1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
70 #include <linux/uaccess.h>
72 #include <trace/events/vmscan.h>
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
92 #define cgroup_memory_noswap 1
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
132 * cgroup_event represents events which userspace want to receive.
134 struct mem_cgroup_event {
136 * memcg which the event belongs to.
138 struct mem_cgroup *memcg;
140 * eventfd to signal userspace about the event.
142 struct eventfd_ctx *eventfd;
144 * Each of these stored in a list by the cgroup.
146 struct list_head list;
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 /* Stuffs for move charges at task migration. */
176 * Types of charges to be moved.
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206 /* for encoding cft->private value on file */
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL (0)
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter = mem_cgroup_iter(root, iter, NULL))
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
236 static inline bool should_force_charge(void)
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
258 static void obj_cgroup_release(struct percpu_ref *ref)
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
302 static struct obj_cgroup *obj_cgroup_alloc(void)
304 struct obj_cgroup *objcg;
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 INIT_LIST_HEAD(&objcg->list);
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
324 struct obj_cgroup *objcg, *iter;
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
328 spin_lock_irq(&css_set_lock);
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
343 spin_unlock_irq(&css_set_lock);
345 percpu_ref_kill(&objcg->refcnt);
349 * This will be used as a shrinker list's index.
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
365 void memcg_get_cache_ids(void)
367 down_read(&memcg_cache_ids_sem);
370 void memcg_put_cache_ids(void)
372 up_read(&memcg_cache_ids_sem);
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 * increase ours as well if it increases.
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 * A lot of the calls to the cache allocation functions are expected to be
392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
411 struct memcg_shrinker_map *new, *old;
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
444 if (mem_cgroup_is_root(memcg))
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
461 if (mem_cgroup_is_root(memcg))
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
469 memcg_free_shrinker_maps(memcg);
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
475 mutex_unlock(&memcg_shrinker_map_mutex);
480 int memcg_expand_shrinker_maps(int new_id)
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
499 mem_cgroup_iter_break(NULL, memcg);
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
519 set_bit(shrinker_id, map->map);
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
537 struct mem_cgroup *memcg;
539 memcg = page_memcg(page);
541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 memcg = root_mem_cgroup;
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
560 ino_t page_cgroup_ino(struct page *page)
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
566 memcg = page_memcg_check(page);
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
571 ino = cgroup_ino(memcg->css.cgroup);
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
579 int nid = page_to_nid(page);
581 return memcg->nodeinfo[nid];
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
587 return soft_limit_tree.rb_tree_per_node[nid];
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
593 int nid = page_to_nid(page);
595 return soft_limit_tree.rb_tree_per_node[nid];
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
600 unsigned long new_usage_in_excess)
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
604 struct mem_cgroup_per_node *mz_node;
605 bool rightmost = true;
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
626 mctz->rb_rightmost = &mz->tree_node;
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
642 rb_erase(&mz->tree_node, &mctz->rb_root);
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
651 spin_lock_irqsave(&mctz->lock, flags);
652 __mem_cgroup_remove_exceeded(mz, mctz);
653 spin_unlock_irqrestore(&mctz->lock, flags);
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 unsigned long excess = 0;
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
670 unsigned long excess;
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
674 mctz = soft_limit_tree_from_page(page);
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 mz = mem_cgroup_page_nodeinfo(memcg, page);
683 excess = soft_limit_excess(memcg);
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
688 if (excess || mz->on_tree) {
691 spin_lock_irqsave(&mctz->lock, flags);
692 /* if on-tree, remove it */
694 __mem_cgroup_remove_exceeded(mz, mctz);
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
700 spin_unlock_irqrestore(&mctz->lock, flags);
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
715 mem_cgroup_remove_exceeded(mz, mctz);
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
722 struct mem_cgroup_per_node *mz;
726 if (!mctz->rb_rightmost)
727 goto done; /* Nothing to reclaim from */
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
736 __mem_cgroup_remove_exceeded(mz, mctz);
737 if (!soft_limit_excess(mz->memcg) ||
738 !css_tryget(&mz->memcg->css))
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
747 struct mem_cgroup_per_node *mz;
749 spin_lock_irq(&mctz->lock);
750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 spin_unlock_irq(&mctz->lock);
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
763 long x, threshold = MEMCG_CHARGE_BATCH;
765 if (mem_cgroup_disabled())
768 if (memcg_stat_item_in_bytes(idx))
769 threshold <<= PAGE_SHIFT;
771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 if (unlikely(abs(x) > threshold)) {
773 struct mem_cgroup *mi;
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
790 struct mem_cgroup *parent;
792 parent = parent_mem_cgroup(pn->memcg);
795 return mem_cgroup_nodeinfo(parent, nid);
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 struct mem_cgroup_per_node *pn;
802 struct mem_cgroup *memcg;
803 long x, threshold = MEMCG_CHARGE_BATCH;
805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
809 __mod_memcg_state(memcg, idx, val);
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 if (unlikely(abs(x) > threshold)) {
819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 struct mem_cgroup_per_node *pi;
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 struct page *head = compound_head(page); /* rmap on tail pages */
854 struct mem_cgroup *memcg = page_memcg(head);
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
860 __mod_node_page_state(pgdat, idx, val);
864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 __mod_lruvec_state(lruvec, idx, val);
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
876 memcg = mem_cgroup_from_obj(p);
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
885 __mod_node_page_state(pgdat, idx, val);
887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 __mod_lruvec_state(lruvec, idx, val);
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 if (mem_cgroup_disabled())
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 struct mem_cgroup *mi;
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
925 return atomic_long_read(&memcg->vmevents[event]);
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 /* pagein of a big page is an event. So, ignore page size */
944 __count_memcg_events(memcg, PGPGIN, 1);
946 __count_memcg_events(memcg, PGPGOUT, 1);
947 nr_pages = -nr_pages; /* for event */
950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
956 unsigned long val, next;
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 /* from time_after() in jiffies.h */
961 if ((long)(next - val) < 0) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
979 * Check events in order.
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
984 /* threshold event is triggered in finer grain than soft limit */
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
991 mem_cgroup_threshold(memcg);
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1021 struct mem_cgroup *memcg;
1023 if (mem_cgroup_disabled())
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1034 memcg = root_mem_cgroup;
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1040 } while (!css_tryget(&memcg->css));
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1055 struct mem_cgroup *memcg = page_memcg(page);
1057 if (mem_cgroup_disabled())
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 memcg = root_mem_cgroup;
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1072 return this_cpu_read(int_active_memcg);
1074 return current->active_memcg;
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1079 struct mem_cgroup *memcg;
1082 memcg = active_memcg();
1084 /* current->active_memcg must hold a ref. */
1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1086 memcg = root_mem_cgroup;
1088 memcg = current->active_memcg;
1095 static __always_inline bool memcg_kmem_bypass(void)
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1113 if (memcg_kmem_bypass())
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1119 return get_mem_cgroup_from_mm(current->mm);
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 struct mem_cgroup *prev,
1141 struct mem_cgroup_reclaim_cookie *reclaim)
1143 struct mem_cgroup_reclaim_iter *iter;
1144 struct cgroup_subsys_state *css = NULL;
1145 struct mem_cgroup *memcg = NULL;
1146 struct mem_cgroup *pos = NULL;
1148 if (mem_cgroup_disabled())
1152 root = root_mem_cgroup;
1154 if (prev && !reclaim)
1160 struct mem_cgroup_per_node *mz;
1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1165 if (prev && reclaim->generation != iter->generation)
1169 pos = READ_ONCE(iter->position);
1170 if (!pos || css_tryget(&pos->css))
1173 * css reference reached zero, so iter->position will
1174 * be cleared by ->css_released. However, we should not
1175 * rely on this happening soon, because ->css_released
1176 * is called from a work queue, and by busy-waiting we
1177 * might block it. So we clear iter->position right
1180 (void)cmpxchg(&iter->position, pos, NULL);
1188 css = css_next_descendant_pre(css, &root->css);
1191 * Reclaimers share the hierarchy walk, and a
1192 * new one might jump in right at the end of
1193 * the hierarchy - make sure they see at least
1194 * one group and restart from the beginning.
1202 * Verify the css and acquire a reference. The root
1203 * is provided by the caller, so we know it's alive
1204 * and kicking, and don't take an extra reference.
1206 memcg = mem_cgroup_from_css(css);
1208 if (css == &root->css)
1211 if (css_tryget(css))
1219 * The position could have already been updated by a competing
1220 * thread, so check that the value hasn't changed since we read
1221 * it to avoid reclaiming from the same cgroup twice.
1223 (void)cmpxchg(&iter->position, pos, memcg);
1231 reclaim->generation = iter->generation;
1236 if (prev && prev != root)
1237 css_put(&prev->css);
1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244 * @root: hierarchy root
1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1247 void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 struct mem_cgroup *prev)
1251 root = root_mem_cgroup;
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 struct mem_cgroup *dead_memcg)
1259 struct mem_cgroup_reclaim_iter *iter;
1260 struct mem_cgroup_per_node *mz;
1263 for_each_node(nid) {
1264 mz = mem_cgroup_nodeinfo(from, nid);
1266 cmpxchg(&iter->position, dead_memcg, NULL);
1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1272 struct mem_cgroup *memcg = dead_memcg;
1273 struct mem_cgroup *last;
1276 __invalidate_reclaim_iterators(memcg, dead_memcg);
1278 } while ((memcg = parent_mem_cgroup(memcg)));
1281 * When cgruop1 non-hierarchy mode is used,
1282 * parent_mem_cgroup() does not walk all the way up to the
1283 * cgroup root (root_mem_cgroup). So we have to handle
1284 * dead_memcg from cgroup root separately.
1286 if (last != root_mem_cgroup)
1287 __invalidate_reclaim_iterators(root_mem_cgroup,
1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293 * @memcg: hierarchy root
1294 * @fn: function to call for each task
1295 * @arg: argument passed to @fn
1297 * This function iterates over tasks attached to @memcg or to any of its
1298 * descendants and calls @fn for each task. If @fn returns a non-zero
1299 * value, the function breaks the iteration loop and returns the value.
1300 * Otherwise, it will iterate over all tasks and return 0.
1302 * This function must not be called for the root memory cgroup.
1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 int (*fn)(struct task_struct *, void *), void *arg)
1307 struct mem_cgroup *iter;
1310 BUG_ON(memcg == root_mem_cgroup);
1312 for_each_mem_cgroup_tree(iter, memcg) {
1313 struct css_task_iter it;
1314 struct task_struct *task;
1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 while (!ret && (task = css_task_iter_next(&it)))
1318 ret = fn(task, arg);
1319 css_task_iter_end(&it);
1321 mem_cgroup_iter_break(memcg, iter);
1328 #ifdef CONFIG_DEBUG_VM
1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1331 struct mem_cgroup *memcg;
1333 if (mem_cgroup_disabled())
1336 memcg = page_memcg(page);
1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1346 * lock_page_lruvec - lock and return lruvec for a given page.
1349 * These functions are safe to use under any of the following conditions:
1352 * - lock_page_memcg()
1353 * - page->_refcount is zero
1355 struct lruvec *lock_page_lruvec(struct page *page)
1357 struct lruvec *lruvec;
1358 struct pglist_data *pgdat = page_pgdat(page);
1360 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1361 spin_lock(&lruvec->lru_lock);
1363 lruvec_memcg_debug(lruvec, page);
1368 struct lruvec *lock_page_lruvec_irq(struct page *page)
1370 struct lruvec *lruvec;
1371 struct pglist_data *pgdat = page_pgdat(page);
1373 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1374 spin_lock_irq(&lruvec->lru_lock);
1376 lruvec_memcg_debug(lruvec, page);
1381 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1383 struct lruvec *lruvec;
1384 struct pglist_data *pgdat = page_pgdat(page);
1386 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1387 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1389 lruvec_memcg_debug(lruvec, page);
1395 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1396 * @lruvec: mem_cgroup per zone lru vector
1397 * @lru: index of lru list the page is sitting on
1398 * @zid: zone id of the accounted pages
1399 * @nr_pages: positive when adding or negative when removing
1401 * This function must be called under lru_lock, just before a page is added
1402 * to or just after a page is removed from an lru list (that ordering being
1403 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1405 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1406 int zid, int nr_pages)
1408 struct mem_cgroup_per_node *mz;
1409 unsigned long *lru_size;
1412 if (mem_cgroup_disabled())
1415 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1416 lru_size = &mz->lru_zone_size[zid][lru];
1419 *lru_size += nr_pages;
1422 if (WARN_ONCE(size < 0,
1423 "%s(%p, %d, %d): lru_size %ld\n",
1424 __func__, lruvec, lru, nr_pages, size)) {
1430 *lru_size += nr_pages;
1434 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1435 * @memcg: the memory cgroup
1437 * Returns the maximum amount of memory @mem can be charged with, in
1440 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1442 unsigned long margin = 0;
1443 unsigned long count;
1444 unsigned long limit;
1446 count = page_counter_read(&memcg->memory);
1447 limit = READ_ONCE(memcg->memory.max);
1449 margin = limit - count;
1451 if (do_memsw_account()) {
1452 count = page_counter_read(&memcg->memsw);
1453 limit = READ_ONCE(memcg->memsw.max);
1455 margin = min(margin, limit - count);
1464 * A routine for checking "mem" is under move_account() or not.
1466 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1467 * moving cgroups. This is for waiting at high-memory pressure
1470 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472 struct mem_cgroup *from;
1473 struct mem_cgroup *to;
1476 * Unlike task_move routines, we access mc.to, mc.from not under
1477 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 spin_lock(&mc.lock);
1485 ret = mem_cgroup_is_descendant(from, memcg) ||
1486 mem_cgroup_is_descendant(to, memcg);
1488 spin_unlock(&mc.lock);
1492 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 if (mc.moving_task && current != mc.moving_task) {
1495 if (mem_cgroup_under_move(memcg)) {
1497 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1498 /* moving charge context might have finished. */
1501 finish_wait(&mc.waitq, &wait);
1508 struct memory_stat {
1513 static const struct memory_stat memory_stats[] = {
1514 { "anon", NR_ANON_MAPPED },
1515 { "file", NR_FILE_PAGES },
1516 { "kernel_stack", NR_KERNEL_STACK_KB },
1517 { "pagetables", NR_PAGETABLE },
1518 { "percpu", MEMCG_PERCPU_B },
1519 { "sock", MEMCG_SOCK },
1520 { "shmem", NR_SHMEM },
1521 { "file_mapped", NR_FILE_MAPPED },
1522 { "file_dirty", NR_FILE_DIRTY },
1523 { "file_writeback", NR_WRITEBACK },
1525 { "swapcached", NR_SWAPCACHE },
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 { "anon_thp", NR_ANON_THPS },
1529 { "file_thp", NR_FILE_THPS },
1530 { "shmem_thp", NR_SHMEM_THPS },
1532 { "inactive_anon", NR_INACTIVE_ANON },
1533 { "active_anon", NR_ACTIVE_ANON },
1534 { "inactive_file", NR_INACTIVE_FILE },
1535 { "active_file", NR_ACTIVE_FILE },
1536 { "unevictable", NR_UNEVICTABLE },
1537 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1538 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1540 /* The memory events */
1541 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1542 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1543 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1544 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1545 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1546 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1547 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1550 /* Translate stat items to the correct unit for memory.stat output */
1551 static int memcg_page_state_unit(int item)
1554 case MEMCG_PERCPU_B:
1555 case NR_SLAB_RECLAIMABLE_B:
1556 case NR_SLAB_UNRECLAIMABLE_B:
1557 case WORKINGSET_REFAULT_ANON:
1558 case WORKINGSET_REFAULT_FILE:
1559 case WORKINGSET_ACTIVATE_ANON:
1560 case WORKINGSET_ACTIVATE_FILE:
1561 case WORKINGSET_RESTORE_ANON:
1562 case WORKINGSET_RESTORE_FILE:
1563 case WORKINGSET_NODERECLAIM:
1565 case NR_KERNEL_STACK_KB:
1572 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1575 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1578 static char *memory_stat_format(struct mem_cgroup *memcg)
1583 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1588 * Provide statistics on the state of the memory subsystem as
1589 * well as cumulative event counters that show past behavior.
1591 * This list is ordered following a combination of these gradients:
1592 * 1) generic big picture -> specifics and details
1593 * 2) reflecting userspace activity -> reflecting kernel heuristics
1595 * Current memory state:
1598 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1601 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1602 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1604 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1605 size += memcg_page_state_output(memcg,
1606 NR_SLAB_RECLAIMABLE_B);
1607 seq_buf_printf(&s, "slab %llu\n", size);
1611 /* Accumulated memory events */
1613 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1614 memcg_events(memcg, PGFAULT));
1615 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1616 memcg_events(memcg, PGMAJFAULT));
1617 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1618 memcg_events(memcg, PGREFILL));
1619 seq_buf_printf(&s, "pgscan %lu\n",
1620 memcg_events(memcg, PGSCAN_KSWAPD) +
1621 memcg_events(memcg, PGSCAN_DIRECT));
1622 seq_buf_printf(&s, "pgsteal %lu\n",
1623 memcg_events(memcg, PGSTEAL_KSWAPD) +
1624 memcg_events(memcg, PGSTEAL_DIRECT));
1625 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1626 memcg_events(memcg, PGACTIVATE));
1627 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1628 memcg_events(memcg, PGDEACTIVATE));
1629 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1630 memcg_events(memcg, PGLAZYFREE));
1631 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1632 memcg_events(memcg, PGLAZYFREED));
1634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1635 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1636 memcg_events(memcg, THP_FAULT_ALLOC));
1637 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1638 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1639 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641 /* The above should easily fit into one page */
1642 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1647 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 * mem_cgroup_print_oom_context: Print OOM information relevant to
1650 * memory controller.
