6 * based on amba-pl08x.c
8 * Copyright (c) 2006 ARM Ltd.
9 * Copyright (c) 2010 ST-Ericsson SA
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option)
19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20 * that can be routed to any of the 4 to 8 hardware-channels.
22 * Therefore on these DMA controllers the number of channels
23 * and the number of incoming DMA signals are two totally different things.
24 * It is usually not possible to theoretically handle all physical signals,
25 * so a multiplexing scheme with possible denial of use is necessary.
31 #include <linux/platform_device.h>
32 #include <linux/types.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/interrupt.h>
36 #include <linux/clk.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 #include <linux/platform_data/dma-s3c24xx.h>
41 #include "dmaengine.h"
44 #define MAX_DMA_CHANNELS 8
46 #define S3C24XX_DISRC 0x00
47 #define S3C24XX_DISRCC 0x04
48 #define S3C24XX_DISRCC_INC_INCREMENT 0
49 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
50 #define S3C24XX_DISRCC_LOC_AHB 0
51 #define S3C24XX_DISRCC_LOC_APB BIT(1)
53 #define S3C24XX_DIDST 0x08
54 #define S3C24XX_DIDSTC 0x0c
55 #define S3C24XX_DIDSTC_INC_INCREMENT 0
56 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
57 #define S3C24XX_DIDSTC_LOC_AHB 0
58 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
59 #define S3C24XX_DIDSTC_INT_TC0 0
60 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
62 #define S3C24XX_DCON 0x10
64 #define S3C24XX_DCON_TC_MASK 0xfffff
65 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
66 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
67 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
68 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
69 #define S3C24XX_DCON_DSZ_SHIFT 20
70 #define S3C24XX_DCON_AUTORELOAD 0
71 #define S3C24XX_DCON_NORELOAD BIT(22)
72 #define S3C24XX_DCON_HWTRIG BIT(23)
73 #define S3C24XX_DCON_HWSRC_SHIFT 24
74 #define S3C24XX_DCON_SERV_SINGLE 0
75 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
76 #define S3C24XX_DCON_TSZ_UNIT 0
77 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
78 #define S3C24XX_DCON_INT BIT(29)
79 #define S3C24XX_DCON_SYNC_PCLK 0
80 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
81 #define S3C24XX_DCON_DEMAND 0
82 #define S3C24XX_DCON_HANDSHAKE BIT(31)
84 #define S3C24XX_DSTAT 0x14
85 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
86 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
88 #define S3C24XX_DMASKTRIG 0x20
89 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
90 #define S3C24XX_DMASKTRIG_ON BIT(1)
91 #define S3C24XX_DMASKTRIG_STOP BIT(2)
93 #define S3C24XX_DMAREQSEL 0x24
94 #define S3C24XX_DMAREQSEL_HW BIT(0)
97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98 * for a DMA source. Instead only specific channels are valid.
99 * All of these SoCs have 4 physical channels and the number of request
100 * source bits is 3. Additionally we also need 1 bit to mark the channel
102 * Therefore we separate the chansel element of the channel data into 4
103 * parts of 4 bits each, to hold the information if the channel is valid
104 * and the hw request source to use.
