336 cache->node.allocated = false;
339 static inline void *unmask_page(unsigned long p)
341 return (void *)(uintptr_t)(p & PAGE_MASK);
344 static inline unsigned int unmask_flags(unsigned long p)
346 return p & ~PAGE_MASK;
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
351 static void reloc_cache_fini(struct reloc_cache *cache)
358 vaddr = unmask_page(cache->vaddr);
359 if (cache->vaddr & KMAP) {
360 if (cache->vaddr & CLFLUSH_AFTER)
363 kunmap_atomic(vaddr);
364 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
367 io_mapping_unmap_atomic((void __iomem *)vaddr);
368 if (cache->node.allocated) {
369 struct i915_ggtt *ggtt = &cache->i915->ggtt;
371 ggtt->base.clear_range(&ggtt->base,
375 drm_mm_remove_node(&cache->node);
377 i915_vma_unpin((struct i915_vma *)cache->node.mm);
382 static void *reloc_kmap(struct drm_i915_gem_object *obj,
383 struct reloc_cache *cache,
389 kunmap_atomic(unmask_page(cache->vaddr));
391 unsigned int flushes;
394 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
398 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
399 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
401 cache->vaddr = flushes | KMAP;
402 cache->node.mm = (void *)obj;
407 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
408 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
414 static void *reloc_iomap(struct drm_i915_gem_object *obj,
415 struct reloc_cache *cache,
418 struct i915_ggtt *ggtt = &cache->i915->ggtt;
419 unsigned long offset;
422 if (cache->node.allocated) {
424 ggtt->base.insert_page(&ggtt->base,
425 i915_gem_object_get_dma_address(obj, page),
426 cache->node.start, I915_CACHE_NONE, 0);
428 return unmask_page(cache->vaddr);
432 io_mapping_unmap_atomic(unmask_page(cache->vaddr));
434 struct i915_vma *vma;
437 if (use_cpu_reloc(obj))
440 ret = i915_gem_object_set_to_gtt_domain(obj, true);
444 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
445 PIN_MAPPABLE | PIN_NONBLOCK);
447 memset(&cache->node, 0, sizeof(cache->node));
448 ret = drm_mm_insert_node_in_range_generic
449 (&ggtt->base.mm, &cache->node,
451 0, ggtt->mappable_end,
452 DRM_MM_SEARCH_DEFAULT,
453 DRM_MM_CREATE_DEFAULT);
454 if (ret) /* no inactive aperture space, use cpu reloc */
457 ret = i915_vma_put_fence(vma);
463 cache->node.start = vma->node.start;
464 cache->node.mm = (void *)vma;
468 offset = cache->node.start;
469 if (cache->node.allocated) {
470 ggtt->base.insert_page(&ggtt->base,
471 i915_gem_object_get_dma_address(obj, page),
472 offset, I915_CACHE_NONE, 0);
474 offset += page << PAGE_SHIFT;
477 vaddr = io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
479 cache->vaddr = (unsigned long)vaddr;
484 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
485 struct reloc_cache *cache,
490 if (cache->page == page) {
491 vaddr = unmask_page(cache->vaddr);
494 if ((cache->vaddr & KMAP) == 0)
495 vaddr = reloc_iomap(obj, cache, page);
497 vaddr = reloc_kmap(obj, cache, page);
503 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
505 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
506 if (flushes & CLFLUSH_BEFORE) {
513 /* Writes to the same cacheline are serialised by the CPU
514 * (including clflush). On the write path, we only require
515 * that it hits memory in an orderly fashion and place
516 * mb barriers at the start and end of the relocation phase
517 * to ensure ordering of clflush wrt to the system.