1651 * @memcg: The memory cgroup that went over limit
1652 * @p: Task that is going to be killed
1654 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1657 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1662 pr_cont(",oom_memcg=");
1663 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_cont(",global_oom");
1667 pr_cont(",task_memcg=");
1668 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1674 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1675 * memory controller.
1676 * @memcg: The memory cgroup that went over limit
1678 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1682 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1683 K((u64)page_counter_read(&memcg->memory)),
1684 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1685 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1686 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1687 K((u64)page_counter_read(&memcg->swap)),
1688 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1690 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1691 K((u64)page_counter_read(&memcg->memsw)),
1692 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1693 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1694 K((u64)page_counter_read(&memcg->kmem)),
1695 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1698 pr_info("Memory cgroup stats for ");
1699 pr_cont_cgroup_path(memcg->css.cgroup);
1701 buf = memory_stat_format(memcg);
1709 * Return the memory (and swap, if configured) limit for a memcg.
1711 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1713 unsigned long max = READ_ONCE(memcg->memory.max);
1715 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1716 if (mem_cgroup_swappiness(memcg))
1717 max += min(READ_ONCE(memcg->swap.max),
1718 (unsigned long)total_swap_pages);
1720 if (mem_cgroup_swappiness(memcg)) {
1721 /* Calculate swap excess capacity from memsw limit */
1722 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1724 max += min(swap, (unsigned long)total_swap_pages);
1730 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1732 return page_counter_read(&memcg->memory);
1735 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1738 struct oom_control oc = {
1742 .gfp_mask = gfp_mask,
1747 if (mutex_lock_killable(&oom_lock))
1750 if (mem_cgroup_margin(memcg) >= (1 << order))
1754 * A few threads which were not waiting at mutex_lock_killable() can
1755 * fail to bail out. Therefore, check again after holding oom_lock.
1757 ret = should_force_charge() || out_of_memory(&oc);
1760 mutex_unlock(&oom_lock);
1764 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1767 unsigned long *total_scanned)
1769 struct mem_cgroup *victim = NULL;
1772 unsigned long excess;
1773 unsigned long nr_scanned;
1774 struct mem_cgroup_reclaim_cookie reclaim = {
1778 excess = soft_limit_excess(root_memcg);
1781 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786 * If we have not been able to reclaim
1787 * anything, it might because there are
1788 * no reclaimable pages under this hierarchy
1793 * We want to do more targeted reclaim.
1794 * excess >> 2 is not to excessive so as to
1795 * reclaim too much, nor too less that we keep
1796 * coming back to reclaim from this cgroup
1798 if (total >= (excess >> 2) ||
1799 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1805 pgdat, &nr_scanned);
1806 *total_scanned += nr_scanned;
1807 if (!soft_limit_excess(root_memcg))
1810 mem_cgroup_iter_break(root_memcg, victim);
1814 #ifdef CONFIG_LOCKDEP
1815 static struct lockdep_map memcg_oom_lock_dep_map = {
1816 .name = "memcg_oom_lock",
1820 static DEFINE_SPINLOCK(memcg_oom_lock);
1823 * Check OOM-Killer is already running under our hierarchy.
1824 * If someone is running, return false.
1826 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1828 struct mem_cgroup *iter, *failed = NULL;
1830 spin_lock(&memcg_oom_lock);
1832 for_each_mem_cgroup_tree(iter, memcg) {
1833 if (iter->oom_lock) {
1835 * this subtree of our hierarchy is already locked
1836 * so we cannot give a lock.
1839 mem_cgroup_iter_break(memcg, iter);
1842 iter->oom_lock = true;
1847 * OK, we failed to lock the whole subtree so we have
1848 * to clean up what we set up to the failing subtree
1850 for_each_mem_cgroup_tree(iter, memcg) {
1851 if (iter == failed) {
1852 mem_cgroup_iter_break(memcg, iter);
1855 iter->oom_lock = false;
1858 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1860 spin_unlock(&memcg_oom_lock);
1865 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1867 struct mem_cgroup *iter;
1869 spin_lock(&memcg_oom_lock);
1870 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1871 for_each_mem_cgroup_tree(iter, memcg)
1872 iter->oom_lock = false;
1873 spin_unlock(&memcg_oom_lock);
1876 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1878 struct mem_cgroup *iter;
1880 spin_lock(&memcg_oom_lock);
1881 for_each_mem_cgroup_tree(iter, memcg)
1883 spin_unlock(&memcg_oom_lock);
1886 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1888 struct mem_cgroup *iter;
1891 * Be careful about under_oom underflows becase a child memcg
1892 * could have been added after mem_cgroup_mark_under_oom.
1894 spin_lock(&memcg_oom_lock);
1895 for_each_mem_cgroup_tree(iter, memcg)
1896 if (iter->under_oom > 0)
1898 spin_unlock(&memcg_oom_lock);
1901 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1903 struct oom_wait_info {
1904 struct mem_cgroup *memcg;
1905 wait_queue_entry_t wait;
1908 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1909 unsigned mode, int sync, void *arg)
1911 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1912 struct mem_cgroup *oom_wait_memcg;
1913 struct oom_wait_info *oom_wait_info;
1915 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1916 oom_wait_memcg = oom_wait_info->memcg;
1918 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1919 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1921 return autoremove_wake_function(wait, mode, sync, arg);
1924 static void memcg_oom_recover(struct mem_cgroup *memcg)
1927 * For the following lockless ->under_oom test, the only required
1928 * guarantee is that it must see the state asserted by an OOM when
1929 * this function is called as a result of userland actions
1930 * triggered by the notification of the OOM. This is trivially
1931 * achieved by invoking mem_cgroup_mark_under_oom() before
1932 * triggering notification.
1934 if (memcg && memcg->under_oom)
1935 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1945 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1947 enum oom_status ret;
1950 if (order > PAGE_ALLOC_COSTLY_ORDER)
1953 memcg_memory_event(memcg, MEMCG_OOM);
1956 * We are in the middle of the charge context here, so we
1957 * don't want to block when potentially sitting on a callstack
1958 * that holds all kinds of filesystem and mm locks.
1960 * cgroup1 allows disabling the OOM killer and waiting for outside
1961 * handling until the charge can succeed; remember the context and put
1962 * the task to sleep at the end of the page fault when all locks are
1965 * On the other hand, in-kernel OOM killer allows for an async victim
1966 * memory reclaim (oom_reaper) and that means that we are not solely
1967 * relying on the oom victim to make a forward progress and we can
1968 * invoke the oom killer here.
1970 * Please note that mem_cgroup_out_of_memory might fail to find a
1971 * victim and then we have to bail out from the charge path.
1973 if (memcg->oom_kill_disable) {
1974 if (!current->in_user_fault)
1976 css_get(&memcg->css);
1977 current->memcg_in_oom = memcg;
1978 current->memcg_oom_gfp_mask = mask;
1979 current->memcg_oom_order = order;
1984 mem_cgroup_mark_under_oom(memcg);
1986 locked = mem_cgroup_oom_trylock(memcg);
1989 mem_cgroup_oom_notify(memcg);
1991 mem_cgroup_unmark_under_oom(memcg);
1992 if (mem_cgroup_out_of_memory(memcg, mask, order))
1998 mem_cgroup_oom_unlock(memcg);
2004 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2005 * @handle: actually kill/wait or just clean up the OOM state
2007 * This has to be called at the end of a page fault if the memcg OOM
2008 * handler was enabled.
2010 * Memcg supports userspace OOM handling where failed allocations must
2011 * sleep on a waitqueue until the userspace task resolves the
2012 * situation. Sleeping directly in the charge context with all kinds
2013 * of locks held is not a good idea, instead we remember an OOM state
2014 * in the task and mem_cgroup_oom_synchronize() has to be called at
2015 * the end of the page fault to complete the OOM handling.
2017 * Returns %true if an ongoing memcg OOM situation was detected and
2018 * completed, %false otherwise.
2020 bool mem_cgroup_oom_synchronize(bool handle)
2022 struct mem_cgroup *memcg = current->memcg_in_oom;
2023 struct oom_wait_info owait;
2026 /* OOM is global, do not handle */
2033 owait.memcg = memcg;
2034 owait.wait.flags = 0;
2035 owait.wait.func = memcg_oom_wake_function;
2036 owait.wait.private = current;
2037 INIT_LIST_HEAD(&owait.wait.entry);
2039 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2040 mem_cgroup_mark_under_oom(memcg);
2042 locked = mem_cgroup_oom_trylock(memcg);
2045 mem_cgroup_oom_notify(memcg);
2047 if (locked && !memcg->oom_kill_disable) {
2048 mem_cgroup_unmark_under_oom(memcg);
2049 finish_wait(&memcg_oom_waitq, &owait.wait);
2050 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2051 current->memcg_oom_order);
2054 mem_cgroup_unmark_under_oom(memcg);
2055 finish_wait(&memcg_oom_waitq, &owait.wait);
2059 mem_cgroup_oom_unlock(memcg);
2061 * There is no guarantee that an OOM-lock contender
2062 * sees the wakeups triggered by the OOM kill
2063 * uncharges. Wake any sleepers explicitely.
2065 memcg_oom_recover(memcg);
2068 current->memcg_in_oom = NULL;
2069 css_put(&memcg->css);
2074 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2075 * @victim: task to be killed by the OOM killer
2076 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2078 * Returns a pointer to a memory cgroup, which has to be cleaned up
2079 * by killing all belonging OOM-killable tasks.
2081 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2083 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2084 struct mem_cgroup *oom_domain)
2086 struct mem_cgroup *oom_group = NULL;
2087 struct mem_cgroup *memcg;
2089 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2093 oom_domain = root_mem_cgroup;
2097 memcg = mem_cgroup_from_task(victim);
2098 if (memcg == root_mem_cgroup)
2102 * If the victim task has been asynchronously moved to a different
2103 * memory cgroup, we might end up killing tasks outside oom_domain.
2104 * In this case it's better to ignore memory.group.oom.
2106 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2110 * Traverse the memory cgroup hierarchy from the victim task's
2111 * cgroup up to the OOMing cgroup (or root) to find the
2112 * highest-level memory cgroup with oom.group set.
2114 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2115 if (memcg->oom_group)
2118 if (memcg == oom_domain)
2123 css_get(&oom_group->css);
2130 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2132 pr_info("Tasks in ");
2133 pr_cont_cgroup_path(memcg->css.cgroup);
2134 pr_cont(" are going to be killed due to memory.oom.group set\n");
2138 * lock_page_memcg - lock a page and memcg binding
2141 * This function protects unlocked LRU pages from being moved to
2144 * It ensures lifetime of the returned memcg. Caller is responsible
2145 * for the lifetime of the page; __unlock_page_memcg() is available
2146 * when @page might get freed inside the locked section.
2148 struct mem_cgroup *lock_page_memcg(struct page *page)
2150 struct page *head = compound_head(page); /* rmap on tail pages */
2151 struct mem_cgroup *memcg;
2152 unsigned long flags;
2155 * The RCU lock is held throughout the transaction. The fast
2156 * path can get away without acquiring the memcg->move_lock
2157 * because page moving starts with an RCU grace period.
2159 * The RCU lock also protects the memcg from being freed when
2160 * the page state that is going to change is the only thing
2161 * preventing the page itself from being freed. E.g. writeback
2162 * doesn't hold a page reference and relies on PG_writeback to
2163 * keep off truncation, migration and so forth.
2167 if (mem_cgroup_disabled())
2170 memcg = page_memcg(head);
2171 if (unlikely(!memcg))
2174 #ifdef CONFIG_PROVE_LOCKING
2175 local_irq_save(flags);
2176 might_lock(&memcg->move_lock);
2177 local_irq_restore(flags);
2180 if (atomic_read(&memcg->moving_account) <= 0)
2183 spin_lock_irqsave(&memcg->move_lock, flags);
2184 if (memcg != page_memcg(head)) {
2185 spin_unlock_irqrestore(&memcg->move_lock, flags);
2190 * When charge migration first begins, we can have locked and
2191 * unlocked page stat updates happening concurrently. Track
2192 * the task who has the lock for unlock_page_memcg().
2194 memcg->move_lock_task = current;
2195 memcg->move_lock_flags = flags;
2199 EXPORT_SYMBOL(lock_page_memcg);
2202 * __unlock_page_memcg - unlock and unpin a memcg
2205 * Unlock and unpin a memcg returned by lock_page_memcg().
2207 void __unlock_page_memcg(struct mem_cgroup *memcg)
2209 if (memcg && memcg->move_lock_task == current) {
2210 unsigned long flags = memcg->move_lock_flags;
2212 memcg->move_lock_task = NULL;
2213 memcg->move_lock_flags = 0;
2215 spin_unlock_irqrestore(&memcg->move_lock, flags);
2222 * unlock_page_memcg - unlock a page and memcg binding
2225 void unlock_page_memcg(struct page *page)
2227 struct page *head = compound_head(page);
2229 __unlock_page_memcg(page_memcg(head));
2231 EXPORT_SYMBOL(unlock_page_memcg);
2233 struct memcg_stock_pcp {
2234 struct mem_cgroup *cached; /* this never be root cgroup */
2235 unsigned int nr_pages;
2237 #ifdef CONFIG_MEMCG_KMEM
2238 struct obj_cgroup *cached_objcg;
2239 unsigned int nr_bytes;
2242 struct work_struct work;
2243 unsigned long flags;
2244 #define FLUSHING_CACHED_CHARGE 0
2246 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2247 static DEFINE_MUTEX(percpu_charge_mutex);
2249 #ifdef CONFIG_MEMCG_KMEM
2250 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2251 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2252 struct mem_cgroup *root_memcg);
2255 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2258 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2259 struct mem_cgroup *root_memcg)
2266 * consume_stock: Try to consume stocked charge on this cpu.
2267 * @memcg: memcg to consume from.
2268 * @nr_pages: how many pages to charge.
2270 * The charges will only happen if @memcg matches the current cpu's memcg
2271 * stock, and at least @nr_pages are available in that stock. Failure to
2272 * service an allocation will refill the stock.
2274 * returns true if successful, false otherwise.
2276 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2278 struct memcg_stock_pcp *stock;
2279 unsigned long flags;
2282 if (nr_pages > MEMCG_CHARGE_BATCH)
2285 local_irq_save(flags);
2287 stock = this_cpu_ptr(&memcg_stock);
2288 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2289 stock->nr_pages -= nr_pages;
2293 local_irq_restore(flags);
2299 * Returns stocks cached in percpu and reset cached information.
2301 static void drain_stock(struct memcg_stock_pcp *stock)
2303 struct mem_cgroup *old = stock->cached;
2308 if (stock->nr_pages) {
2309 page_counter_uncharge(&old->memory, stock->nr_pages);
2310 if (do_memsw_account())
2311 page_counter_uncharge(&old->memsw, stock->nr_pages);
2312 stock->nr_pages = 0;
2316 stock->cached = NULL;
2319 static void drain_local_stock(struct work_struct *dummy)
2321 struct memcg_stock_pcp *stock;
2322 unsigned long flags;
2325 * The only protection from memory hotplug vs. drain_stock races is
2326 * that we always operate on local CPU stock here with IRQ disabled
2328 local_irq_save(flags);
2330 stock = this_cpu_ptr(&memcg_stock);
2331 drain_obj_stock(stock);
2333 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2335 local_irq_restore(flags);
2339 * Cache charges(val) to local per_cpu area.
2340 * This will be consumed by consume_stock() function, later.
2342 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2344 struct memcg_stock_pcp *stock;
2345 unsigned long flags;
2347 local_irq_save(flags);
2349 stock = this_cpu_ptr(&memcg_stock);
2350 if (stock->cached != memcg) { /* reset if necessary */
2352 css_get(&memcg->css);
2353 stock->cached = memcg;
2355 stock->nr_pages += nr_pages;
2357 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2360 local_irq_restore(flags);
2364 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2365 * of the hierarchy under it.
2367 static void drain_all_stock(struct mem_cgroup *root_memcg)
2371 /* If someone's already draining, avoid adding running more workers. */
2372 if (!mutex_trylock(&percpu_charge_mutex))
2375 * Notify other cpus that system-wide "drain" is running
2376 * We do not care about races with the cpu hotplug because cpu down
2377 * as well as workers from this path always operate on the local
2378 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2381 for_each_online_cpu(cpu) {
2382 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2383 struct mem_cgroup *memcg;
2387 memcg = stock->cached;
2388 if (memcg && stock->nr_pages &&
2389 mem_cgroup_is_descendant(memcg, root_memcg))
2391 if (obj_stock_flush_required(stock, root_memcg))
2396 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2398 drain_local_stock(&stock->work);
2400 schedule_work_on(cpu, &stock->work);
2404 mutex_unlock(&percpu_charge_mutex);
2407 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2409 struct memcg_stock_pcp *stock;
2410 struct mem_cgroup *memcg, *mi;
2412 stock = &per_cpu(memcg_stock, cpu);
2415 for_each_mem_cgroup(memcg) {
2418 for (i = 0; i < MEMCG_NR_STAT; i++) {
2422 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2424 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2425 atomic_long_add(x, &memcg->vmstats[i]);
2427 if (i >= NR_VM_NODE_STAT_ITEMS)
2430 for_each_node(nid) {
2431 struct mem_cgroup_per_node *pn;
2433 pn = mem_cgroup_nodeinfo(memcg, nid);
2434 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2437 atomic_long_add(x, &pn->lruvec_stat[i]);
2438 } while ((pn = parent_nodeinfo(pn, nid)));
2442 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2445 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2447 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2448 atomic_long_add(x, &memcg->vmevents[i]);
2455 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2456 unsigned int nr_pages,
2459 unsigned long nr_reclaimed = 0;
2462 unsigned long pflags;
2464 if (page_counter_read(&memcg->memory) <=
2465 READ_ONCE(memcg->memory.high))
2468 memcg_memory_event(memcg, MEMCG_HIGH);
2470 psi_memstall_enter(&pflags);
2471 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2473 psi_memstall_leave(&pflags);
2474 } while ((memcg = parent_mem_cgroup(memcg)) &&
2475 !mem_cgroup_is_root(memcg));
2477 return nr_reclaimed;
2480 static void high_work_func(struct work_struct *work)
2482 struct mem_cgroup *memcg;
2484 memcg = container_of(work, struct mem_cgroup, high_work);
2485 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2489 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2490 * enough to still cause a significant slowdown in most cases, while still
2491 * allowing diagnostics and tracing to proceed without becoming stuck.
