1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
22 #include "xfs_attr_sf.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
45 kmem_zone_t *xfs_inode_zone;
48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
49 * freed from a file in a single transaction.
51 #define XFS_ITRUNC_MAX_EXTENTS 2
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
58 * helper function to extract extent size hint from inode
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
78 xfs_get_cowextsz_hint(
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
90 return XFS_DEFAULT_COWEXTSZ_HINT;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
113 uint lock_mode = XFS_ILOCK_SHARED;
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
126 uint lock_mode = XFS_ILOCK_SHARED;
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347 #if defined(DEBUG) || defined(XFS_WARN)
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 xfs_lockdep_subclass_ok(
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
391 #define xfs_lockdep_subclass_ok(subclass) (true)
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
401 xfs_lock_inumorder(int lock_mode, int subclass)
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
448 int attempts = 0, i, j, try_lock;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
476 for (; i < inodes; i++) {
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
505 /* try_lock means we have an inode locked that is in the AIL. */
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
515 for (j = i - 1; j >= 0; j--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
521 if (j != (i - 1) && ips[j] == ips[j + 1])
524 xfs_iunlock(ips[j], lock_mode);
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
546 struct xfs_inode *ip0,
548 struct xfs_inode *ip1,
551 struct xfs_inode *temp;
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
569 ASSERT(ip0->i_ino != ip1->i_ino);
571 if (ip0->i_ino > ip1->i_ino) {
575 mode_temp = ip0_mode;
577 ip1_mode = mode_temp;
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
588 lp = (xfs_log_item_t *)ip0->i_itemp;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
603 struct xfs_inode *ip)
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 if (xfs_isiflocked(ip))
612 } while (!xfs_iflock_nowait(ip));
614 finish_wait(wq, &wait.wq_entry);
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
627 flags |= FS_XFLAG_REALTIME;
628 if (di_flags & XFS_DIFLAG_PREALLOC)
629 flags |= FS_XFLAG_PREALLOC;
630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 flags |= FS_XFLAG_IMMUTABLE;
632 if (di_flags & XFS_DIFLAG_APPEND)
633 flags |= FS_XFLAG_APPEND;
634 if (di_flags & XFS_DIFLAG_SYNC)
635 flags |= FS_XFLAG_SYNC;
636 if (di_flags & XFS_DIFLAG_NOATIME)
637 flags |= FS_XFLAG_NOATIME;
638 if (di_flags & XFS_DIFLAG_NODUMP)
639 flags |= FS_XFLAG_NODUMP;
640 if (di_flags & XFS_DIFLAG_RTINHERIT)
641 flags |= FS_XFLAG_RTINHERIT;
642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 flags |= FS_XFLAG_PROJINHERIT;
644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 flags |= FS_XFLAG_NOSYMLINKS;
646 if (di_flags & XFS_DIFLAG_EXTSIZE)
647 flags |= FS_XFLAG_EXTSIZE;
648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 flags |= FS_XFLAG_EXTSZINHERIT;
650 if (di_flags & XFS_DIFLAG_NODEFRAG)
651 flags |= FS_XFLAG_NODEFRAG;
652 if (di_flags & XFS_DIFLAG_FILESTREAM)
653 flags |= FS_XFLAG_FILESTREAM;
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
664 flags |= FS_XFLAG_HASATTR;
671 struct xfs_inode *ip)
673 struct xfs_icdinode *dic = &ip->i_d;
675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name *name,
689 struct xfs_name *ci_name)
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
711 kmem_free(ci_name->name);
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
756 xfs_buf_t **ialloc_context,
759 struct xfs_mount *mp = tp->t_mountp;
764 struct timespec64 tv;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 ialloc_context, &ino);
775 if (*ialloc_context || ino == NULLFSINO) {
779 ASSERT(*ialloc_context == NULL);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
840 tv = current_time(inode);
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
909 ip->i_d.di_flags |= di_flags;
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
924 ip->i_d.di_flags2 |= di_flags2;
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
937 * Attribute fork settings for new inode.
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
948 /* now that we have an i_mode we can setup the inode structure */
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp) /* pointer to inode; it will be
980 xfs_buf_t *ialloc_context = NULL;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1015 if (!ialloc_context && !ip) {
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1026 if (ialloc_context) {
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1034 xfs_trans_bhold(tp, ialloc_context);
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1050 code = xfs_trans_roll(&tp);
1053 * Re-attach the quota info that we detached from prev trx.
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1061 xfs_buf_relse(ialloc_context);
1066 xfs_trans_bjoin(tp, ialloc_context);
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 &ialloc_context, &ip);
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1085 ASSERT(!ialloc_context && ip);
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1100 static int /* error */
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 if (VFS_I(ip)->i_nlink)
1113 return xfs_iunlink(tp, ip);
1117 * Increment the link count on an inode & log the change.
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1126 ASSERT(ip->i_d.di_version > 1);
1127 inc_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1135 struct xfs_name *name,
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1145 bool unlock_dp_on_error = false;
1147 struct xfs_dquot *udqp = NULL;
1148 struct xfs_dquot *gdqp = NULL;
1149 struct xfs_dquot *pdqp = NULL;
1150 struct xfs_trans_res *tres;
1153 trace_xfs_create(dp, name);
1155 if (XFS_FORCED_SHUTDOWN(mp))
1158 prid = xfs_get_initial_prid(dp);
1161 * Make sure that we have allocated dquot(s) on disk.
1163 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1164 xfs_kgid_to_gid(current_fsgid()), prid,
1165 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1166 &udqp, &gdqp, &pdqp);
1171 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1172 tres = &M_RES(mp)->tr_mkdir;
1174 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1175 tres = &M_RES(mp)->tr_create;
1179 * Initially assume that the file does not exist and
1180 * reserve the resources for that case. If that is not
1181 * the case we'll drop the one we have and get a more
1182 * appropriate transaction later.
1184 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1185 if (error == -ENOSPC) {
1186 /* flush outstanding delalloc blocks and retry */
1187 xfs_flush_inodes(mp);
1188 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1191 goto out_release_inode;
1193 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1194 unlock_dp_on_error = true;
1197 * Reserve disk quota and the inode.
1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 pdqp, resblks, 1, 0);
1202 goto out_trans_cancel;
1205 * A newly created regular or special file just has one directory
1206 * entry pointing to them, but a directory also the "." entry
1207 * pointing to itself.
1209 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1211 goto out_trans_cancel;
1214 * Now we join the directory inode to the transaction. We do not do it
1215 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 * (and release all the locks). An error from here on will result in
1217 * the transaction cancel unlocking dp so don't do it explicitly in the
1220 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1221 unlock_dp_on_error = false;
1223 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1225 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1227 ASSERT(error != -ENOSPC);
1228 goto out_trans_cancel;
1230 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1234 error = xfs_dir_init(tp, ip, dp);
1236 goto out_trans_cancel;
1238 error = xfs_bumplink(tp, dp);
1240 goto out_trans_cancel;
1244 * If this is a synchronous mount, make sure that the
1245 * create transaction goes to disk before returning to
1248 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249 xfs_trans_set_sync(tp);
1252 * Attach the dquot(s) to the inodes and modify them incore.
1253 * These ids of the inode couldn't have changed since the new
1254 * inode has been locked ever since it was created.
1256 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1258 error = xfs_trans_commit(tp);
1260 goto out_release_inode;
1262 xfs_qm_dqrele(udqp);
1263 xfs_qm_dqrele(gdqp);
1264 xfs_qm_dqrele(pdqp);
1270 xfs_trans_cancel(tp);
1273 * Wait until after the current transaction is aborted to finish the
1274 * setup of the inode and release the inode. This prevents recursive
1275 * transactions and deadlocks from xfs_inactive.
1278 xfs_finish_inode_setup(ip);
1282 xfs_qm_dqrele(udqp);
1283 xfs_qm_dqrele(gdqp);
1284 xfs_qm_dqrele(pdqp);
1286 if (unlock_dp_on_error)
1287 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1293 struct xfs_inode *dp,
1295 struct xfs_inode **ipp)
1297 struct xfs_mount *mp = dp->i_mount;
1298 struct xfs_inode *ip = NULL;
1299 struct xfs_trans *tp = NULL;
1302 struct xfs_dquot *udqp = NULL;
1303 struct xfs_dquot *gdqp = NULL;
1304 struct xfs_dquot *pdqp = NULL;
1305 struct xfs_trans_res *tres;
1308 if (XFS_FORCED_SHUTDOWN(mp))
1311 prid = xfs_get_initial_prid(dp);
1314 * Make sure that we have allocated dquot(s) on disk.