519 if (flushes & CLFLUSH_AFTER)
526 relocate_entry(struct drm_i915_gem_object *obj,
527 const struct drm_i915_gem_relocation_entry *reloc,
528 struct reloc_cache *cache,
531 u64 offset = reloc->offset;
532 bool wide = cache->use_64bit_reloc;
535 target_offset = relocation_target(reloc, target_offset);
537 vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
539 return PTR_ERR(vaddr);
541 clflush_write32(vaddr + offset_in_page(offset),
542 lower_32_bits(target_offset),
546 offset += sizeof(u32);
547 target_offset >>= 32;
555 static bool object_is_idle(struct drm_i915_gem_object *obj)
557 unsigned long active = i915_gem_object_get_active(obj);
560 for_each_active(active, idx) {
561 if (!i915_gem_active_is_idle(&obj->last_read[idx],
562 &obj->base.dev->struct_mutex))
570 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
572 struct drm_i915_gem_relocation_entry *reloc,
573 struct reloc_cache *cache)
575 struct drm_device *dev = obj->base.dev;
576 struct drm_gem_object *target_obj;
577 struct drm_i915_gem_object *target_i915_obj;
578 struct i915_vma *target_vma;
579 uint64_t target_offset;
582 /* we've already hold a reference to all valid objects */
583 target_vma = eb_get_vma(eb, reloc->target_handle);
584 if (unlikely(target_vma == NULL))
586 target_i915_obj = target_vma->obj;
587 target_obj = &target_vma->obj->base;
589 target_offset = gen8_canonical_addr(target_vma->node.start);
591 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
592 * pipe_control writes because the gpu doesn't properly redirect them
593 * through the ppgtt for non_secure batchbuffers. */
594 if (unlikely(IS_GEN6(dev) &&
595 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
596 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
598 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
602 /* Validate that the target is in a valid r/w GPU domain */
603 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
604 DRM_DEBUG("reloc with multiple write domains: "
605 "obj %p target %d offset %d "
606 "read %08x write %08x",
607 obj, reloc->target_handle,
610 reloc->write_domain);
613 if (unlikely((reloc->write_domain | reloc->read_domains)
614 & ~I915_GEM_GPU_DOMAINS)) {
615 DRM_DEBUG("reloc with read/write non-GPU domains: "
616 "obj %p target %d offset %d "
617 "read %08x write %08x",
618 obj, reloc->target_handle,
621 reloc->write_domain);
625 target_obj->pending_read_domains |= reloc->read_domains;
626 target_obj->pending_write_domain |= reloc->write_domain;
628 /* If the relocation already has the right value in it, no
629 * more work needs to be done.
631 if (target_offset == reloc->presumed_offset)
634 /* Check that the relocation address is valid... */
635 if (unlikely(reloc->offset >
636 obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
637 DRM_DEBUG("Relocation beyond object bounds: "
638 "obj %p target %d offset %d size %d.\n",
639 obj, reloc->target_handle,
641 (int) obj->base.size);
644 if (unlikely(reloc->offset & 3)) {
645 DRM_DEBUG("Relocation not 4-byte aligned: "
646 "obj %p target %d offset %d.\n",
647 obj, reloc->target_handle,
648 (int) reloc->offset);
652 /* We can't wait for rendering with pagefaults disabled */
653 if (pagefault_disabled() && !object_is_idle(obj))
656 ret = relocate_entry(obj, reloc, cache, target_offset);
660 /* and update the user's relocation entry */
661 reloc->presumed_offset = target_offset;
666 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
669 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
670 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
671 struct drm_i915_gem_relocation_entry __user *user_relocs;
672 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
673 struct reloc_cache cache;
676 user_relocs = u64_to_user_ptr(entry->relocs_ptr);
677 reloc_cache_init(&cache, eb->i915);
679 remain = entry->relocation_count;
681 struct drm_i915_gem_relocation_entry *r = stack_reloc;
683 if (count > ARRAY_SIZE(stack_reloc))
684 count = ARRAY_SIZE(stack_reloc);
687 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]))) {
693 u64 offset = r->presumed_offset;
695 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
699 if (r->presumed_offset != offset &&
700 __put_user(r->presumed_offset,
701 &user_relocs->presumed_offset)) {
712 reloc_cache_fini(&cache);
718 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
720 struct drm_i915_gem_relocation_entry *relocs)
722 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
723 struct reloc_cache cache;
726 reloc_cache_init(&cache, eb->i915);
727 for (i = 0; i < entry->relocation_count; i++) {
728 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
732 reloc_cache_fini(&cache);
738 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
740 struct i915_vma *vma;
743 /* This is the fast path and we cannot handle a pagefault whilst
744 * holding the struct mutex lest the user pass in the relocations
745 * contained within a mmaped bo. For in such a case we, the page
746 * fault handler would call i915_gem_fault() and we would try to
747 * acquire the struct mutex again. Obviously this is bad and so
748 * lockdep complains vehemently.
751 list_for_each_entry(vma, &eb->vmas, exec_list) {
752 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
761 static bool only_mappable_for_reloc(unsigned int flags)
763 return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
764 __EXEC_OBJECT_NEEDS_MAP;
768 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
769 struct intel_engine_cs *engine,
772 struct drm_i915_gem_object *obj = vma->obj;
773 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
778 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
781 if (!drm_mm_node_allocated(&vma->node)) {
782 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
783 * limit address to the first 4GBs for unflagged objects.
