2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/memory_hotplug.h>
37 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
39 #if IS_ENABLED(CONFIG_HMM_MIRROR)
40 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
42 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
44 struct hmm *hmm = READ_ONCE(mm->hmm);
46 if (hmm && kref_get_unless_zero(&hmm->kref))
53 * hmm_get_or_create - register HMM against an mm (HMM internal)
55 * @mm: mm struct to attach to
56 * Returns: returns an HMM object, either by referencing the existing
57 * (per-process) object, or by creating a new one.
59 * This is not intended to be used directly by device drivers. If mm already
60 * has an HMM struct then it get a reference on it and returns it. Otherwise
61 * it allocates an HMM struct, initializes it, associate it with the mm and
64 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
66 struct hmm *hmm = mm_get_hmm(mm);
72 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
75 init_waitqueue_head(&hmm->wq);
76 INIT_LIST_HEAD(&hmm->mirrors);
77 init_rwsem(&hmm->mirrors_sem);
78 hmm->mmu_notifier.ops = NULL;
79 INIT_LIST_HEAD(&hmm->ranges);
80 mutex_init(&hmm->lock);
81 kref_init(&hmm->kref);
86 spin_lock(&mm->page_table_lock);
91 spin_unlock(&mm->page_table_lock);
97 * We should only get here if hold the mmap_sem in write mode ie on
98 * registration of first mirror through hmm_mirror_register()
100 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
101 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
107 spin_lock(&mm->page_table_lock);
110 spin_unlock(&mm->page_table_lock);
116 static void hmm_free(struct kref *kref)
118 struct hmm *hmm = container_of(kref, struct hmm, kref);
119 struct mm_struct *mm = hmm->mm;
121 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
123 spin_lock(&mm->page_table_lock);
126 spin_unlock(&mm->page_table_lock);
131 static inline void hmm_put(struct hmm *hmm)
133 kref_put(&hmm->kref, hmm_free);
136 void hmm_mm_destroy(struct mm_struct *mm)
140 spin_lock(&mm->page_table_lock);
141 hmm = mm_get_hmm(mm);
146 spin_unlock(&mm->page_table_lock);
151 spin_unlock(&mm->page_table_lock);
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
156 struct hmm *hmm = mm_get_hmm(mm);
157 struct hmm_mirror *mirror;
158 struct hmm_range *range;
160 /* Report this HMM as dying. */
163 /* Wake-up everyone waiting on any range. */
164 mutex_lock(&hmm->lock);
165 list_for_each_entry(range, &hmm->ranges, list) {
166 range->valid = false;
168 wake_up_all(&hmm->wq);
169 mutex_unlock(&hmm->lock);
171 down_write(&hmm->mirrors_sem);
172 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
175 list_del_init(&mirror->list);
176 if (mirror->ops->release) {
178 * Drop mirrors_sem so callback can wait on any pending
179 * work that might itself trigger mmu_notifier callback
180 * and thus would deadlock with us.