107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108 * For it the chansel field would look like
110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
114 #define S3C24XX_CHANSEL_WIDTH 4
115 #define S3C24XX_CHANSEL_VALID BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK 7
119 * struct soc_data - vendor-specific config parameters for individual SoCs
120 * @stride: spacing between the registers of each channel
121 * @has_reqsel: does the controller use the newer requestselection mechanism
122 * @has_clocks: are controllable dma-clocks present
131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134 * channel and is running a transfer on it
135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136 * channel to become available (only pertains to memcpy channels)
138 enum s3c24xx_dma_chan_state {
139 S3C24XX_DMA_CHAN_IDLE,
140 S3C24XX_DMA_CHAN_RUNNING,
141 S3C24XX_DMA_CHAN_WAITING,
145 * struct s3c24xx_sg - structure containing data per sg
146 * @src_addr: src address of sg
147 * @dst_addr: dst address of sg
148 * @len: transfer len in bytes
149 * @node: node for txd's dsg_list
155 struct list_head node;
159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160 * @vd: virtual DMA descriptor
161 * @dsg_list: list of children sg's
162 * @at: sg currently being transfered
163 * @width: transfer width
164 * @disrcc: value for source control register
165 * @didstc: value for destination control register
166 * @dcon: base value for dcon register
169 struct virt_dma_desc vd;
170 struct list_head dsg_list;
171 struct list_head *at;
178 struct s3c24xx_dma_chan;
181 * struct s3c24xx_dma_phy - holder for the physical channels
182 * @id: physical index to this channel
183 * @valid: does the channel have all required elements
184 * @base: virtual memory base (remapped) for the this channel
185 * @irq: interrupt for this channel
186 * @clk: clock for this channel
187 * @lock: a lock to use when altering an instance of this struct
188 * @serving: virtual channel currently being served by this physicalchannel
189 * @host: a pointer to the host (internal use)
191 struct s3c24xx_dma_phy {
198 struct s3c24xx_dma_chan *serving;
199 struct s3c24xx_dma_engine *host;
203 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
204 * @id: the id of the channel
205 * @name: name of the channel
206 * @vc: wrappped virtual channel
207 * @phy: the physical channel utilized by this channel, if there is one
208 * @runtime_addr: address for RX/TX according to the runtime config
209 * @at: active transaction on this channel
210 * @lock: a lock for this channel data
211 * @host: a pointer to the host (internal use)
212 * @state: whether the channel is idle, running etc
213 * @slave: whether this channel is a device (slave) or for memcpy
215 struct s3c24xx_dma_chan {
218 struct virt_dma_chan vc;
219 struct s3c24xx_dma_phy *phy;
220 struct dma_slave_config cfg;
221 struct s3c24xx_txd *at;
222 struct s3c24xx_dma_engine *host;
223 enum s3c24xx_dma_chan_state state;
228 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
229 * @pdev: the corresponding platform device
230 * @pdata: platform data passed in from the platform/machine
231 * @base: virtual memory base (remapped)
232 * @slave: slave engine for this instance
233 * @memcpy: memcpy engine for this instance
234 * @phy_chans: array of data for the physical channels
236 struct s3c24xx_dma_engine {
237 struct platform_device *pdev;
238 const struct s3c24xx_dma_platdata *pdata;
239 struct soc_data *sdata;
241 struct dma_device slave;
242 struct dma_device memcpy;
243 struct s3c24xx_dma_phy *phy_chans;
247 * Physical channel handling
251 * Check whether a certain channel is busy or not.
253 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
255 unsigned int val = readl(phy->base + S3C24XX_DSTAT);
256 return val & S3C24XX_DSTAT_STAT_BUSY;
259 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
260 struct s3c24xx_dma_phy *phy)
262 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
263 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
264 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
267 /* every phy is valid for memcopy channels */
271 /* On newer variants all phys can be used for all virtual channels */
272 if (s3cdma->sdata->has_reqsel)
275 phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
276 return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
280 * Allocate a physical channel for a virtual channel
282 * Try to locate a physical channel to be used for this transfer. If all
283 * are taken return NULL and the requester will have to cope by using
284 * some fallback PIO mode or retrying later.
287 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
289 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
290 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
291 struct s3c24xx_dma_channel *cdata;
292 struct s3c24xx_dma_phy *phy = NULL;
298 cdata = &pdata->channels[s3cchan->id];
300 for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
301 phy = &s3cdma->phy_chans[i];
306 if (!s3c24xx_dma_phy_valid(s3cchan, phy))
309 spin_lock_irqsave(&phy->lock, flags);
312 phy->serving = s3cchan;
313 spin_unlock_irqrestore(&phy->lock, flags);
317 spin_unlock_irqrestore(&phy->lock, flags);
320 /* No physical channel available, cope with it */
321 if (i == s3cdma->pdata->num_phy_channels) {
322 dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
326 /* start the phy clock */
327 if (s3cdma->sdata->has_clocks) {
328 ret = clk_enable(phy->clk);
330 dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
341 * Mark the physical channel as free.