785 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
786 flags |= PIN_ZONE_4G;
787 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
788 flags |= PIN_GLOBAL | PIN_MAPPABLE;
789 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
790 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
791 if (entry->flags & EXEC_OBJECT_PINNED)
792 flags |= entry->offset | PIN_OFFSET_FIXED;
793 if ((flags & PIN_MAPPABLE) == 0)
797 ret = i915_vma_pin(vma,
801 if ((ret == -ENOSPC || ret == -E2BIG) &&
802 only_mappable_for_reloc(entry->flags))
803 ret = i915_vma_pin(vma,
806 flags & ~PIN_MAPPABLE);
810 entry->flags |= __EXEC_OBJECT_HAS_PIN;
812 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
813 ret = i915_vma_get_fence(vma);
817 if (i915_vma_pin_fence(vma))
818 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
821 if (entry->offset != vma->node.start) {
822 entry->offset = vma->node.start;
826 if (entry->flags & EXEC_OBJECT_WRITE) {
827 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
828 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
835 need_reloc_mappable(struct i915_vma *vma)
837 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
839 if (entry->relocation_count == 0)
842 if (!i915_vma_is_ggtt(vma))
845 /* See also use_cpu_reloc() */
846 if (HAS_LLC(vma->obj->base.dev))
849 if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
856 eb_vma_misplaced(struct i915_vma *vma)
858 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
860 WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
861 !i915_vma_is_ggtt(vma));
863 if (entry->alignment &&
864 vma->node.start & (entry->alignment - 1))
867 if (vma->node.size < entry->pad_to_size)
870 if (entry->flags & EXEC_OBJECT_PINNED &&
871 vma->node.start != entry->offset)
874 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
875 vma->node.start < BATCH_OFFSET_BIAS)
878 /* avoid costly ping-pong once a batch bo ended up non-mappable */
879 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
880 !i915_vma_is_map_and_fenceable(vma))
881 return !only_mappable_for_reloc(entry->flags);
883 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
884 (vma->node.start + vma->node.size - 1) >> 32)
891 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
892 struct list_head *vmas,
893 struct i915_gem_context *ctx,
896 struct drm_i915_gem_object *obj;
897 struct i915_vma *vma;
898 struct i915_address_space *vm;
899 struct list_head ordered_vmas;
900 struct list_head pinned_vmas;
901 bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
904 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
906 INIT_LIST_HEAD(&ordered_vmas);
907 INIT_LIST_HEAD(&pinned_vmas);
908 while (!list_empty(vmas)) {
909 struct drm_i915_gem_exec_object2 *entry;
910 bool need_fence, need_mappable;
912 vma = list_first_entry(vmas, struct i915_vma, exec_list);
914 entry = vma->exec_entry;
916 if (ctx->flags & CONTEXT_NO_ZEROMAP)
917 entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
919 if (!has_fenced_gpu_access)
920 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
922 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
923 i915_gem_object_is_tiled(obj);
924 need_mappable = need_fence || need_reloc_mappable(vma);
926 if (entry->flags & EXEC_OBJECT_PINNED)
927 list_move_tail(&vma->exec_list, &pinned_vmas);
928 else if (need_mappable) {
929 entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
930 list_move(&vma->exec_list, &ordered_vmas);
932 list_move_tail(&vma->exec_list, &ordered_vmas);
934 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
935 obj->base.pending_write_domain = 0;
937 list_splice(&ordered_vmas, vmas);
938 list_splice(&pinned_vmas, vmas);
940 /* Attempt to pin all of the buffers into the GTT.
941 * This is done in 3 phases:
943 * 1a. Unbind all objects that do not match the GTT constraints for
944 * the execbuffer (fenceable, mappable, alignment etc).
945 * 1b. Increment pin count for already bound objects.
946 * 2. Bind new objects.
947 * 3. Decrement pin count.
949 * This avoid unnecessary unbinding of later objects in order to make
950 * room for the earlier objects *unless* we need to defragment.
956 /* Unbind any ill-fitting objects or pin. */
957 list_for_each_entry(vma, vmas, exec_list) {
958 if (!drm_mm_node_allocated(&vma->node))
961 if (eb_vma_misplaced(vma))
962 ret = i915_vma_unbind(vma);
964 ret = i915_gem_execbuffer_reserve_vma(vma,
971 /* Bind fresh objects */
972 list_for_each_entry(vma, vmas, exec_list) {
973 if (drm_mm_node_allocated(&vma->node))
976 ret = i915_gem_execbuffer_reserve_vma(vma, engine,
983 if (ret != -ENOSPC || retry++)
986 /* Decrement pin count for bound objects */
987 list_for_each_entry(vma, vmas, exec_list)
988 i915_gem_execbuffer_unreserve_vma(vma);
990 ret = i915_gem_evict_vm(vm, true);
997 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
998 struct drm_i915_gem_execbuffer2 *args,
999 struct drm_file *file,
1000 struct intel_engine_cs *engine,
1002 struct drm_i915_gem_exec_object2 *exec,
1003 struct i915_gem_context *ctx)
1005 struct drm_i915_gem_relocation_entry *reloc;
1006 struct i915_address_space *vm;
1007 struct i915_vma *vma;
1011 unsigned count = args->buffer_count;
1013 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1015 /* We may process another execbuffer during the unlock... */
1016 while (!list_empty(&eb->vmas)) {
1017 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1018 list_del_init(&vma->exec_list);
1019 i915_gem_execbuffer_unreserve_vma(vma);
1023 mutex_unlock(&dev->struct_mutex);
1026 for (i = 0; i < count; i++)
1027 total += exec[i].relocation_count;
1029 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1030 reloc = drm_malloc_ab(total, sizeof(*reloc));
1031 if (reloc == NULL || reloc_offset == NULL) {
1032 drm_free_large(reloc);
1033 drm_free_large(reloc_offset);
1034 mutex_lock(&dev->struct_mutex);
1039 for (i = 0; i < count; i++) {
1040 struct drm_i915_gem_relocation_entry __user *user_relocs;
1041 u64 invalid_offset = (u64)-1;
1044 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1046 if (copy_from_user(reloc+total, user_relocs,
1047 exec[i].relocation_count * sizeof(*reloc))) {
1049 mutex_lock(&dev->struct_mutex);
1053 /* As we do not update the known relocation offsets after
1054 * relocating (due to the complexities in lock handling),
1055 * we need to mark them as invalid now so that we force the
1056 * relocation processing next time. Just in case the target
1057 * object is evicted and then rebound into its old
1058 * presumed_offset before the next execbuffer - if that
1059 * happened we would make the mistake of assuming that the
1060 * relocations were valid.