1316 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1317 xfs_kgid_to_gid(current_fsgid()), prid,
1318 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1319 &udqp, &gdqp, &pdqp);
1323 resblks = XFS_IALLOC_SPACE_RES(mp);
1324 tres = &M_RES(mp)->tr_create_tmpfile;
1326 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1328 goto out_release_inode;
1330 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1331 pdqp, resblks, 1, 0);
1333 goto out_trans_cancel;
1335 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1337 goto out_trans_cancel;
1339 if (mp->m_flags & XFS_MOUNT_WSYNC)
1340 xfs_trans_set_sync(tp);
1343 * Attach the dquot(s) to the inodes and modify them incore.
1344 * These ids of the inode couldn't have changed since the new
1345 * inode has been locked ever since it was created.
1347 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1349 error = xfs_iunlink(tp, ip);
1351 goto out_trans_cancel;
1353 error = xfs_trans_commit(tp);
1355 goto out_release_inode;
1357 xfs_qm_dqrele(udqp);
1358 xfs_qm_dqrele(gdqp);
1359 xfs_qm_dqrele(pdqp);
1365 xfs_trans_cancel(tp);
1368 * Wait until after the current transaction is aborted to finish the
1369 * setup of the inode and release the inode. This prevents recursive
1370 * transactions and deadlocks from xfs_inactive.
1373 xfs_finish_inode_setup(ip);
1377 xfs_qm_dqrele(udqp);
1378 xfs_qm_dqrele(gdqp);
1379 xfs_qm_dqrele(pdqp);
1388 struct xfs_name *target_name)
1390 xfs_mount_t *mp = tdp->i_mount;
1395 trace_xfs_link(tdp, target_name);
1397 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1399 if (XFS_FORCED_SHUTDOWN(mp))
1402 error = xfs_qm_dqattach(sip);
1406 error = xfs_qm_dqattach(tdp);
1410 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1412 if (error == -ENOSPC) {
1414 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1419 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1421 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1422 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1425 * If we are using project inheritance, we only allow hard link
1426 * creation in our tree when the project IDs are the same; else
1427 * the tree quota mechanism could be circumvented.
1429 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1430 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1436 error = xfs_dir_canenter(tp, tdp, target_name);
1442 * Handle initial link state of O_TMPFILE inode
1444 if (VFS_I(sip)->i_nlink == 0) {
1445 error = xfs_iunlink_remove(tp, sip);
1450 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1454 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1455 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1457 error = xfs_bumplink(tp, sip);
1462 * If this is a synchronous mount, make sure that the
1463 * link transaction goes to disk before returning to
1466 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1467 xfs_trans_set_sync(tp);
1469 return xfs_trans_commit(tp);
1472 xfs_trans_cancel(tp);
1477 /* Clear the reflink flag and the cowblocks tag if possible. */
1479 xfs_itruncate_clear_reflink_flags(
1480 struct xfs_inode *ip)
1482 struct xfs_ifork *dfork;
1483 struct xfs_ifork *cfork;
1485 if (!xfs_is_reflink_inode(ip))
1487 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1488 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1489 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1490 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1491 if (cfork->if_bytes == 0)
1492 xfs_inode_clear_cowblocks_tag(ip);
1496 * Free up the underlying blocks past new_size. The new size must be smaller
1497 * than the current size. This routine can be used both for the attribute and
1498 * data fork, and does not modify the inode size, which is left to the caller.
1500 * The transaction passed to this routine must have made a permanent log
1501 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1502 * given transaction and start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here. Some transaction will be
1504 * returned to the caller to be committed. The incoming transaction must
1505 * already include the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction. On return the inode
1507 * will be "held" within the returned transaction. This routine does NOT
1508 * require any disk space to be reserved for it within the transaction.
1510 * If we get an error, we must return with the inode locked and linked into the
1511 * current transaction. This keeps things simple for the higher level code,
1512 * because it always knows that the inode is locked and held in the transaction
1513 * that returns to it whether errors occur or not. We don't mark the inode
1514 * dirty on error so that transactions can be easily aborted if possible.
1517 xfs_itruncate_extents_flags(
1518 struct xfs_trans **tpp,
1519 struct xfs_inode *ip,
1521 xfs_fsize_t new_size,
1524 struct xfs_mount *mp = ip->i_mount;
1525 struct xfs_trans *tp = *tpp;
1526 xfs_fileoff_t first_unmap_block;
1527 xfs_fileoff_t last_block;
1528 xfs_filblks_t unmap_len;
1532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1535 ASSERT(new_size <= XFS_ISIZE(ip));
1536 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 ASSERT(ip->i_itemp != NULL);
1538 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1539 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1541 trace_xfs_itruncate_extents_start(ip, new_size);
1543 flags |= xfs_bmapi_aflag(whichfork);
1546 * Since it is possible for space to become allocated beyond
1547 * the end of the file (in a crash where the space is allocated
1548 * but the inode size is not yet updated), simply remove any
1549 * blocks which show up between the new EOF and the maximum
1550 * possible file size. If the first block to be removed is
1551 * beyond the maximum file size (ie it is the same as last_block),
1552 * then there is nothing to do.
1554 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1555 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1556 if (first_unmap_block == last_block)
1559 ASSERT(first_unmap_block < last_block);
1560 unmap_len = last_block - first_unmap_block + 1;
1562 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1563 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1564 XFS_ITRUNC_MAX_EXTENTS, &done);
1569 * Duplicate the transaction that has the permanent
1570 * reservation and commit the old transaction.
1572 error = xfs_defer_finish(&tp);
1576 error = xfs_trans_roll_inode(&tp, ip);
1581 if (whichfork == XFS_DATA_FORK) {
1582 /* Remove all pending CoW reservations. */
1583 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1584 first_unmap_block, last_block, true);
1588 xfs_itruncate_clear_reflink_flags(ip);
1592 * Always re-log the inode so that our permanent transaction can keep
1593 * on rolling it forward in the log.
1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1597 trace_xfs_itruncate_extents_end(ip, new_size);
1608 xfs_mount_t *mp = ip->i_mount;
1611 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1614 /* If this is a read-only mount, don't do this (would generate I/O) */
1615 if (mp->m_flags & XFS_MOUNT_RDONLY)
1618 if (!XFS_FORCED_SHUTDOWN(mp)) {
1622 * If we previously truncated this file and removed old data
1623 * in the process, we want to initiate "early" writeout on
1624 * the last close. This is an attempt to combat the notorious
1625 * NULL files problem which is particularly noticeable from a
1626 * truncate down, buffered (re-)write (delalloc), followed by
1627 * a crash. What we are effectively doing here is
1628 * significantly reducing the time window where we'd otherwise
1629 * be exposed to that problem.
1631 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1633 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1634 if (ip->i_delayed_blks > 0) {
1635 error = filemap_flush(VFS_I(ip)->i_mapping);
1642 if (VFS_I(ip)->i_nlink == 0)
1645 if (xfs_can_free_eofblocks(ip, false)) {
1648 * Check if the inode is being opened, written and closed
1649 * frequently and we have delayed allocation blocks outstanding
1650 * (e.g. streaming writes from the NFS server), truncating the
1651 * blocks past EOF will cause fragmentation to occur.
1653 * In this case don't do the truncation, but we have to be
1654 * careful how we detect this case. Blocks beyond EOF show up as
1655 * i_delayed_blks even when the inode is clean, so we need to
1656 * truncate them away first before checking for a dirty release.
1657 * Hence on the first dirty close we will still remove the
1658 * speculative allocation, but after that we will leave it in
1661 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1664 * If we can't get the iolock just skip truncating the blocks
1665 * past EOF because we could deadlock with the mmap_sem
1666 * otherwise. We'll get another chance to drop them once the
1667 * last reference to the inode is dropped, so we'll never leak
1668 * blocks permanently.
1670 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1671 error = xfs_free_eofblocks(ip);
1672 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1677 /* delalloc blocks after truncation means it really is dirty */
1678 if (ip->i_delayed_blks)
1679 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1685 * xfs_inactive_truncate
1687 * Called to perform a truncate when an inode becomes unlinked.