343 * This drops the link between the physical and virtual channel.
345 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
347 struct s3c24xx_dma_engine *s3cdma = phy->host;
349 if (s3cdma->sdata->has_clocks)
350 clk_disable(phy->clk);
356 * Stops the channel by writing the stop bit.
357 * This should not be used for an on-going transfer, but as a method of
358 * shutting down a channel (eg, when it's no longer used) or terminating a
361 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
363 writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
367 * Virtual channel handling
371 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
373 return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
376 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
378 struct s3c24xx_dma_phy *phy = s3cchan->phy;
379 struct s3c24xx_txd *txd = s3cchan->at;
380 u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
382 return tc * txd->width;
385 static int s3c24xx_dma_set_runtime_config(struct s3c24xx_dma_chan *s3cchan,
386 struct dma_slave_config *config)
391 /* Reject definitely invalid configurations */
392 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
393 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
396 s3cchan->cfg = *config;
406 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
408 return container_of(tx, struct s3c24xx_txd, vd.tx);
411 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
413 struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
416 INIT_LIST_HEAD(&txd->dsg_list);
417 txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
423 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
425 struct s3c24xx_sg *dsg, *_dsg;
427 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
428 list_del(&dsg->node);
435 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
436 struct s3c24xx_txd *txd)
438 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
439 struct s3c24xx_dma_phy *phy = s3cchan->phy;
440 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
441 struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
442 u32 dcon = txd->dcon;
445 /* transfer-size and -count from len and width */
446 switch (txd->width) {
448 dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
451 dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
454 dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
458 if (s3cchan->slave) {
459 struct s3c24xx_dma_channel *cdata =
460 &pdata->channels[s3cchan->id];
462 if (s3cdma->sdata->has_reqsel) {
463 writel_relaxed((cdata->chansel << 1) |
464 S3C24XX_DMAREQSEL_HW,
465 phy->base + S3C24XX_DMAREQSEL);
467 int csel = cdata->chansel >> (phy->id *
468 S3C24XX_CHANSEL_WIDTH);
470 csel &= S3C24XX_CHANSEL_REQ_MASK;
471 dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
472 dcon |= S3C24XX_DCON_HWTRIG;
475 if (s3cdma->sdata->has_reqsel)
476 writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
479 writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
480 writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
481 writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
482 writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
483 writel_relaxed(dcon, phy->base + S3C24XX_DCON);
485 val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
486 val &= ~S3C24XX_DMASKTRIG_STOP;
487 val |= S3C24XX_DMASKTRIG_ON;
489 /* trigger the dma operation for memcpy transfers */
491 val |= S3C24XX_DMASKTRIG_SWTRIG;
493 writel(val, phy->base + S3C24XX_DMASKTRIG);
497 * Set the initial DMA register values and start first sg.
499 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
501 struct s3c24xx_dma_phy *phy = s3cchan->phy;
502 struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
503 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
505 list_del(&txd->vd.node);
509 /* Wait for channel inactive */
510 while (s3c24xx_dma_phy_busy(phy))
513 /* point to the first element of the sg list */
514 txd->at = txd->dsg_list.next;
515 s3c24xx_dma_start_next_sg(s3cchan, txd);
518 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
519 struct s3c24xx_dma_chan *s3cchan)
523 vchan_get_all_descriptors(&s3cchan->vc, &head);
524 vchan_dma_desc_free_list(&s3cchan->vc, &head);
528 * Try to allocate a physical channel. When successful, assign it to
529 * this virtual channel, and initiate the next descriptor. The
530 * virtual channel lock must be held at this point.
532 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
534 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
535 struct s3c24xx_dma_phy *phy;
537 phy = s3c24xx_dma_get_phy(s3cchan);
539 dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
541 s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
545 dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
546 phy->id, s3cchan->name);
549 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
551 s3c24xx_dma_start_next_txd(s3cchan);
554 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
555 struct s3c24xx_dma_chan *s3cchan)
557 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
559 dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
560 phy->id, s3cchan->name);
563 * We do this without taking the lock; we're really only concerned
564 * about whether this pointer is NULL or not, and we're guaranteed
565 * that this will only be called when it _already_ is non-NULL.