2493 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2496 * When calculating the delay, we use these either side of the exponentiation to
2497 * maintain precision and scale to a reasonable number of jiffies (see the table
2500 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2501 * overage ratio to a delay.
2502 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2503 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2504 * to produce a reasonable delay curve.
2506 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2507 * reasonable delay curve compared to precision-adjusted overage, not
2508 * penalising heavily at first, but still making sure that growth beyond the
2509 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2510 * example, with a high of 100 megabytes:
2512 * +-------+------------------------+
2513 * | usage | time to allocate in ms |
2514 * +-------+------------------------+
2536 * +-------+------------------------+
2538 #define MEMCG_DELAY_PRECISION_SHIFT 20
2539 #define MEMCG_DELAY_SCALING_SHIFT 14
2541 static u64 calculate_overage(unsigned long usage, unsigned long high)
2549 * Prevent division by 0 in overage calculation by acting as if
2550 * it was a threshold of 1 page
2552 high = max(high, 1UL);
2554 overage = usage - high;
2555 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2556 return div64_u64(overage, high);
2559 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2561 u64 overage, max_overage = 0;
2564 overage = calculate_overage(page_counter_read(&memcg->memory),
2565 READ_ONCE(memcg->memory.high));
2566 max_overage = max(overage, max_overage);
2567 } while ((memcg = parent_mem_cgroup(memcg)) &&
2568 !mem_cgroup_is_root(memcg));
2573 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2575 u64 overage, max_overage = 0;
2578 overage = calculate_overage(page_counter_read(&memcg->swap),
2579 READ_ONCE(memcg->swap.high));
2581 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2582 max_overage = max(overage, max_overage);
2583 } while ((memcg = parent_mem_cgroup(memcg)) &&
2584 !mem_cgroup_is_root(memcg));
2590 * Get the number of jiffies that we should penalise a mischievous cgroup which
2591 * is exceeding its memory.high by checking both it and its ancestors.
2593 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2594 unsigned int nr_pages,
2597 unsigned long penalty_jiffies;
2603 * We use overage compared to memory.high to calculate the number of
2604 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2605 * fairly lenient on small overages, and increasingly harsh when the
2606 * memcg in question makes it clear that it has no intention of stopping
2607 * its crazy behaviour, so we exponentially increase the delay based on
2610 penalty_jiffies = max_overage * max_overage * HZ;
2611 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2612 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2615 * Factor in the task's own contribution to the overage, such that four
2616 * N-sized allocations are throttled approximately the same as one
2617 * 4N-sized allocation.
2619 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2620 * larger the current charge patch is than that.
2622 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2626 * Scheduled by try_charge() to be executed from the userland return path
2627 * and reclaims memory over the high limit.
2629 void mem_cgroup_handle_over_high(void)
2631 unsigned long penalty_jiffies;
2632 unsigned long pflags;
2633 unsigned long nr_reclaimed;
2634 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *memcg;
2637 bool in_retry = false;
2639 if (likely(!nr_pages))
2642 memcg = get_mem_cgroup_from_mm(current->mm);
2643 current->memcg_nr_pages_over_high = 0;
2647 * The allocating task should reclaim at least the batch size, but for
2648 * subsequent retries we only want to do what's necessary to prevent oom
2649 * or breaching resource isolation.
2651 * This is distinct from memory.max or page allocator behaviour because
2652 * memory.high is currently batched, whereas memory.max and the page
2653 * allocator run every time an allocation is made.
2655 nr_reclaimed = reclaim_high(memcg,
2656 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2660 * memory.high is breached and reclaim is unable to keep up. Throttle
2661 * allocators proactively to slow down excessive growth.
2663 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2664 mem_find_max_overage(memcg));
2666 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2667 swap_find_max_overage(memcg));
2670 * Clamp the max delay per usermode return so as to still keep the
2671 * application moving forwards and also permit diagnostics, albeit
2674 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2677 * Don't sleep if the amount of jiffies this memcg owes us is so low
2678 * that it's not even worth doing, in an attempt to be nice to those who
2679 * go only a small amount over their memory.high value and maybe haven't
2680 * been aggressively reclaimed enough yet.
2682 if (penalty_jiffies <= HZ / 100)
2686 * If reclaim is making forward progress but we're still over
2687 * memory.high, we want to encourage that rather than doing allocator
2690 if (nr_reclaimed || nr_retries--) {
2696 * If we exit early, we're guaranteed to die (since
2697 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2698 * need to account for any ill-begotten jiffies to pay them off later.
2700 psi_memstall_enter(&pflags);
2701 schedule_timeout_killable(penalty_jiffies);
2702 psi_memstall_leave(&pflags);
2705 css_put(&memcg->css);
2708 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2709 unsigned int nr_pages)
2711 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2712 int nr_retries = MAX_RECLAIM_RETRIES;
2713 struct mem_cgroup *mem_over_limit;
2714 struct page_counter *counter;
2715 enum oom_status oom_status;
2716 unsigned long nr_reclaimed;
2717 bool may_swap = true;
2718 bool drained = false;
2719 unsigned long pflags;
2721 if (mem_cgroup_is_root(memcg))
2724 if (consume_stock(memcg, nr_pages))
2727 if (!do_memsw_account() ||
2728 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2729 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2731 if (do_memsw_account())
2732 page_counter_uncharge(&memcg->memsw, batch);
2733 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2735 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2739 if (batch > nr_pages) {
2745 * Memcg doesn't have a dedicated reserve for atomic
2746 * allocations. But like the global atomic pool, we need to
2747 * put the burden of reclaim on regular allocation requests
2748 * and let these go through as privileged allocations.
2750 if (gfp_mask & __GFP_ATOMIC)
2754 * Unlike in global OOM situations, memcg is not in a physical
2755 * memory shortage. Allow dying and OOM-killed tasks to
2756 * bypass the last charges so that they can exit quickly and
2757 * free their memory.
2759 if (unlikely(should_force_charge()))
2763 * Prevent unbounded recursion when reclaim operations need to
2764 * allocate memory. This might exceed the limits temporarily,
2765 * but we prefer facilitating memory reclaim and getting back
2766 * under the limit over triggering OOM kills in these cases.
2768 if (unlikely(current->flags & PF_MEMALLOC))
2771 if (unlikely(task_in_memcg_oom(current)))
2774 if (!gfpflags_allow_blocking(gfp_mask))
2777 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2779 psi_memstall_enter(&pflags);
2780 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2781 gfp_mask, may_swap);
2782 psi_memstall_leave(&pflags);
2784 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788 drain_all_stock(mem_over_limit);
2793 if (gfp_mask & __GFP_NORETRY)
2796 * Even though the limit is exceeded at this point, reclaim
2797 * may have been able to free some pages. Retry the charge
2798 * before killing the task.
2800 * Only for regular pages, though: huge pages are rather
2801 * unlikely to succeed so close to the limit, and we fall back
2802 * to regular pages anyway in case of failure.
2804 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2807 * At task move, charge accounts can be doubly counted. So, it's
2808 * better to wait until the end of task_move if something is going on.
2810 if (mem_cgroup_wait_acct_move(mem_over_limit))
2816 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2819 if (gfp_mask & __GFP_NOFAIL)
2822 if (fatal_signal_pending(current))
2826 * keep retrying as long as the memcg oom killer is able to make
2827 * a forward progress or bypass the charge if the oom killer
2828 * couldn't make any progress.
2830 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2831 get_order(nr_pages * PAGE_SIZE));
2832 switch (oom_status) {
2834 nr_retries = MAX_RECLAIM_RETRIES;
2842 if (!(gfp_mask & __GFP_NOFAIL))
2846 * The allocation either can't fail or will lead to more memory
2847 * being freed very soon. Allow memory usage go over the limit
2848 * temporarily by force charging it.
2850 page_counter_charge(&memcg->memory, nr_pages);
2851 if (do_memsw_account())
2852 page_counter_charge(&memcg->memsw, nr_pages);
2857 if (batch > nr_pages)
2858 refill_stock(memcg, batch - nr_pages);
2861 * If the hierarchy is above the normal consumption range, schedule
2862 * reclaim on returning to userland. We can perform reclaim here
2863 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2864 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2865 * not recorded as it most likely matches current's and won't
2866 * change in the meantime. As high limit is checked again before
2867 * reclaim, the cost of mismatch is negligible.
2870 bool mem_high, swap_high;
2872 mem_high = page_counter_read(&memcg->memory) >
2873 READ_ONCE(memcg->memory.high);
2874 swap_high = page_counter_read(&memcg->swap) >
2875 READ_ONCE(memcg->swap.high);
2877 /* Don't bother a random interrupted task */
2878 if (in_interrupt()) {
2880 schedule_work(&memcg->high_work);
2886 if (mem_high || swap_high) {
2888 * The allocating tasks in this cgroup will need to do
2889 * reclaim or be throttled to prevent further growth
2890 * of the memory or swap footprints.
2892 * Target some best-effort fairness between the tasks,
2893 * and distribute reclaim work and delay penalties
2894 * based on how much each task is actually allocating.
2896 current->memcg_nr_pages_over_high += batch;
2897 set_notify_resume(current);
2900 } while ((memcg = parent_mem_cgroup(memcg)));
2905 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2906 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2908 if (mem_cgroup_is_root(memcg))
2911 page_counter_uncharge(&memcg->memory, nr_pages);
2912 if (do_memsw_account())
2913 page_counter_uncharge(&memcg->memsw, nr_pages);
2917 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2919 VM_BUG_ON_PAGE(page_memcg(page), page);
2921 * Any of the following ensures page's memcg stability:
2925 * - lock_page_memcg()
2926 * - exclusive reference
2928 page->memcg_data = (unsigned long)memcg;
2931 #ifdef CONFIG_MEMCG_KMEM
2932 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2933 gfp_t gfp, bool new_page)
2935 unsigned int objects = objs_per_slab_page(s, page);
2936 unsigned long memcg_data;
2939 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2944 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2947 * If the slab page is brand new and nobody can yet access
2948 * it's memcg_data, no synchronization is required and
2949 * memcg_data can be simply assigned.
2951 page->memcg_data = memcg_data;
2952 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2954 * If the slab page is already in use, somebody can allocate
2955 * and assign obj_cgroups in parallel. In this case the existing
2956 * objcg vector should be reused.
2962 kmemleak_not_leak(vec);
2967 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2969 * A passed kernel object can be a slab object or a generic kernel page, so
2970 * different mechanisms for getting the memory cgroup pointer should be used.
2971 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2972 * can not know for sure how the kernel object is implemented.
2973 * mem_cgroup_from_obj() can be safely used in such cases.
2975 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2976 * cgroup_mutex, etc.
2978 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2982 if (mem_cgroup_disabled())
2985 page = virt_to_head_page(p);
2988 * Slab objects are accounted individually, not per-page.
2989 * Memcg membership data for each individual object is saved in
2990 * the page->obj_cgroups.
2992 if (page_objcgs_check(page)) {
2993 struct obj_cgroup *objcg;
2996 off = obj_to_index(page->slab_cache, page, p);
2997 objcg = page_objcgs(page)[off];
2999 return obj_cgroup_memcg(objcg);
3005 * page_memcg_check() is used here, because page_has_obj_cgroups()
3006 * check above could fail because the object cgroups vector wasn't set
3007 * at that moment, but it can be set concurrently.
3008 * page_memcg_check(page) will guarantee that a proper memory
3009 * cgroup pointer or NULL will be returned.
3011 return page_memcg_check(page);
3014 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3016 struct obj_cgroup *objcg = NULL;
3017 struct mem_cgroup *memcg;
3019 if (memcg_kmem_bypass())
3023 if (unlikely(active_memcg()))
3024 memcg = active_memcg();
3026 memcg = mem_cgroup_from_task(current);
3028 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3029 objcg = rcu_dereference(memcg->objcg);
3030 if (objcg && obj_cgroup_tryget(objcg))
3039 static int memcg_alloc_cache_id(void)
3044 id = ida_simple_get(&memcg_cache_ida,
3045 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3049 if (id < memcg_nr_cache_ids)
3053 * There's no space for the new id in memcg_caches arrays,
3054 * so we have to grow them.
3056 down_write(&memcg_cache_ids_sem);
3058 size = 2 * (id + 1);
3059 if (size < MEMCG_CACHES_MIN_SIZE)
3060 size = MEMCG_CACHES_MIN_SIZE;
3061 else if (size > MEMCG_CACHES_MAX_SIZE)
3062 size = MEMCG_CACHES_MAX_SIZE;
3064 err = memcg_update_all_list_lrus(size);
3066 memcg_nr_cache_ids = size;
3068 up_write(&memcg_cache_ids_sem);
3071 ida_simple_remove(&memcg_cache_ida, id);
3077 static void memcg_free_cache_id(int id)
3079 ida_simple_remove(&memcg_cache_ida, id);
3083 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3084 * @memcg: memory cgroup to charge
3085 * @gfp: reclaim mode
3086 * @nr_pages: number of pages to charge
3088 * Returns 0 on success, an error code on failure.
3090 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3091 unsigned int nr_pages)
3093 struct page_counter *counter;
3096 ret = try_charge(memcg, gfp, nr_pages);
3100 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3101 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3104 * Enforce __GFP_NOFAIL allocation because callers are not
3105 * prepared to see failures and likely do not have any failure
3108 if (gfp & __GFP_NOFAIL) {
3109 page_counter_charge(&memcg->kmem, nr_pages);
3112 cancel_charge(memcg, nr_pages);
3119 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3120 * @memcg: memcg to uncharge
3121 * @nr_pages: number of pages to uncharge
3123 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3125 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3126 page_counter_uncharge(&memcg->kmem, nr_pages);
3128 refill_stock(memcg, nr_pages);
3132 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3133 * @page: page to charge
3134 * @gfp: reclaim mode
3135 * @order: allocation order
3137 * Returns 0 on success, an error code on failure.
3139 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3141 struct mem_cgroup *memcg;
3144 memcg = get_mem_cgroup_from_current();
3145 if (memcg && !mem_cgroup_is_root(memcg)) {
3146 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3148 page->memcg_data = (unsigned long)memcg |
3152 css_put(&memcg->css);
3158 * __memcg_kmem_uncharge_page: uncharge a kmem page
3159 * @page: page to uncharge
3160 * @order: allocation order
3162 void __memcg_kmem_uncharge_page(struct page *page, int order)
3164 struct mem_cgroup *memcg = page_memcg(page);
3165 unsigned int nr_pages = 1 << order;
3170 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3171 __memcg_kmem_uncharge(memcg, nr_pages);
3172 page->memcg_data = 0;
3173 css_put(&memcg->css);
3176 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3178 struct memcg_stock_pcp *stock;
3179 unsigned long flags;
3182 local_irq_save(flags);
3184 stock = this_cpu_ptr(&memcg_stock);
3185 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3186 stock->nr_bytes -= nr_bytes;
3190 local_irq_restore(flags);
3195 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3197 struct obj_cgroup *old = stock->cached_objcg;
3202 if (stock->nr_bytes) {
3203 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3204 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3208 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3213 * The leftover is flushed to the centralized per-memcg value.
3214 * On the next attempt to refill obj stock it will be moved
3215 * to a per-cpu stock (probably, on an other CPU), see
3216 * refill_obj_stock().
3218 * How often it's flushed is a trade-off between the memory
3219 * limit enforcement accuracy and potential CPU contention,
3220 * so it might be changed in the future.
3222 atomic_add(nr_bytes, &old->nr_charged_bytes);
3223 stock->nr_bytes = 0;
3226 obj_cgroup_put(old);
3227 stock->cached_objcg = NULL;
3230 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3231 struct mem_cgroup *root_memcg)
3233 struct mem_cgroup *memcg;
3235 if (stock->cached_objcg) {
3236 memcg = obj_cgroup_memcg(stock->cached_objcg);
3237 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3244 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3246 struct memcg_stock_pcp *stock;
3247 unsigned long flags;
3249 local_irq_save(flags);
3251 stock = this_cpu_ptr(&memcg_stock);
3252 if (stock->cached_objcg != objcg) { /* reset if necessary */
3253 drain_obj_stock(stock);
3254 obj_cgroup_get(objcg);
3255 stock->cached_objcg = objcg;
3256 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3258 stock->nr_bytes += nr_bytes;
3260 if (stock->nr_bytes > PAGE_SIZE)
3261 drain_obj_stock(stock);
3263 local_irq_restore(flags);
3266 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3268 struct mem_cgroup *memcg;
3269 unsigned int nr_pages, nr_bytes;
3272 if (consume_obj_stock(objcg, size))
3276 * In theory, memcg->nr_charged_bytes can have enough
3277 * pre-charged bytes to satisfy the allocation. However,
3278 * flushing memcg->nr_charged_bytes requires two atomic
3279 * operations, and memcg->nr_charged_bytes can't be big,
3280 * so it's better to ignore it and try grab some new pages.