182 up_write(&hmm->mirrors_sem);
183 mirror->ops->release(mirror);
184 down_write(&hmm->mirrors_sem);
186 mirror = list_first_entry_or_null(&hmm->mirrors,
187 struct hmm_mirror, list);
189 up_write(&hmm->mirrors_sem);
194 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
195 const struct mmu_notifier_range *nrange)
197 struct hmm *hmm = mm_get_hmm(nrange->mm);
198 struct hmm_mirror *mirror;
199 struct hmm_update update;
200 struct hmm_range *range;
205 update.start = nrange->start;
206 update.end = nrange->end;
207 update.event = HMM_UPDATE_INVALIDATE;
208 update.blockable = mmu_notifier_range_blockable(nrange);
210 if (mmu_notifier_range_blockable(nrange))
211 mutex_lock(&hmm->lock);
212 else if (!mutex_trylock(&hmm->lock)) {
217 list_for_each_entry(range, &hmm->ranges, list) {
218 if (update.end < range->start || update.start >= range->end)
221 range->valid = false;
223 mutex_unlock(&hmm->lock);
225 if (mmu_notifier_range_blockable(nrange))
226 down_read(&hmm->mirrors_sem);
227 else if (!down_read_trylock(&hmm->mirrors_sem)) {
231 list_for_each_entry(mirror, &hmm->mirrors, list) {
234 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
235 if (!update.blockable && ret == -EAGAIN) {
236 up_read(&hmm->mirrors_sem);
241 up_read(&hmm->mirrors_sem);
248 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
249 const struct mmu_notifier_range *nrange)
251 struct hmm *hmm = mm_get_hmm(nrange->mm);
255 mutex_lock(&hmm->lock);
257 if (!hmm->notifiers) {
258 struct hmm_range *range;
260 list_for_each_entry(range, &hmm->ranges, list) {
265 wake_up_all(&hmm->wq);
267 mutex_unlock(&hmm->lock);
272 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
273 .release = hmm_release,
274 .invalidate_range_start = hmm_invalidate_range_start,
275 .invalidate_range_end = hmm_invalidate_range_end,
279 * hmm_mirror_register() - register a mirror against an mm
281 * @mirror: new mirror struct to register
282 * @mm: mm to register against
284 * To start mirroring a process address space, the device driver must register
285 * an HMM mirror struct.
287 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
289 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
292 if (!mm || !mirror || !mirror->ops)
295 mirror->hmm = hmm_get_or_create(mm);
299 down_write(&mirror->hmm->mirrors_sem);
300 list_add(&mirror->list, &mirror->hmm->mirrors);
301 up_write(&mirror->hmm->mirrors_sem);
305 EXPORT_SYMBOL(hmm_mirror_register);
308 * hmm_mirror_unregister() - unregister a mirror
310 * @mirror: new mirror struct to register
312 * Stop mirroring a process address space, and cleanup.
314 void hmm_mirror_unregister(struct hmm_mirror *mirror)
316 struct hmm *hmm = READ_ONCE(mirror->hmm);
321 down_write(&hmm->mirrors_sem);
322 list_del_init(&mirror->list);
323 /* To protect us against double unregister ... */
325 up_write(&hmm->mirrors_sem);
329 EXPORT_SYMBOL(hmm_mirror_unregister);
331 struct hmm_vma_walk {
332 struct hmm_range *range;
333 struct dev_pagemap *pgmap;
339 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340 bool write_fault, uint64_t *pfn)
342 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
343 struct hmm_vma_walk *hmm_vma_walk = walk->private;
344 struct hmm_range *range = hmm_vma_walk->range;
345 struct vm_area_struct *vma = walk->vma;
348 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
349 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
350 ret = handle_mm_fault(vma, addr, flags);
351 if (ret & VM_FAULT_RETRY)
353 if (ret & VM_FAULT_ERROR) {
354 *pfn = range->values[HMM_PFN_ERROR];
361 static int hmm_pfns_bad(unsigned long addr,
363 struct mm_walk *walk)
365 struct hmm_vma_walk *hmm_vma_walk = walk->private;
366 struct hmm_range *range = hmm_vma_walk->range;
367 uint64_t *pfns = range->pfns;
370 i = (addr - range->start) >> PAGE_SHIFT;
371 for (; addr < end; addr += PAGE_SIZE, i++)
372 pfns[i] = range->values[HMM_PFN_ERROR];
378 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379 * @start: range virtual start address (inclusive)
380 * @end: range virtual end address (exclusive)
381 * @fault: should we fault or not ?
382 * @write_fault: write fault ?
383 * @walk: mm_walk structure
384 * Returns: 0 on success, -EBUSY after page fault, or page fault error
386 * This function will be called whenever pmd_none() or pte_none() returns true,
387 * or whenever there is no page directory covering the virtual address range.