567 phy->serving = s3cchan;
569 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
570 s3c24xx_dma_start_next_txd(s3cchan);
574 * Free a physical DMA channel, potentially reallocating it to another
575 * virtual channel if we have any pending.
577 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
579 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
580 struct s3c24xx_dma_chan *p, *next;
585 /* Find a waiting virtual channel for the next transfer. */
586 list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
587 if (p->state == S3C24XX_DMA_CHAN_WAITING) {
593 list_for_each_entry(p, &s3cdma->slave.channels,
595 if (p->state == S3C24XX_DMA_CHAN_WAITING &&
596 s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
602 /* Ensure that the physical channel is stopped */
603 s3c24xx_dma_terminate_phy(s3cchan->phy);
609 * Eww. We know this isn't going to deadlock
610 * but lockdep probably doesn't.
612 spin_lock(&next->vc.lock);
613 /* Re-check the state now that we have the lock */
614 success = next->state == S3C24XX_DMA_CHAN_WAITING;
616 s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
617 spin_unlock(&next->vc.lock);
619 /* If the state changed, try to find another channel */
623 /* No more jobs, so free up the physical channel */
624 s3c24xx_dma_put_phy(s3cchan->phy);
628 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
631 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
633 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
634 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
637 dma_descriptor_unmap(&vd->tx);
639 s3c24xx_dma_free_txd(txd);
642 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
644 struct s3c24xx_dma_phy *phy = data;
645 struct s3c24xx_dma_chan *s3cchan = phy->serving;
646 struct s3c24xx_txd *txd;
648 dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
651 * Interrupts happen to notify the completion of a transfer and the
652 * channel should have moved into its stop state already on its own.
653 * Therefore interrupts on channels not bound to a virtual channel
654 * should never happen. Nevertheless send a terminate command to the
655 * channel if the unlikely case happens.
657 if (unlikely(!s3cchan)) {
658 dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
661 s3c24xx_dma_terminate_phy(phy);
666 spin_lock(&s3cchan->vc.lock);
669 /* when more sg's are in this txd, start the next one */
670 if (!list_is_last(txd->at, &txd->dsg_list)) {
671 txd->at = txd->at->next;
672 s3c24xx_dma_start_next_sg(s3cchan, txd);
675 vchan_cookie_complete(&txd->vd);
678 * And start the next descriptor (if any),
679 * otherwise free this channel.
681 if (vchan_next_desc(&s3cchan->vc))
682 s3c24xx_dma_start_next_txd(s3cchan);
684 s3c24xx_dma_phy_free(s3cchan);
687 spin_unlock(&s3cchan->vc.lock);
696 static int s3c24xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
699 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
700 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
704 spin_lock_irqsave(&s3cchan->vc.lock, flags);
707 case DMA_SLAVE_CONFIG:
708 ret = s3c24xx_dma_set_runtime_config(s3cchan,
709 (struct dma_slave_config *)arg);
711 case DMA_TERMINATE_ALL:
712 if (!s3cchan->phy && !s3cchan->at) {
713 dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
719 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
721 /* Mark physical channel as free */
723 s3c24xx_dma_phy_free(s3cchan);
725 /* Dequeue current job */
727 s3c24xx_dma_desc_free(&s3cchan->at->vd);
731 /* Dequeue jobs not yet fired as well */
732 s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
735 /* Unknown command */
740 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
745 static int s3c24xx_dma_alloc_chan_resources(struct dma_chan *chan)
750 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
752 /* Ensure all queued descriptors are freed */
753 vchan_free_chan_resources(to_virt_chan(chan));
756 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
757 dma_cookie_t cookie, struct dma_tx_state *txstate)
759 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
760 struct s3c24xx_txd *txd;
761 struct s3c24xx_sg *dsg;
762 struct virt_dma_desc *vd;
767 spin_lock_irqsave(&s3cchan->vc.lock, flags);
768 ret = dma_cookie_status(chan, cookie, txstate);
769 if (ret == DMA_COMPLETE) {
770 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
775 * There's no point calculating the residue if there's
776 * no txstate to store the value.