3281 * memcg->nr_charged_bytes will be flushed in
3282 * refill_obj_stock(), called from this function or
3283 * independently later.
3287 memcg = obj_cgroup_memcg(objcg);
3288 if (unlikely(!css_tryget(&memcg->css)))
3292 nr_pages = size >> PAGE_SHIFT;
3293 nr_bytes = size & (PAGE_SIZE - 1);
3298 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3299 if (!ret && nr_bytes)
3300 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3302 css_put(&memcg->css);
3306 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3308 refill_obj_stock(objcg, size);
3311 #endif /* CONFIG_MEMCG_KMEM */
3313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3315 * Because page_memcg(head) is not set on compound tails, set it now.
3317 void mem_cgroup_split_huge_fixup(struct page *head)
3319 struct mem_cgroup *memcg = page_memcg(head);
3322 if (mem_cgroup_disabled())
3325 for (i = 1; i < HPAGE_PMD_NR; i++) {
3326 css_get(&memcg->css);
3327 head[i].memcg_data = (unsigned long)memcg;
3330 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3332 #ifdef CONFIG_MEMCG_SWAP
3334 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3335 * @entry: swap entry to be moved
3336 * @from: mem_cgroup which the entry is moved from
3337 * @to: mem_cgroup which the entry is moved to
3339 * It succeeds only when the swap_cgroup's record for this entry is the same
3340 * as the mem_cgroup's id of @from.
3342 * Returns 0 on success, -EINVAL on failure.
3344 * The caller must have charged to @to, IOW, called page_counter_charge() about
3345 * both res and memsw, and called css_get().
3347 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3348 struct mem_cgroup *from, struct mem_cgroup *to)
3350 unsigned short old_id, new_id;
3352 old_id = mem_cgroup_id(from);
3353 new_id = mem_cgroup_id(to);
3355 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3356 mod_memcg_state(from, MEMCG_SWAP, -1);
3357 mod_memcg_state(to, MEMCG_SWAP, 1);
3363 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3364 struct mem_cgroup *from, struct mem_cgroup *to)
3370 static DEFINE_MUTEX(memcg_max_mutex);
3372 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3373 unsigned long max, bool memsw)
3375 bool enlarge = false;
3376 bool drained = false;
3378 bool limits_invariant;
3379 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3382 if (signal_pending(current)) {
3387 mutex_lock(&memcg_max_mutex);
3389 * Make sure that the new limit (memsw or memory limit) doesn't
3390 * break our basic invariant rule memory.max <= memsw.max.
3392 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3393 max <= memcg->memsw.max;
3394 if (!limits_invariant) {
3395 mutex_unlock(&memcg_max_mutex);
3399 if (max > counter->max)
3401 ret = page_counter_set_max(counter, max);
3402 mutex_unlock(&memcg_max_mutex);
3408 drain_all_stock(memcg);
3413 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3414 GFP_KERNEL, !memsw)) {
3420 if (!ret && enlarge)
3421 memcg_oom_recover(memcg);
3426 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 unsigned long *total_scanned)
3430 unsigned long nr_reclaimed = 0;
3431 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3432 unsigned long reclaimed;
3434 struct mem_cgroup_tree_per_node *mctz;
3435 unsigned long excess;
3436 unsigned long nr_scanned;
3441 mctz = soft_limit_tree_node(pgdat->node_id);
3444 * Do not even bother to check the largest node if the root
3445 * is empty. Do it lockless to prevent lock bouncing. Races
3446 * are acceptable as soft limit is best effort anyway.
3448 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3452 * This loop can run a while, specially if mem_cgroup's continuously
3453 * keep exceeding their soft limit and putting the system under
3460 mz = mem_cgroup_largest_soft_limit_node(mctz);
3465 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3466 gfp_mask, &nr_scanned);
3467 nr_reclaimed += reclaimed;
3468 *total_scanned += nr_scanned;
3469 spin_lock_irq(&mctz->lock);
3470 __mem_cgroup_remove_exceeded(mz, mctz);
3473 * If we failed to reclaim anything from this memory cgroup
3474 * it is time to move on to the next cgroup
3478 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480 excess = soft_limit_excess(mz->memcg);
3482 * One school of thought says that we should not add
3483 * back the node to the tree if reclaim returns 0.
3484 * But our reclaim could return 0, simply because due
3485 * to priority we are exposing a smaller subset of
3486 * memory to reclaim from. Consider this as a longer
3489 /* If excess == 0, no tree ops */
3490 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3491 spin_unlock_irq(&mctz->lock);
3492 css_put(&mz->memcg->css);
3495 * Could not reclaim anything and there are no more
3496 * mem cgroups to try or we seem to be looping without
3497 * reclaiming anything.
3499 if (!nr_reclaimed &&
3501 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 } while (!nr_reclaimed);
3505 css_put(&next_mz->memcg->css);
3506 return nr_reclaimed;
3510 * Reclaims as many pages from the given memcg as possible.
3512 * Caller is responsible for holding css reference for memcg.
3514 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516 int nr_retries = MAX_RECLAIM_RETRIES;
3518 /* we call try-to-free pages for make this cgroup empty */
3519 lru_add_drain_all();
3521 drain_all_stock(memcg);
3523 /* try to free all pages in this cgroup */
3524 while (nr_retries && page_counter_read(&memcg->memory)) {
3527 if (signal_pending(current))
3530 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3534 /* maybe some writeback is necessary */
3535 congestion_wait(BLK_RW_ASYNC, HZ/10);
3543 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3544 char *buf, size_t nbytes,
3547 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549 if (mem_cgroup_is_root(memcg))
3551 return mem_cgroup_force_empty(memcg) ?: nbytes;
3554 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3560 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3561 struct cftype *cft, u64 val)
3566 pr_warn_once("Non-hierarchical mode is deprecated. "
3568 "depend on this functionality.\n");
3573 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3577 if (mem_cgroup_is_root(memcg)) {
3578 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579 memcg_page_state(memcg, NR_ANON_MAPPED);
3581 val += memcg_page_state(memcg, MEMCG_SWAP);
3584 val = page_counter_read(&memcg->memory);
3586 val = page_counter_read(&memcg->memsw);
3599 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 struct page_counter *counter;
3605 switch (MEMFILE_TYPE(cft->private)) {
3607 counter = &memcg->memory;
3610 counter = &memcg->memsw;
3613 counter = &memcg->kmem;
3616 counter = &memcg->tcpmem;
3622 switch (MEMFILE_ATTR(cft->private)) {
3624 if (counter == &memcg->memory)
3625 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626 if (counter == &memcg->memsw)
3627 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 return (u64)page_counter_read(counter) * PAGE_SIZE;
3630 return (u64)counter->max * PAGE_SIZE;
3632 return (u64)counter->watermark * PAGE_SIZE;
3634 return counter->failcnt;
3635 case RES_SOFT_LIMIT:
3636 return (u64)memcg->soft_limit * PAGE_SIZE;
3642 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3644 unsigned long stat[MEMCG_NR_STAT] = {0};
3645 struct mem_cgroup *mi;
3648 for_each_online_cpu(cpu)
3649 for (i = 0; i < MEMCG_NR_STAT; i++)
3650 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3652 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3653 for (i = 0; i < MEMCG_NR_STAT; i++)
3654 atomic_long_add(stat[i], &mi->vmstats[i]);
3656 for_each_node(node) {
3657 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3658 struct mem_cgroup_per_node *pi;
3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3663 for_each_online_cpu(cpu)
3664 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3666 pn->lruvec_stat_cpu->count[i], cpu);
3668 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3669 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3670 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3674 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3676 unsigned long events[NR_VM_EVENT_ITEMS];
3677 struct mem_cgroup *mi;
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3683 for_each_online_cpu(cpu)
3684 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3685 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3688 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3689 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3690 atomic_long_add(events[i], &mi->vmevents[i]);
3693 #ifdef CONFIG_MEMCG_KMEM
3694 static int memcg_online_kmem(struct mem_cgroup *memcg)
3696 struct obj_cgroup *objcg;
3699 if (cgroup_memory_nokmem)
3702 BUG_ON(memcg->kmemcg_id >= 0);
3703 BUG_ON(memcg->kmem_state);
3705 memcg_id = memcg_alloc_cache_id();
3709 objcg = obj_cgroup_alloc();
3711 memcg_free_cache_id(memcg_id);
3714 objcg->memcg = memcg;
3715 rcu_assign_pointer(memcg->objcg, objcg);
3717 static_branch_enable(&memcg_kmem_enabled_key);
3719 memcg->kmemcg_id = memcg_id;
3720 memcg->kmem_state = KMEM_ONLINE;
3725 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3727 struct cgroup_subsys_state *css;
3728 struct mem_cgroup *parent, *child;
3731 if (memcg->kmem_state != KMEM_ONLINE)
3734 memcg->kmem_state = KMEM_ALLOCATED;
3736 parent = parent_mem_cgroup(memcg);
3738 parent = root_mem_cgroup;
3740 memcg_reparent_objcgs(memcg, parent);
3742 kmemcg_id = memcg->kmemcg_id;
3743 BUG_ON(kmemcg_id < 0);
3746 * Change kmemcg_id of this cgroup and all its descendants to the
3747 * parent's id, and then move all entries from this cgroup's list_lrus
3748 * to ones of the parent. After we have finished, all list_lrus
3749 * corresponding to this cgroup are guaranteed to remain empty. The
3750 * ordering is imposed by list_lru_node->lock taken by
3751 * memcg_drain_all_list_lrus().
3753 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3754 css_for_each_descendant_pre(css, &memcg->css) {
3755 child = mem_cgroup_from_css(css);
3756 BUG_ON(child->kmemcg_id != kmemcg_id);
3757 child->kmemcg_id = parent->kmemcg_id;
3761 memcg_drain_all_list_lrus(kmemcg_id, parent);
3763 memcg_free_cache_id(kmemcg_id);
3766 static void memcg_free_kmem(struct mem_cgroup *memcg)
3768 /* css_alloc() failed, offlining didn't happen */
3769 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3770 memcg_offline_kmem(memcg);
3773 static int memcg_online_kmem(struct mem_cgroup *memcg)
3777 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3780 static void memcg_free_kmem(struct mem_cgroup *memcg)
3783 #endif /* CONFIG_MEMCG_KMEM */
3785 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3790 mutex_lock(&memcg_max_mutex);
3791 ret = page_counter_set_max(&memcg->kmem, max);
3792 mutex_unlock(&memcg_max_mutex);
3796 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3800 mutex_lock(&memcg_max_mutex);
3802 ret = page_counter_set_max(&memcg->tcpmem, max);
3806 if (!memcg->tcpmem_active) {
3808 * The active flag needs to be written after the static_key
3809 * update. This is what guarantees that the socket activation
3810 * function is the last one to run. See mem_cgroup_sk_alloc()
3811 * for details, and note that we don't mark any socket as
3812 * belonging to this memcg until that flag is up.
3814 * We need to do this, because static_keys will span multiple
3815 * sites, but we can't control their order. If we mark a socket
3816 * as accounted, but the accounting functions are not patched in
3817 * yet, we'll lose accounting.
3819 * We never race with the readers in mem_cgroup_sk_alloc(),
3820 * because when this value change, the code to process it is not
3823 static_branch_inc(&memcg_sockets_enabled_key);
3824 memcg->tcpmem_active = true;
3827 mutex_unlock(&memcg_max_mutex);
3832 * The user of this function is...
3835 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3836 char *buf, size_t nbytes, loff_t off)
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3839 unsigned long nr_pages;
3842 buf = strstrip(buf);
3843 ret = page_counter_memparse(buf, "-1", &nr_pages);
3847 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3849 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3853 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3855 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3858 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3861 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3863 "depend on this functionality.\n");
3864 ret = memcg_update_kmem_max(memcg, nr_pages);
3867 ret = memcg_update_tcp_max(memcg, nr_pages);
3871 case RES_SOFT_LIMIT:
3872 memcg->soft_limit = nr_pages;
3876 return ret ?: nbytes;
3879 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3880 size_t nbytes, loff_t off)
3882 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3883 struct page_counter *counter;
3885 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3887 counter = &memcg->memory;
3890 counter = &memcg->memsw;
3893 counter = &memcg->kmem;
3896 counter = &memcg->tcpmem;
3902 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3904 page_counter_reset_watermark(counter);
3907 counter->failcnt = 0;
3916 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3919 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3923 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3924 struct cftype *cft, u64 val)
3926 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3928 if (val & ~MOVE_MASK)
3932 * No kind of locking is needed in here, because ->can_attach() will
3933 * check this value once in the beginning of the process, and then carry
3934 * on with stale data. This means that changes to this value will only
3935 * affect task migrations starting after the change.
3937 memcg->move_charge_at_immigrate = val;
3941 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3942 struct cftype *cft, u64 val)
3950 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3951 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3952 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3954 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3955 int nid, unsigned int lru_mask, bool tree)
3957 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3958 unsigned long nr = 0;
3961 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3964 if (!(BIT(lru) & lru_mask))
3967 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3969 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3974 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3975 unsigned int lru_mask,
3978 unsigned long nr = 0;
3982 if (!(BIT(lru) & lru_mask))
3985 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3987 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3992 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3996 unsigned int lru_mask;
3999 static const struct numa_stat stats[] = {
4000 { "total", LRU_ALL },
4001 { "file", LRU_ALL_FILE },
4002 { "anon", LRU_ALL_ANON },
4003 { "unevictable", BIT(LRU_UNEVICTABLE) },
4005 const struct numa_stat *stat;
4007 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4009 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4010 seq_printf(m, "%s=%lu", stat->name,
4011 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4013 for_each_node_state(nid, N_MEMORY)
4014 seq_printf(m, " N%d=%lu", nid,
4015 mem_cgroup_node_nr_lru_pages(memcg, nid,
4016 stat->lru_mask, false));
4020 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4022 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4023 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4025 for_each_node_state(nid, N_MEMORY)
4026 seq_printf(m, " N%d=%lu", nid,
4027 mem_cgroup_node_nr_lru_pages(memcg, nid,
4028 stat->lru_mask, true));
4034 #endif /* CONFIG_NUMA */
4036 static const unsigned int memcg1_stats[] = {
4039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4049 static const char *const memcg1_stat_names[] = {
4052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062 /* Universal VM events cgroup1 shows, original sort order */
4063 static const unsigned int memcg1_events[] = {
4070 static int memcg_stat_show(struct seq_file *m, void *v)
4072 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4073 unsigned long memory, memsw;
4074 struct mem_cgroup *mi;
4077 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4079 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4082 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4084 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4085 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4088 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4089 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4090 memcg_events_local(memcg, memcg1_events[i]));
4092 for (i = 0; i < NR_LRU_LISTS; i++)
4093 seq_printf(m, "%s %lu\n", lru_list_name(i),
4094 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4097 /* Hierarchical information */
4098 memory = memsw = PAGE_COUNTER_MAX;
4099 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4100 memory = min(memory, READ_ONCE(mi->memory.max));
4101 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4103 seq_printf(m, "hierarchical_memory_limit %llu\n",
4104 (u64)memory * PAGE_SIZE);
4105 if (do_memsw_account())
4106 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4107 (u64)memsw * PAGE_SIZE);
4109 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4112 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4114 nr = memcg_page_state(memcg, memcg1_stats[i]);
4115 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4116 (u64)nr * PAGE_SIZE);
4119 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4120 seq_printf(m, "total_%s %llu\n",
4121 vm_event_name(memcg1_events[i]),
4122 (u64)memcg_events(memcg, memcg1_events[i]));
4124 for (i = 0; i < NR_LRU_LISTS; i++)
4125 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4126 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4129 #ifdef CONFIG_DEBUG_VM
4132 struct mem_cgroup_per_node *mz;
4133 unsigned long anon_cost = 0;
4134 unsigned long file_cost = 0;
4136 for_each_online_pgdat(pgdat) {
4137 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4139 anon_cost += mz->lruvec.anon_cost;
4140 file_cost += mz->lruvec.file_cost;
4142 seq_printf(m, "anon_cost %lu\n", anon_cost);
4143 seq_printf(m, "file_cost %lu\n", file_cost);
4150 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4155 return mem_cgroup_swappiness(memcg);
4158 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4159 struct cftype *cft, u64 val)
4161 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4167 memcg->swappiness = val;
4169 vm_swappiness = val;
4174 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4176 struct mem_cgroup_threshold_ary *t;
4177 unsigned long usage;
4182 t = rcu_dereference(memcg->thresholds.primary);
4184 t = rcu_dereference(memcg->memsw_thresholds.primary);
4189 usage = mem_cgroup_usage(memcg, swap);
4192 * current_threshold points to threshold just below or equal to usage.
4193 * If it's not true, a threshold was crossed after last
4194 * call of __mem_cgroup_threshold().
4196 i = t->current_threshold;
4199 * Iterate backward over array of thresholds starting from
4200 * current_threshold and check if a threshold is crossed.
4201 * If none of thresholds below usage is crossed, we read
4202 * only one element of the array here.
4204 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4205 eventfd_signal(t->entries[i].eventfd, 1);
4207 /* i = current_threshold + 1 */
4211 * Iterate forward over array of thresholds starting from
4212 * current_threshold+1 and check if a threshold is crossed.
4213 * If none of thresholds above usage is crossed, we read
4214 * only one element of the array here.