1690 xfs_inactive_truncate(
1691 struct xfs_inode *ip)
1693 struct xfs_mount *mp = ip->i_mount;
1694 struct xfs_trans *tp;
1697 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1699 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1702 xfs_ilock(ip, XFS_ILOCK_EXCL);
1703 xfs_trans_ijoin(tp, ip, 0);
1706 * Log the inode size first to prevent stale data exposure in the event
1707 * of a system crash before the truncate completes. See the related
1708 * comment in xfs_vn_setattr_size() for details.
1710 ip->i_d.di_size = 0;
1711 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1713 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1715 goto error_trans_cancel;
1717 ASSERT(ip->i_d.di_nextents == 0);
1719 error = xfs_trans_commit(tp);
1723 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1727 xfs_trans_cancel(tp);
1729 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1734 * xfs_inactive_ifree()
1736 * Perform the inode free when an inode is unlinked.
1740 struct xfs_inode *ip)
1742 struct xfs_mount *mp = ip->i_mount;
1743 struct xfs_trans *tp;
1747 * We try to use a per-AG reservation for any block needed by the finobt
1748 * tree, but as the finobt feature predates the per-AG reservation
1749 * support a degraded file system might not have enough space for the
1750 * reservation at mount time. In that case try to dip into the reserved
1753 * Send a warning if the reservation does happen to fail, as the inode
1754 * now remains allocated and sits on the unlinked list until the fs is
1757 if (unlikely(mp->m_finobt_nores)) {
1758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1759 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1762 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1765 if (error == -ENOSPC) {
1766 xfs_warn_ratelimited(mp,
1767 "Failed to remove inode(s) from unlinked list. "
1768 "Please free space, unmount and run xfs_repair.");
1770 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1775 xfs_ilock(ip, XFS_ILOCK_EXCL);
1776 xfs_trans_ijoin(tp, ip, 0);
1778 error = xfs_ifree(tp, ip);
1781 * If we fail to free the inode, shut down. The cancel
1782 * might do that, we need to make sure. Otherwise the
1783 * inode might be lost for a long time or forever.
1785 if (!XFS_FORCED_SHUTDOWN(mp)) {
1786 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1788 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1790 xfs_trans_cancel(tp);
1791 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1796 * Credit the quota account(s). The inode is gone.
1798 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1801 * Just ignore errors at this point. There is nothing we can do except
1802 * to try to keep going. Make sure it's not a silent error.
1804 error = xfs_trans_commit(tp);
1806 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1809 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1816 * This is called when the vnode reference count for the vnode
1817 * goes to zero. If the file has been unlinked, then it must
1818 * now be truncated. Also, we clear all of the read-ahead state
1819 * kept for the inode here since the file is now closed.
1825 struct xfs_mount *mp;
1830 * If the inode is already free, then there can be nothing
1833 if (VFS_I(ip)->i_mode == 0) {
1834 ASSERT(ip->i_df.if_broot_bytes == 0);
1839 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1841 /* If this is a read-only mount, don't do this (would generate I/O) */
1842 if (mp->m_flags & XFS_MOUNT_RDONLY)
1845 /* Try to clean out the cow blocks if there are any. */
1846 if (xfs_inode_has_cow_data(ip))
1847 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1849 if (VFS_I(ip)->i_nlink != 0) {
1851 * force is true because we are evicting an inode from the
1852 * cache. Post-eof blocks must be freed, lest we end up with
1853 * broken free space accounting.
1855 * Note: don't bother with iolock here since lockdep complains
1856 * about acquiring it in reclaim context. We have the only
1857 * reference to the inode at this point anyways.
1859 if (xfs_can_free_eofblocks(ip, true))
1860 xfs_free_eofblocks(ip);
1865 if (S_ISREG(VFS_I(ip)->i_mode) &&
1866 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1867 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1870 error = xfs_qm_dqattach(ip);
1874 if (S_ISLNK(VFS_I(ip)->i_mode))
1875 error = xfs_inactive_symlink(ip);
1877 error = xfs_inactive_truncate(ip);
1882 * If there are attributes associated with the file then blow them away
1883 * now. The code calls a routine that recursively deconstructs the
1884 * attribute fork. If also blows away the in-core attribute fork.
1886 if (XFS_IFORK_Q(ip)) {
1887 error = xfs_attr_inactive(ip);
1893 ASSERT(ip->i_d.di_anextents == 0);
1894 ASSERT(ip->i_d.di_forkoff == 0);
1899 error = xfs_inactive_ifree(ip);
1904 * Release the dquots held by inode, if any.
1906 xfs_qm_dqdetach(ip);
1910 * In-Core Unlinked List Lookups
1911 * =============================
1913 * Every inode is supposed to be reachable from some other piece of metadata
1914 * with the exception of the root directory. Inodes with a connection to a
1915 * file descriptor but not linked from anywhere in the on-disk directory tree
1916 * are collectively known as unlinked inodes, though the filesystem itself
1917 * maintains links to these inodes so that on-disk metadata are consistent.
1919 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1920 * header contains a number of buckets that point to an inode, and each inode
1921 * record has a pointer to the next inode in the hash chain. This
1922 * singly-linked list causes scaling problems in the iunlink remove function
1923 * because we must walk that list to find the inode that points to the inode
1924 * being removed from the unlinked hash bucket list.
1926 * What if we modelled the unlinked list as a collection of records capturing
1927 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1928 * have a fast way to look up unlinked list predecessors, which avoids the
1929 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1932 * Because this is a backref cache, we ignore operational failures since the
1933 * iunlink code can fall back to the slow bucket walk. The only errors that
1934 * should bubble out are for obviously incorrect situations.
1936 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1937 * access or have otherwise provided for concurrency control.
1940 /* Capture a "X.next_unlinked = Y" relationship. */
1941 struct xfs_iunlink {
1942 struct rhash_head iu_rhash_head;
1943 xfs_agino_t iu_agino; /* X */
1944 xfs_agino_t iu_next_unlinked; /* Y */
1947 /* Unlinked list predecessor lookup hashtable construction */
1949 xfs_iunlink_obj_cmpfn(
1950 struct rhashtable_compare_arg *arg,
1953 const xfs_agino_t *key = arg->key;
1954 const struct xfs_iunlink *iu = obj;
1956 if (iu->iu_next_unlinked != *key)
1961 static const struct rhashtable_params xfs_iunlink_hash_params = {
1962 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1963 .key_len = sizeof(xfs_agino_t),
1964 .key_offset = offsetof(struct xfs_iunlink,
1966 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1967 .automatic_shrinking = true,
1968 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1972 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1973 * relation is found.
1976 xfs_iunlink_lookup_backref(
1977 struct xfs_perag *pag,
1980 struct xfs_iunlink *iu;
1982 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1983 xfs_iunlink_hash_params);
1984 return iu ? iu->iu_agino : NULLAGINO;
1988 * Take ownership of an iunlink cache entry and insert it into the hash table.
1989 * If successful, the entry will be owned by the cache; if not, it is freed.
1990 * Either way, the caller does not own @iu after this call.
1993 xfs_iunlink_insert_backref(
1994 struct xfs_perag *pag,
1995 struct xfs_iunlink *iu)
1999 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
2000 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2002 * Fail loudly if there already was an entry because that's a sign of
2003 * corruption of in-memory data. Also fail loudly if we see an error
2004 * code we didn't anticipate from the rhashtable code. Currently we
2005 * only anticipate ENOMEM.
2008 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2012 * Absorb any runtime errors that aren't a result of corruption because
2013 * this is a cache and we can always fall back to bucket list scanning.
2015 if (error != 0 && error != -EEXIST)
2020 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2022 xfs_iunlink_add_backref(
2023 struct xfs_perag *pag,
2024 xfs_agino_t prev_agino,
2025 xfs_agino_t this_agino)
2027 struct xfs_iunlink *iu;
2029 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2032 iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS);
2033 iu->iu_agino = prev_agino;
2034 iu->iu_next_unlinked = this_agino;
2036 return xfs_iunlink_insert_backref(pag, iu);
2040 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2041 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2042 * wasn't any such entry then we don't bother.
