2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
111 key->dev = dm_thin_dev_id(td);
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
119 key->dev = dm_thin_dev_id(td);
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
130 struct dm_thin_new_mapping;
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
141 struct pool_features {
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
165 struct pool_features pf;
166 bool low_water_triggered:1; /* A dm event has been sent */
167 bool no_free_space:1; /* A -ENOSPC warning has been issued */
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
176 unsigned long last_commit_jiffies;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
185 struct bio_list retry_on_resume_list;
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
204 * Target context for a pool.
207 struct dm_target *ti;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
219 * Target context for a thin.
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
227 struct dm_thin_device *td;
230 /*----------------------------------------------------------------*/
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
236 static void wake_worker(struct pool *pool)
238 queue_work(pool->wq, &pool->worker);
241 /*----------------------------------------------------------------*/
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
247 struct dm_bio_prison_cell *cell_prealloc;
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
258 * We reused an old cell; we can get rid of
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
285 struct pool *pool = tc->pool;
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
302 /*----------------------------------------------------------------*/
305 * A global list of pools that uses a struct mapped_device as a key.
307 static struct dm_thin_pool_table {
309 struct list_head pools;
310 } dm_thin_pool_table;
312 static void pool_table_init(void)
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
318 static void __pool_table_insert(struct pool *pool)
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
324 static void __pool_table_remove(struct pool *pool)
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 struct pool *pool = NULL, *tmp;
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 struct pool *pool = NULL, *tmp;
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
362 /*----------------------------------------------------------------*/
364 struct dm_thin_endio_hook {
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 struct bio_list bios;
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
384 bio_endio(bio, DM_ENDIO_REQUEUE);
386 bio_list_add(master, bio);
390 static void requeue_io(struct thin_c *tc)
392 struct pool *pool = tc->pool;
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
408 static bool block_size_is_power_of_two(struct pool *pool)
410 return pool->sectors_per_block_shift >= 0;
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
421 (void) sector_div(block_nr, pool->sectors_per_block);
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 bio->bi_bdev = tc->origin_dev->bdev;
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 struct dm_thin_endio_hook *h;
455 if (bio->bi_rw & REQ_DISCARD)
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 static void issue(struct thin_c *tc, struct bio *bio)
464 struct pool *pool = tc->pool;
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
477 if (dm_thin_aborted_changes(tc->td)) {
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 remap_to_origin(tc, bio);
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 remap(tc, bio, block);
504 /*----------------------------------------------------------------*/
507 * Bio endio functions.
509 struct dm_thin_new_mapping {
510 struct list_head list;
515 bool definitely_not_shared:1;
519 dm_block_t virt_block;
520 dm_block_t data_block;
521 struct dm_bio_prison_cell *cell, *cell2;
524 * If the bio covers the whole area of a block then we can avoid
525 * zeroing or copying. Instead this bio is hooked. The bio will
526 * still be in the cell, so care has to be taken to avoid issuing
530 bio_end_io_t *saved_bi_end_io;
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
535 struct pool *pool = m->tc->pool;
537 if (m->quiesced && m->prepared) {
538 list_add_tail(&m->list, &pool->prepared_mappings);
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 struct dm_thin_new_mapping *m = context;
547 struct pool *pool = m->tc->pool;
549 m->err = read_err || write_err ? -EIO : 0;
551 spin_lock_irqsave(&pool->lock, flags);
553 __maybe_add_mapping(m);
554 spin_unlock_irqrestore(&pool->lock, flags);
557 static void overwrite_endio(struct bio *bio, int err)
560 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561 struct dm_thin_new_mapping *m = h->overwrite_mapping;
562 struct pool *pool = m->tc->pool;
566 spin_lock_irqsave(&pool->lock, flags);
568 __maybe_add_mapping(m);
569 spin_unlock_irqrestore(&pool->lock, flags);
572 /*----------------------------------------------------------------*/
579 * Prepared mapping jobs.
583 * This sends the bios in the cell back to the deferred_bios list.
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
587 struct pool *pool = tc->pool;
590 spin_lock_irqsave(&pool->lock, flags);
591 cell_release(pool, cell, &pool->deferred_bios);
592 spin_unlock_irqrestore(&tc->pool->lock, flags);
598 * Same as cell_defer above, except it omits the original holder of the cell.
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
602 struct pool *pool = tc->pool;
605 spin_lock_irqsave(&pool->lock, flags);
606 cell_release_no_holder(pool, cell, &pool->deferred_bios);
607 spin_unlock_irqrestore(&pool->lock, flags);
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 m->bio->bi_end_io = m->saved_bi_end_io;
616 cell_error(m->tc->pool, m->cell);
618 mempool_free(m, m->tc->pool->mapping_pool);
621 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
623 struct thin_c *tc = m->tc;
624 struct pool *pool = tc->pool;
630 bio->bi_end_io = m->saved_bi_end_io;
633 cell_error(pool, m->cell);
638 * Commit the prepared block into the mapping btree.
639 * Any I/O for this block arriving after this point will get
640 * remapped to it directly.
642 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
644 metadata_operation_failed(pool, "dm_thin_insert_block", r);
645 cell_error(pool, m->cell);
650 * Release any bios held while the block was being provisioned.
651 * If we are processing a write bio that completely covers the block,
652 * we already processed it so can ignore it now when processing
653 * the bios in the cell.
656 cell_defer_no_holder(tc, m->cell);
659 cell_defer(tc, m->cell);
663 mempool_free(m, pool->mapping_pool);
666 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 struct thin_c *tc = m->tc;
670 bio_io_error(m->bio);
671 cell_defer_no_holder(tc, m->cell);
672 cell_defer_no_holder(tc, m->cell2);
673 mempool_free(m, tc->pool->mapping_pool);
676 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 struct thin_c *tc = m->tc;
680 inc_all_io_entry(tc->pool, m->bio);
681 cell_defer_no_holder(tc, m->cell);
682 cell_defer_no_holder(tc, m->cell2);
685 if (m->definitely_not_shared)
686 remap_and_issue(tc, m->bio, m->data_block);
689 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
690 bio_endio(m->bio, 0);
692 remap_and_issue(tc, m->bio, m->data_block);
695 bio_endio(m->bio, 0);
697 mempool_free(m, tc->pool->mapping_pool);
700 static void process_prepared_discard(struct dm_thin_new_mapping *m)
703 struct thin_c *tc = m->tc;
705 r = dm_thin_remove_block(tc->td, m->virt_block);
707 DMERR_LIMIT("dm_thin_remove_block() failed");
709 process_prepared_discard_passdown(m);
712 static void process_prepared(struct pool *pool, struct list_head *head,
713 process_mapping_fn *fn)
716 struct list_head maps;
717 struct dm_thin_new_mapping *m, *tmp;
719 INIT_LIST_HEAD(&maps);
720 spin_lock_irqsave(&pool->lock, flags);
721 list_splice_init(head, &maps);
722 spin_unlock_irqrestore(&pool->lock, flags);
724 list_for_each_entry_safe(m, tmp, &maps, list)
731 static int io_overlaps_block(struct pool *pool, struct bio *bio)
733 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
736 static int io_overwrites_block(struct pool *pool, struct bio *bio)
738 return (bio_data_dir(bio) == WRITE) &&
739 io_overlaps_block(pool, bio);
742 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
745 *save = bio->bi_end_io;
749 static int ensure_next_mapping(struct pool *pool)
751 if (pool->next_mapping)
754 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
756 return pool->next_mapping ? 0 : -ENOMEM;
759 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
761 struct dm_thin_new_mapping *m = pool->next_mapping;
763 BUG_ON(!pool->next_mapping);
765 memset(m, 0, sizeof(struct dm_thin_new_mapping));
766 INIT_LIST_HEAD(&m->list);
769 pool->next_mapping = NULL;
774 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
775 struct dm_dev *origin, dm_block_t data_origin,
776 dm_block_t data_dest,
777 struct dm_bio_prison_cell *cell, struct bio *bio)
780 struct pool *pool = tc->pool;
781 struct dm_thin_new_mapping *m = get_next_mapping(pool);
784 m->virt_block = virt_block;
785 m->data_block = data_dest;
788 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
792 * IO to pool_dev remaps to the pool target's data_dev.