4216 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4219 /* Update current_threshold */
4220 t->current_threshold = i - 1;
4225 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4228 __mem_cgroup_threshold(memcg, false);
4229 if (do_memsw_account())
4230 __mem_cgroup_threshold(memcg, true);
4232 memcg = parent_mem_cgroup(memcg);
4236 static int compare_thresholds(const void *a, const void *b)
4238 const struct mem_cgroup_threshold *_a = a;
4239 const struct mem_cgroup_threshold *_b = b;
4241 if (_a->threshold > _b->threshold)
4244 if (_a->threshold < _b->threshold)
4250 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4252 struct mem_cgroup_eventfd_list *ev;
4254 spin_lock(&memcg_oom_lock);
4256 list_for_each_entry(ev, &memcg->oom_notify, list)
4257 eventfd_signal(ev->eventfd, 1);
4259 spin_unlock(&memcg_oom_lock);
4263 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4265 struct mem_cgroup *iter;
4267 for_each_mem_cgroup_tree(iter, memcg)
4268 mem_cgroup_oom_notify_cb(iter);
4271 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4272 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4274 struct mem_cgroup_thresholds *thresholds;
4275 struct mem_cgroup_threshold_ary *new;
4276 unsigned long threshold;
4277 unsigned long usage;
4280 ret = page_counter_memparse(args, "-1", &threshold);
4284 mutex_lock(&memcg->thresholds_lock);
4287 thresholds = &memcg->thresholds;
4288 usage = mem_cgroup_usage(memcg, false);
4289 } else if (type == _MEMSWAP) {
4290 thresholds = &memcg->memsw_thresholds;
4291 usage = mem_cgroup_usage(memcg, true);
4295 /* Check if a threshold crossed before adding a new one */
4296 if (thresholds->primary)
4297 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4299 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4301 /* Allocate memory for new array of thresholds */
4302 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4309 /* Copy thresholds (if any) to new array */
4310 if (thresholds->primary)
4311 memcpy(new->entries, thresholds->primary->entries,
4312 flex_array_size(new, entries, size - 1));
4314 /* Add new threshold */
4315 new->entries[size - 1].eventfd = eventfd;
4316 new->entries[size - 1].threshold = threshold;
4318 /* Sort thresholds. Registering of new threshold isn't time-critical */
4319 sort(new->entries, size, sizeof(*new->entries),
4320 compare_thresholds, NULL);
4322 /* Find current threshold */
4323 new->current_threshold = -1;
4324 for (i = 0; i < size; i++) {
4325 if (new->entries[i].threshold <= usage) {
4327 * new->current_threshold will not be used until
4328 * rcu_assign_pointer(), so it's safe to increment
4331 ++new->current_threshold;
4336 /* Free old spare buffer and save old primary buffer as spare */
4337 kfree(thresholds->spare);
4338 thresholds->spare = thresholds->primary;
4340 rcu_assign_pointer(thresholds->primary, new);
4342 /* To be sure that nobody uses thresholds */
4346 mutex_unlock(&memcg->thresholds_lock);
4351 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4352 struct eventfd_ctx *eventfd, const char *args)
4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4357 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4358 struct eventfd_ctx *eventfd, const char *args)
4360 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4363 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4364 struct eventfd_ctx *eventfd, enum res_type type)
4366 struct mem_cgroup_thresholds *thresholds;
4367 struct mem_cgroup_threshold_ary *new;
4368 unsigned long usage;
4369 int i, j, size, entries;
4371 mutex_lock(&memcg->thresholds_lock);
4374 thresholds = &memcg->thresholds;
4375 usage = mem_cgroup_usage(memcg, false);
4376 } else if (type == _MEMSWAP) {
4377 thresholds = &memcg->memsw_thresholds;
4378 usage = mem_cgroup_usage(memcg, true);
4382 if (!thresholds->primary)
4385 /* Check if a threshold crossed before removing */
4386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4388 /* Calculate new number of threshold */
4390 for (i = 0; i < thresholds->primary->size; i++) {
4391 if (thresholds->primary->entries[i].eventfd != eventfd)
4397 new = thresholds->spare;
4399 /* If no items related to eventfd have been cleared, nothing to do */
4403 /* Set thresholds array to NULL if we don't have thresholds */
4412 /* Copy thresholds and find current threshold */
4413 new->current_threshold = -1;
4414 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4415 if (thresholds->primary->entries[i].eventfd == eventfd)
4418 new->entries[j] = thresholds->primary->entries[i];
4419 if (new->entries[j].threshold <= usage) {
4421 * new->current_threshold will not be used
4422 * until rcu_assign_pointer(), so it's safe to increment
4425 ++new->current_threshold;
4431 /* Swap primary and spare array */
4432 thresholds->spare = thresholds->primary;
4434 rcu_assign_pointer(thresholds->primary, new);
4436 /* To be sure that nobody uses thresholds */
4439 /* If all events are unregistered, free the spare array */
4441 kfree(thresholds->spare);
4442 thresholds->spare = NULL;
4445 mutex_unlock(&memcg->thresholds_lock);
4448 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4449 struct eventfd_ctx *eventfd)
4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4454 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4455 struct eventfd_ctx *eventfd)
4457 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4460 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4461 struct eventfd_ctx *eventfd, const char *args)
4463 struct mem_cgroup_eventfd_list *event;
4465 event = kmalloc(sizeof(*event), GFP_KERNEL);
4469 spin_lock(&memcg_oom_lock);
4471 event->eventfd = eventfd;
4472 list_add(&event->list, &memcg->oom_notify);
4474 /* already in OOM ? */
4475 if (memcg->under_oom)
4476 eventfd_signal(eventfd, 1);
4477 spin_unlock(&memcg_oom_lock);
4482 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4483 struct eventfd_ctx *eventfd)
4485 struct mem_cgroup_eventfd_list *ev, *tmp;
4487 spin_lock(&memcg_oom_lock);
4489 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4490 if (ev->eventfd == eventfd) {
4491 list_del(&ev->list);
4496 spin_unlock(&memcg_oom_lock);
4499 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4501 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4503 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4504 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4505 seq_printf(sf, "oom_kill %lu\n",
4506 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4510 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4511 struct cftype *cft, u64 val)
4513 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4515 /* cannot set to root cgroup and only 0 and 1 are allowed */
4516 if (!css->parent || !((val == 0) || (val == 1)))
4519 memcg->oom_kill_disable = val;
4521 memcg_oom_recover(memcg);
4526 #ifdef CONFIG_CGROUP_WRITEBACK
4528 #include <trace/events/writeback.h>
4530 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4532 return wb_domain_init(&memcg->cgwb_domain, gfp);
4535 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4537 wb_domain_exit(&memcg->cgwb_domain);
4540 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4542 wb_domain_size_changed(&memcg->cgwb_domain);
4545 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4547 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4549 if (!memcg->css.parent)
4552 return &memcg->cgwb_domain;
4556 * idx can be of type enum memcg_stat_item or node_stat_item.
4557 * Keep in sync with memcg_exact_page().
4559 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4561 long x = atomic_long_read(&memcg->vmstats[idx]);
4564 for_each_online_cpu(cpu)
4565 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4572 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4573 * @wb: bdi_writeback in question
4574 * @pfilepages: out parameter for number of file pages
4575 * @pheadroom: out parameter for number of allocatable pages according to memcg
4576 * @pdirty: out parameter for number of dirty pages
4577 * @pwriteback: out parameter for number of pages under writeback
4579 * Determine the numbers of file, headroom, dirty, and writeback pages in
4580 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4581 * is a bit more involved.
4583 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4584 * headroom is calculated as the lowest headroom of itself and the
4585 * ancestors. Note that this doesn't consider the actual amount of
4586 * available memory in the system. The caller should further cap
4587 * *@pheadroom accordingly.
4589 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4590 unsigned long *pheadroom, unsigned long *pdirty,
4591 unsigned long *pwriteback)
4593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4594 struct mem_cgroup *parent;
4596 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4598 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4599 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4600 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4601 *pheadroom = PAGE_COUNTER_MAX;
4603 while ((parent = parent_mem_cgroup(memcg))) {
4604 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605 READ_ONCE(memcg->memory.high));
4606 unsigned long used = page_counter_read(&memcg->memory);
4608 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4614 * Foreign dirty flushing
4616 * There's an inherent mismatch between memcg and writeback. The former
4617 * trackes ownership per-page while the latter per-inode. This was a
4618 * deliberate design decision because honoring per-page ownership in the
4619 * writeback path is complicated, may lead to higher CPU and IO overheads
4620 * and deemed unnecessary given that write-sharing an inode across
4621 * different cgroups isn't a common use-case.
4623 * Combined with inode majority-writer ownership switching, this works well
4624 * enough in most cases but there are some pathological cases. For
4625 * example, let's say there are two cgroups A and B which keep writing to
4626 * different but confined parts of the same inode. B owns the inode and
4627 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4628 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4629 * triggering background writeback. A will be slowed down without a way to
4630 * make writeback of the dirty pages happen.
4632 * Conditions like the above can lead to a cgroup getting repatedly and
4633 * severely throttled after making some progress after each
4634 * dirty_expire_interval while the underyling IO device is almost
4637 * Solving this problem completely requires matching the ownership tracking
4638 * granularities between memcg and writeback in either direction. However,
4639 * the more egregious behaviors can be avoided by simply remembering the
4640 * most recent foreign dirtying events and initiating remote flushes on
4641 * them when local writeback isn't enough to keep the memory clean enough.
4643 * The following two functions implement such mechanism. When a foreign
4644 * page - a page whose memcg and writeback ownerships don't match - is
4645 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4646 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4647 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4648 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4649 * foreign bdi_writebacks which haven't expired. Both the numbers of
4650 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4651 * limited to MEMCG_CGWB_FRN_CNT.
4653 * The mechanism only remembers IDs and doesn't hold any object references.
4654 * As being wrong occasionally doesn't matter, updates and accesses to the
4655 * records are lockless and racy.
4657 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4658 struct bdi_writeback *wb)
4660 struct mem_cgroup *memcg = page_memcg(page);
4661 struct memcg_cgwb_frn *frn;
4662 u64 now = get_jiffies_64();
4663 u64 oldest_at = now;
4667 trace_track_foreign_dirty(page, wb);
4670 * Pick the slot to use. If there is already a slot for @wb, keep
4671 * using it. If not replace the oldest one which isn't being
4674 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4675 frn = &memcg->cgwb_frn[i];
4676 if (frn->bdi_id == wb->bdi->id &&
4677 frn->memcg_id == wb->memcg_css->id)
4679 if (time_before64(frn->at, oldest_at) &&
4680 atomic_read(&frn->done.cnt) == 1) {
4682 oldest_at = frn->at;
4686 if (i < MEMCG_CGWB_FRN_CNT) {
4688 * Re-using an existing one. Update timestamp lazily to
4689 * avoid making the cacheline hot. We want them to be
4690 * reasonably up-to-date and significantly shorter than
4691 * dirty_expire_interval as that's what expires the record.
4692 * Use the shorter of 1s and dirty_expire_interval / 8.
4694 unsigned long update_intv =
4695 min_t(unsigned long, HZ,
4696 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4698 if (time_before64(frn->at, now - update_intv))
4700 } else if (oldest >= 0) {
4701 /* replace the oldest free one */
4702 frn = &memcg->cgwb_frn[oldest];
4703 frn->bdi_id = wb->bdi->id;
4704 frn->memcg_id = wb->memcg_css->id;
4709 /* issue foreign writeback flushes for recorded foreign dirtying events */
4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4712 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4713 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4714 u64 now = jiffies_64;
4717 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4718 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4721 * If the record is older than dirty_expire_interval,
4722 * writeback on it has already started. No need to kick it
4723 * off again. Also, don't start a new one if there's
4724 * already one in flight.
4726 if (time_after64(frn->at, now - intv) &&
4727 atomic_read(&frn->done.cnt) == 1) {
4729 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4731 WB_REASON_FOREIGN_FLUSH,
4737 #else /* CONFIG_CGROUP_WRITEBACK */
4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4752 #endif /* CONFIG_CGROUP_WRITEBACK */
4755 * DO NOT USE IN NEW FILES.
4757 * "cgroup.event_control" implementation.
4759 * This is way over-engineered. It tries to support fully configurable
4760 * events for each user. Such level of flexibility is completely
4761 * unnecessary especially in the light of the planned unified hierarchy.
4763 * Please deprecate this and replace with something simpler if at all
4768 * Unregister event and free resources.
4770 * Gets called from workqueue.
4772 static void memcg_event_remove(struct work_struct *work)
4774 struct mem_cgroup_event *event =
4775 container_of(work, struct mem_cgroup_event, remove);
4776 struct mem_cgroup *memcg = event->memcg;
4778 remove_wait_queue(event->wqh, &event->wait);
4780 event->unregister_event(memcg, event->eventfd);
4782 /* Notify userspace the event is going away. */
4783 eventfd_signal(event->eventfd, 1);
4785 eventfd_ctx_put(event->eventfd);
4787 css_put(&memcg->css);
4791 * Gets called on EPOLLHUP on eventfd when user closes it.
4793 * Called with wqh->lock held and interrupts disabled.
4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796 int sync, void *key)
4798 struct mem_cgroup_event *event =
4799 container_of(wait, struct mem_cgroup_event, wait);
4800 struct mem_cgroup *memcg = event->memcg;
4801 __poll_t flags = key_to_poll(key);
4803 if (flags & EPOLLHUP) {
4805 * If the event has been detached at cgroup removal, we
4806 * can simply return knowing the other side will cleanup
4809 * We can't race against event freeing since the other
4810 * side will require wqh->lock via remove_wait_queue(),
4813 spin_lock(&memcg->event_list_lock);
4814 if (!list_empty(&event->list)) {
4815 list_del_init(&event->list);
4817 * We are in atomic context, but cgroup_event_remove()
4818 * may sleep, so we have to call it in workqueue.
4820 schedule_work(&event->remove);
4822 spin_unlock(&memcg->event_list_lock);
4828 static void memcg_event_ptable_queue_proc(struct file *file,
4829 wait_queue_head_t *wqh, poll_table *pt)
4831 struct mem_cgroup_event *event =
4832 container_of(pt, struct mem_cgroup_event, pt);
4835 add_wait_queue(wqh, &event->wait);
4839 * DO NOT USE IN NEW FILES.
4841 * Parse input and register new cgroup event handler.
4843 * Input must be in format '<event_fd> <control_fd> <args>'.
4844 * Interpretation of args is defined by control file implementation.
4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4847 char *buf, size_t nbytes, loff_t off)
4849 struct cgroup_subsys_state *css = of_css(of);
4850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851 struct mem_cgroup_event *event;
4852 struct cgroup_subsys_state *cfile_css;
4853 unsigned int efd, cfd;
4860 buf = strstrip(buf);
4862 efd = simple_strtoul(buf, &endp, 10);
4867 cfd = simple_strtoul(buf, &endp, 10);
4868 if ((*endp != ' ') && (*endp != '\0'))
4872 event = kzalloc(sizeof(*event), GFP_KERNEL);
4876 event->memcg = memcg;
4877 INIT_LIST_HEAD(&event->list);
4878 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4879 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4880 INIT_WORK(&event->remove, memcg_event_remove);
4888 event->eventfd = eventfd_ctx_fileget(efile.file);
4889 if (IS_ERR(event->eventfd)) {
4890 ret = PTR_ERR(event->eventfd);
4897 goto out_put_eventfd;
4900 /* the process need read permission on control file */
4901 /* AV: shouldn't we check that it's been opened for read instead? */
4902 ret = file_permission(cfile.file, MAY_READ);
4907 * Determine the event callbacks and set them in @event. This used
4908 * to be done via struct cftype but cgroup core no longer knows
4909 * about these events. The following is crude but the whole thing
4910 * is for compatibility anyway.
4912 * DO NOT ADD NEW FILES.
4914 name = cfile.file->f_path.dentry->d_name.name;
4916 if (!strcmp(name, "memory.usage_in_bytes")) {
4917 event->register_event = mem_cgroup_usage_register_event;
4918 event->unregister_event = mem_cgroup_usage_unregister_event;
4919 } else if (!strcmp(name, "memory.oom_control")) {
4920 event->register_event = mem_cgroup_oom_register_event;
4921 event->unregister_event = mem_cgroup_oom_unregister_event;
4922 } else if (!strcmp(name, "memory.pressure_level")) {
4923 event->register_event = vmpressure_register_event;
4924 event->unregister_event = vmpressure_unregister_event;
4925 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4926 event->register_event = memsw_cgroup_usage_register_event;
4927 event->unregister_event = memsw_cgroup_usage_unregister_event;
4934 * Verify @cfile should belong to @css. Also, remaining events are
4935 * automatically removed on cgroup destruction but the removal is
4936 * asynchronous, so take an extra ref on @css.