779 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
783 vd = vchan_find_desc(&s3cchan->vc, cookie);
785 /* On the issued list, so hasn't been processed yet */
786 txd = to_s3c24xx_txd(&vd->tx);
788 list_for_each_entry(dsg, &txd->dsg_list, node)
792 * Currently running, so sum over the pending sg's and
793 * the currently active one.
797 dsg = list_entry(txd->at, struct s3c24xx_sg, node);
798 list_for_each_entry_from(dsg, &txd->dsg_list, node)
801 bytes += s3c24xx_dma_getbytes_chan(s3cchan);
803 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
806 * This cookie not complete yet
807 * Get number of bytes left in the active transactions and queue
809 dma_set_residue(txstate, bytes);
811 /* Whether waiting or running, we're in progress */
816 * Initialize a descriptor to be used by memcpy submit
818 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
819 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
820 size_t len, unsigned long flags)
822 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
823 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
824 struct s3c24xx_txd *txd;
825 struct s3c24xx_sg *dsg;
826 int src_mod, dest_mod;
828 dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n",
831 if ((len & S3C24XX_DCON_TC_MASK) != len) {
832 dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len);
836 txd = s3c24xx_dma_get_txd();
840 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
842 s3c24xx_dma_free_txd(txd);
845 list_add_tail(&dsg->node, &txd->dsg_list);
848 dsg->dst_addr = dest;
852 * Determine a suitable transfer width.
853 * The DMA controller cannot fetch/store information which is not
854 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
855 * an address divisible by 4 - more generally addr % width must be 0.
861 txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
864 txd->width = ((src_mod == 2 || src_mod == 0) &&
865 (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
872 txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
873 txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
874 txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
875 S3C24XX_DCON_SERV_WHOLE;
877 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
880 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
881 struct dma_chan *chan, struct scatterlist *sgl,
882 unsigned int sg_len, enum dma_transfer_direction direction,
883 unsigned long flags, void *context)
885 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
886 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
887 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
888 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
889 struct s3c24xx_txd *txd;
890 struct s3c24xx_sg *dsg;
891 struct scatterlist *sg;
892 dma_addr_t slave_addr;
896 dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
897 sg_dma_len(sgl), s3cchan->name);
899 txd = s3c24xx_dma_get_txd();
903 if (cdata->handshake)
904 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
906 switch (cdata->bus) {
907 case S3C24XX_DMA_APB:
908 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
909 hwcfg |= S3C24XX_DISRCC_LOC_APB;
911 case S3C24XX_DMA_AHB:
912 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
913 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
918 * Always assume our peripheral desintation is a fixed
921 hwcfg |= S3C24XX_DISRCC_INC_FIXED;
924 * Individual dma operations are requested by the slave,
925 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
927 txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
929 if (direction == DMA_MEM_TO_DEV) {
930 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
931 S3C24XX_DISRCC_INC_INCREMENT;
933 slave_addr = s3cchan->cfg.dst_addr;
934 txd->width = s3cchan->cfg.dst_addr_width;
935 } else if (direction == DMA_DEV_TO_MEM) {
937 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
938 S3C24XX_DIDSTC_INC_INCREMENT;
939 slave_addr = s3cchan->cfg.src_addr;
940 txd->width = s3cchan->cfg.src_addr_width;
942 s3c24xx_dma_free_txd(txd);
943 dev_err(&s3cdma->pdev->dev,
944 "direction %d unsupported\n", direction);
948 for_each_sg(sgl, sg, sg_len, tmp) {
949 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
951 s3c24xx_dma_free_txd(txd);
954 list_add_tail(&dsg->node, &txd->dsg_list);
956 dsg->len = sg_dma_len(sg);
957 if (direction == DMA_MEM_TO_DEV) {
958 dsg->src_addr = sg_dma_address(sg);
959 dsg->dst_addr = slave_addr;
960 } else { /* DMA_DEV_TO_MEM */
961 dsg->src_addr = slave_addr;
962 dsg->dst_addr = sg_dma_address(sg);
967 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
971 * Slave transactions callback to the slave device to allow
972 * synchronization of slave DMA signals with the DMAC enable
974 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
976 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
979 spin_lock_irqsave(&s3cchan->vc.lock, flags);
980 if (vchan_issue_pending(&s3cchan->vc)) {
981 if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
982 s3c24xx_dma_phy_alloc_and_start(s3cchan);
984 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
988 * Bringup and teardown
992 * Initialise the DMAC memcpy/slave channels.