389 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390 bool fault, bool write_fault,
391 struct mm_walk *walk)
393 struct hmm_vma_walk *hmm_vma_walk = walk->private;
394 struct hmm_range *range = hmm_vma_walk->range;
395 uint64_t *pfns = range->pfns;
396 unsigned long i, page_size;
398 hmm_vma_walk->last = addr;
399 page_size = hmm_range_page_size(range);
400 i = (addr - range->start) >> range->page_shift;
402 for (; addr < end; addr += page_size, i++) {
403 pfns[i] = range->values[HMM_PFN_NONE];
404 if (fault || write_fault) {
407 ret = hmm_vma_do_fault(walk, addr, write_fault,
414 return (fault || write_fault) ? -EBUSY : 0;
417 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418 uint64_t pfns, uint64_t cpu_flags,
419 bool *fault, bool *write_fault)
421 struct hmm_range *range = hmm_vma_walk->range;
423 if (!hmm_vma_walk->fault)
427 * So we not only consider the individual per page request we also
428 * consider the default flags requested for the range. The API can
429 * be use in 2 fashions. The first one where the HMM user coalesce
430 * multiple page fault into one request and set flags per pfns for
431 * of those faults. The second one where the HMM user want to pre-
432 * fault a range with specific flags. For the latter one it is a
433 * waste to have the user pre-fill the pfn arrays with a default
436 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
438 /* We aren't ask to do anything ... */
439 if (!(pfns & range->flags[HMM_PFN_VALID]))
441 /* If this is device memory than only fault if explicitly requested */
442 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443 /* Do we fault on device memory ? */
444 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
451 /* If CPU page table is not valid then we need to fault */
452 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453 /* Need to write fault ? */
454 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
461 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462 const uint64_t *pfns, unsigned long npages,
463 uint64_t cpu_flags, bool *fault,
468 if (!hmm_vma_walk->fault) {
469 *fault = *write_fault = false;
473 *fault = *write_fault = false;
474 for (i = 0; i < npages; ++i) {
475 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
482 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483 struct mm_walk *walk)
485 struct hmm_vma_walk *hmm_vma_walk = walk->private;
486 struct hmm_range *range = hmm_vma_walk->range;
487 bool fault, write_fault;
488 unsigned long i, npages;
491 i = (addr - range->start) >> PAGE_SHIFT;
492 npages = (end - addr) >> PAGE_SHIFT;
493 pfns = &range->pfns[i];
494 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495 0, &fault, &write_fault);
496 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
499 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
501 if (pmd_protnone(pmd))
503 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504 range->flags[HMM_PFN_WRITE] :
505 range->flags[HMM_PFN_VALID];
508 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
510 if (!pud_present(pud))
512 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513 range->flags[HMM_PFN_WRITE] :
514 range->flags[HMM_PFN_VALID];
517 static int hmm_vma_handle_pmd(struct mm_walk *walk,
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 struct hmm_vma_walk *hmm_vma_walk = walk->private;
525 struct hmm_range *range = hmm_vma_walk->range;
526 unsigned long pfn, npages, i;
527 bool fault, write_fault;
530 npages = (end - addr) >> PAGE_SHIFT;
531 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
532 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533 &fault, &write_fault);
535 if (pmd_protnone(pmd) || fault || write_fault)
536 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
538 pfn = pmd_pfn(pmd) + pte_index(addr);
539 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540 if (pmd_devmap(pmd)) {
541 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542 hmm_vma_walk->pgmap);
543 if (unlikely(!hmm_vma_walk->pgmap))
546 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
548 if (hmm_vma_walk->pgmap) {
549 put_dev_pagemap(hmm_vma_walk->pgmap);
550 hmm_vma_walk->pgmap = NULL;
552 hmm_vma_walk->last = end;
555 /* If THP is not enabled then we should never reach that code ! */
560 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
562 if (pte_none(pte) || !pte_present(pte))
564 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565 range->flags[HMM_PFN_WRITE] :
566 range->flags[HMM_PFN_VALID];
569 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570 unsigned long end, pmd_t *pmdp, pte_t *ptep,
573 struct hmm_vma_walk *hmm_vma_walk = walk->private;
574 struct hmm_range *range = hmm_vma_walk->range;
575 struct vm_area_struct *vma = walk->vma;
576 bool fault, write_fault;
579 uint64_t orig_pfn = *pfn;
581 *pfn = range->values[HMM_PFN_NONE];
582 fault = write_fault = false;
585 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586 &fault, &write_fault);
587 if (fault || write_fault)
592 if (!pte_present(pte)) {
593 swp_entry_t entry = pte_to_swp_entry(pte);
595 if (!non_swap_entry(entry)) {
596 if (fault || write_fault)
602 * This is a special swap entry, ignore migration, use
603 * device and report anything else as error.