2045 xfs_iunlink_change_backref(
2046 struct xfs_perag *pag,
2048 xfs_agino_t next_unlinked)
2050 struct xfs_iunlink *iu;
2053 /* Look up the old entry; if there wasn't one then exit. */
2054 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2055 xfs_iunlink_hash_params);
2060 * Remove the entry. This shouldn't ever return an error, but if we
2061 * couldn't remove the old entry we don't want to add it again to the
2062 * hash table, and if the entry disappeared on us then someone's
2063 * violated the locking rules and we need to fail loudly. Either way
2064 * we cannot remove the inode because internal state is or would have
2067 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2068 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2072 /* If there is no new next entry just free our item and return. */
2073 if (next_unlinked == NULLAGINO) {
2078 /* Update the entry and re-add it to the hash table. */
2079 iu->iu_next_unlinked = next_unlinked;
2080 return xfs_iunlink_insert_backref(pag, iu);
2083 /* Set up the in-core predecessor structures. */
2086 struct xfs_perag *pag)
2088 return rhashtable_init(&pag->pagi_unlinked_hash,
2089 &xfs_iunlink_hash_params);
2092 /* Free the in-core predecessor structures. */
2094 xfs_iunlink_free_item(
2098 struct xfs_iunlink *iu = ptr;
2099 bool *freed_anything = arg;
2101 *freed_anything = true;
2106 xfs_iunlink_destroy(
2107 struct xfs_perag *pag)
2109 bool freed_anything = false;
2111 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2112 xfs_iunlink_free_item, &freed_anything);
2114 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2118 * Point the AGI unlinked bucket at an inode and log the results. The caller
2119 * is responsible for validating the old value.
2122 xfs_iunlink_update_bucket(
2123 struct xfs_trans *tp,
2124 xfs_agnumber_t agno,
2125 struct xfs_buf *agibp,
2126 unsigned int bucket_index,
2127 xfs_agino_t new_agino)
2129 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2130 xfs_agino_t old_value;
2133 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2135 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2136 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2137 old_value, new_agino);
2140 * We should never find the head of the list already set to the value
2141 * passed in because either we're adding or removing ourselves from the
2144 if (old_value == new_agino)
2145 return -EFSCORRUPTED;
2147 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2148 offset = offsetof(struct xfs_agi, agi_unlinked) +
2149 (sizeof(xfs_agino_t) * bucket_index);
2150 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2154 /* Set an on-disk inode's next_unlinked pointer. */
2156 xfs_iunlink_update_dinode(
2157 struct xfs_trans *tp,
2158 xfs_agnumber_t agno,
2160 struct xfs_buf *ibp,
2161 struct xfs_dinode *dip,
2162 struct xfs_imap *imap,
2163 xfs_agino_t next_agino)
2165 struct xfs_mount *mp = tp->t_mountp;
2168 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2170 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2171 be32_to_cpu(dip->di_next_unlinked), next_agino);
2173 dip->di_next_unlinked = cpu_to_be32(next_agino);
2174 offset = imap->im_boffset +
2175 offsetof(struct xfs_dinode, di_next_unlinked);
2177 /* need to recalc the inode CRC if appropriate */
2178 xfs_dinode_calc_crc(mp, dip);
2179 xfs_trans_inode_buf(tp, ibp);
2180 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2181 xfs_inobp_check(mp, ibp);
2184 /* Set an in-core inode's unlinked pointer and return the old value. */
2186 xfs_iunlink_update_inode(
2187 struct xfs_trans *tp,
2188 struct xfs_inode *ip,
2189 xfs_agnumber_t agno,
2190 xfs_agino_t next_agino,
2191 xfs_agino_t *old_next_agino)
2193 struct xfs_mount *mp = tp->t_mountp;
2194 struct xfs_dinode *dip;
2195 struct xfs_buf *ibp;
2196 xfs_agino_t old_value;
2199 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2201 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2205 /* Make sure the old pointer isn't garbage. */
2206 old_value = be32_to_cpu(dip->di_next_unlinked);
2207 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2208 error = -EFSCORRUPTED;
2213 * Since we're updating a linked list, we should never find that the
2214 * current pointer is the same as the new value, unless we're
2215 * terminating the list.
2217 *old_next_agino = old_value;
2218 if (old_value == next_agino) {
2219 if (next_agino != NULLAGINO)
2220 error = -EFSCORRUPTED;
2224 /* Ok, update the new pointer. */
2225 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2226 ibp, dip, &ip->i_imap, next_agino);
2229 xfs_trans_brelse(tp, ibp);
2234 * This is called when the inode's link count has gone to 0 or we are creating
2235 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2237 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2238 * list when the inode is freed.
2242 struct xfs_trans *tp,
2243 struct xfs_inode *ip)
2245 struct xfs_mount *mp = tp->t_mountp;
2246 struct xfs_agi *agi;
2247 struct xfs_buf *agibp;
2248 xfs_agino_t next_agino;
2249 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2250 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2251 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2254 ASSERT(VFS_I(ip)->i_nlink == 0);
2255 ASSERT(VFS_I(ip)->i_mode != 0);
2256 trace_xfs_iunlink(ip);
2258 /* Get the agi buffer first. It ensures lock ordering on the list. */
2259 error = xfs_read_agi(mp, tp, agno, &agibp);
2262 agi = XFS_BUF_TO_AGI(agibp);
2265 * Get the index into the agi hash table for the list this inode will
2266 * go on. Make sure the pointer isn't garbage and that this inode
2267 * isn't already on the list.
2269 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2270 if (next_agino == agino ||
2271 !xfs_verify_agino_or_null(mp, agno, next_agino))
2272 return -EFSCORRUPTED;
2274 if (next_agino != NULLAGINO) {
2275 struct xfs_perag *pag;
2276 xfs_agino_t old_agino;
2279 * There is already another inode in the bucket, so point this
2280 * inode to the current head of the list.
2282 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2286 ASSERT(old_agino == NULLAGINO);
2289 * agino has been unlinked, add a backref from the next inode
2292 pag = xfs_perag_get(mp, agno);
2293 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2299 /* Point the head of the list to point to this inode. */
2300 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2303 /* Return the imap, dinode pointer, and buffer for an inode. */
2305 xfs_iunlink_map_ino(
2306 struct xfs_trans *tp,
2307 xfs_agnumber_t agno,
2309 struct xfs_imap *imap,
2310 struct xfs_dinode **dipp,
2311 struct xfs_buf **bpp)
2313 struct xfs_mount *mp = tp->t_mountp;
2317 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2319 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2324 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2326 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2335 * Walk the unlinked chain from @head_agino until we find the inode that
2336 * points to @target_agino. Return the inode number, map, dinode pointer,
2337 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2339 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2340 * @agino, @imap, @dipp, and @bpp are all output parameters.
2342 * Do not call this function if @target_agino is the head of the list.
2345 xfs_iunlink_map_prev(
2346 struct xfs_trans *tp,
2347 xfs_agnumber_t agno,
2348 xfs_agino_t head_agino,
2349 xfs_agino_t target_agino,
2351 struct xfs_imap *imap,
2352 struct xfs_dinode **dipp,
2353 struct xfs_buf **bpp,
2354 struct xfs_perag *pag)
2356 struct xfs_mount *mp = tp->t_mountp;
2357 xfs_agino_t next_agino;
2360 ASSERT(head_agino != target_agino);
2363 /* See if our backref cache can find it faster. */
2364 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2365 if (*agino != NULLAGINO) {
2366 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2370 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2374 * If we get here the cache contents were corrupt, so drop the
2375 * buffer and fall back to walking the bucket list.
2377 xfs_trans_brelse(tp, *bpp);
2382 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2384 /* Otherwise, walk the entire bucket until we find it. */
2385 next_agino = head_agino;
2386 while (next_agino != target_agino) {
2387 xfs_agino_t unlinked_agino;
2390 xfs_trans_brelse(tp, *bpp);
2392 *agino = next_agino;
2393 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2398 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2400 * Make sure this pointer is valid and isn't an obvious
2403 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2404 next_agino == unlinked_agino) {
2405 XFS_CORRUPTION_ERROR(__func__,
2406 XFS_ERRLEVEL_LOW, mp,
2407 *dipp, sizeof(**dipp));
2408 error = -EFSCORRUPTED;
2411 next_agino = unlinked_agino;
2418 * Pull the on-disk inode from the AGI unlinked list.