993 * Make a local wrapper to hold required data
995 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
996 struct dma_device *dmadev, unsigned int channels, bool slave)
998 struct s3c24xx_dma_chan *chan;
1001 INIT_LIST_HEAD(&dmadev->channels);
1004 * Register as many many memcpy as we have physical channels,
1005 * we won't always be able to use all but the code will have
1006 * to cope with that situation.
1008 for (i = 0; i < channels; i++) {
1009 chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1011 dev_err(dmadev->dev,
1012 "%s no memory for channel\n", __func__);
1017 chan->host = s3cdma;
1018 chan->state = S3C24XX_DMA_CHAN_IDLE;
1022 chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1026 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1030 dev_dbg(dmadev->dev,
1031 "initialize virtual channel \"%s\"\n",
1034 chan->vc.desc_free = s3c24xx_dma_desc_free;
1035 vchan_init(&chan->vc, dmadev);
1037 dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1038 i, slave ? "slave" : "memcpy");
1042 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1044 struct s3c24xx_dma_chan *chan = NULL;
1045 struct s3c24xx_dma_chan *next;
1047 list_for_each_entry_safe(chan,
1048 next, &dmadev->channels, vc.chan.device_node)
1049 list_del(&chan->vc.chan.device_node);
1052 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1053 static struct soc_data soc_s3c2410 = {
1055 .has_reqsel = false,
1056 .has_clocks = false,
1059 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1060 static struct soc_data soc_s3c2412 = {
1066 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1067 static struct soc_data soc_s3c2443 = {
1073 static struct platform_device_id s3c24xx_dma_driver_ids[] = {
1075 .name = "s3c2410-dma",
1076 .driver_data = (kernel_ulong_t)&soc_s3c2410,
1078 .name = "s3c2412-dma",
1079 .driver_data = (kernel_ulong_t)&soc_s3c2412,
1081 .name = "s3c2443-dma",
1082 .driver_data = (kernel_ulong_t)&soc_s3c2443,
1087 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1089 return (struct soc_data *)
1090 platform_get_device_id(pdev)->driver_data;
1093 static int s3c24xx_dma_probe(struct platform_device *pdev)
1095 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1096 struct s3c24xx_dma_engine *s3cdma;
1097 struct soc_data *sdata;
1098 struct resource *res;
1103 dev_err(&pdev->dev, "platform data missing\n");
1107 /* Basic sanity check */
1108 if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1109 dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1110 pdata->num_phy_channels, MAX_DMA_CHANNELS);
1114 sdata = s3c24xx_dma_get_soc_data(pdev);
1118 s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1122 s3cdma->pdev = pdev;
1123 s3cdma->pdata = pdata;
1124 s3cdma->sdata = sdata;
1126 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1127 s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1128 if (IS_ERR(s3cdma->base))
1129 return PTR_ERR(s3cdma->base);
1131 s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1132 sizeof(struct s3c24xx_dma_phy) *
1133 pdata->num_phy_channels,
1135 if (!s3cdma->phy_chans)
1138 /* aquire irqs and clocks for all physical channels */
1139 for (i = 0; i < pdata->num_phy_channels; i++) {
1140 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1144 phy->base = s3cdma->base + (i * sdata->stride);
1147 phy->irq = platform_get_irq(pdev, i);
1149 dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1154 ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1155 0, pdev->name, phy);
1157 dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1162 if (sdata->has_clocks) {
1163 sprintf(clk_name, "dma.%d", i);
1164 phy->clk = devm_clk_get(&pdev->dev, clk_name);
1165 if (IS_ERR(phy->clk) && sdata->has_clocks) {
1166 dev_err(&pdev->dev, "unable to aquire clock for channel %d, error %lu",
1167 i, PTR_ERR(phy->clk));
1171 ret = clk_prepare(phy->clk);
1173 dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1179 spin_lock_init(&phy->lock);