605 if (is_device_private_entry(entry)) {
606 cpu_flags = range->flags[HMM_PFN_VALID] |
607 range->flags[HMM_PFN_DEVICE_PRIVATE];
608 cpu_flags |= is_write_device_private_entry(entry) ?
609 range->flags[HMM_PFN_WRITE] : 0;
610 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611 &fault, &write_fault);
612 if (fault || write_fault)
614 *pfn = hmm_device_entry_from_pfn(range,
620 if (is_migration_entry(entry)) {
621 if (fault || write_fault) {
623 hmm_vma_walk->last = addr;
624 migration_entry_wait(vma->vm_mm,
631 /* Report error for everything else */
632 *pfn = range->values[HMM_PFN_ERROR];
635 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637 &fault, &write_fault);
640 if (fault || write_fault)
643 if (pte_devmap(pte)) {
644 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645 hmm_vma_walk->pgmap);
646 if (unlikely(!hmm_vma_walk->pgmap))
648 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649 *pfn = range->values[HMM_PFN_SPECIAL];
653 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
657 if (hmm_vma_walk->pgmap) {
658 put_dev_pagemap(hmm_vma_walk->pgmap);
659 hmm_vma_walk->pgmap = NULL;
662 /* Fault any virtual address we were asked to fault */
663 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
666 static int hmm_vma_walk_pmd(pmd_t *pmdp,
669 struct mm_walk *walk)
671 struct hmm_vma_walk *hmm_vma_walk = walk->private;
672 struct hmm_range *range = hmm_vma_walk->range;
673 struct vm_area_struct *vma = walk->vma;
674 uint64_t *pfns = range->pfns;
675 unsigned long addr = start, i;
681 pmd = READ_ONCE(*pmdp);
683 return hmm_vma_walk_hole(start, end, walk);
685 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
686 return hmm_pfns_bad(start, end, walk);
688 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689 bool fault, write_fault;
690 unsigned long npages;
693 i = (addr - range->start) >> PAGE_SHIFT;
694 npages = (end - addr) >> PAGE_SHIFT;
695 pfns = &range->pfns[i];
697 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698 0, &fault, &write_fault);
699 if (fault || write_fault) {
700 hmm_vma_walk->last = addr;
701 pmd_migration_entry_wait(vma->vm_mm, pmdp);
705 } else if (!pmd_present(pmd))
706 return hmm_pfns_bad(start, end, walk);
708 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
710 * No need to take pmd_lock here, even if some other threads
711 * is splitting the huge pmd we will get that event through
712 * mmu_notifier callback.