2422 struct xfs_trans *tp,
2423 struct xfs_inode *ip)
2425 struct xfs_mount *mp = tp->t_mountp;
2426 struct xfs_agi *agi;
2427 struct xfs_buf *agibp;
2428 struct xfs_buf *last_ibp;
2429 struct xfs_dinode *last_dip = NULL;
2430 struct xfs_perag *pag = NULL;
2431 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2432 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2433 xfs_agino_t next_agino;
2434 xfs_agino_t head_agino;
2435 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2438 trace_xfs_iunlink_remove(ip);
2440 /* Get the agi buffer first. It ensures lock ordering on the list. */
2441 error = xfs_read_agi(mp, tp, agno, &agibp);
2444 agi = XFS_BUF_TO_AGI(agibp);
2447 * Get the index into the agi hash table for the list this inode will
2448 * go on. Make sure the head pointer isn't garbage.
2450 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2451 if (!xfs_verify_agino(mp, agno, head_agino)) {
2452 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2454 return -EFSCORRUPTED;
2458 * Set our inode's next_unlinked pointer to NULL and then return
2459 * the old pointer value so that we can update whatever was previous
2460 * to us in the list to point to whatever was next in the list.
2462 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2467 * If there was a backref pointing from the next inode back to this
2468 * one, remove it because we've removed this inode from the list.
2470 * Later, if this inode was in the middle of the list we'll update
2471 * this inode's backref to point from the next inode.
2473 if (next_agino != NULLAGINO) {
2474 pag = xfs_perag_get(mp, agno);
2475 error = xfs_iunlink_change_backref(pag, next_agino,
2481 if (head_agino == agino) {
2482 /* Point the head of the list to the next unlinked inode. */
2483 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2488 struct xfs_imap imap;
2489 xfs_agino_t prev_agino;
2492 pag = xfs_perag_get(mp, agno);
2494 /* We need to search the list for the inode being freed. */
2495 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2496 &prev_agino, &imap, &last_dip, &last_ibp,
2501 /* Point the previous inode on the list to the next inode. */
2502 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2503 last_dip, &imap, next_agino);
2506 * Now we deal with the backref for this inode. If this inode
2507 * pointed at a real inode, change the backref that pointed to
2508 * us to point to our old next. If this inode was the end of
2509 * the list, delete the backref that pointed to us. Note that
2510 * change_backref takes care of deleting the backref if
2511 * next_agino is NULLAGINO.
2513 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2525 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2526 * inodes that are in memory - they all must be marked stale and attached to
2527 * the cluster buffer.
2531 xfs_inode_t *free_ip,
2533 struct xfs_icluster *xic)
2535 xfs_mount_t *mp = free_ip->i_mount;
2542 xfs_inode_log_item_t *iip;
2543 struct xfs_log_item *lip;
2544 struct xfs_perag *pag;
2547 inum = xic->first_ino;
2548 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2549 nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
2551 for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
2553 * The allocation bitmap tells us which inodes of the chunk were
2554 * physically allocated. Skip the cluster if an inode falls into
2557 ioffset = inum - xic->first_ino;
2558 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2559 ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
2563 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2564 XFS_INO_TO_AGBNO(mp, inum));
2567 * We obtain and lock the backing buffer first in the process
2568 * here, as we have to ensure that any dirty inode that we
2569 * can't get the flush lock on is attached to the buffer.
2570 * If we scan the in-memory inodes first, then buffer IO can
2571 * complete before we get a lock on it, and hence we may fail
2572 * to mark all the active inodes on the buffer stale.
2574 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2575 mp->m_bsize * mp->m_blocks_per_cluster,
2582 * This buffer may not have been correctly initialised as we
2583 * didn't read it from disk. That's not important because we are
2584 * only using to mark the buffer as stale in the log, and to
2585 * attach stale cached inodes on it. That means it will never be
2586 * dispatched for IO. If it is, we want to know about it, and we
2587 * want it to fail. We can acheive this by adding a write
2588 * verifier to the buffer.
2590 bp->b_ops = &xfs_inode_buf_ops;
2593 * Walk the inodes already attached to the buffer and mark them
2594 * stale. These will all have the flush locks held, so an
2595 * in-memory inode walk can't lock them. By marking them all
2596 * stale first, we will not attempt to lock them in the loop
2597 * below as the XFS_ISTALE flag will be set.
2599 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2600 if (lip->li_type == XFS_LI_INODE) {
2601 iip = (xfs_inode_log_item_t *)lip;
2602 ASSERT(iip->ili_logged == 1);
2603 lip->li_cb = xfs_istale_done;
2604 xfs_trans_ail_copy_lsn(mp->m_ail,
2605 &iip->ili_flush_lsn,
2606 &iip->ili_item.li_lsn);
2607 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2613 * For each inode in memory attempt to add it to the inode
2614 * buffer and set it up for being staled on buffer IO
2615 * completion. This is safe as we've locked out tail pushing
2616 * and flushing by locking the buffer.
2618 * We have already marked every inode that was part of a
2619 * transaction stale above, which means there is no point in
2620 * even trying to lock them.
2622 for (i = 0; i < mp->m_inodes_per_cluster; i++) {
2625 ip = radix_tree_lookup(&pag->pag_ici_root,
2626 XFS_INO_TO_AGINO(mp, (inum + i)));
2628 /* Inode not in memory, nothing to do */
2635 * because this is an RCU protected lookup, we could
2636 * find a recently freed or even reallocated inode
2637 * during the lookup. We need to check under the
2638 * i_flags_lock for a valid inode here. Skip it if it
2639 * is not valid, the wrong inode or stale.
2641 spin_lock(&ip->i_flags_lock);
2642 if (ip->i_ino != inum + i ||
2643 __xfs_iflags_test(ip, XFS_ISTALE)) {
2644 spin_unlock(&ip->i_flags_lock);
2648 spin_unlock(&ip->i_flags_lock);
2651 * Don't try to lock/unlock the current inode, but we
2652 * _cannot_ skip the other inodes that we did not find
2653 * in the list attached to the buffer and are not
2654 * already marked stale. If we can't lock it, back off
2657 if (ip != free_ip) {
2658 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2665 * Check the inode number again in case we're
2666 * racing with freeing in xfs_reclaim_inode().
2667 * See the comments in that function for more
2668 * information as to why the initial check is
2671 if (ip->i_ino != inum + i) {
2672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2680 xfs_iflags_set(ip, XFS_ISTALE);
2683 * we don't need to attach clean inodes or those only
2684 * with unlogged changes (which we throw away, anyway).
2687 if (!iip || xfs_inode_clean(ip)) {
2688 ASSERT(ip != free_ip);
2690 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2694 iip->ili_last_fields = iip->ili_fields;
2695 iip->ili_fields = 0;
2696 iip->ili_fsync_fields = 0;
2697 iip->ili_logged = 1;
2698 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2699 &iip->ili_item.li_lsn);
2701 xfs_buf_attach_iodone(bp, xfs_istale_done,
2705 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2708 xfs_trans_stale_inode_buf(tp, bp);
2709 xfs_trans_binval(tp, bp);
2717 * Free any local-format buffers sitting around before we reset to
2721 xfs_ifree_local_data(
2722 struct xfs_inode *ip,
2725 struct xfs_ifork *ifp;
2727 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2730 ifp = XFS_IFORK_PTR(ip, whichfork);
2731 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2735 * This is called to return an inode to the inode free list.
2736 * The inode should already be truncated to 0 length and have
2737 * no pages associated with it. This routine also assumes that
2738 * the inode is already a part of the transaction.
2740 * The on-disk copy of the inode will have been added to the list
2741 * of unlinked inodes in the AGI. We need to remove the inode from
2742 * that list atomically with respect to freeing it here.
2746 struct xfs_trans *tp,
2747 struct xfs_inode *ip)
2750 struct xfs_icluster xic = { 0 };
2752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2753 ASSERT(VFS_I(ip)->i_nlink == 0);
2754 ASSERT(ip->i_d.di_nextents == 0);
2755 ASSERT(ip->i_d.di_anextents == 0);
2756 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2757 ASSERT(ip->i_d.di_nblocks == 0);
2760 * Pull the on-disk inode from the AGI unlinked list.
2762 error = xfs_iunlink_remove(tp, ip);
2766 error = xfs_difree(tp, ip->i_ino, &xic);
2770 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2771 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2773 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2774 ip->i_d.di_flags = 0;
2775 ip->i_d.di_flags2 = 0;
2776 ip->i_d.di_dmevmask = 0;
2777 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2778 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2779 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2781 /* Don't attempt to replay owner changes for a deleted inode */
2782 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2785 * Bump the generation count so no one will be confused
2786 * by reincarnations of this inode.