794 * If the whole block of data is being overwritten, we can issue the
795 * bio immediately. Otherwise we use kcopyd to clone the data first.
797 if (io_overwrites_block(pool, bio)) {
798 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
800 h->overwrite_mapping = m;
802 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
803 inc_all_io_entry(pool, bio);
804 remap_and_issue(tc, bio, data_dest);
806 struct dm_io_region from, to;
808 from.bdev = origin->bdev;
809 from.sector = data_origin * pool->sectors_per_block;
810 from.count = pool->sectors_per_block;
812 to.bdev = tc->pool_dev->bdev;
813 to.sector = data_dest * pool->sectors_per_block;
814 to.count = pool->sectors_per_block;
816 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
817 0, copy_complete, m);
819 mempool_free(m, pool->mapping_pool);
820 DMERR_LIMIT("dm_kcopyd_copy() failed");
821 cell_error(pool, cell);
826 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
827 dm_block_t data_origin, dm_block_t data_dest,
828 struct dm_bio_prison_cell *cell, struct bio *bio)
830 schedule_copy(tc, virt_block, tc->pool_dev,
831 data_origin, data_dest, cell, bio);
834 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
835 dm_block_t data_dest,
836 struct dm_bio_prison_cell *cell, struct bio *bio)
838 schedule_copy(tc, virt_block, tc->origin_dev,
839 virt_block, data_dest, cell, bio);
842 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
843 dm_block_t data_block, struct dm_bio_prison_cell *cell,
846 struct pool *pool = tc->pool;
847 struct dm_thin_new_mapping *m = get_next_mapping(pool);
852 m->virt_block = virt_block;
853 m->data_block = data_block;
857 * If the whole block of data is being overwritten or we are not
858 * zeroing pre-existing data, we can issue the bio immediately.
859 * Otherwise we use kcopyd to zero the data first.
861 if (!pool->pf.zero_new_blocks)
862 process_prepared_mapping(m);
864 else if (io_overwrites_block(pool, bio)) {
865 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
867 h->overwrite_mapping = m;
869 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
870 inc_all_io_entry(pool, bio);
871 remap_and_issue(tc, bio, data_block);
874 struct dm_io_region to;
876 to.bdev = tc->pool_dev->bdev;
877 to.sector = data_block * pool->sectors_per_block;
878 to.count = pool->sectors_per_block;
880 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
882 mempool_free(m, pool->mapping_pool);
883 DMERR_LIMIT("dm_kcopyd_zero() failed");
884 cell_error(pool, cell);
890 * A non-zero return indicates read_only or fail_io mode.
891 * Many callers don't care about the return value.
893 static int commit(struct pool *pool)
897 if (get_pool_mode(pool) != PM_WRITE)
900 r = dm_pool_commit_metadata(pool->pmd);
902 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
907 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
911 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
912 DMWARN("%s: reached low water mark for data device: sending event.",
913 dm_device_name(pool->pool_md));
914 spin_lock_irqsave(&pool->lock, flags);
915 pool->low_water_triggered = true;
916 spin_unlock_irqrestore(&pool->lock, flags);
917 dm_table_event(pool->ti->table);
921 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
924 dm_block_t free_blocks;
926 struct pool *pool = tc->pool;
929 * Once no_free_space is set we must not allow allocation to succeed.
930 * Otherwise it is difficult to explain, debug, test and support.
932 if (pool->no_free_space)
935 if (get_pool_mode(pool) != PM_WRITE)
938 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
940 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
944 check_low_water_mark(pool, free_blocks);
948 * Try to commit to see if that will free up some
955 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
957 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
962 * If we still have no space we set a flag to avoid
963 * doing all this checking and return -ENOSPC. This
964 * flag serves as a latch that disallows allocations from
965 * this pool until the admin takes action (e.g. resize or
969 DMWARN("%s: no free data space available.",
970 dm_device_name(pool->pool_md));
971 spin_lock_irqsave(&pool->lock, flags);
972 pool->no_free_space = true;
973 spin_unlock_irqrestore(&pool->lock, flags);
978 r = dm_pool_alloc_data_block(pool->pmd, result);
981 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
983 DMWARN("%s: no free metadata space available.",
984 dm_device_name(pool->pool_md));
986 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
994 * If we have run out of space, queue bios until the device is
995 * resumed, presumably after having been reloaded with more space.
997 static void retry_on_resume(struct bio *bio)
999 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1000 struct thin_c *tc = h->tc;
1001 struct pool *pool = tc->pool;
1002 unsigned long flags;
1004 spin_lock_irqsave(&pool->lock, flags);
1005 bio_list_add(&pool->retry_on_resume_list, bio);
1006 spin_unlock_irqrestore(&pool->lock, flags);
1009 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
1012 struct bio_list bios;
1014 bio_list_init(&bios);
1015 cell_release(pool, cell, &bios);
1017 while ((bio = bio_list_pop(&bios)))
1018 retry_on_resume(bio);
1021 static void process_discard(struct thin_c *tc, struct bio *bio)
1024 unsigned long flags;
1025 struct pool *pool = tc->pool;
1026 struct dm_bio_prison_cell *cell, *cell2;
1027 struct dm_cell_key key, key2;
1028 dm_block_t block = get_bio_block(tc, bio);
1029 struct dm_thin_lookup_result lookup_result;
1030 struct dm_thin_new_mapping *m;
1032 build_virtual_key(tc->td, block, &key);
1033 if (bio_detain(tc->pool, &key, bio, &cell))
1036 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1040 * Check nobody is fiddling with this pool block. This can
1041 * happen if someone's in the process of breaking sharing
1044 build_data_key(tc->td, lookup_result.block, &key2);
1045 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1046 cell_defer_no_holder(tc, cell);
1050 if (io_overlaps_block(pool, bio)) {
1052 * IO may still be going to the destination block. We must
1053 * quiesce before we can do the removal.