1062 for (j = 0; j < exec[i].relocation_count; j++) {
1063 if (__copy_to_user(&user_relocs[j].presumed_offset,
1065 sizeof(invalid_offset))) {
1067 mutex_lock(&dev->struct_mutex);
1072 reloc_offset[i] = total;
1073 total += exec[i].relocation_count;
1076 ret = i915_mutex_lock_interruptible(dev);
1078 mutex_lock(&dev->struct_mutex);
1082 /* reacquire the objects */
1084 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1088 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1089 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1094 list_for_each_entry(vma, &eb->vmas, exec_list) {
1095 int offset = vma->exec_entry - exec;
1096 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1097 reloc + reloc_offset[offset]);
1102 /* Leave the user relocations as are, this is the painfully slow path,
1103 * and we want to avoid the complication of dropping the lock whilst
1104 * having buffers reserved in the aperture and so causing spurious
1105 * ENOSPC for random operations.
1109 drm_free_large(reloc);
1110 drm_free_large(reloc_offset);
1114 static unsigned int eb_other_engines(struct drm_i915_gem_request *req)
1118 mask = ~intel_engine_flag(req->engine) & I915_BO_ACTIVE_MASK;
1119 mask <<= I915_BO_ACTIVE_SHIFT;
1125 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1126 struct list_head *vmas)
1128 const unsigned int other_rings = eb_other_engines(req);
1129 struct i915_vma *vma;
1132 list_for_each_entry(vma, vmas, exec_list) {
1133 struct drm_i915_gem_object *obj = vma->obj;
1134 struct reservation_object *resv;
1136 if (obj->flags & other_rings) {
1137 ret = i915_gem_request_await_object
1138 (req, obj, obj->base.pending_write_domain);
1143 resv = i915_gem_object_get_dmabuf_resv(obj);
1145 ret = i915_sw_fence_await_reservation
1146 (&req->submit, resv, &i915_fence_ops,
1147 obj->base.pending_write_domain, 10*HZ,
1148 GFP_KERNEL | __GFP_NOWARN);
1153 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1154 i915_gem_clflush_object(obj, false);
1157 /* Unconditionally flush any chipset caches (for streaming writes). */
1158 i915_gem_chipset_flush(req->engine->i915);
1160 /* Unconditionally invalidate GPU caches and TLBs. */
1161 return req->engine->emit_flush(req, EMIT_INVALIDATE);
1165 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1167 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1170 /* Kernel clipping was a DRI1 misfeature */
1171 if (exec->num_cliprects || exec->cliprects_ptr)
1174 if (exec->DR4 == 0xffffffff) {
1175 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1178 if (exec->DR1 || exec->DR4)
1181 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1188 validate_exec_list(struct drm_device *dev,
1189 struct drm_i915_gem_exec_object2 *exec,
1192 unsigned relocs_total = 0;
1193 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1194 unsigned invalid_flags;
1197 /* INTERNAL flags must not overlap with external ones */
1198 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1200 invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1201 if (USES_FULL_PPGTT(dev))
1202 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1204 for (i = 0; i < count; i++) {
1205 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1206 int length; /* limited by fault_in_pages_readable() */
1208 if (exec[i].flags & invalid_flags)
1211 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1212 * any non-page-aligned or non-canonical addresses.