4938 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4939 &memory_cgrp_subsys);
4941 if (IS_ERR(cfile_css))
4943 if (cfile_css != css) {
4948 ret = event->register_event(memcg, event->eventfd, buf);
4952 vfs_poll(efile.file, &event->pt);
4954 spin_lock(&memcg->event_list_lock);
4955 list_add(&event->list, &memcg->event_list);
4956 spin_unlock(&memcg->event_list_lock);
4968 eventfd_ctx_put(event->eventfd);
4977 static struct cftype mem_cgroup_legacy_files[] = {
4979 .name = "usage_in_bytes",
4980 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4981 .read_u64 = mem_cgroup_read_u64,
4984 .name = "max_usage_in_bytes",
4985 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4986 .write = mem_cgroup_reset,
4987 .read_u64 = mem_cgroup_read_u64,
4990 .name = "limit_in_bytes",
4991 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4992 .write = mem_cgroup_write,
4993 .read_u64 = mem_cgroup_read_u64,
4996 .name = "soft_limit_in_bytes",
4997 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4998 .write = mem_cgroup_write,
4999 .read_u64 = mem_cgroup_read_u64,
5003 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5004 .write = mem_cgroup_reset,
5005 .read_u64 = mem_cgroup_read_u64,
5009 .seq_show = memcg_stat_show,
5012 .name = "force_empty",
5013 .write = mem_cgroup_force_empty_write,
5016 .name = "use_hierarchy",
5017 .write_u64 = mem_cgroup_hierarchy_write,
5018 .read_u64 = mem_cgroup_hierarchy_read,
5021 .name = "cgroup.event_control", /* XXX: for compat */
5022 .write = memcg_write_event_control,
5023 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5026 .name = "swappiness",
5027 .read_u64 = mem_cgroup_swappiness_read,
5028 .write_u64 = mem_cgroup_swappiness_write,
5031 .name = "move_charge_at_immigrate",
5032 .read_u64 = mem_cgroup_move_charge_read,
5033 .write_u64 = mem_cgroup_move_charge_write,
5036 .name = "oom_control",
5037 .seq_show = mem_cgroup_oom_control_read,
5038 .write_u64 = mem_cgroup_oom_control_write,
5039 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5042 .name = "pressure_level",
5046 .name = "numa_stat",
5047 .seq_show = memcg_numa_stat_show,
5051 .name = "kmem.limit_in_bytes",
5052 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5053 .write = mem_cgroup_write,
5054 .read_u64 = mem_cgroup_read_u64,
5057 .name = "kmem.usage_in_bytes",
5058 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5059 .read_u64 = mem_cgroup_read_u64,
5062 .name = "kmem.failcnt",
5063 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5064 .write = mem_cgroup_reset,
5065 .read_u64 = mem_cgroup_read_u64,
5068 .name = "kmem.max_usage_in_bytes",
5069 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5070 .write = mem_cgroup_reset,
5071 .read_u64 = mem_cgroup_read_u64,
5073 #if defined(CONFIG_MEMCG_KMEM) && \
5074 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5076 .name = "kmem.slabinfo",
5077 .seq_show = memcg_slab_show,
5081 .name = "kmem.tcp.limit_in_bytes",
5082 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5083 .write = mem_cgroup_write,
5084 .read_u64 = mem_cgroup_read_u64,
5087 .name = "kmem.tcp.usage_in_bytes",
5088 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5089 .read_u64 = mem_cgroup_read_u64,
5092 .name = "kmem.tcp.failcnt",
5093 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5094 .write = mem_cgroup_reset,
5095 .read_u64 = mem_cgroup_read_u64,
5098 .name = "kmem.tcp.max_usage_in_bytes",
5099 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5100 .write = mem_cgroup_reset,
5101 .read_u64 = mem_cgroup_read_u64,
5103 { }, /* terminate */
5107 * Private memory cgroup IDR
5109 * Swap-out records and page cache shadow entries need to store memcg
5110 * references in constrained space, so we maintain an ID space that is
5111 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5112 * memory-controlled cgroups to 64k.
5114 * However, there usually are many references to the offline CSS after
5115 * the cgroup has been destroyed, such as page cache or reclaimable
5116 * slab objects, that don't need to hang on to the ID. We want to keep
5117 * those dead CSS from occupying IDs, or we might quickly exhaust the
5118 * relatively small ID space and prevent the creation of new cgroups
5119 * even when there are much fewer than 64k cgroups - possibly none.
5121 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5122 * be freed and recycled when it's no longer needed, which is usually
5123 * when the CSS is offlined.
5125 * The only exception to that are records of swapped out tmpfs/shmem
5126 * pages that need to be attributed to live ancestors on swapin. But
5127 * those references are manageable from userspace.
5130 static DEFINE_IDR(mem_cgroup_idr);
5132 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5134 if (memcg->id.id > 0) {
5135 idr_remove(&mem_cgroup_idr, memcg->id.id);
5140 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5143 refcount_add(n, &memcg->id.ref);
5146 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5148 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5149 mem_cgroup_id_remove(memcg);
5151 /* Memcg ID pins CSS */
5152 css_put(&memcg->css);
5156 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5158 mem_cgroup_id_put_many(memcg, 1);
5162 * mem_cgroup_from_id - look up a memcg from a memcg id
5163 * @id: the memcg id to look up
5165 * Caller must hold rcu_read_lock().
5167 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5169 WARN_ON_ONCE(!rcu_read_lock_held());
5170 return idr_find(&mem_cgroup_idr, id);
5173 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5175 struct mem_cgroup_per_node *pn;
5178 * This routine is called against possible nodes.
5179 * But it's BUG to call kmalloc() against offline node.
5181 * TODO: this routine can waste much memory for nodes which will
5182 * never be onlined. It's better to use memory hotplug callback
5185 if (!node_state(node, N_NORMAL_MEMORY))
5187 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5191 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5192 GFP_KERNEL_ACCOUNT);
5193 if (!pn->lruvec_stat_local) {
5198 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5199 GFP_KERNEL_ACCOUNT);
5200 if (!pn->lruvec_stat_cpu) {
5201 free_percpu(pn->lruvec_stat_local);
5206 lruvec_init(&pn->lruvec);
5207 pn->usage_in_excess = 0;
5208 pn->on_tree = false;
5211 memcg->nodeinfo[node] = pn;
5215 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5217 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5222 free_percpu(pn->lruvec_stat_cpu);
5223 free_percpu(pn->lruvec_stat_local);
5227 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5232 free_mem_cgroup_per_node_info(memcg, node);
5233 free_percpu(memcg->vmstats_percpu);
5234 free_percpu(memcg->vmstats_local);
5238 static void mem_cgroup_free(struct mem_cgroup *memcg)
5240 memcg_wb_domain_exit(memcg);
5242 * Flush percpu vmstats and vmevents to guarantee the value correctness
5243 * on parent's and all ancestor levels.
5245 memcg_flush_percpu_vmstats(memcg);
5246 memcg_flush_percpu_vmevents(memcg);
5247 __mem_cgroup_free(memcg);
5250 static struct mem_cgroup *mem_cgroup_alloc(void)
5252 struct mem_cgroup *memcg;
5255 int __maybe_unused i;
5256 long error = -ENOMEM;
5258 size = sizeof(struct mem_cgroup);
5259 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5261 memcg = kzalloc(size, GFP_KERNEL);
5263 return ERR_PTR(error);
5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 1, MEM_CGROUP_ID_MAX,
5268 if (memcg->id.id < 0) {
5269 error = memcg->id.id;
5273 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5274 GFP_KERNEL_ACCOUNT);
5275 if (!memcg->vmstats_local)
5278 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5279 GFP_KERNEL_ACCOUNT);
5280 if (!memcg->vmstats_percpu)
5284 if (alloc_mem_cgroup_per_node_info(memcg, node))
5287 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5290 INIT_WORK(&memcg->high_work, high_work_func);
5291 INIT_LIST_HEAD(&memcg->oom_notify);
5292 mutex_init(&memcg->thresholds_lock);
5293 spin_lock_init(&memcg->move_lock);
5294 vmpressure_init(&memcg->vmpressure);
5295 INIT_LIST_HEAD(&memcg->event_list);
5296 spin_lock_init(&memcg->event_list_lock);
5297 memcg->socket_pressure = jiffies;
5298 #ifdef CONFIG_MEMCG_KMEM
5299 memcg->kmemcg_id = -1;
5300 INIT_LIST_HEAD(&memcg->objcg_list);
5302 #ifdef CONFIG_CGROUP_WRITEBACK
5303 INIT_LIST_HEAD(&memcg->cgwb_list);
5304 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5305 memcg->cgwb_frn[i].done =
5306 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5310 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5311 memcg->deferred_split_queue.split_queue_len = 0;
5313 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5316 mem_cgroup_id_remove(memcg);
5317 __mem_cgroup_free(memcg);
5318 return ERR_PTR(error);
5321 static struct cgroup_subsys_state * __ref
5322 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5324 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5325 struct mem_cgroup *memcg, *old_memcg;
5326 long error = -ENOMEM;
5328 old_memcg = set_active_memcg(parent);
5329 memcg = mem_cgroup_alloc();
5330 set_active_memcg(old_memcg);
5332 return ERR_CAST(memcg);
5334 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5335 memcg->soft_limit = PAGE_COUNTER_MAX;
5336 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 memcg->swappiness = mem_cgroup_swappiness(parent);
5339 memcg->oom_kill_disable = parent->oom_kill_disable;
5341 page_counter_init(&memcg->memory, &parent->memory);
5342 page_counter_init(&memcg->swap, &parent->swap);
5343 page_counter_init(&memcg->kmem, &parent->kmem);
5344 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346 page_counter_init(&memcg->memory, NULL);
5347 page_counter_init(&memcg->swap, NULL);
5348 page_counter_init(&memcg->kmem, NULL);
5349 page_counter_init(&memcg->tcpmem, NULL);
5351 root_mem_cgroup = memcg;
5355 /* The following stuff does not apply to the root */
5356 error = memcg_online_kmem(memcg);
5360 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5361 static_branch_inc(&memcg_sockets_enabled_key);
5365 mem_cgroup_id_remove(memcg);
5366 mem_cgroup_free(memcg);
5367 return ERR_PTR(error);
5370 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5375 * A memcg must be visible for memcg_expand_shrinker_maps()
5376 * by the time the maps are allocated. So, we allocate maps
5377 * here, when for_each_mem_cgroup() can't skip it.
5379 if (memcg_alloc_shrinker_maps(memcg)) {
5380 mem_cgroup_id_remove(memcg);
5384 /* Online state pins memcg ID, memcg ID pins CSS */
5385 refcount_set(&memcg->id.ref, 1);
5390 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393 struct mem_cgroup_event *event, *tmp;
5396 * Unregister events and notify userspace.
5397 * Notify userspace about cgroup removing only after rmdir of cgroup
5398 * directory to avoid race between userspace and kernelspace.
5400 spin_lock(&memcg->event_list_lock);
5401 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5402 list_del_init(&event->list);
5403 schedule_work(&event->remove);
5405 spin_unlock(&memcg->event_list_lock);
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5410 memcg_offline_kmem(memcg);
5411 wb_memcg_offline(memcg);
5413 drain_all_stock(memcg);
5415 mem_cgroup_id_put(memcg);
5418 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5422 invalidate_reclaim_iterators(memcg);
5425 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428 int __maybe_unused i;
5430 #ifdef CONFIG_CGROUP_WRITEBACK
5431 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5432 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5434 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5435 static_branch_dec(&memcg_sockets_enabled_key);
5437 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5438 static_branch_dec(&memcg_sockets_enabled_key);
5440 vmpressure_cleanup(&memcg->vmpressure);
5441 cancel_work_sync(&memcg->high_work);
5442 mem_cgroup_remove_from_trees(memcg);
5443 memcg_free_shrinker_maps(memcg);
5444 memcg_free_kmem(memcg);
5445 mem_cgroup_free(memcg);
5449 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5450 * @css: the target css
5452 * Reset the states of the mem_cgroup associated with @css. This is
5453 * invoked when the userland requests disabling on the default hierarchy
5454 * but the memcg is pinned through dependency. The memcg should stop
5455 * applying policies and should revert to the vanilla state as it may be
5456 * made visible again.
5458 * The current implementation only resets the essential configurations.
5459 * This needs to be expanded to cover all the visible parts.
5461 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5465 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5466 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5467 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5468 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5469 page_counter_set_min(&memcg->memory, 0);
5470 page_counter_set_low(&memcg->memory, 0);
5471 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5472 memcg->soft_limit = PAGE_COUNTER_MAX;
5473 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5474 memcg_wb_domain_size_changed(memcg);
5478 /* Handlers for move charge at task migration. */
5479 static int mem_cgroup_do_precharge(unsigned long count)
5483 /* Try a single bulk charge without reclaim first, kswapd may wake */
5484 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5486 mc.precharge += count;
5490 /* Try charges one by one with reclaim, but do not retry */
5492 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5506 enum mc_target_type {
5513 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5514 unsigned long addr, pte_t ptent)
5516 struct page *page = vm_normal_page(vma, addr, ptent);
5518 if (!page || !page_mapped(page))
5520 if (PageAnon(page)) {
5521 if (!(mc.flags & MOVE_ANON))
5524 if (!(mc.flags & MOVE_FILE))
5527 if (!get_page_unless_zero(page))
5533 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535 pte_t ptent, swp_entry_t *entry)
5537 struct page *page = NULL;
5538 swp_entry_t ent = pte_to_swp_entry(ptent);
5540 if (!(mc.flags & MOVE_ANON))
5544 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5545 * a device and because they are not accessible by CPU they are store
5546 * as special swap entry in the CPU page table.
5548 if (is_device_private_entry(ent)) {
5549 page = device_private_entry_to_page(ent);
5551 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5552 * a refcount of 1 when free (unlike normal page)
5554 if (!page_ref_add_unless(page, 1, 1))
5559 if (non_swap_entry(ent))
5563 * Because lookup_swap_cache() updates some statistics counter,
5564 * we call find_get_page() with swapper_space directly.
5566 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5567 entry->val = ent.val;
5572 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5573 pte_t ptent, swp_entry_t *entry)
5579 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5580 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5582 if (!vma->vm_file) /* anonymous vma */
5584 if (!(mc.flags & MOVE_FILE))
5587 /* page is moved even if it's not RSS of this task(page-faulted). */
5588 /* shmem/tmpfs may report page out on swap: account for that too. */
5589 return find_get_incore_page(vma->vm_file->f_mapping,
5590 linear_page_index(vma, addr));
5594 * mem_cgroup_move_account - move account of the page
5596 * @compound: charge the page as compound or small page
5597 * @from: mem_cgroup which the page is moved from.
5598 * @to: mem_cgroup which the page is moved to. @from != @to.
5600 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5602 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5605 static int mem_cgroup_move_account(struct page *page,
5607 struct mem_cgroup *from,
5608 struct mem_cgroup *to)
5610 struct lruvec *from_vec, *to_vec;
5611 struct pglist_data *pgdat;
5612 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5615 VM_BUG_ON(from == to);
5616 VM_BUG_ON_PAGE(PageLRU(page), page);
5617 VM_BUG_ON(compound && !PageTransHuge(page));
5620 * Prevent mem_cgroup_migrate() from looking at
5621 * page's memory cgroup of its source page while we change it.
5624 if (!trylock_page(page))
5628 if (page_memcg(page) != from)
5631 pgdat = page_pgdat(page);
5632 from_vec = mem_cgroup_lruvec(from, pgdat);
5633 to_vec = mem_cgroup_lruvec(to, pgdat);
5635 lock_page_memcg(page);
5637 if (PageAnon(page)) {
5638 if (page_mapped(page)) {
5639 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5641 if (PageTransHuge(page)) {
5642 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5644 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5649 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5652 if (PageSwapBacked(page)) {
5653 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5654 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5657 if (page_mapped(page)) {
5658 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5659 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5662 if (PageDirty(page)) {
5663 struct address_space *mapping = page_mapping(page);
5665 if (mapping_can_writeback(mapping)) {
5666 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5668 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5674 if (PageWriteback(page)) {
5675 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5676 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5680 * All state has been migrated, let's switch to the new memcg.
5682 * It is safe to change page's memcg here because the page
5683 * is referenced, charged, isolated, and locked: we can't race
5684 * with (un)charging, migration, LRU putback, or anything else
5685 * that would rely on a stable page's memory cgroup.
5687 * Note that lock_page_memcg is a memcg lock, not a page lock,
5688 * to save space. As soon as we switch page's memory cgroup to a
5689 * new memcg that isn't locked, the above state can change
5690 * concurrently again. Make sure we're truly done with it.
5695 css_put(&from->css);
5697 page->memcg_data = (unsigned long)to;
5699 __unlock_page_memcg(from);
5703 local_irq_disable();
5704 mem_cgroup_charge_statistics(to, page, nr_pages);
5705 memcg_check_events(to, page);
5706 mem_cgroup_charge_statistics(from, page, -nr_pages);
5707 memcg_check_events(from, page);
5716 * get_mctgt_type - get target type of moving charge
5717 * @vma: the vma the pte to be checked belongs
5718 * @addr: the address corresponding to the pte to be checked
5719 * @ptent: the pte to be checked
5720 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5723 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5724 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5725 * move charge. if @target is not NULL, the page is stored in target->page
5726 * with extra refcnt got(Callers should handle it).
5727 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5728 * target for charge migration. if @target is not NULL, the entry is stored
5730 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5731 * (so ZONE_DEVICE page and thus not on the lru).
5732 * For now we such page is charge like a regular page would be as for all
5733 * intent and purposes it is just special memory taking the place of a
5736 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5738 * Called with pte lock held.
5741 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5742 unsigned long addr, pte_t ptent, union mc_target *target)
5744 struct page *page = NULL;
5745 enum mc_target_type ret = MC_TARGET_NONE;
5746 swp_entry_t ent = { .val = 0 };
5748 if (pte_present(ptent))
5749 page = mc_handle_present_pte(vma, addr, ptent);
5750 else if (is_swap_pte(ptent))
5751 page = mc_handle_swap_pte(vma, ptent, &ent);
5752 else if (pte_none(ptent))
5753 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5755 if (!page && !ent.val)
5759 * Do only loose check w/o serialization.
5760 * mem_cgroup_move_account() checks the page is valid or
5761 * not under LRU exclusion.
5763 if (page_memcg(page) == mc.from) {
5764 ret = MC_TARGET_PAGE;
5765 if (is_device_private_page(page))
5766 ret = MC_TARGET_DEVICE;
5768 target->page = page;
5770 if (!ret || !target)
5774 * There is a swap entry and a page doesn't exist or isn't charged.
5775 * But we cannot move a tail-page in a THP.