1055 m = get_next_mapping(pool);
1057 m->pass_discard = pool->pf.discard_passdown;
1058 m->definitely_not_shared = !lookup_result.shared;
1059 m->virt_block = block;
1060 m->data_block = lookup_result.block;
1065 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1066 spin_lock_irqsave(&pool->lock, flags);
1067 list_add_tail(&m->list, &pool->prepared_discards);
1068 spin_unlock_irqrestore(&pool->lock, flags);
1072 inc_all_io_entry(pool, bio);
1073 cell_defer_no_holder(tc, cell);
1074 cell_defer_no_holder(tc, cell2);
1077 * The DM core makes sure that the discard doesn't span
1078 * a block boundary. So we submit the discard of a
1079 * partial block appropriately.
1081 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1082 remap_and_issue(tc, bio, lookup_result.block);
1090 * It isn't provisioned, just forget it.
1092 cell_defer_no_holder(tc, cell);
1097 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1099 cell_defer_no_holder(tc, cell);
1105 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1106 struct dm_cell_key *key,
1107 struct dm_thin_lookup_result *lookup_result,
1108 struct dm_bio_prison_cell *cell)
1111 dm_block_t data_block;
1112 struct pool *pool = tc->pool;
1114 r = alloc_data_block(tc, &data_block);
1117 schedule_internal_copy(tc, block, lookup_result->block,
1118 data_block, cell, bio);
1122 no_space(pool, cell);
1126 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1128 cell_error(pool, cell);
1133 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1135 struct dm_thin_lookup_result *lookup_result)
1137 struct dm_bio_prison_cell *cell;
1138 struct pool *pool = tc->pool;
1139 struct dm_cell_key key;
1142 * If cell is already occupied, then sharing is already in the process
1143 * of being broken so we have nothing further to do here.
1145 build_data_key(tc->td, lookup_result->block, &key);
1146 if (bio_detain(pool, &key, bio, &cell))
1149 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1150 break_sharing(tc, bio, block, &key, lookup_result, cell);
1152 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1154 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1155 inc_all_io_entry(pool, bio);
1156 cell_defer_no_holder(tc, cell);
1158 remap_and_issue(tc, bio, lookup_result->block);
1162 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1163 struct dm_bio_prison_cell *cell)
1166 dm_block_t data_block;
1167 struct pool *pool = tc->pool;
1170 * Remap empty bios (flushes) immediately, without provisioning.
1172 if (!bio->bi_size) {
1173 inc_all_io_entry(pool, bio);
1174 cell_defer_no_holder(tc, cell);
1176 remap_and_issue(tc, bio, 0);
1181 * Fill read bios with zeroes and complete them immediately.
1183 if (bio_data_dir(bio) == READ) {
1185 cell_defer_no_holder(tc, cell);
1190 r = alloc_data_block(tc, &data_block);
1194 schedule_external_copy(tc, block, data_block, cell, bio);
1196 schedule_zero(tc, block, data_block, cell, bio);
1200 no_space(pool, cell);
1204 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1206 cell_error(pool, cell);
1211 static void process_bio(struct thin_c *tc, struct bio *bio)
1214 struct pool *pool = tc->pool;
1215 dm_block_t block = get_bio_block(tc, bio);
1216 struct dm_bio_prison_cell *cell;
1217 struct dm_cell_key key;
1218 struct dm_thin_lookup_result lookup_result;
1221 * If cell is already occupied, then the block is already
1222 * being provisioned so we have nothing further to do here.
1224 build_virtual_key(tc->td, block, &key);
1225 if (bio_detain(pool, &key, bio, &cell))
1228 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1231 if (lookup_result.shared) {
1232 process_shared_bio(tc, bio, block, &lookup_result);
1233 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1235 inc_all_io_entry(pool, bio);
1236 cell_defer_no_holder(tc, cell);
1238 remap_and_issue(tc, bio, lookup_result.block);
1243 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1244 inc_all_io_entry(pool, bio);
1245 cell_defer_no_holder(tc, cell);
1247 remap_to_origin_and_issue(tc, bio);
1249 provision_block(tc, bio, block, cell);
1253 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1255 cell_defer_no_holder(tc, cell);
1261 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1264 int rw = bio_data_dir(bio);
1265 dm_block_t block = get_bio_block(tc, bio);
1266 struct dm_thin_lookup_result lookup_result;
1268 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1271 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1274 inc_all_io_entry(tc->pool, bio);
1275 remap_and_issue(tc, bio, lookup_result.block);
1285 if (tc->origin_dev) {
1286 inc_all_io_entry(tc->pool, bio);
1287 remap_to_origin_and_issue(tc, bio);
1296 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1303 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1309 * FIXME: should we also commit due to size of transaction, measured in
1312 static int need_commit_due_to_time(struct pool *pool)
1314 return jiffies < pool->last_commit_jiffies ||
1315 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1318 static void process_deferred_bios(struct pool *pool)
1320 unsigned long flags;
1322 struct bio_list bios;
1324 bio_list_init(&bios);
1326 spin_lock_irqsave(&pool->lock, flags);
1327 bio_list_merge(&bios, &pool->deferred_bios);
1328 bio_list_init(&pool->deferred_bios);
1329 spin_unlock_irqrestore(&pool->lock, flags);
1331 while ((bio = bio_list_pop(&bios))) {
1332 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1333 struct thin_c *tc = h->tc;
1336 * If we've got no free new_mapping structs, and processing
1337 * this bio might require one, we pause until there are some
1338 * prepared mappings to process.
1340 if (ensure_next_mapping(pool)) {
1341 spin_lock_irqsave(&pool->lock, flags);
1342 bio_list_merge(&pool->deferred_bios, &bios);
1343 spin_unlock_irqrestore(&pool->lock, flags);
1348 if (bio->bi_rw & REQ_DISCARD)
1349 pool->process_discard(tc, bio);
1351 pool->process_bio(tc, bio);
1355 * If there are any deferred flush bios, we must commit
1356 * the metadata before issuing them.
1358 bio_list_init(&bios);
1359 spin_lock_irqsave(&pool->lock, flags);
1360 bio_list_merge(&bios, &pool->deferred_flush_bios);
1361 bio_list_init(&pool->deferred_flush_bios);
1362 spin_unlock_irqrestore(&pool->lock, flags);
1364 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1368 while ((bio = bio_list_pop(&bios)))
1372 pool->last_commit_jiffies = jiffies;
1374 while ((bio = bio_list_pop(&bios)))
1375 generic_make_request(bio);
1378 static void do_worker(struct work_struct *ws)
1380 struct pool *pool = container_of(ws, struct pool, worker);
1382 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1383 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1384 process_deferred_bios(pool);
1388 * We want to commit periodically so that not too much
1389 * unwritten data builds up.