2788 VFS_I(ip)->i_generation++;
2789 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2792 error = xfs_ifree_cluster(ip, tp, &xic);
2798 * This is called to unpin an inode. The caller must have the inode locked
2799 * in at least shared mode so that the buffer cannot be subsequently pinned
2800 * once someone is waiting for it to be unpinned.
2804 struct xfs_inode *ip)
2806 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2808 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2810 /* Give the log a push to start the unpinning I/O */
2811 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2817 struct xfs_inode *ip)
2819 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2820 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2825 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2826 if (xfs_ipincount(ip))
2828 } while (xfs_ipincount(ip));
2829 finish_wait(wq, &wait.wq_entry);
2834 struct xfs_inode *ip)
2836 if (xfs_ipincount(ip))
2837 __xfs_iunpin_wait(ip);
2841 * Removing an inode from the namespace involves removing the directory entry
2842 * and dropping the link count on the inode. Removing the directory entry can
2843 * result in locking an AGF (directory blocks were freed) and removing a link
2844 * count can result in placing the inode on an unlinked list which results in
2847 * The big problem here is that we have an ordering constraint on AGF and AGI
2848 * locking - inode allocation locks the AGI, then can allocate a new extent for
2849 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2850 * removes the inode from the unlinked list, requiring that we lock the AGI
2851 * first, and then freeing the inode can result in an inode chunk being freed
2852 * and hence freeing disk space requiring that we lock an AGF.
2854 * Hence the ordering that is imposed by other parts of the code is AGI before
2855 * AGF. This means we cannot remove the directory entry before we drop the inode
2856 * reference count and put it on the unlinked list as this results in a lock
2857 * order of AGF then AGI, and this can deadlock against inode allocation and
2858 * freeing. Therefore we must drop the link counts before we remove the
2861 * This is still safe from a transactional point of view - it is not until we
2862 * get to xfs_defer_finish() that we have the possibility of multiple
2863 * transactions in this operation. Hence as long as we remove the directory
2864 * entry and drop the link count in the first transaction of the remove
2865 * operation, there are no transactional constraints on the ordering here.
2870 struct xfs_name *name,
2873 xfs_mount_t *mp = dp->i_mount;
2874 xfs_trans_t *tp = NULL;
2875 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2879 trace_xfs_remove(dp, name);
2881 if (XFS_FORCED_SHUTDOWN(mp))
2884 error = xfs_qm_dqattach(dp);
2888 error = xfs_qm_dqattach(ip);
2893 * We try to get the real space reservation first,
2894 * allowing for directory btree deletion(s) implying
2895 * possible bmap insert(s). If we can't get the space
2896 * reservation then we use 0 instead, and avoid the bmap
2897 * btree insert(s) in the directory code by, if the bmap
2898 * insert tries to happen, instead trimming the LAST
2899 * block from the directory.
2901 resblks = XFS_REMOVE_SPACE_RES(mp);
2902 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2903 if (error == -ENOSPC) {
2905 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2909 ASSERT(error != -ENOSPC);
2913 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2915 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2916 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2919 * If we're removing a directory perform some additional validation.
2922 ASSERT(VFS_I(ip)->i_nlink >= 2);
2923 if (VFS_I(ip)->i_nlink != 2) {
2925 goto out_trans_cancel;
2927 if (!xfs_dir_isempty(ip)) {
2929 goto out_trans_cancel;
2932 /* Drop the link from ip's "..". */
2933 error = xfs_droplink(tp, dp);
2935 goto out_trans_cancel;
2937 /* Drop the "." link from ip to self. */
2938 error = xfs_droplink(tp, ip);
2940 goto out_trans_cancel;
2943 * When removing a non-directory we need to log the parent
2944 * inode here. For a directory this is done implicitly
2945 * by the xfs_droplink call for the ".." entry.
2947 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2949 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2951 /* Drop the link from dp to ip. */
2952 error = xfs_droplink(tp, ip);
2954 goto out_trans_cancel;
2956 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2958 ASSERT(error != -ENOENT);
2959 goto out_trans_cancel;
2963 * If this is a synchronous mount, make sure that the
2964 * remove transaction goes to disk before returning to
2967 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2968 xfs_trans_set_sync(tp);
2970 error = xfs_trans_commit(tp);
2974 if (is_dir && xfs_inode_is_filestream(ip))
2975 xfs_filestream_deassociate(ip);
2980 xfs_trans_cancel(tp);
2986 * Enter all inodes for a rename transaction into a sorted array.
2988 #define __XFS_SORT_INODES 5
2990 xfs_sort_for_rename(
2991 struct xfs_inode *dp1, /* in: old (source) directory inode */
2992 struct xfs_inode *dp2, /* in: new (target) directory inode */
2993 struct xfs_inode *ip1, /* in: inode of old entry */
2994 struct xfs_inode *ip2, /* in: inode of new entry */
2995 struct xfs_inode *wip, /* in: whiteout inode */
2996 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2997 int *num_inodes) /* in/out: inodes in array */
3001 ASSERT(*num_inodes == __XFS_SORT_INODES);
3002 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3005 * i_tab contains a list of pointers to inodes. We initialize
3006 * the table here & we'll sort it. We will then use it to
3007 * order the acquisition of the inode locks.
3009 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3022 * Sort the elements via bubble sort. (Remember, there are at
3023 * most 5 elements to sort, so this is adequate.)
3025 for (i = 0; i < *num_inodes; i++) {
3026 for (j = 1; j < *num_inodes; j++) {
3027 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3028 struct xfs_inode *temp = i_tab[j];
3029 i_tab[j] = i_tab[j-1];
3038 struct xfs_trans *tp)
3041 * If this is a synchronous mount, make sure that the rename transaction
3042 * goes to disk before returning to the user.
3044 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3045 xfs_trans_set_sync(tp);
3047 return xfs_trans_commit(tp);
3051 * xfs_cross_rename()
3053 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3057 struct xfs_trans *tp,
3058 struct xfs_inode *dp1,
3059 struct xfs_name *name1,
3060 struct xfs_inode *ip1,
3061 struct xfs_inode *dp2,
3062 struct xfs_name *name2,
3063 struct xfs_inode *ip2,
3071 /* Swap inode number for dirent in first parent */
3072 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3074 goto out_trans_abort;
3076 /* Swap inode number for dirent in second parent */
3077 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3079 goto out_trans_abort;
3082 * If we're renaming one or more directories across different parents,
3083 * update the respective ".." entries (and link counts) to match the new
3087 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3089 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3090 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3091 dp1->i_ino, spaceres);
3093 goto out_trans_abort;
3095 /* transfer ip2 ".." reference to dp1 */
3096 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3097 error = xfs_droplink(tp, dp2);
3099 goto out_trans_abort;
3100 error = xfs_bumplink(tp, dp1);
3102 goto out_trans_abort;
3106 * Although ip1 isn't changed here, userspace needs
3107 * to be warned about the change, so that applications
3108 * relying on it (like backup ones), will properly
3111 ip1_flags |= XFS_ICHGTIME_CHG;
3112 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3115 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3116 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3117 dp2->i_ino, spaceres);
3119 goto out_trans_abort;
3121 /* transfer ip1 ".." reference to dp2 */
3122 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3123 error = xfs_droplink(tp, dp1);
3125 goto out_trans_abort;
3126 error = xfs_bumplink(tp, dp2);
3128 goto out_trans_abort;
3132 * Although ip2 isn't changed here, userspace needs
3133 * to be warned about the change, so that applications
3134 * relying on it (like backup ones), will properly
3137 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3138 ip2_flags |= XFS_ICHGTIME_CHG;
3143 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3144 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3147 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3148 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3151 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3152 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3154 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3155 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3156 return xfs_finish_rename(tp);
3159 xfs_trans_cancel(tp);
3164 * xfs_rename_alloc_whiteout()
3166 * Return a referenced, unlinked, unlocked inode that that can be used as a
3167 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3168 * crash between allocating the inode and linking it into the rename transaction
3169 * recovery will free the inode and we won't leak it.