1214 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1215 if (exec[i].offset !=
1216 gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1219 /* From drm_mm perspective address space is continuous,
1220 * so from this point we're always using non-canonical
1223 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1226 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1229 /* pad_to_size was once a reserved field, so sanitize it */
1230 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1231 if (offset_in_page(exec[i].pad_to_size))
1234 exec[i].pad_to_size = 0;
1237 /* First check for malicious input causing overflow in
1238 * the worst case where we need to allocate the entire
1239 * relocation tree as a single array.
1241 if (exec[i].relocation_count > relocs_max - relocs_total)
1243 relocs_total += exec[i].relocation_count;
1245 length = exec[i].relocation_count *
1246 sizeof(struct drm_i915_gem_relocation_entry);
1248 * We must check that the entire relocation array is safe
1249 * to read, but since we may need to update the presumed
1250 * offsets during execution, check for full write access.
1252 if (!access_ok(VERIFY_WRITE, ptr, length))
1255 if (likely(!i915.prefault_disable)) {
1256 if (fault_in_pages_readable(ptr, length))
1264 static struct i915_gem_context *
1265 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1266 struct intel_engine_cs *engine, const u32 ctx_id)
1268 struct i915_gem_context *ctx;
1269 struct i915_ctx_hang_stats *hs;
1271 ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1275 hs = &ctx->hang_stats;
1277 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1278 return ERR_PTR(-EIO);
1284 void i915_vma_move_to_active(struct i915_vma *vma,
1285 struct drm_i915_gem_request *req,
1288 struct drm_i915_gem_object *obj = vma->obj;
1289 const unsigned int idx = req->engine->id;
1291 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1293 obj->dirty = 1; /* be paranoid */
1295 /* Add a reference if we're newly entering the active list.
1296 * The order in which we add operations to the retirement queue is
1297 * vital here: mark_active adds to the start of the callback list,
1298 * such that subsequent callbacks are called first. Therefore we
1299 * add the active reference first and queue for it to be dropped
1302 if (!i915_gem_object_is_active(obj))
1303 i915_gem_object_get(obj);
1304 i915_gem_object_set_active(obj, idx);
1305 i915_gem_active_set(&obj->last_read[idx], req);
1307 if (flags & EXEC_OBJECT_WRITE) {
1308 i915_gem_active_set(&obj->last_write, req);
1310 intel_fb_obj_invalidate(obj, ORIGIN_CS);
1312 /* update for the implicit flush after a batch */
1313 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1316 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1317 i915_gem_active_set(&vma->last_fence, req);
1319 i915_vma_set_active(vma, idx);
1320 i915_gem_active_set(&vma->last_read[idx], req);
1321 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1324 static void eb_export_fence(struct drm_i915_gem_object *obj,
1325 struct drm_i915_gem_request *req,
1328 struct reservation_object *resv;
1330 resv = i915_gem_object_get_dmabuf_resv(obj);
1334 /* Ignore errors from failing to allocate the new fence, we can't
1335 * handle an error right now. Worst case should be missed
1336 * synchronisation leading to rendering corruption.
1338 ww_mutex_lock(&resv->lock, NULL);
1339 if (flags & EXEC_OBJECT_WRITE)
1340 reservation_object_add_excl_fence(resv, &req->fence);
1341 else if (reservation_object_reserve_shared(resv) == 0)
1342 reservation_object_add_shared_fence(resv, &req->fence);
1343 ww_mutex_unlock(&resv->lock);
1347 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1348 struct drm_i915_gem_request *req)
1350 struct i915_vma *vma;
1352 list_for_each_entry(vma, vmas, exec_list) {
1353 struct drm_i915_gem_object *obj = vma->obj;
1354 u32 old_read = obj->base.read_domains;
1355 u32 old_write = obj->base.write_domain;
1357 obj->base.write_domain = obj->base.pending_write_domain;
1358 if (obj->base.write_domain)
1359 vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1361 obj->base.pending_read_domains |= obj->base.read_domains;
1362 obj->base.read_domains = obj->base.pending_read_domains;
1364 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1365 eb_export_fence(obj, req, vma->exec_entry->flags);
1366 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1371 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1373 struct intel_ring *ring = req->ring;
1376 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1377 DRM_DEBUG("sol reset is gen7/rcs only\n");
1381 ret = intel_ring_begin(req, 4 * 3);
1385 for (i = 0; i < 4; i++) {
1386 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1387 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1388 intel_ring_emit(ring, 0);
1391 intel_ring_advance(ring);
1396 static struct i915_vma *
1397 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1398 struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1399 struct drm_i915_gem_object *batch_obj,
1401 u32 batch_start_offset,
1405 struct drm_i915_gem_object *shadow_batch_obj;
1406 struct i915_vma *vma;