1391 static void do_waker(struct work_struct *ws)
1393 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1395 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1398 /*----------------------------------------------------------------*/
1400 static enum pool_mode get_pool_mode(struct pool *pool)
1402 return pool->pf.mode;
1405 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1409 pool->pf.mode = mode;
1413 DMERR("%s: switching pool to failure mode",
1414 dm_device_name(pool->pool_md));
1415 dm_pool_metadata_read_only(pool->pmd);
1416 pool->process_bio = process_bio_fail;
1417 pool->process_discard = process_bio_fail;
1418 pool->process_prepared_mapping = process_prepared_mapping_fail;
1419 pool->process_prepared_discard = process_prepared_discard_fail;
1423 DMERR("%s: switching pool to read-only mode",
1424 dm_device_name(pool->pool_md));
1425 r = dm_pool_abort_metadata(pool->pmd);
1427 DMERR("%s: aborting transaction failed",
1428 dm_device_name(pool->pool_md));
1429 set_pool_mode(pool, PM_FAIL);
1431 dm_pool_metadata_read_only(pool->pmd);
1432 pool->process_bio = process_bio_read_only;
1433 pool->process_discard = process_discard;
1434 pool->process_prepared_mapping = process_prepared_mapping_fail;
1435 pool->process_prepared_discard = process_prepared_discard_passdown;
1440 dm_pool_metadata_read_write(pool->pmd);
1441 pool->process_bio = process_bio;
1442 pool->process_discard = process_discard;
1443 pool->process_prepared_mapping = process_prepared_mapping;
1444 pool->process_prepared_discard = process_prepared_discard;
1450 * Rather than calling set_pool_mode directly, use these which describe the
1451 * reason for mode degradation.
1453 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1455 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1456 dm_device_name(pool->pool_md), op, r);
1458 set_pool_mode(pool, PM_READ_ONLY);
1461 /*----------------------------------------------------------------*/
1464 * Mapping functions.
1468 * Called only while mapping a thin bio to hand it over to the workqueue.
1470 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1472 unsigned long flags;
1473 struct pool *pool = tc->pool;
1475 spin_lock_irqsave(&pool->lock, flags);
1476 bio_list_add(&pool->deferred_bios, bio);
1477 spin_unlock_irqrestore(&pool->lock, flags);
1482 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1484 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1487 h->shared_read_entry = NULL;
1488 h->all_io_entry = NULL;
1489 h->overwrite_mapping = NULL;
1493 * Non-blocking function called from the thin target's map function.
1495 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1498 struct thin_c *tc = ti->private;
1499 dm_block_t block = get_bio_block(tc, bio);
1500 struct dm_thin_device *td = tc->td;
1501 struct dm_thin_lookup_result result;
1502 struct dm_bio_prison_cell cell1, cell2;
1503 struct dm_bio_prison_cell *cell_result;
1504 struct dm_cell_key key;
1506 thin_hook_bio(tc, bio);
1508 if (get_pool_mode(tc->pool) == PM_FAIL) {
1510 return DM_MAPIO_SUBMITTED;
1513 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1514 thin_defer_bio(tc, bio);
1515 return DM_MAPIO_SUBMITTED;
1518 r = dm_thin_find_block(td, block, 0, &result);
1521 * Note that we defer readahead too.
1525 if (unlikely(result.shared)) {
1527 * We have a race condition here between the
1528 * result.shared value returned by the lookup and
1529 * snapshot creation, which may cause new
1532 * To avoid this always quiesce the origin before
1533 * taking the snap. You want to do this anyway to
1534 * ensure a consistent application view
1537 * More distant ancestors are irrelevant. The
1538 * shared flag will be set in their case.
1540 thin_defer_bio(tc, bio);
1541 return DM_MAPIO_SUBMITTED;
1544 build_virtual_key(tc->td, block, &key);
1545 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1546 return DM_MAPIO_SUBMITTED;
1548 build_data_key(tc->td, result.block, &key);
1549 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1550 cell_defer_no_holder_no_free(tc, &cell1);
1551 return DM_MAPIO_SUBMITTED;
1554 inc_all_io_entry(tc->pool, bio);
1555 cell_defer_no_holder_no_free(tc, &cell2);
1556 cell_defer_no_holder_no_free(tc, &cell1);
1558 remap(tc, bio, result.block);
1559 return DM_MAPIO_REMAPPED;
1562 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1564 * This block isn't provisioned, and we have no way
1565 * of doing so. Just error it.
1568 return DM_MAPIO_SUBMITTED;
1574 * In future, the failed dm_thin_find_block above could
1575 * provide the hint to load the metadata into cache.
1577 thin_defer_bio(tc, bio);
1578 return DM_MAPIO_SUBMITTED;
1582 * Must always call bio_io_error on failure.
1583 * dm_thin_find_block can fail with -EINVAL if the
1584 * pool is switched to fail-io mode.
1587 return DM_MAPIO_SUBMITTED;
1591 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1594 unsigned long flags;
1595 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1597 spin_lock_irqsave(&pt->pool->lock, flags);
1598 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1599 spin_unlock_irqrestore(&pt->pool->lock, flags);
1602 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1603 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1609 static void __requeue_bios(struct pool *pool)
1611 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1612 bio_list_init(&pool->retry_on_resume_list);
1615 /*----------------------------------------------------------------
1616 * Binding of control targets to a pool object
1617 *--------------------------------------------------------------*/
1618 static bool data_dev_supports_discard(struct pool_c *pt)
1620 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1622 return q && blk_queue_discard(q);
1625 static bool is_factor(sector_t block_size, uint32_t n)
1627 return !sector_div(block_size, n);
1631 * If discard_passdown was enabled verify that the data device
1632 * supports discards. Disable discard_passdown if not.
1634 static void disable_passdown_if_not_supported(struct pool_c *pt)
1636 struct pool *pool = pt->pool;
1637 struct block_device *data_bdev = pt->data_dev->bdev;
1638 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1639 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1640 const char *reason = NULL;
1641 char buf[BDEVNAME_SIZE];
1643 if (!pt->adjusted_pf.discard_passdown)
1646 if (!data_dev_supports_discard(pt))
1647 reason = "discard unsupported";
1649 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1650 reason = "max discard sectors smaller than a block";
1652 else if (data_limits->discard_granularity > block_size)
1653 reason = "discard granularity larger than a block";
1655 else if (!is_factor(block_size, data_limits->discard_granularity))
1656 reason = "discard granularity not a factor of block size";
1659 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1660 pt->adjusted_pf.discard_passdown = false;
1664 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1666 struct pool_c *pt = ti->private;
1669 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1671 enum pool_mode old_mode = pool->pf.mode;
1672 enum pool_mode new_mode = pt->adjusted_pf.mode;
1675 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1676 * not going to recover without a thin_repair. So we never let the
1677 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1678 * may have been due to a lack of metadata or data space, and may
1679 * now work (ie. if the underlying devices have been resized).