3172 xfs_rename_alloc_whiteout(
3173 struct xfs_inode *dp,
3174 struct xfs_inode **wip)
3176 struct xfs_inode *tmpfile;
3179 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3184 * Prepare the tmpfile inode as if it were created through the VFS.
3185 * Complete the inode setup and flag it as linkable. nlink is already
3186 * zero, so we can skip the drop_nlink.
3188 xfs_setup_iops(tmpfile);
3189 xfs_finish_inode_setup(tmpfile);
3190 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3201 struct xfs_inode *src_dp,
3202 struct xfs_name *src_name,
3203 struct xfs_inode *src_ip,
3204 struct xfs_inode *target_dp,
3205 struct xfs_name *target_name,
3206 struct xfs_inode *target_ip,
3209 struct xfs_mount *mp = src_dp->i_mount;
3210 struct xfs_trans *tp;
3211 struct xfs_inode *wip = NULL; /* whiteout inode */
3212 struct xfs_inode *inodes[__XFS_SORT_INODES];
3213 int num_inodes = __XFS_SORT_INODES;
3214 bool new_parent = (src_dp != target_dp);
3215 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3219 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3221 if ((flags & RENAME_EXCHANGE) && !target_ip)
3225 * If we are doing a whiteout operation, allocate the whiteout inode
3226 * we will be placing at the target and ensure the type is set
3229 if (flags & RENAME_WHITEOUT) {
3230 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3231 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3235 /* setup target dirent info as whiteout */
3236 src_name->type = XFS_DIR3_FT_CHRDEV;
3239 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3240 inodes, &num_inodes);
3242 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3243 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3244 if (error == -ENOSPC) {
3246 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3250 goto out_release_wip;
3253 * Attach the dquots to the inodes
3255 error = xfs_qm_vop_rename_dqattach(inodes);
3257 goto out_trans_cancel;
3260 * Lock all the participating inodes. Depending upon whether
3261 * the target_name exists in the target directory, and
3262 * whether the target directory is the same as the source
3263 * directory, we can lock from 2 to 4 inodes.
3265 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3268 * Join all the inodes to the transaction. From this point on,
3269 * we can rely on either trans_commit or trans_cancel to unlock
3272 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3274 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3275 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3277 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3279 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3282 * If we are using project inheritance, we only allow renames
3283 * into our tree when the project IDs are the same; else the
3284 * tree quota mechanism would be circumvented.
3286 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3287 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3289 goto out_trans_cancel;
3292 /* RENAME_EXCHANGE is unique from here on. */
3293 if (flags & RENAME_EXCHANGE)
3294 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3295 target_dp, target_name, target_ip,
3299 * Set up the target.
3301 if (target_ip == NULL) {
3303 * If there's no space reservation, check the entry will
3304 * fit before actually inserting it.
3307 error = xfs_dir_canenter(tp, target_dp, target_name);
3309 goto out_trans_cancel;
3312 * If target does not exist and the rename crosses
3313 * directories, adjust the target directory link count
3314 * to account for the ".." reference from the new entry.
3316 error = xfs_dir_createname(tp, target_dp, target_name,
3317 src_ip->i_ino, spaceres);
3319 goto out_trans_cancel;
3321 xfs_trans_ichgtime(tp, target_dp,
3322 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3324 if (new_parent && src_is_directory) {
3325 error = xfs_bumplink(tp, target_dp);
3327 goto out_trans_cancel;
3329 } else { /* target_ip != NULL */
3331 * If target exists and it's a directory, check that both
3332 * target and source are directories and that target can be
3333 * destroyed, or that neither is a directory.
3335 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3337 * Make sure target dir is empty.
3339 if (!(xfs_dir_isempty(target_ip)) ||
3340 (VFS_I(target_ip)->i_nlink > 2)) {
3342 goto out_trans_cancel;
3347 * Link the source inode under the target name.
3348 * If the source inode is a directory and we are moving
3349 * it across directories, its ".." entry will be
3350 * inconsistent until we replace that down below.
3352 * In case there is already an entry with the same
3353 * name at the destination directory, remove it first.
3355 error = xfs_dir_replace(tp, target_dp, target_name,
3356 src_ip->i_ino, spaceres);
3358 goto out_trans_cancel;
3360 xfs_trans_ichgtime(tp, target_dp,
3361 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3364 * Decrement the link count on the target since the target
3365 * dir no longer points to it.
3367 error = xfs_droplink(tp, target_ip);
3369 goto out_trans_cancel;
3371 if (src_is_directory) {
3373 * Drop the link from the old "." entry.
3375 error = xfs_droplink(tp, target_ip);
3377 goto out_trans_cancel;
3379 } /* target_ip != NULL */
3382 * Remove the source.
3384 if (new_parent && src_is_directory) {
3386 * Rewrite the ".." entry to point to the new
3389 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3390 target_dp->i_ino, spaceres);
3391 ASSERT(error != -EEXIST);
3393 goto out_trans_cancel;
3397 * We always want to hit the ctime on the source inode.
3399 * This isn't strictly required by the standards since the source
3400 * inode isn't really being changed, but old unix file systems did
3401 * it and some incremental backup programs won't work without it.
3403 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3404 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3407 * Adjust the link count on src_dp. This is necessary when
3408 * renaming a directory, either within one parent when
3409 * the target existed, or across two parent directories.
3411 if (src_is_directory && (new_parent || target_ip != NULL)) {
3414 * Decrement link count on src_directory since the
3415 * entry that's moved no longer points to it.
3417 error = xfs_droplink(tp, src_dp);
3419 goto out_trans_cancel;
3423 * For whiteouts, we only need to update the source dirent with the
3424 * inode number of the whiteout inode rather than removing it
3428 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3431 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3434 goto out_trans_cancel;
3437 * For whiteouts, we need to bump the link count on the whiteout inode.
3438 * This means that failures all the way up to this point leave the inode
3439 * on the unlinked list and so cleanup is a simple matter of dropping
3440 * the remaining reference to it. If we fail here after bumping the link
3441 * count, we're shutting down the filesystem so we'll never see the
3442 * intermediate state on disk.
3445 ASSERT(VFS_I(wip)->i_nlink == 0);
3446 error = xfs_bumplink(tp, wip);
3448 goto out_trans_cancel;
3449 error = xfs_iunlink_remove(tp, wip);
3451 goto out_trans_cancel;
3452 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3455 * Now we have a real link, clear the "I'm a tmpfile" state
3456 * flag from the inode so it doesn't accidentally get misused in
3459 VFS_I(wip)->i_state &= ~I_LINKABLE;
3462 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3463 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3465 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3467 error = xfs_finish_rename(tp);
3473 xfs_trans_cancel(tp);
3482 struct xfs_inode *ip,
3485 struct xfs_mount *mp = ip->i_mount;
3486 struct xfs_perag *pag;
3487 unsigned long first_index, mask;
3488 unsigned long inodes_per_cluster;
3490 struct xfs_inode **cilist;
3491 struct xfs_inode *cip;
3496 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3498 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3499 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3500 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3504 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3505 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3507 /* really need a gang lookup range call here */
3508 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3509 first_index, inodes_per_cluster);
3513 for (i = 0; i < nr_found; i++) {
3519 * because this is an RCU protected lookup, we could find a
3520 * recently freed or even reallocated inode during the lookup.
3521 * We need to check under the i_flags_lock for a valid inode
3522 * here. Skip it if it is not valid or the wrong inode.
3524 spin_lock(&cip->i_flags_lock);
3526 __xfs_iflags_test(cip, XFS_ISTALE)) {
3527 spin_unlock(&cip->i_flags_lock);
3532 * Once we fall off the end of the cluster, no point checking
3533 * any more inodes in the list because they will also all be
3534 * outside the cluster.
3536 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3537 spin_unlock(&cip->i_flags_lock);
3540 spin_unlock(&cip->i_flags_lock);
3543 * Do an un-protected check to see if the inode is dirty and
3544 * is a candidate for flushing. These checks will be repeated
3545 * later after the appropriate locks are acquired.
3547 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3551 * Try to get locks. If any are unavailable or it is pinned,
3552 * then this inode cannot be flushed and is skipped.
3555 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3557 if (!xfs_iflock_nowait(cip)) {
3558 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3561 if (xfs_ipincount(cip)) {
3563 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3569 * Check the inode number again, just to be certain we are not
3570 * racing with freeing in xfs_reclaim_inode(). See the comments
3571 * in that function for more information as to why the initial
3572 * check is not sufficient.