1409 shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1410 PAGE_ALIGN(batch_len));
1411 if (IS_ERR(shadow_batch_obj))
1412 return ERR_CAST(shadow_batch_obj);
1414 ret = intel_engine_cmd_parser(engine,
1421 if (ret == -EACCES) /* unhandled chained batch */
1428 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1432 memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1434 vma->exec_entry = shadow_exec_entry;
1435 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1436 i915_gem_object_get(shadow_batch_obj);
1437 list_add_tail(&vma->exec_list, &eb->vmas);
1440 i915_gem_object_unpin_pages(shadow_batch_obj);
1445 execbuf_submit(struct i915_execbuffer_params *params,
1446 struct drm_i915_gem_execbuffer2 *args,
1447 struct list_head *vmas)
1449 struct drm_i915_private *dev_priv = params->request->i915;
1450 u64 exec_start, exec_len;
1455 ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1459 ret = i915_switch_context(params->request);
1463 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1464 instp_mask = I915_EXEC_CONSTANTS_MASK;
1465 switch (instp_mode) {
1466 case I915_EXEC_CONSTANTS_REL_GENERAL:
1467 case I915_EXEC_CONSTANTS_ABSOLUTE:
1468 case I915_EXEC_CONSTANTS_REL_SURFACE:
1469 if (instp_mode != 0 && params->engine->id != RCS) {
1470 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1474 if (instp_mode != dev_priv->relative_constants_mode) {
1475 if (INTEL_INFO(dev_priv)->gen < 4) {
1476 DRM_DEBUG("no rel constants on pre-gen4\n");
1480 if (INTEL_INFO(dev_priv)->gen > 5 &&
1481 instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1482 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1486 /* The HW changed the meaning on this bit on gen6 */
1487 if (INTEL_INFO(dev_priv)->gen >= 6)
1488 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1492 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1496 if (params->engine->id == RCS &&
1497 instp_mode != dev_priv->relative_constants_mode) {
1498 struct intel_ring *ring = params->request->ring;
1500 ret = intel_ring_begin(params->request, 4);
1504 intel_ring_emit(ring, MI_NOOP);
1505 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1506 intel_ring_emit_reg(ring, INSTPM);
1507 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1508 intel_ring_advance(ring);
1510 dev_priv->relative_constants_mode = instp_mode;
1513 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1514 ret = i915_reset_gen7_sol_offsets(params->request);
1519 exec_len = args->batch_len;
1520 exec_start = params->batch->node.start +
1521 params->args_batch_start_offset;
1524 exec_len = params->batch->size - params->args_batch_start_offset;
1526 ret = params->engine->emit_bb_start(params->request,
1527 exec_start, exec_len,
1528 params->dispatch_flags);
1532 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1534 i915_gem_execbuffer_move_to_active(vmas, params->request);
1540 * Find one BSD ring to dispatch the corresponding BSD command.
1541 * The engine index is returned.
1544 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1545 struct drm_file *file)
1547 struct drm_i915_file_private *file_priv = file->driver_priv;
1549 /* Check whether the file_priv has already selected one ring. */
1550 if ((int)file_priv->bsd_engine < 0)
1551 file_priv->bsd_engine = atomic_fetch_xor(1,
1552 &dev_priv->mm.bsd_engine_dispatch_index);
1554 return file_priv->bsd_engine;
1557 #define I915_USER_RINGS (4)
1559 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1560 [I915_EXEC_DEFAULT] = RCS,
1561 [I915_EXEC_RENDER] = RCS,
1562 [I915_EXEC_BLT] = BCS,
1563 [I915_EXEC_BSD] = VCS,
1564 [I915_EXEC_VEBOX] = VECS
1567 static struct intel_engine_cs *
1568 eb_select_engine(struct drm_i915_private *dev_priv,
1569 struct drm_file *file,
1570 struct drm_i915_gem_execbuffer2 *args)
1572 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1573 struct intel_engine_cs *engine;
1575 if (user_ring_id > I915_USER_RINGS) {
1576 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1580 if ((user_ring_id != I915_EXEC_BSD) &&
1581 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1582 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1583 "bsd dispatch flags: %d\n", (int)(args->flags));
1587 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1588 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1590 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1591 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1592 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1593 bsd_idx <= I915_EXEC_BSD_RING2) {
1594 bsd_idx >>= I915_EXEC_BSD_SHIFT;
1597 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1602 engine = &dev_priv->engine[_VCS(bsd_idx)];
1604 engine = &dev_priv->engine[user_ring_map[user_ring_id]];
1607 if (!intel_engine_initialized(engine)) {
1608 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1616 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1617 struct drm_file *file,
1618 struct drm_i915_gem_execbuffer2 *args,
1619 struct drm_i915_gem_exec_object2 *exec)
1621 struct drm_i915_private *dev_priv = to_i915(dev);
1622 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1624 struct drm_i915_gem_exec_object2 shadow_exec_entry;
1625 struct intel_engine_cs *engine;
1626 struct i915_gem_context *ctx;