1681 if (old_mode == PM_FAIL)
1682 new_mode = old_mode;
1685 pool->low_water_blocks = pt->low_water_blocks;
1686 pool->pf = pt->adjusted_pf;
1688 set_pool_mode(pool, new_mode);
1693 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1699 /*----------------------------------------------------------------
1701 *--------------------------------------------------------------*/
1702 /* Initialize pool features. */
1703 static void pool_features_init(struct pool_features *pf)
1705 pf->mode = PM_WRITE;
1706 pf->zero_new_blocks = true;
1707 pf->discard_enabled = true;
1708 pf->discard_passdown = true;
1711 static void __pool_destroy(struct pool *pool)
1713 __pool_table_remove(pool);
1715 if (dm_pool_metadata_close(pool->pmd) < 0)
1716 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1718 dm_bio_prison_destroy(pool->prison);
1719 dm_kcopyd_client_destroy(pool->copier);
1722 destroy_workqueue(pool->wq);
1724 if (pool->next_mapping)
1725 mempool_free(pool->next_mapping, pool->mapping_pool);
1726 mempool_destroy(pool->mapping_pool);
1727 dm_deferred_set_destroy(pool->shared_read_ds);
1728 dm_deferred_set_destroy(pool->all_io_ds);
1732 static struct kmem_cache *_new_mapping_cache;
1734 static struct pool *pool_create(struct mapped_device *pool_md,
1735 struct block_device *metadata_dev,
1736 unsigned long block_size,
1737 int read_only, char **error)
1742 struct dm_pool_metadata *pmd;
1743 bool format_device = read_only ? false : true;
1745 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1747 *error = "Error creating metadata object";
1748 return (struct pool *)pmd;
1751 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1753 *error = "Error allocating memory for pool";
1754 err_p = ERR_PTR(-ENOMEM);
1759 pool->sectors_per_block = block_size;
1760 if (block_size & (block_size - 1))
1761 pool->sectors_per_block_shift = -1;
1763 pool->sectors_per_block_shift = __ffs(block_size);
1764 pool->low_water_blocks = 0;
1765 pool_features_init(&pool->pf);
1766 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1767 if (!pool->prison) {
1768 *error = "Error creating pool's bio prison";
1769 err_p = ERR_PTR(-ENOMEM);
1773 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1774 if (IS_ERR(pool->copier)) {
1775 r = PTR_ERR(pool->copier);
1776 *error = "Error creating pool's kcopyd client";
1778 goto bad_kcopyd_client;
1782 * Create singlethreaded workqueue that will service all devices
1783 * that use this metadata.
1785 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1787 *error = "Error creating pool's workqueue";
1788 err_p = ERR_PTR(-ENOMEM);
1792 INIT_WORK(&pool->worker, do_worker);
1793 INIT_DELAYED_WORK(&pool->waker, do_waker);
1794 spin_lock_init(&pool->lock);
1795 bio_list_init(&pool->deferred_bios);
1796 bio_list_init(&pool->deferred_flush_bios);
1797 INIT_LIST_HEAD(&pool->prepared_mappings);
1798 INIT_LIST_HEAD(&pool->prepared_discards);
1799 pool->low_water_triggered = false;
1800 pool->no_free_space = false;
1801 bio_list_init(&pool->retry_on_resume_list);
1803 pool->shared_read_ds = dm_deferred_set_create();
1804 if (!pool->shared_read_ds) {
1805 *error = "Error creating pool's shared read deferred set";
1806 err_p = ERR_PTR(-ENOMEM);
1807 goto bad_shared_read_ds;
1810 pool->all_io_ds = dm_deferred_set_create();
1811 if (!pool->all_io_ds) {
1812 *error = "Error creating pool's all io deferred set";
1813 err_p = ERR_PTR(-ENOMEM);
1817 pool->next_mapping = NULL;
1818 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1819 _new_mapping_cache);
1820 if (!pool->mapping_pool) {
1821 *error = "Error creating pool's mapping mempool";
1822 err_p = ERR_PTR(-ENOMEM);
1823 goto bad_mapping_pool;
1826 pool->ref_count = 1;
1827 pool->last_commit_jiffies = jiffies;
1828 pool->pool_md = pool_md;
1829 pool->md_dev = metadata_dev;
1830 __pool_table_insert(pool);
1835 dm_deferred_set_destroy(pool->all_io_ds);
1837 dm_deferred_set_destroy(pool->shared_read_ds);
1839 destroy_workqueue(pool->wq);
1841 dm_kcopyd_client_destroy(pool->copier);
1843 dm_bio_prison_destroy(pool->prison);
1847 if (dm_pool_metadata_close(pmd))
1848 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1853 static void __pool_inc(struct pool *pool)
1855 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1859 static void __pool_dec(struct pool *pool)
1861 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1862 BUG_ON(!pool->ref_count);
1863 if (!--pool->ref_count)
1864 __pool_destroy(pool);
1867 static struct pool *__pool_find(struct mapped_device *pool_md,
1868 struct block_device *metadata_dev,
1869 unsigned long block_size, int read_only,
1870 char **error, int *created)
1872 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1875 if (pool->pool_md != pool_md) {
1876 *error = "metadata device already in use by a pool";
1877 return ERR_PTR(-EBUSY);
1882 pool = __pool_table_lookup(pool_md);
1884 if (pool->md_dev != metadata_dev) {
1885 *error = "different pool cannot replace a pool";
1886 return ERR_PTR(-EINVAL);
1891 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1899 /*----------------------------------------------------------------
1900 * Pool target methods
1901 *--------------------------------------------------------------*/
1902 static void pool_dtr(struct dm_target *ti)
1904 struct pool_c *pt = ti->private;
1906 mutex_lock(&dm_thin_pool_table.mutex);
1908 unbind_control_target(pt->pool, ti);
1909 __pool_dec(pt->pool);
1910 dm_put_device(ti, pt->metadata_dev);
1911 dm_put_device(ti, pt->data_dev);
1914 mutex_unlock(&dm_thin_pool_table.mutex);
1917 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1918 struct dm_target *ti)
1922 const char *arg_name;
1924 static struct dm_arg _args[] = {
1925 {0, 3, "Invalid number of pool feature arguments"},
1929 * No feature arguments supplied.
1934 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1938 while (argc && !r) {
1939 arg_name = dm_shift_arg(as);
1942 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1943 pf->zero_new_blocks = false;
1945 else if (!strcasecmp(arg_name, "ignore_discard"))
1946 pf->discard_enabled = false;
1948 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1949 pf->discard_passdown = false;
1951 else if (!strcasecmp(arg_name, "read_only"))
1952 pf->mode = PM_READ_ONLY;
1955 ti->error = "Unrecognised pool feature requested";
1964 static void metadata_low_callback(void *context)
1966 struct pool *pool = context;
1968 DMWARN("%s: reached low water mark for metadata device: sending event.",
1969 dm_device_name(pool->pool_md));
1971 dm_table_event(pool->ti->table);
1974 static sector_t get_metadata_dev_size(struct block_device *bdev)
1976 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1977 char buffer[BDEVNAME_SIZE];
1979 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1980 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1981 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1982 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1985 return metadata_dev_size;
1988 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1990 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1992 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1994 return metadata_dev_size;
1998 * When a metadata threshold is crossed a dm event is triggered, and
1999 * userland should respond by growing the metadata device. We could let
2000 * userland set the threshold, like we do with the data threshold, but I'm
2001 * not sure they know enough to do this well.