3576 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3581 * arriving here means that this inode can be flushed. First
3582 * re-check that it's dirty before flushing.
3584 if (!xfs_inode_clean(cip)) {
3586 error = xfs_iflush_int(cip, bp);
3588 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3589 goto cluster_corrupt_out;
3595 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3599 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3600 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3611 cluster_corrupt_out:
3613 * Corruption detected in the clustering loop. Invalidate the
3614 * inode buffer and shut down the filesystem.
3617 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3620 * We'll always have an inode attached to the buffer for completion
3621 * process by the time we are called from xfs_iflush(). Hence we have
3622 * always need to do IO completion processing to abort the inodes
3623 * attached to the buffer. handle them just like the shutdown case in
3626 ASSERT(bp->b_iodone);
3627 bp->b_flags &= ~XBF_DONE;
3629 xfs_buf_ioerror(bp, -EIO);
3632 /* abort the corrupt inode, as it was not attached to the buffer */
3633 xfs_iflush_abort(cip, false);
3636 return -EFSCORRUPTED;
3640 * Flush dirty inode metadata into the backing buffer.
3642 * The caller must have the inode lock and the inode flush lock held. The
3643 * inode lock will still be held upon return to the caller, and the inode
3644 * flush lock will be released after the inode has reached the disk.
3646 * The caller must write out the buffer returned in *bpp and release it.
3650 struct xfs_inode *ip,
3651 struct xfs_buf **bpp)
3653 struct xfs_mount *mp = ip->i_mount;
3654 struct xfs_buf *bp = NULL;
3655 struct xfs_dinode *dip;
3658 XFS_STATS_INC(mp, xs_iflush_count);
3660 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3661 ASSERT(xfs_isiflocked(ip));
3662 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3663 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3667 xfs_iunpin_wait(ip);
3670 * For stale inodes we cannot rely on the backing buffer remaining
3671 * stale in cache for the remaining life of the stale inode and so
3672 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3673 * inodes below. We have to check this after ensuring the inode is
3674 * unpinned so that it is safe to reclaim the stale inode after the
3677 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3683 * This may have been unpinned because the filesystem is shutting
3684 * down forcibly. If that's the case we must not write this inode
3685 * to disk, because the log record didn't make it to disk.
3687 * We also have to remove the log item from the AIL in this case,
3688 * as we wait for an empty AIL as part of the unmount process.
3690 if (XFS_FORCED_SHUTDOWN(mp)) {
3696 * Get the buffer containing the on-disk inode. We are doing a try-lock
3697 * operation here, so we may get an EAGAIN error. In that case, we
3698 * simply want to return with the inode still dirty.
3700 * If we get any other error, we effectively have a corruption situation
3701 * and we cannot flush the inode, so we treat it the same as failing
3704 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3706 if (error == -EAGAIN) {
3714 * First flush out the inode that xfs_iflush was called with.
3716 error = xfs_iflush_int(ip, bp);
3721 * If the buffer is pinned then push on the log now so we won't
3722 * get stuck waiting in the write for too long.
3724 if (xfs_buf_ispinned(bp))
3725 xfs_log_force(mp, 0);
3728 * inode clustering: try to gather other inodes into this write
3730 * Note: Any error during clustering will result in the filesystem
3731 * being shut down and completion callbacks run on the cluster buffer.
3732 * As we have already flushed and attached this inode to the buffer,
3733 * it has already been aborted and released by xfs_iflush_cluster() and
3734 * so we have no further error handling to do here.
3736 error = xfs_iflush_cluster(ip, bp);
3746 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3748 /* abort the corrupt inode, as it was not attached to the buffer */
3749 xfs_iflush_abort(ip, false);
3754 * If there are inline format data / attr forks attached to this inode,
3755 * make sure they're not corrupt.
3758 xfs_inode_verify_forks(
3759 struct xfs_inode *ip)
3761 struct xfs_ifork *ifp;
3764 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3766 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3767 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3768 ifp->if_u1.if_data, ifp->if_bytes, fa);
3772 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3774 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3775 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3776 ifp ? ifp->if_u1.if_data : NULL,
3777 ifp ? ifp->if_bytes : 0, fa);
3785 struct xfs_inode *ip,
3788 struct xfs_inode_log_item *iip = ip->i_itemp;
3789 struct xfs_dinode *dip;
3790 struct xfs_mount *mp = ip->i_mount;
3792 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3793 ASSERT(xfs_isiflocked(ip));
3794 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3795 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3796 ASSERT(iip != NULL && iip->ili_fields != 0);
3797 ASSERT(ip->i_d.di_version > 1);
3799 /* set *dip = inode's place in the buffer */
3800 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3802 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3803 mp, XFS_ERRTAG_IFLUSH_1)) {
3804 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3805 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3806 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3809 if (S_ISREG(VFS_I(ip)->i_mode)) {
3811 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3812 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3813 mp, XFS_ERRTAG_IFLUSH_3)) {
3814 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3815 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3816 __func__, ip->i_ino, ip);
3819 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3821 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3822 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3823 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3824 mp, XFS_ERRTAG_IFLUSH_4)) {
3825 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3826 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3827 __func__, ip->i_ino, ip);
3831 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3832 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3833 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3834 "%s: detected corrupt incore inode %Lu, "
3835 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3836 __func__, ip->i_ino,
3837 ip->i_d.di_nextents + ip->i_d.di_anextents,
3838 ip->i_d.di_nblocks, ip);
3841 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3842 mp, XFS_ERRTAG_IFLUSH_6)) {
3843 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3844 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3845 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3850 * Inode item log recovery for v2 inodes are dependent on the
3851 * di_flushiter count for correct sequencing. We bump the flush
3852 * iteration count so we can detect flushes which postdate a log record
3853 * during recovery. This is redundant as we now log every change and
3854 * hence this can't happen but we need to still do it to ensure
3855 * backwards compatibility with old kernels that predate logging all
3858 if (ip->i_d.di_version < 3)
3859 ip->i_d.di_flushiter++;
3861 /* Check the inline fork data before we write out. */
3862 if (!xfs_inode_verify_forks(ip))
3866 * Copy the dirty parts of the inode into the on-disk inode. We always
3867 * copy out the core of the inode, because if the inode is dirty at all
3870 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3872 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3873 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3874 ip->i_d.di_flushiter = 0;
3876 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3877 if (XFS_IFORK_Q(ip))
3878 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3879 xfs_inobp_check(mp, bp);
3882 * We've recorded everything logged in the inode, so we'd like to clear
3883 * the ili_fields bits so we don't log and flush things unnecessarily.
3884 * However, we can't stop logging all this information until the data
3885 * we've copied into the disk buffer is written to disk. If we did we
3886 * might overwrite the copy of the inode in the log with all the data
3887 * after re-logging only part of it, and in the face of a crash we
3888 * wouldn't have all the data we need to recover.
3890 * What we do is move the bits to the ili_last_fields field. When
3891 * logging the inode, these bits are moved back to the ili_fields field.
3892 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3893 * know that the information those bits represent is permanently on
3894 * disk. As long as the flush completes before the inode is logged
3895 * again, then both ili_fields and ili_last_fields will be cleared.
3897 * We can play with the ili_fields bits here, because the inode lock
3898 * must be held exclusively in order to set bits there and the flush
3899 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3900 * done routine can tell whether or not to look in the AIL. Also, store
3901 * the current LSN of the inode so that we can tell whether the item has
3902 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3903 * need the AIL lock, because it is a 64 bit value that cannot be read
3906 iip->ili_last_fields = iip->ili_fields;
3907 iip->ili_fields = 0;
3908 iip->ili_fsync_fields = 0;
3909 iip->ili_logged = 1;
3911 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3912 &iip->ili_item.li_lsn);
3915 * Attach the function xfs_iflush_done to the inode's
3916 * buffer. This will remove the inode from the AIL
3917 * and unlock the inode's flush lock when the inode is
3918 * completely written to disk.
3920 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3922 /* generate the checksum. */
3923 xfs_dinode_calc_crc(mp, dip);
3925 ASSERT(!list_empty(&bp->b_li_list));
3926 ASSERT(bp->b_iodone != NULL);
3930 return -EFSCORRUPTED;
3933 /* Release an inode. */
3936 struct xfs_inode *ip)
3938 trace_xfs_irele(ip, _RET_IP_);