5777 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5778 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5779 ret = MC_TARGET_SWAP;
5786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5788 * We don't consider PMD mapped swapping or file mapped pages because THP does
5789 * not support them for now.
5790 * Caller should make sure that pmd_trans_huge(pmd) is true.
5792 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5793 unsigned long addr, pmd_t pmd, union mc_target *target)
5795 struct page *page = NULL;
5796 enum mc_target_type ret = MC_TARGET_NONE;
5798 if (unlikely(is_swap_pmd(pmd))) {
5799 VM_BUG_ON(thp_migration_supported() &&
5800 !is_pmd_migration_entry(pmd));
5803 page = pmd_page(pmd);
5804 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5805 if (!(mc.flags & MOVE_ANON))
5807 if (page_memcg(page) == mc.from) {
5808 ret = MC_TARGET_PAGE;
5811 target->page = page;
5817 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5818 unsigned long addr, pmd_t pmd, union mc_target *target)
5820 return MC_TARGET_NONE;
5824 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5825 unsigned long addr, unsigned long end,
5826 struct mm_walk *walk)
5828 struct vm_area_struct *vma = walk->vma;
5832 ptl = pmd_trans_huge_lock(pmd, vma);
5835 * Note their can not be MC_TARGET_DEVICE for now as we do not
5836 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5837 * this might change.
5839 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5840 mc.precharge += HPAGE_PMD_NR;
5845 if (pmd_trans_unstable(pmd))
5847 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5848 for (; addr != end; pte++, addr += PAGE_SIZE)
5849 if (get_mctgt_type(vma, addr, *pte, NULL))
5850 mc.precharge++; /* increment precharge temporarily */
5851 pte_unmap_unlock(pte - 1, ptl);
5857 static const struct mm_walk_ops precharge_walk_ops = {
5858 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5861 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5863 unsigned long precharge;
5866 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5867 mmap_read_unlock(mm);
5869 precharge = mc.precharge;
5875 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5877 unsigned long precharge = mem_cgroup_count_precharge(mm);
5879 VM_BUG_ON(mc.moving_task);
5880 mc.moving_task = current;
5881 return mem_cgroup_do_precharge(precharge);
5884 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5885 static void __mem_cgroup_clear_mc(void)
5887 struct mem_cgroup *from = mc.from;
5888 struct mem_cgroup *to = mc.to;
5890 /* we must uncharge all the leftover precharges from mc.to */
5892 cancel_charge(mc.to, mc.precharge);
5896 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5897 * we must uncharge here.
5899 if (mc.moved_charge) {
5900 cancel_charge(mc.from, mc.moved_charge);
5901 mc.moved_charge = 0;
5903 /* we must fixup refcnts and charges */
5904 if (mc.moved_swap) {
5905 /* uncharge swap account from the old cgroup */
5906 if (!mem_cgroup_is_root(mc.from))
5907 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5909 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5912 * we charged both to->memory and to->memsw, so we
5913 * should uncharge to->memory.
5915 if (!mem_cgroup_is_root(mc.to))
5916 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5920 memcg_oom_recover(from);
5921 memcg_oom_recover(to);
5922 wake_up_all(&mc.waitq);
5925 static void mem_cgroup_clear_mc(void)
5927 struct mm_struct *mm = mc.mm;
5930 * we must clear moving_task before waking up waiters at the end of
5933 mc.moving_task = NULL;
5934 __mem_cgroup_clear_mc();
5935 spin_lock(&mc.lock);
5939 spin_unlock(&mc.lock);
5944 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5946 struct cgroup_subsys_state *css;
5947 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5948 struct mem_cgroup *from;
5949 struct task_struct *leader, *p;
5950 struct mm_struct *mm;
5951 unsigned long move_flags;
5954 /* charge immigration isn't supported on the default hierarchy */
5955 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5959 * Multi-process migrations only happen on the default hierarchy
5960 * where charge immigration is not used. Perform charge
5961 * immigration if @tset contains a leader and whine if there are
5965 cgroup_taskset_for_each_leader(leader, css, tset) {
5968 memcg = mem_cgroup_from_css(css);
5974 * We are now commited to this value whatever it is. Changes in this
5975 * tunable will only affect upcoming migrations, not the current one.
5976 * So we need to save it, and keep it going.
5978 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5982 from = mem_cgroup_from_task(p);
5984 VM_BUG_ON(from == memcg);
5986 mm = get_task_mm(p);
5989 /* We move charges only when we move a owner of the mm */
5990 if (mm->owner == p) {
5993 VM_BUG_ON(mc.precharge);
5994 VM_BUG_ON(mc.moved_charge);
5995 VM_BUG_ON(mc.moved_swap);
5997 spin_lock(&mc.lock);
6001 mc.flags = move_flags;
6002 spin_unlock(&mc.lock);
6003 /* We set mc.moving_task later */
6005 ret = mem_cgroup_precharge_mc(mm);
6007 mem_cgroup_clear_mc();
6014 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6017 mem_cgroup_clear_mc();
6020 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6021 unsigned long addr, unsigned long end,
6022 struct mm_walk *walk)
6025 struct vm_area_struct *vma = walk->vma;
6028 enum mc_target_type target_type;
6029 union mc_target target;
6032 ptl = pmd_trans_huge_lock(pmd, vma);
6034 if (mc.precharge < HPAGE_PMD_NR) {
6038 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6039 if (target_type == MC_TARGET_PAGE) {
6041 if (!isolate_lru_page(page)) {
6042 if (!mem_cgroup_move_account(page, true,
6044 mc.precharge -= HPAGE_PMD_NR;
6045 mc.moved_charge += HPAGE_PMD_NR;
6047 putback_lru_page(page);
6050 } else if (target_type == MC_TARGET_DEVICE) {
6052 if (!mem_cgroup_move_account(page, true,
6054 mc.precharge -= HPAGE_PMD_NR;
6055 mc.moved_charge += HPAGE_PMD_NR;
6063 if (pmd_trans_unstable(pmd))
6066 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6067 for (; addr != end; addr += PAGE_SIZE) {
6068 pte_t ptent = *(pte++);
6069 bool device = false;
6075 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6076 case MC_TARGET_DEVICE:
6079 case MC_TARGET_PAGE:
6082 * We can have a part of the split pmd here. Moving it
6083 * can be done but it would be too convoluted so simply
6084 * ignore such a partial THP and keep it in original
6085 * memcg. There should be somebody mapping the head.
6087 if (PageTransCompound(page))
6089 if (!device && isolate_lru_page(page))
6091 if (!mem_cgroup_move_account(page, false,
6094 /* we uncharge from mc.from later. */
6098 putback_lru_page(page);
6099 put: /* get_mctgt_type() gets the page */
6102 case MC_TARGET_SWAP:
6104 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6106 mem_cgroup_id_get_many(mc.to, 1);
6107 /* we fixup other refcnts and charges later. */
6115 pte_unmap_unlock(pte - 1, ptl);
6120 * We have consumed all precharges we got in can_attach().
6121 * We try charge one by one, but don't do any additional
6122 * charges to mc.to if we have failed in charge once in attach()
6125 ret = mem_cgroup_do_precharge(1);
6133 static const struct mm_walk_ops charge_walk_ops = {
6134 .pmd_entry = mem_cgroup_move_charge_pte_range,
6137 static void mem_cgroup_move_charge(void)
6139 lru_add_drain_all();
6141 * Signal lock_page_memcg() to take the memcg's move_lock
6142 * while we're moving its pages to another memcg. Then wait
6143 * for already started RCU-only updates to finish.
6145 atomic_inc(&mc.from->moving_account);
6148 if (unlikely(!mmap_read_trylock(mc.mm))) {
6150 * Someone who are holding the mmap_lock might be waiting in
6151 * waitq. So we cancel all extra charges, wake up all waiters,
6152 * and retry. Because we cancel precharges, we might not be able
6153 * to move enough charges, but moving charge is a best-effort
6154 * feature anyway, so it wouldn't be a big problem.
6156 __mem_cgroup_clear_mc();
6161 * When we have consumed all precharges and failed in doing
6162 * additional charge, the page walk just aborts.
6164 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6167 mmap_read_unlock(mc.mm);
6168 atomic_dec(&mc.from->moving_account);
6171 static void mem_cgroup_move_task(void)
6174 mem_cgroup_move_charge();
6175 mem_cgroup_clear_mc();
6178 #else /* !CONFIG_MMU */
6179 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6183 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6186 static void mem_cgroup_move_task(void)
6191 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6193 if (value == PAGE_COUNTER_MAX)
6194 seq_puts(m, "max\n");
6196 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6201 static u64 memory_current_read(struct cgroup_subsys_state *css,
6204 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6206 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6209 static int memory_min_show(struct seq_file *m, void *v)
6211 return seq_puts_memcg_tunable(m,
6212 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6215 static ssize_t memory_min_write(struct kernfs_open_file *of,
6216 char *buf, size_t nbytes, loff_t off)
6218 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6222 buf = strstrip(buf);
6223 err = page_counter_memparse(buf, "max", &min);
6227 page_counter_set_min(&memcg->memory, min);
6232 static int memory_low_show(struct seq_file *m, void *v)
6234 return seq_puts_memcg_tunable(m,
6235 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6238 static ssize_t memory_low_write(struct kernfs_open_file *of,
6239 char *buf, size_t nbytes, loff_t off)
6241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6245 buf = strstrip(buf);
6246 err = page_counter_memparse(buf, "max", &low);
6250 page_counter_set_low(&memcg->memory, low);
6255 static int memory_high_show(struct seq_file *m, void *v)
6257 return seq_puts_memcg_tunable(m,
6258 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6261 static ssize_t memory_high_write(struct kernfs_open_file *of,
6262 char *buf, size_t nbytes, loff_t off)
6264 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6265 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6266 bool drained = false;
6270 buf = strstrip(buf);
6271 err = page_counter_memparse(buf, "max", &high);
6275 page_counter_set_high(&memcg->memory, high);
6278 unsigned long nr_pages = page_counter_read(&memcg->memory);
6279 unsigned long reclaimed;
6281 if (nr_pages <= high)
6284 if (signal_pending(current))
6288 drain_all_stock(memcg);
6293 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6296 if (!reclaimed && !nr_retries--)
6300 memcg_wb_domain_size_changed(memcg);
6304 static int memory_max_show(struct seq_file *m, void *v)
6306 return seq_puts_memcg_tunable(m,
6307 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6310 static ssize_t memory_max_write(struct kernfs_open_file *of,
6311 char *buf, size_t nbytes, loff_t off)
6313 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315 bool drained = false;
6319 buf = strstrip(buf);
6320 err = page_counter_memparse(buf, "max", &max);
6324 xchg(&memcg->memory.max, max);
6327 unsigned long nr_pages = page_counter_read(&memcg->memory);
6329 if (nr_pages <= max)
6332 if (signal_pending(current))
6336 drain_all_stock(memcg);
6342 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6348 memcg_memory_event(memcg, MEMCG_OOM);
6349 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6353 memcg_wb_domain_size_changed(memcg);
6357 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6359 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6360 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6361 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6362 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6363 seq_printf(m, "oom_kill %lu\n",
6364 atomic_long_read(&events[MEMCG_OOM_KILL]));
6367 static int memory_events_show(struct seq_file *m, void *v)
6369 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6371 __memory_events_show(m, memcg->memory_events);
6375 static int memory_events_local_show(struct seq_file *m, void *v)
6377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6379 __memory_events_show(m, memcg->memory_events_local);
6383 static int memory_stat_show(struct seq_file *m, void *v)
6385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 buf = memory_stat_format(memcg);
6397 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6400 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6403 static int memory_numa_stat_show(struct seq_file *m, void *v)
6406 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6408 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6411 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6414 seq_printf(m, "%s", memory_stats[i].name);
6415 for_each_node_state(nid, N_MEMORY) {
6417 struct lruvec *lruvec;
6419 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6420 size = lruvec_page_state_output(lruvec,
6421 memory_stats[i].idx);
6422 seq_printf(m, " N%d=%llu", nid, size);
6431 static int memory_oom_group_show(struct seq_file *m, void *v)
6433 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6435 seq_printf(m, "%d\n", memcg->oom_group);
6440 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6441 char *buf, size_t nbytes, loff_t off)
6443 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6446 buf = strstrip(buf);
6450 ret = kstrtoint(buf, 0, &oom_group);
6454 if (oom_group != 0 && oom_group != 1)
6457 memcg->oom_group = oom_group;
6462 static struct cftype memory_files[] = {
6465 .flags = CFTYPE_NOT_ON_ROOT,
6466 .read_u64 = memory_current_read,
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_min_show,
6472 .write = memory_min_write,
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_low_show,
6478 .write = memory_low_write,
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_high_show,
6484 .write = memory_high_write,
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .seq_show = memory_max_show,
6490 .write = memory_max_write,
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_file),
6496 .seq_show = memory_events_show,
6499 .name = "events.local",
6500 .flags = CFTYPE_NOT_ON_ROOT,
6501 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6502 .seq_show = memory_events_local_show,
6506 .seq_show = memory_stat_show,
6510 .name = "numa_stat",
6511 .seq_show = memory_numa_stat_show,
6515 .name = "oom.group",
6516 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6517 .seq_show = memory_oom_group_show,
6518 .write = memory_oom_group_write,
6523 struct cgroup_subsys memory_cgrp_subsys = {
6524 .css_alloc = mem_cgroup_css_alloc,
6525 .css_online = mem_cgroup_css_online,
6526 .css_offline = mem_cgroup_css_offline,
6527 .css_released = mem_cgroup_css_released,
6528 .css_free = mem_cgroup_css_free,
6529 .css_reset = mem_cgroup_css_reset,
6530 .can_attach = mem_cgroup_can_attach,
6531 .cancel_attach = mem_cgroup_cancel_attach,
6532 .post_attach = mem_cgroup_move_task,
6533 .dfl_cftypes = memory_files,
6534 .legacy_cftypes = mem_cgroup_legacy_files,
6539 * This function calculates an individual cgroup's effective
6540 * protection which is derived from its own memory.min/low, its
6541 * parent's and siblings' settings, as well as the actual memory
6542 * distribution in the tree.
6544 * The following rules apply to the effective protection values:
6546 * 1. At the first level of reclaim, effective protection is equal to
6547 * the declared protection in memory.min and memory.low.
6549 * 2. To enable safe delegation of the protection configuration, at
6550 * subsequent levels the effective protection is capped to the
6551 * parent's effective protection.
6553 * 3. To make complex and dynamic subtrees easier to configure, the
6554 * user is allowed to overcommit the declared protection at a given
6555 * level. If that is the case, the parent's effective protection is
6556 * distributed to the children in proportion to how much protection
6557 * they have declared and how much of it they are utilizing.
6559 * This makes distribution proportional, but also work-conserving:
6560 * if one cgroup claims much more protection than it uses memory,
6561 * the unused remainder is available to its siblings.
6563 * 4. Conversely, when the declared protection is undercommitted at a
6564 * given level, the distribution of the larger parental protection
6565 * budget is NOT proportional. A cgroup's protection from a sibling
6566 * is capped to its own memory.min/low setting.
6568 * 5. However, to allow protecting recursive subtrees from each other
6569 * without having to declare each individual cgroup's fixed share
6570 * of the ancestor's claim to protection, any unutilized -
6571 * "floating" - protection from up the tree is distributed in
6572 * proportion to each cgroup's *usage*. This makes the protection
6573 * neutral wrt sibling cgroups and lets them compete freely over
6574 * the shared parental protection budget, but it protects the
6575 * subtree as a whole from neighboring subtrees.
6577 * Note that 4. and 5. are not in conflict: 4. is about protecting
6578 * against immediate siblings whereas 5. is about protecting against
6579 * neighboring subtrees.
6581 static unsigned long effective_protection(unsigned long usage,
6582 unsigned long parent_usage,
6583 unsigned long setting,
6584 unsigned long parent_effective,
6585 unsigned long siblings_protected)
6587 unsigned long protected;
6590 protected = min(usage, setting);
6592 * If all cgroups at this level combined claim and use more
6593 * protection then what the parent affords them, distribute
6594 * shares in proportion to utilization.
6596 * We are using actual utilization rather than the statically
6597 * claimed protection in order to be work-conserving: claimed
6598 * but unused protection is available to siblings that would
6599 * otherwise get a smaller chunk than what they claimed.
6601 if (siblings_protected > parent_effective)
6602 return protected * parent_effective / siblings_protected;
6605 * Ok, utilized protection of all children is within what the
6606 * parent affords them, so we know whatever this child claims
6607 * and utilizes is effectively protected.
6609 * If there is unprotected usage beyond this value, reclaim
6610 * will apply pressure in proportion to that amount.
6612 * If there is unutilized protection, the cgroup will be fully
6613 * shielded from reclaim, but we do return a smaller value for
6614 * protection than what the group could enjoy in theory. This
6615 * is okay. With the overcommit distribution above, effective
6616 * protection is always dependent on how memory is actually
6617 * consumed among the siblings anyway.
6622 * If the children aren't claiming (all of) the protection
6623 * afforded to them by the parent, distribute the remainder in
6624 * proportion to the (unprotected) memory of each cgroup. That
6625 * way, cgroups that aren't explicitly prioritized wrt each
6626 * other compete freely over the allowance, but they are
6627 * collectively protected from neighboring trees.
6629 * We're using unprotected memory for the weight so that if
6630 * some cgroups DO claim explicit protection, we don't protect
6631 * the same bytes twice.
6633 * Check both usage and parent_usage against the respective
6634 * protected values. One should imply the other, but they
6635 * aren't read atomically - make sure the division is sane.