2003 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2006 * 4M is ample for all ops with the possible exception of thin
2007 * device deletion which is harmless if it fails (just retry the
2008 * delete after you've grown the device).
2010 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2011 return min((dm_block_t)1024ULL /* 4M */, quarter);
2015 * thin-pool <metadata dev> <data dev>
2016 * <data block size (sectors)>
2017 * <low water mark (blocks)>
2018 * [<#feature args> [<arg>]*]
2020 * Optional feature arguments are:
2021 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2022 * ignore_discard: disable discard
2023 * no_discard_passdown: don't pass discards down to the data device
2025 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2027 int r, pool_created = 0;
2030 struct pool_features pf;
2031 struct dm_arg_set as;
2032 struct dm_dev *data_dev;
2033 unsigned long block_size;
2034 dm_block_t low_water_blocks;
2035 struct dm_dev *metadata_dev;
2036 fmode_t metadata_mode;
2039 * FIXME Remove validation from scope of lock.
2041 mutex_lock(&dm_thin_pool_table.mutex);
2044 ti->error = "Invalid argument count";
2053 * Set default pool features.
2055 pool_features_init(&pf);
2057 dm_consume_args(&as, 4);
2058 r = parse_pool_features(&as, &pf, ti);
2062 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2063 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2065 ti->error = "Error opening metadata block device";
2070 * Run for the side-effect of possibly issuing a warning if the
2071 * device is too big.
2073 (void) get_metadata_dev_size(metadata_dev->bdev);
2075 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2077 ti->error = "Error getting data device";
2081 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2082 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2083 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2084 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2085 ti->error = "Invalid block size";
2090 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2091 ti->error = "Invalid low water mark";
2096 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2102 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2103 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2110 * 'pool_created' reflects whether this is the first table load.
2111 * Top level discard support is not allowed to be changed after
2112 * initial load. This would require a pool reload to trigger thin
2115 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2116 ti->error = "Discard support cannot be disabled once enabled";
2118 goto out_flags_changed;
2123 pt->metadata_dev = metadata_dev;
2124 pt->data_dev = data_dev;
2125 pt->low_water_blocks = low_water_blocks;
2126 pt->adjusted_pf = pt->requested_pf = pf;
2127 ti->num_flush_bios = 1;
2130 * Only need to enable discards if the pool should pass
2131 * them down to the data device. The thin device's discard
2132 * processing will cause mappings to be removed from the btree.
2134 ti->discard_zeroes_data_unsupported = true;
2135 if (pf.discard_enabled && pf.discard_passdown) {
2136 ti->num_discard_bios = 1;
2139 * Setting 'discards_supported' circumvents the normal
2140 * stacking of discard limits (this keeps the pool and
2141 * thin devices' discard limits consistent).
2143 ti->discards_supported = true;
2147 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2148 calc_metadata_threshold(pt),
2149 metadata_low_callback,
2154 pt->callbacks.congested_fn = pool_is_congested;
2155 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2157 mutex_unlock(&dm_thin_pool_table.mutex);
2166 dm_put_device(ti, data_dev);
2168 dm_put_device(ti, metadata_dev);
2170 mutex_unlock(&dm_thin_pool_table.mutex);
2175 static int pool_map(struct dm_target *ti, struct bio *bio)
2178 struct pool_c *pt = ti->private;
2179 struct pool *pool = pt->pool;
2180 unsigned long flags;
2183 * As this is a singleton target, ti->begin is always zero.
2185 spin_lock_irqsave(&pool->lock, flags);
2186 bio->bi_bdev = pt->data_dev->bdev;
2187 r = DM_MAPIO_REMAPPED;
2188 spin_unlock_irqrestore(&pool->lock, flags);
2193 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2196 struct pool_c *pt = ti->private;
2197 struct pool *pool = pt->pool;
2198 sector_t data_size = ti->len;
2199 dm_block_t sb_data_size;
2201 *need_commit = false;
2203 (void) sector_div(data_size, pool->sectors_per_block);
2205 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2207 DMERR("%s: failed to retrieve data device size",
2208 dm_device_name(pool->pool_md));
2212 if (data_size < sb_data_size) {
2213 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2214 dm_device_name(pool->pool_md),
2215 (unsigned long long)data_size, sb_data_size);
2218 } else if (data_size > sb_data_size) {
2219 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2221 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2225 *need_commit = true;
2231 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2234 struct pool_c *pt = ti->private;
2235 struct pool *pool = pt->pool;
2236 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2238 *need_commit = false;
2240 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2242 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2244 DMERR("%s: failed to retrieve metadata device size",
2245 dm_device_name(pool->pool_md));
2249 if (metadata_dev_size < sb_metadata_dev_size) {
2250 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2251 dm_device_name(pool->pool_md),
2252 metadata_dev_size, sb_metadata_dev_size);
2255 } else if (metadata_dev_size > sb_metadata_dev_size) {
2256 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2258 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2262 *need_commit = true;
2269 * Retrieves the number of blocks of the data device from
2270 * the superblock and compares it to the actual device size,
2271 * thus resizing the data device in case it has grown.
2273 * This both copes with opening preallocated data devices in the ctr
2274 * being followed by a resume
2276 * calling the resume method individually after userspace has
2277 * grown the data device in reaction to a table event.
2279 static int pool_preresume(struct dm_target *ti)
2282 bool need_commit1, need_commit2;
2283 struct pool_c *pt = ti->private;
2284 struct pool *pool = pt->pool;
2287 * Take control of the pool object.