1182 dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1183 i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1186 /* Initialize memcpy engine */
1187 dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1188 dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1189 s3cdma->memcpy.dev = &pdev->dev;
1190 s3cdma->memcpy.device_alloc_chan_resources =
1191 s3c24xx_dma_alloc_chan_resources;
1192 s3cdma->memcpy.device_free_chan_resources =
1193 s3c24xx_dma_free_chan_resources;
1194 s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1195 s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1196 s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1197 s3cdma->memcpy.device_control = s3c24xx_dma_control;
1199 /* Initialize slave engine for SoC internal dedicated peripherals */
1200 dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1201 dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1202 s3cdma->slave.dev = &pdev->dev;
1203 s3cdma->slave.device_alloc_chan_resources =
1204 s3c24xx_dma_alloc_chan_resources;
1205 s3cdma->slave.device_free_chan_resources =
1206 s3c24xx_dma_free_chan_resources;
1207 s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1208 s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1209 s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1210 s3cdma->slave.device_control = s3c24xx_dma_control;
1212 /* Register as many memcpy channels as there are physical channels */
1213 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1214 pdata->num_phy_channels, false);
1216 dev_warn(&pdev->dev,
1217 "%s failed to enumerate memcpy channels - %d\n",
1222 /* Register slave channels */
1223 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1224 pdata->num_channels, true);
1226 dev_warn(&pdev->dev,
1227 "%s failed to enumerate slave channels - %d\n",
1232 ret = dma_async_device_register(&s3cdma->memcpy);
1234 dev_warn(&pdev->dev,
1235 "%s failed to register memcpy as an async device - %d\n",
1237 goto err_memcpy_reg;
1240 ret = dma_async_device_register(&s3cdma->slave);
1242 dev_warn(&pdev->dev,
1243 "%s failed to register slave as an async device - %d\n",
1248 platform_set_drvdata(pdev, s3cdma);
1249 dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1250 pdata->num_phy_channels);
1255 dma_async_device_unregister(&s3cdma->memcpy);
1257 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1259 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1261 if (sdata->has_clocks)
1262 for (i = 0; i < pdata->num_phy_channels; i++) {
1263 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1265 clk_unprepare(phy->clk);
1271 static int s3c24xx_dma_remove(struct platform_device *pdev)
1273 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1274 struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1275 struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1278 dma_async_device_unregister(&s3cdma->slave);
1279 dma_async_device_unregister(&s3cdma->memcpy);
1281 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1282 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1284 if (sdata->has_clocks)
1285 for (i = 0; i < pdata->num_phy_channels; i++) {
1286 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1288 clk_unprepare(phy->clk);
1294 static struct platform_driver s3c24xx_dma_driver = {
1296 .name = "s3c24xx-dma",
1297 .owner = THIS_MODULE,
1299 .id_table = s3c24xx_dma_driver_ids,
1300 .probe = s3c24xx_dma_probe,
1301 .remove = s3c24xx_dma_remove,
1304 module_platform_driver(s3c24xx_dma_driver);
1306 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1308 struct s3c24xx_dma_chan *s3cchan;
1310 if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1313 s3cchan = to_s3c24xx_dma_chan(chan);
1315 return s3cchan->id == (int)param;
1317 EXPORT_SYMBOL(s3c24xx_dma_filter);
1319 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1320 MODULE_AUTHOR("Heiko Stuebner");
1321 MODULE_LICENSE("GPL v2");