1627 struct i915_address_space *vm;
1628 struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1629 struct i915_execbuffer_params *params = ¶ms_master;
1630 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1635 if (!i915_gem_check_execbuffer(args))
1638 ret = validate_exec_list(dev, exec, args->buffer_count);
1643 if (args->flags & I915_EXEC_SECURE) {
1644 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1647 dispatch_flags |= I915_DISPATCH_SECURE;
1649 if (args->flags & I915_EXEC_IS_PINNED)
1650 dispatch_flags |= I915_DISPATCH_PINNED;
1652 engine = eb_select_engine(dev_priv, file, args);
1656 if (args->buffer_count < 1) {
1657 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1661 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1662 if (!HAS_RESOURCE_STREAMER(dev)) {
1663 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1666 if (engine->id != RCS) {
1667 DRM_DEBUG("RS is not available on %s\n",
1672 dispatch_flags |= I915_DISPATCH_RS;
1675 /* Take a local wakeref for preparing to dispatch the execbuf as
1676 * we expect to access the hardware fairly frequently in the
1677 * process. Upon first dispatch, we acquire another prolonged
1678 * wakeref that we hold until the GPU has been idle for at least
1681 intel_runtime_pm_get(dev_priv);
1683 ret = i915_mutex_lock_interruptible(dev);
1687 ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1689 mutex_unlock(&dev->struct_mutex);
1694 i915_gem_context_get(ctx);
1697 vm = &ctx->ppgtt->base;
1701 memset(¶ms_master, 0x00, sizeof(params_master));
1703 eb = eb_create(dev_priv, args);
1705 i915_gem_context_put(ctx);
1706 mutex_unlock(&dev->struct_mutex);
1711 /* Look up object handles */
1712 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1716 /* take note of the batch buffer before we might reorder the lists */
1717 params->batch = eb_get_batch(eb);
1719 /* Move the objects en-masse into the GTT, evicting if necessary. */
1720 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1721 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1726 /* The objects are in their final locations, apply the relocations. */
1728 ret = i915_gem_execbuffer_relocate(eb);
1730 if (ret == -EFAULT) {
1731 ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1734 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1740 /* Set the pending read domains for the batch buffer to COMMAND */
1741 if (params->batch->obj->base.pending_write_domain) {
1742 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1746 if (args->batch_start_offset > params->batch->size ||
1747 args->batch_len > params->batch->size - args->batch_start_offset) {
1748 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1753 params->args_batch_start_offset = args->batch_start_offset;
1754 if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1755 struct i915_vma *vma;
1757 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1760 args->batch_start_offset,
1762 drm_is_current_master(file));
1770 * Batch parsed and accepted:
1772 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1773 * bit from MI_BATCH_BUFFER_START commands issued in
1774 * the dispatch_execbuffer implementations. We
1775 * specifically don't want that set on batches the
1776 * command parser has accepted.
1778 dispatch_flags |= I915_DISPATCH_SECURE;
1779 params->args_batch_start_offset = 0;
1780 params->batch = vma;
1784 params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1786 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1787 * batch" bit. Hence we need to pin secure batches into the global gtt.
1788 * hsw should have this fixed, but bdw mucks it up again. */
1789 if (dispatch_flags & I915_DISPATCH_SECURE) {
1790 struct drm_i915_gem_object *obj = params->batch->obj;
1791 struct i915_vma *vma;
1794 * So on first glance it looks freaky that we pin the batch here
1795 * outside of the reservation loop. But:
1796 * - The batch is already pinned into the relevant ppgtt, so we
1797 * already have the backing storage fully allocated.
1798 * - No other BO uses the global gtt (well contexts, but meh),
1799 * so we don't really have issues with multiple objects not
1800 * fitting due to fragmentation.
1801 * So this is actually safe.
1803 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1809 params->batch = vma;
1812 /* Allocate a request for this batch buffer nice and early. */
1813 params->request = i915_gem_request_alloc(engine, ctx);
1814 if (IS_ERR(params->request)) {
1815 ret = PTR_ERR(params->request);
1816 goto err_batch_unpin;
1819 /* Whilst this request exists, batch_obj will be on the
1820 * active_list, and so will hold the active reference. Only when this
1821 * request is retired will the the batch_obj be moved onto the
1822 * inactive_list and lose its active reference. Hence we do not need
1823 * to explicitly hold another reference here.
1825 params->request->batch = params->batch;
1827 ret = i915_gem_request_add_to_client(params->request, file);
1832 * Save assorted stuff away to pass through to *_submission().
1833 * NB: This data should be 'persistent' and not local as it will
1834 * kept around beyond the duration of the IOCTL once the GPU
1835 * scheduler arrives.