2289 r = bind_control_target(pool, ti);
2293 r = maybe_resize_data_dev(ti, &need_commit1);
2297 r = maybe_resize_metadata_dev(ti, &need_commit2);
2301 if (need_commit1 || need_commit2)
2302 (void) commit(pool);
2307 static void pool_resume(struct dm_target *ti)
2309 struct pool_c *pt = ti->private;
2310 struct pool *pool = pt->pool;
2311 unsigned long flags;
2313 spin_lock_irqsave(&pool->lock, flags);
2314 pool->low_water_triggered = false;
2315 pool->no_free_space = false;
2316 __requeue_bios(pool);
2317 spin_unlock_irqrestore(&pool->lock, flags);
2319 do_waker(&pool->waker.work);
2322 static void pool_postsuspend(struct dm_target *ti)
2324 struct pool_c *pt = ti->private;
2325 struct pool *pool = pt->pool;
2327 cancel_delayed_work(&pool->waker);
2328 flush_workqueue(pool->wq);
2329 (void) commit(pool);
2332 static int check_arg_count(unsigned argc, unsigned args_required)
2334 if (argc != args_required) {
2335 DMWARN("Message received with %u arguments instead of %u.",
2336 argc, args_required);
2343 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2345 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2346 *dev_id <= MAX_DEV_ID)
2350 DMWARN("Message received with invalid device id: %s", arg);
2355 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2360 r = check_arg_count(argc, 2);
2364 r = read_dev_id(argv[1], &dev_id, 1);
2368 r = dm_pool_create_thin(pool->pmd, dev_id);
2370 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2378 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2381 dm_thin_id origin_dev_id;
2384 r = check_arg_count(argc, 3);
2388 r = read_dev_id(argv[1], &dev_id, 1);
2392 r = read_dev_id(argv[2], &origin_dev_id, 1);
2396 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2398 DMWARN("Creation of new snapshot %s of device %s failed.",
2406 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2411 r = check_arg_count(argc, 2);
2415 r = read_dev_id(argv[1], &dev_id, 1);
2419 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2421 DMWARN("Deletion of thin device %s failed.", argv[1]);
2426 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2428 dm_thin_id old_id, new_id;
2431 r = check_arg_count(argc, 3);
2435 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2436 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2440 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2441 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2445 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2447 DMWARN("Failed to change transaction id from %s to %s.",
2455 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2459 r = check_arg_count(argc, 1);
2463 (void) commit(pool);
2465 r = dm_pool_reserve_metadata_snap(pool->pmd);
2467 DMWARN("reserve_metadata_snap message failed.");
2472 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2476 r = check_arg_count(argc, 1);
2480 r = dm_pool_release_metadata_snap(pool->pmd);
2482 DMWARN("release_metadata_snap message failed.");
2488 * Messages supported:
2489 * create_thin <dev_id>
2490 * create_snap <dev_id> <origin_id>
2492 * trim <dev_id> <new_size_in_sectors>
2493 * set_transaction_id <current_trans_id> <new_trans_id>
2494 * reserve_metadata_snap
2495 * release_metadata_snap
2497 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2500 struct pool_c *pt = ti->private;
2501 struct pool *pool = pt->pool;
2503 if (!strcasecmp(argv[0], "create_thin"))
2504 r = process_create_thin_mesg(argc, argv, pool);
2506 else if (!strcasecmp(argv[0], "create_snap"))
2507 r = process_create_snap_mesg(argc, argv, pool);
2509 else if (!strcasecmp(argv[0], "delete"))
2510 r = process_delete_mesg(argc, argv, pool);
2512 else if (!strcasecmp(argv[0], "set_transaction_id"))
2513 r = process_set_transaction_id_mesg(argc, argv, pool);
2515 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2516 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2518 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2519 r = process_release_metadata_snap_mesg(argc, argv, pool);
2522 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2525 (void) commit(pool);
2530 static void emit_flags(struct pool_features *pf, char *result,
2531 unsigned sz, unsigned maxlen)
2533 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2534 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2535 DMEMIT("%u ", count);
2537 if (!pf->zero_new_blocks)
2538 DMEMIT("skip_block_zeroing ");
2540 if (!pf->discard_enabled)
2541 DMEMIT("ignore_discard ");
2543 if (!pf->discard_passdown)
2544 DMEMIT("no_discard_passdown ");
2546 if (pf->mode == PM_READ_ONLY)
2547 DMEMIT("read_only ");
2552 * <transaction id> <used metadata sectors>/<total metadata sectors>
2553 * <used data sectors>/<total data sectors> <held metadata root>
2555 static void pool_status(struct dm_target *ti, status_type_t type,
2556 unsigned status_flags, char *result, unsigned maxlen)
2560 uint64_t transaction_id;
2561 dm_block_t nr_free_blocks_data;
2562 dm_block_t nr_free_blocks_metadata;
2563 dm_block_t nr_blocks_data;
2564 dm_block_t nr_blocks_metadata;
2565 dm_block_t held_root;
2566 char buf[BDEVNAME_SIZE];
2567 char buf2[BDEVNAME_SIZE];
2568 struct pool_c *pt = ti->private;
2569 struct pool *pool = pt->pool;
2572 case STATUSTYPE_INFO:
2573 if (get_pool_mode(pool) == PM_FAIL) {
2578 /* Commit to ensure statistics aren't out-of-date */
2579 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2580 (void) commit(pool);
2582 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2584 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2585 dm_device_name(pool->pool_md), r);
2589 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2591 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2592 dm_device_name(pool->pool_md), r);
2596 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2598 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2599 dm_device_name(pool->pool_md), r);
2603 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2605 DMERR("%s: dm_pool_get_free_block_count returned %d",
2606 dm_device_name(pool->pool_md), r);
2610 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2612 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2613 dm_device_name(pool->pool_md), r);
2617 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2619 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2620 dm_device_name(pool->pool_md), r);
2624 DMEMIT("%llu %llu/%llu %llu/%llu ",
2625 (unsigned long long)transaction_id,
2626 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2627 (unsigned long long)nr_blocks_metadata,
2628 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2629 (unsigned long long)nr_blocks_data);
2632 DMEMIT("%llu ", held_root);
2636 if (pool->pf.mode == PM_READ_ONLY)
2641 if (!pool->pf.discard_enabled)
2642 DMEMIT("ignore_discard");
2643 else if (pool->pf.discard_passdown)
2644 DMEMIT("discard_passdown");
2646 DMEMIT("no_discard_passdown");
2650 case STATUSTYPE_TABLE:
2651 DMEMIT("%s %s %lu %llu ",
2652 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2653 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2654 (unsigned long)pool->sectors_per_block,
2655 (unsigned long long)pt->low_water_blocks);
2656 emit_flags(&pt->requested_pf, result, sz, maxlen);
2665 static int pool_iterate_devices(struct dm_target *ti,
2666 iterate_devices_callout_fn fn, void *data)
2668 struct pool_c *pt = ti->private;
2670 return fn(ti, pt->data_dev, 0, ti->len, data);
2673 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2674 struct bio_vec *biovec, int max_size)
2676 struct pool_c *pt = ti->private;
2677 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2679 if (!q->merge_bvec_fn)
2682 bvm->bi_bdev = pt->data_dev->bdev;
2684 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2687 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2689 struct pool *pool = pt->pool;
2690 struct queue_limits *data_limits;
2692 limits->max_discard_sectors = pool->sectors_per_block;
2695 * discard_granularity is just a hint, and not enforced.
2697 if (pt->adjusted_pf.discard_passdown) {
2698 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2699 limits->discard_granularity = data_limits->discard_granularity;
2701 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2704 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2706 struct pool_c *pt = ti->private;
2707 struct pool *pool = pt->pool;
2708 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2711 * If the system-determined stacked limits are compatible with the
2712 * pool's blocksize (io_opt is a factor) do not override them.
2714 if (io_opt_sectors < pool->sectors_per_block ||
2715 do_div(io_opt_sectors, pool->sectors_per_block)) {
2716 blk_limits_io_min(limits, 0);
2717 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2721 * pt->adjusted_pf is a staging area for the actual features to use.
2722 * They get transferred to the live pool in bind_control_target()
2723 * called from pool_preresume().
2725 if (!pt->adjusted_pf.discard_enabled) {
2727 * Must explicitly disallow stacking discard limits otherwise the
2728 * block layer will stack them if pool's data device has support.
2729 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2730 * user to see that, so make sure to set all discard limits to 0.