6637 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6639 if (parent_effective > siblings_protected &&
6640 parent_usage > siblings_protected &&
6641 usage > protected) {
6642 unsigned long unclaimed;
6644 unclaimed = parent_effective - siblings_protected;
6645 unclaimed *= usage - protected;
6646 unclaimed /= parent_usage - siblings_protected;
6655 * mem_cgroup_protected - check if memory consumption is in the normal range
6656 * @root: the top ancestor of the sub-tree being checked
6657 * @memcg: the memory cgroup to check
6659 * WARNING: This function is not stateless! It can only be used as part
6660 * of a top-down tree iteration, not for isolated queries.
6662 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6663 struct mem_cgroup *memcg)
6665 unsigned long usage, parent_usage;
6666 struct mem_cgroup *parent;
6668 if (mem_cgroup_disabled())
6672 root = root_mem_cgroup;
6675 * Effective values of the reclaim targets are ignored so they
6676 * can be stale. Have a look at mem_cgroup_protection for more
6678 * TODO: calculation should be more robust so that we do not need
6679 * that special casing.
6684 usage = page_counter_read(&memcg->memory);
6688 parent = parent_mem_cgroup(memcg);
6689 /* No parent means a non-hierarchical mode on v1 memcg */
6693 if (parent == root) {
6694 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6695 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6699 parent_usage = page_counter_read(&parent->memory);
6701 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.min),
6703 READ_ONCE(parent->memory.emin),
6704 atomic_long_read(&parent->memory.children_min_usage)));
6706 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6707 READ_ONCE(memcg->memory.low),
6708 READ_ONCE(parent->memory.elow),
6709 atomic_long_read(&parent->memory.children_low_usage)));
6713 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6714 * @page: page to charge
6715 * @mm: mm context of the victim
6716 * @gfp_mask: reclaim mode
6718 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6719 * pages according to @gfp_mask if necessary.
6721 * Returns 0 on success. Otherwise, an error code is returned.
6723 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6725 unsigned int nr_pages = thp_nr_pages(page);
6726 struct mem_cgroup *memcg = NULL;
6729 if (mem_cgroup_disabled())
6732 if (PageSwapCache(page)) {
6733 swp_entry_t ent = { .val = page_private(page), };
6737 * Every swap fault against a single page tries to charge the
6738 * page, bail as early as possible. shmem_unuse() encounters
6739 * already charged pages, too. page and memcg binding is
6740 * protected by the page lock, which serializes swap cache
6741 * removal, which in turn serializes uncharging.
6743 VM_BUG_ON_PAGE(!PageLocked(page), page);
6744 if (page_memcg(compound_head(page)))
6747 id = lookup_swap_cgroup_id(ent);
6749 memcg = mem_cgroup_from_id(id);
6750 if (memcg && !css_tryget_online(&memcg->css))
6756 memcg = get_mem_cgroup_from_mm(mm);
6758 ret = try_charge(memcg, gfp_mask, nr_pages);
6762 css_get(&memcg->css);
6763 commit_charge(page, memcg);
6765 local_irq_disable();
6766 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6767 memcg_check_events(memcg, page);
6770 if (PageSwapCache(page)) {
6771 swp_entry_t entry = { .val = page_private(page) };
6773 * The swap entry might not get freed for a long time,
6774 * let's not wait for it. The page already received a
6775 * memory+swap charge, drop the swap entry duplicate.
6777 mem_cgroup_uncharge_swap(entry, nr_pages);
6781 css_put(&memcg->css);
6786 struct uncharge_gather {
6787 struct mem_cgroup *memcg;
6788 unsigned long nr_pages;
6789 unsigned long pgpgout;
6790 unsigned long nr_kmem;
6791 struct page *dummy_page;
6794 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6796 memset(ug, 0, sizeof(*ug));
6799 static void uncharge_batch(const struct uncharge_gather *ug)
6801 unsigned long flags;
6803 if (!mem_cgroup_is_root(ug->memcg)) {
6804 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6805 if (do_memsw_account())
6806 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6807 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6808 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6809 memcg_oom_recover(ug->memcg);
6812 local_irq_save(flags);
6813 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6814 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6815 memcg_check_events(ug->memcg, ug->dummy_page);
6816 local_irq_restore(flags);
6818 /* drop reference from uncharge_page */
6819 css_put(&ug->memcg->css);
6822 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6824 unsigned long nr_pages;
6826 VM_BUG_ON_PAGE(PageLRU(page), page);
6828 if (!page_memcg(page))
6832 * Nobody should be changing or seriously looking at
6833 * page_memcg(page) at this point, we have fully
6834 * exclusive access to the page.
6837 if (ug->memcg != page_memcg(page)) {
6840 uncharge_gather_clear(ug);
6842 ug->memcg = page_memcg(page);
6844 /* pairs with css_put in uncharge_batch */
6845 css_get(&ug->memcg->css);
6848 nr_pages = compound_nr(page);
6849 ug->nr_pages += nr_pages;
6851 if (PageMemcgKmem(page))
6852 ug->nr_kmem += nr_pages;
6856 ug->dummy_page = page;
6857 page->memcg_data = 0;
6858 css_put(&ug->memcg->css);
6861 static void uncharge_list(struct list_head *page_list)
6863 struct uncharge_gather ug;
6864 struct list_head *next;
6866 uncharge_gather_clear(&ug);
6869 * Note that the list can be a single page->lru; hence the
6870 * do-while loop instead of a simple list_for_each_entry().
6872 next = page_list->next;
6876 page = list_entry(next, struct page, lru);
6877 next = page->lru.next;
6879 uncharge_page(page, &ug);
6880 } while (next != page_list);
6883 uncharge_batch(&ug);
6887 * mem_cgroup_uncharge - uncharge a page
6888 * @page: page to uncharge
6890 * Uncharge a page previously charged with mem_cgroup_charge().
6892 void mem_cgroup_uncharge(struct page *page)
6894 struct uncharge_gather ug;
6896 if (mem_cgroup_disabled())
6899 /* Don't touch page->lru of any random page, pre-check: */
6900 if (!page_memcg(page))
6903 uncharge_gather_clear(&ug);
6904 uncharge_page(page, &ug);
6905 uncharge_batch(&ug);
6909 * mem_cgroup_uncharge_list - uncharge a list of page
6910 * @page_list: list of pages to uncharge
6912 * Uncharge a list of pages previously charged with
6913 * mem_cgroup_charge().
6915 void mem_cgroup_uncharge_list(struct list_head *page_list)
6917 if (mem_cgroup_disabled())
6920 if (!list_empty(page_list))
6921 uncharge_list(page_list);
6925 * mem_cgroup_migrate - charge a page's replacement
6926 * @oldpage: currently circulating page
6927 * @newpage: replacement page
6929 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6930 * be uncharged upon free.
6932 * Both pages must be locked, @newpage->mapping must be set up.
6934 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6936 struct mem_cgroup *memcg;
6937 unsigned int nr_pages;
6938 unsigned long flags;
6940 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6941 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6942 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6943 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6946 if (mem_cgroup_disabled())
6949 /* Page cache replacement: new page already charged? */
6950 if (page_memcg(newpage))
6953 memcg = page_memcg(oldpage);
6954 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6958 /* Force-charge the new page. The old one will be freed soon */
6959 nr_pages = thp_nr_pages(newpage);
6961 page_counter_charge(&memcg->memory, nr_pages);
6962 if (do_memsw_account())
6963 page_counter_charge(&memcg->memsw, nr_pages);
6965 css_get(&memcg->css);
6966 commit_charge(newpage, memcg);
6968 local_irq_save(flags);
6969 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6970 memcg_check_events(memcg, newpage);
6971 local_irq_restore(flags);
6974 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6975 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6977 void mem_cgroup_sk_alloc(struct sock *sk)
6979 struct mem_cgroup *memcg;
6981 if (!mem_cgroup_sockets_enabled)
6984 /* Do not associate the sock with unrelated interrupted task's memcg. */
6989 memcg = mem_cgroup_from_task(current);
6990 if (memcg == root_mem_cgroup)
6992 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6994 if (css_tryget(&memcg->css))
6995 sk->sk_memcg = memcg;
7000 void mem_cgroup_sk_free(struct sock *sk)
7003 css_put(&sk->sk_memcg->css);
7007 * mem_cgroup_charge_skmem - charge socket memory
7008 * @memcg: memcg to charge
7009 * @nr_pages: number of pages to charge
7011 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7012 * @memcg's configured limit, %false if the charge had to be forced.
7014 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7016 gfp_t gfp_mask = GFP_KERNEL;
7018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7019 struct page_counter *fail;
7021 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7022 memcg->tcpmem_pressure = 0;
7025 page_counter_charge(&memcg->tcpmem, nr_pages);
7026 memcg->tcpmem_pressure = 1;
7030 /* Don't block in the packet receive path */
7032 gfp_mask = GFP_NOWAIT;
7034 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7036 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7039 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7044 * mem_cgroup_uncharge_skmem - uncharge socket memory
7045 * @memcg: memcg to uncharge
7046 * @nr_pages: number of pages to uncharge
7048 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7051 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7055 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7057 refill_stock(memcg, nr_pages);
7060 static int __init cgroup_memory(char *s)
7064 while ((token = strsep(&s, ",")) != NULL) {
7067 if (!strcmp(token, "nosocket"))
7068 cgroup_memory_nosocket = true;
7069 if (!strcmp(token, "nokmem"))
7070 cgroup_memory_nokmem = true;
7074 __setup("cgroup.memory=", cgroup_memory);
7077 * subsys_initcall() for memory controller.
7079 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7080 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7081 * basically everything that doesn't depend on a specific mem_cgroup structure
7082 * should be initialized from here.
7084 static int __init mem_cgroup_init(void)
7089 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7090 * used for per-memcg-per-cpu caching of per-node statistics. In order
7091 * to work fine, we should make sure that the overfill threshold can't
7092 * exceed S32_MAX / PAGE_SIZE.
7094 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7096 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7097 memcg_hotplug_cpu_dead);
7099 for_each_possible_cpu(cpu)
7100 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7103 for_each_node(node) {
7104 struct mem_cgroup_tree_per_node *rtpn;
7106 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7107 node_online(node) ? node : NUMA_NO_NODE);
7109 rtpn->rb_root = RB_ROOT;
7110 rtpn->rb_rightmost = NULL;
7111 spin_lock_init(&rtpn->lock);
7112 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7117 subsys_initcall(mem_cgroup_init);
7119 #ifdef CONFIG_MEMCG_SWAP
7120 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7122 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7124 * The root cgroup cannot be destroyed, so it's refcount must
7127 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7131 memcg = parent_mem_cgroup(memcg);
7133 memcg = root_mem_cgroup;
7139 * mem_cgroup_swapout - transfer a memsw charge to swap
7140 * @page: page whose memsw charge to transfer
7141 * @entry: swap entry to move the charge to
7143 * Transfer the memsw charge of @page to @entry.
7145 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7147 struct mem_cgroup *memcg, *swap_memcg;
7148 unsigned int nr_entries;
7149 unsigned short oldid;
7151 VM_BUG_ON_PAGE(PageLRU(page), page);
7152 VM_BUG_ON_PAGE(page_count(page), page);
7154 if (mem_cgroup_disabled())
7157 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7160 memcg = page_memcg(page);
7162 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7167 * In case the memcg owning these pages has been offlined and doesn't
7168 * have an ID allocated to it anymore, charge the closest online
7169 * ancestor for the swap instead and transfer the memory+swap charge.
7171 swap_memcg = mem_cgroup_id_get_online(memcg);
7172 nr_entries = thp_nr_pages(page);
7173 /* Get references for the tail pages, too */
7175 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7176 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7178 VM_BUG_ON_PAGE(oldid, page);
7179 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7181 page->memcg_data = 0;
7183 if (!mem_cgroup_is_root(memcg))
7184 page_counter_uncharge(&memcg->memory, nr_entries);
7186 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7187 if (!mem_cgroup_is_root(swap_memcg))
7188 page_counter_charge(&swap_memcg->memsw, nr_entries);
7189 page_counter_uncharge(&memcg->memsw, nr_entries);
7193 * Interrupts should be disabled here because the caller holds the
7194 * i_pages lock which is taken with interrupts-off. It is
7195 * important here to have the interrupts disabled because it is the
7196 * only synchronisation we have for updating the per-CPU variables.
7198 VM_BUG_ON(!irqs_disabled());
7199 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7200 memcg_check_events(memcg, page);
7202 css_put(&memcg->css);
7206 * mem_cgroup_try_charge_swap - try charging swap space for a page
7207 * @page: page being added to swap
7208 * @entry: swap entry to charge
7210 * Try to charge @page's memcg for the swap space at @entry.
7212 * Returns 0 on success, -ENOMEM on failure.
7214 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7216 unsigned int nr_pages = thp_nr_pages(page);
7217 struct page_counter *counter;
7218 struct mem_cgroup *memcg;
7219 unsigned short oldid;
7221 if (mem_cgroup_disabled())
7224 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7227 memcg = page_memcg(page);
7229 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7234 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7238 memcg = mem_cgroup_id_get_online(memcg);
7240 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7241 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7242 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7243 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7244 mem_cgroup_id_put(memcg);
7248 /* Get references for the tail pages, too */
7250 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7251 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7252 VM_BUG_ON_PAGE(oldid, page);
7253 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7259 * mem_cgroup_uncharge_swap - uncharge swap space
7260 * @entry: swap entry to uncharge
7261 * @nr_pages: the amount of swap space to uncharge
7263 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7265 struct mem_cgroup *memcg;
7268 id = swap_cgroup_record(entry, 0, nr_pages);
7270 memcg = mem_cgroup_from_id(id);
7272 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7273 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7274 page_counter_uncharge(&memcg->swap, nr_pages);
7276 page_counter_uncharge(&memcg->memsw, nr_pages);
7278 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7279 mem_cgroup_id_put_many(memcg, nr_pages);
7284 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7286 long nr_swap_pages = get_nr_swap_pages();
7288 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7289 return nr_swap_pages;
7290 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7291 nr_swap_pages = min_t(long, nr_swap_pages,
7292 READ_ONCE(memcg->swap.max) -
7293 page_counter_read(&memcg->swap));
7294 return nr_swap_pages;
7297 bool mem_cgroup_swap_full(struct page *page)
7299 struct mem_cgroup *memcg;
7301 VM_BUG_ON_PAGE(!PageLocked(page), page);
7305 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7308 memcg = page_memcg(page);
7312 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7313 unsigned long usage = page_counter_read(&memcg->swap);
7315 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7316 usage * 2 >= READ_ONCE(memcg->swap.max))
7323 static int __init setup_swap_account(char *s)
7325 if (!strcmp(s, "1"))
7326 cgroup_memory_noswap = false;
7327 else if (!strcmp(s, "0"))
7328 cgroup_memory_noswap = true;
7331 __setup("swapaccount=", setup_swap_account);
7333 static u64 swap_current_read(struct cgroup_subsys_state *css,
7336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7338 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7341 static int swap_high_show(struct seq_file *m, void *v)
7343 return seq_puts_memcg_tunable(m,
7344 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7347 static ssize_t swap_high_write(struct kernfs_open_file *of,
7348 char *buf, size_t nbytes, loff_t off)
7350 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7354 buf = strstrip(buf);
7355 err = page_counter_memparse(buf, "max", &high);
7359 page_counter_set_high(&memcg->swap, high);
7364 static int swap_max_show(struct seq_file *m, void *v)
7366 return seq_puts_memcg_tunable(m,
7367 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7370 static ssize_t swap_max_write(struct kernfs_open_file *of,
7371 char *buf, size_t nbytes, loff_t off)
7373 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7377 buf = strstrip(buf);
7378 err = page_counter_memparse(buf, "max", &max);
7382 xchg(&memcg->swap.max, max);
7387 static int swap_events_show(struct seq_file *m, void *v)
7389 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7391 seq_printf(m, "high %lu\n",
7392 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7393 seq_printf(m, "max %lu\n",
7394 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7395 seq_printf(m, "fail %lu\n",
7396 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7401 static struct cftype swap_files[] = {
7403 .name = "swap.current",
7404 .flags = CFTYPE_NOT_ON_ROOT,
7405 .read_u64 = swap_current_read,
7408 .name = "swap.high",
7409 .flags = CFTYPE_NOT_ON_ROOT,
7410 .seq_show = swap_high_show,
7411 .write = swap_high_write,
7415 .flags = CFTYPE_NOT_ON_ROOT,
7416 .seq_show = swap_max_show,
7417 .write = swap_max_write,
7420 .name = "swap.events",
7421 .flags = CFTYPE_NOT_ON_ROOT,
7422 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7423 .seq_show = swap_events_show,
7428 static struct cftype memsw_files[] = {
7430 .name = "memsw.usage_in_bytes",
7431 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7432 .read_u64 = mem_cgroup_read_u64,
7435 .name = "memsw.max_usage_in_bytes",
7436 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7437 .write = mem_cgroup_reset,
7438 .read_u64 = mem_cgroup_read_u64,
7441 .name = "memsw.limit_in_bytes",
7442 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7443 .write = mem_cgroup_write,
7444 .read_u64 = mem_cgroup_read_u64,
7447 .name = "memsw.failcnt",
7448 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7449 .write = mem_cgroup_reset,
7450 .read_u64 = mem_cgroup_read_u64,
7452 { }, /* terminate */
7456 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7457 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7458 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7459 * boot parameter. This may result in premature OOPS inside
7460 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7462 static int __init mem_cgroup_swap_init(void)
7464 /* No memory control -> no swap control */
7465 if (mem_cgroup_disabled())
7466 cgroup_memory_noswap = true;
7468 if (cgroup_memory_noswap)
7471 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7472 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7476 core_initcall(mem_cgroup_swap_init);
7478 #endif /* CONFIG_MEMCG_SWAP */