1838 params->file = file;
1839 params->engine = engine;
1840 params->dispatch_flags = dispatch_flags;
1843 ret = execbuf_submit(params, args, &eb->vmas);
1845 __i915_add_request(params->request, ret == 0);
1849 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1850 * batch vma for correctness. For less ugly and less fragility this
1851 * needs to be adjusted to also track the ggtt batch vma properly as
1854 if (dispatch_flags & I915_DISPATCH_SECURE)
1855 i915_vma_unpin(params->batch);
1857 /* the request owns the ref now */
1858 i915_gem_context_put(ctx);
1861 mutex_unlock(&dev->struct_mutex);
1864 /* intel_gpu_busy should also get a ref, so it will free when the device
1865 * is really idle. */
1866 intel_runtime_pm_put(dev_priv);
1871 * Legacy execbuffer just creates an exec2 list from the original exec object
1872 * list array and passes it to the real function.
1875 i915_gem_execbuffer(struct drm_device *dev, void *data,
1876 struct drm_file *file)
1878 struct drm_i915_gem_execbuffer *args = data;
1879 struct drm_i915_gem_execbuffer2 exec2;
1880 struct drm_i915_gem_exec_object *exec_list = NULL;
1881 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1884 if (args->buffer_count < 1) {
1885 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1889 /* Copy in the exec list from userland */
1890 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1891 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1892 if (exec_list == NULL || exec2_list == NULL) {
1893 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1894 args->buffer_count);
1895 drm_free_large(exec_list);
1896 drm_free_large(exec2_list);
1899 ret = copy_from_user(exec_list,
1900 u64_to_user_ptr(args->buffers_ptr),
1901 sizeof(*exec_list) * args->buffer_count);
1903 DRM_DEBUG("copy %d exec entries failed %d\n",
1904 args->buffer_count, ret);
1905 drm_free_large(exec_list);
1906 drm_free_large(exec2_list);
1910 for (i = 0; i < args->buffer_count; i++) {
1911 exec2_list[i].handle = exec_list[i].handle;
1912 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1913 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1914 exec2_list[i].alignment = exec_list[i].alignment;
1915 exec2_list[i].offset = exec_list[i].offset;
1916 if (INTEL_INFO(dev)->gen < 4)
1917 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1919 exec2_list[i].flags = 0;
1922 exec2.buffers_ptr = args->buffers_ptr;
1923 exec2.buffer_count = args->buffer_count;
1924 exec2.batch_start_offset = args->batch_start_offset;
1925 exec2.batch_len = args->batch_len;
1926 exec2.DR1 = args->DR1;
1927 exec2.DR4 = args->DR4;
1928 exec2.num_cliprects = args->num_cliprects;
1929 exec2.cliprects_ptr = args->cliprects_ptr;
1930 exec2.flags = I915_EXEC_RENDER;
1931 i915_execbuffer2_set_context_id(exec2, 0);
1933 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1935 struct drm_i915_gem_exec_object __user *user_exec_list =
1936 u64_to_user_ptr(args->buffers_ptr);
1938 /* Copy the new buffer offsets back to the user's exec list. */
1939 for (i = 0; i < args->buffer_count; i++) {
1940 exec2_list[i].offset =
1941 gen8_canonical_addr(exec2_list[i].offset);
1942 ret = __copy_to_user(&user_exec_list[i].offset,
1943 &exec2_list[i].offset,
1944 sizeof(user_exec_list[i].offset));
1947 DRM_DEBUG("failed to copy %d exec entries "
1948 "back to user (%d)\n",
1949 args->buffer_count, ret);
1955 drm_free_large(exec_list);
1956 drm_free_large(exec2_list);
1961 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1962 struct drm_file *file)
1964 struct drm_i915_gem_execbuffer2 *args = data;
1965 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1968 if (args->buffer_count < 1 ||
1969 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1970 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1974 if (args->rsvd2 != 0) {
1975 DRM_DEBUG("dirty rvsd2 field\n");
1979 exec2_list = drm_malloc_gfp(args->buffer_count,
1980 sizeof(*exec2_list),
1982 if (exec2_list == NULL) {
1983 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1984 args->buffer_count);
1987 ret = copy_from_user(exec2_list,
1988 u64_to_user_ptr(args->buffers_ptr),
1989 sizeof(*exec2_list) * args->buffer_count);
1991 DRM_DEBUG("copy %d exec entries failed %d\n",
1992 args->buffer_count, ret);
1993 drm_free_large(exec2_list);
1997 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1999 /* Copy the new buffer offsets back to the user's exec list. */
2000 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2001 u64_to_user_ptr(args->buffers_ptr);
2004 for (i = 0; i < args->buffer_count; i++) {
2005 exec2_list[i].offset =
2006 gen8_canonical_addr(exec2_list[i].offset);
2007 ret = __copy_to_user(&user_exec_list[i].offset,
2008 &exec2_list[i].offset,
2009 sizeof(user_exec_list[i].offset));
2012 DRM_DEBUG("failed to copy %d exec entries "
2014 args->buffer_count);
2020 drm_free_large(exec2_list);