2732 limits->discard_granularity = 0;
2736 disable_passdown_if_not_supported(pt);
2738 set_discard_limits(pt, limits);
2741 static struct target_type pool_target = {
2742 .name = "thin-pool",
2743 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2744 DM_TARGET_IMMUTABLE,
2745 .version = {1, 9, 0},
2746 .module = THIS_MODULE,
2750 .postsuspend = pool_postsuspend,
2751 .preresume = pool_preresume,
2752 .resume = pool_resume,
2753 .message = pool_message,
2754 .status = pool_status,
2755 .merge = pool_merge,
2756 .iterate_devices = pool_iterate_devices,
2757 .io_hints = pool_io_hints,
2760 /*----------------------------------------------------------------
2761 * Thin target methods
2762 *--------------------------------------------------------------*/
2763 static void thin_dtr(struct dm_target *ti)
2765 struct thin_c *tc = ti->private;
2767 mutex_lock(&dm_thin_pool_table.mutex);
2769 __pool_dec(tc->pool);
2770 dm_pool_close_thin_device(tc->td);
2771 dm_put_device(ti, tc->pool_dev);
2773 dm_put_device(ti, tc->origin_dev);
2776 mutex_unlock(&dm_thin_pool_table.mutex);
2780 * Thin target parameters:
2782 * <pool_dev> <dev_id> [origin_dev]
2784 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2785 * dev_id: the internal device identifier
2786 * origin_dev: a device external to the pool that should act as the origin
2788 * If the pool device has discards disabled, they get disabled for the thin
2791 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2795 struct dm_dev *pool_dev, *origin_dev;
2796 struct mapped_device *pool_md;
2798 mutex_lock(&dm_thin_pool_table.mutex);
2800 if (argc != 2 && argc != 3) {
2801 ti->error = "Invalid argument count";
2806 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2808 ti->error = "Out of memory";
2814 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2816 ti->error = "Error opening origin device";
2817 goto bad_origin_dev;
2819 tc->origin_dev = origin_dev;
2822 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2824 ti->error = "Error opening pool device";
2827 tc->pool_dev = pool_dev;
2829 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2830 ti->error = "Invalid device id";
2835 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2837 ti->error = "Couldn't get pool mapped device";
2842 tc->pool = __pool_table_lookup(pool_md);
2844 ti->error = "Couldn't find pool object";
2846 goto bad_pool_lookup;
2848 __pool_inc(tc->pool);
2850 if (get_pool_mode(tc->pool) == PM_FAIL) {
2851 ti->error = "Couldn't open thin device, Pool is in fail mode";
2855 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2857 ti->error = "Couldn't open thin internal device";
2861 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2865 ti->num_flush_bios = 1;
2866 ti->flush_supported = true;
2867 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2869 /* In case the pool supports discards, pass them on. */
2870 ti->discard_zeroes_data_unsupported = true;
2871 if (tc->pool->pf.discard_enabled) {
2872 ti->discards_supported = true;
2873 ti->num_discard_bios = 1;
2874 /* Discard bios must be split on a block boundary */
2875 ti->split_discard_bios = true;
2880 mutex_unlock(&dm_thin_pool_table.mutex);
2885 __pool_dec(tc->pool);
2889 dm_put_device(ti, tc->pool_dev);
2892 dm_put_device(ti, tc->origin_dev);
2896 mutex_unlock(&dm_thin_pool_table.mutex);
2901 static int thin_map(struct dm_target *ti, struct bio *bio)
2903 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2905 return thin_bio_map(ti, bio);
2908 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2910 unsigned long flags;
2911 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2912 struct list_head work;
2913 struct dm_thin_new_mapping *m, *tmp;
2914 struct pool *pool = h->tc->pool;
2916 if (h->shared_read_entry) {
2917 INIT_LIST_HEAD(&work);
2918 dm_deferred_entry_dec(h->shared_read_entry, &work);
2920 spin_lock_irqsave(&pool->lock, flags);
2921 list_for_each_entry_safe(m, tmp, &work, list) {
2924 __maybe_add_mapping(m);
2926 spin_unlock_irqrestore(&pool->lock, flags);
2929 if (h->all_io_entry) {
2930 INIT_LIST_HEAD(&work);
2931 dm_deferred_entry_dec(h->all_io_entry, &work);
2932 if (!list_empty(&work)) {
2933 spin_lock_irqsave(&pool->lock, flags);
2934 list_for_each_entry_safe(m, tmp, &work, list)
2935 list_add_tail(&m->list, &pool->prepared_discards);
2936 spin_unlock_irqrestore(&pool->lock, flags);
2944 static void thin_postsuspend(struct dm_target *ti)
2946 if (dm_noflush_suspending(ti))
2947 requeue_io((struct thin_c *)ti->private);
2951 * <nr mapped sectors> <highest mapped sector>
2953 static void thin_status(struct dm_target *ti, status_type_t type,
2954 unsigned status_flags, char *result, unsigned maxlen)
2958 dm_block_t mapped, highest;
2959 char buf[BDEVNAME_SIZE];
2960 struct thin_c *tc = ti->private;
2962 if (get_pool_mode(tc->pool) == PM_FAIL) {
2971 case STATUSTYPE_INFO:
2972 r = dm_thin_get_mapped_count(tc->td, &mapped);
2974 DMERR("dm_thin_get_mapped_count returned %d", r);
2978 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2980 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2984 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2986 DMEMIT("%llu", ((highest + 1) *
2987 tc->pool->sectors_per_block) - 1);
2992 case STATUSTYPE_TABLE:
2994 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2995 (unsigned long) tc->dev_id);
2997 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3008 static int thin_iterate_devices(struct dm_target *ti,
3009 iterate_devices_callout_fn fn, void *data)
3012 struct thin_c *tc = ti->private;
3013 struct pool *pool = tc->pool;
3016 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3017 * we follow a more convoluted path through to the pool's target.
3020 return 0; /* nothing is bound */
3022 blocks = pool->ti->len;
3023 (void) sector_div(blocks, pool->sectors_per_block);
3025 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3030 static struct target_type thin_target = {
3032 .version = {1, 9, 0},
3033 .module = THIS_MODULE,
3037 .end_io = thin_endio,
3038 .postsuspend = thin_postsuspend,
3039 .status = thin_status,
3040 .iterate_devices = thin_iterate_devices,
3043 /*----------------------------------------------------------------*/
3045 static int __init dm_thin_init(void)
3051 r = dm_register_target(&thin_target);
3055 r = dm_register_target(&pool_target);
3057 goto bad_pool_target;
3061 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3062 if (!_new_mapping_cache)
3063 goto bad_new_mapping_cache;
3067 bad_new_mapping_cache:
3068 dm_unregister_target(&pool_target);
3070 dm_unregister_target(&thin_target);
3075 static void dm_thin_exit(void)
3077 dm_unregister_target(&thin_target);
3078 dm_unregister_target(&pool_target);
3080 kmem_cache_destroy(_new_mapping_cache);
3083 module_init(dm_thin_init);
3084 module_exit(dm_thin_exit);
3086 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3088 MODULE_LICENSE("GPL");