714 * So just read pmd value and check again its a transparent
715 * huge or device mapping one and compute corresponding pfn
718 pmd = pmd_read_atomic(pmdp);
720 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
723 i = (addr - range->start) >> PAGE_SHIFT;
724 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
728 * We have handled all the valid case above ie either none, migration,
729 * huge or transparent huge. At this point either it is a valid pmd
730 * entry pointing to pte directory or it is a bad pmd that will not
734 return hmm_pfns_bad(start, end, walk);
736 ptep = pte_offset_map(pmdp, addr);
737 i = (addr - range->start) >> PAGE_SHIFT;
738 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
741 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
743 /* hmm_vma_handle_pte() did unmap pte directory */
744 hmm_vma_walk->last = addr;
748 if (hmm_vma_walk->pgmap) {
750 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751 * so that we can leverage get_dev_pagemap() optimization which
752 * will not re-take a reference on a pgmap if we already have
755 put_dev_pagemap(hmm_vma_walk->pgmap);
756 hmm_vma_walk->pgmap = NULL;
760 hmm_vma_walk->last = addr;
764 static int hmm_vma_walk_pud(pud_t *pudp,
767 struct mm_walk *walk)
769 struct hmm_vma_walk *hmm_vma_walk = walk->private;
770 struct hmm_range *range = hmm_vma_walk->range;
771 unsigned long addr = start, next;
777 pud = READ_ONCE(*pudp);
779 return hmm_vma_walk_hole(start, end, walk);
781 if (pud_huge(pud) && pud_devmap(pud)) {
782 unsigned long i, npages, pfn;
783 uint64_t *pfns, cpu_flags;
784 bool fault, write_fault;
786 if (!pud_present(pud))
787 return hmm_vma_walk_hole(start, end, walk);
789 i = (addr - range->start) >> PAGE_SHIFT;
790 npages = (end - addr) >> PAGE_SHIFT;
791 pfns = &range->pfns[i];
793 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795 cpu_flags, &fault, &write_fault);
796 if (fault || write_fault)
797 return hmm_vma_walk_hole_(addr, end, fault,
800 #ifdef CONFIG_HUGETLB_PAGE
801 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
802 for (i = 0; i < npages; ++i, ++pfn) {
803 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
804 hmm_vma_walk->pgmap);
805 if (unlikely(!hmm_vma_walk->pgmap))
807 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
810 if (hmm_vma_walk->pgmap) {
811 put_dev_pagemap(hmm_vma_walk->pgmap);
812 hmm_vma_walk->pgmap = NULL;
814 hmm_vma_walk->last = end;
821 split_huge_pud(walk->vma, pudp, addr);
825 pmdp = pmd_offset(pudp, addr);
827 next = pmd_addr_end(addr, end);
828 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
831 } while (pmdp++, addr = next, addr != end);
836 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
837 unsigned long start, unsigned long end,
838 struct mm_walk *walk)
840 #ifdef CONFIG_HUGETLB_PAGE
841 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
842 struct hmm_vma_walk *hmm_vma_walk = walk->private;
843 struct hmm_range *range = hmm_vma_walk->range;
844 struct vm_area_struct *vma = walk->vma;
845 struct hstate *h = hstate_vma(vma);
846 uint64_t orig_pfn, cpu_flags;
847 bool fault, write_fault;
852 size = 1UL << huge_page_shift(h);
854 if (range->page_shift != PAGE_SHIFT) {
855 /* Make sure we are looking at full page. */
858 if (end < (start + size))
860 pfn_inc = size >> PAGE_SHIFT;
867 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
868 entry = huge_ptep_get(pte);
870 i = (start - range->start) >> range->page_shift;
871 orig_pfn = range->pfns[i];
872 range->pfns[i] = range->values[HMM_PFN_NONE];
873 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
874 fault = write_fault = false;
875 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
876 &fault, &write_fault);
877 if (fault || write_fault) {
882 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
883 for (; addr < end; addr += size, i++, pfn += pfn_inc)
884 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
886 hmm_vma_walk->last = end;
892 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
895 #else /* CONFIG_HUGETLB_PAGE */
900 static void hmm_pfns_clear(struct hmm_range *range,
905 for (; addr < end; addr += PAGE_SIZE, pfns++)
906 *pfns = range->values[HMM_PFN_NONE];
910 * hmm_range_register() - start tracking change to CPU page table over a range
912 * @mm: the mm struct for the range of virtual address
913 * @start: start virtual address (inclusive)
914 * @end: end virtual address (exclusive)
915 * @page_shift: expect page shift for the range
916 * Returns 0 on success, -EFAULT if the address space is no longer valid
918 * Track updates to the CPU page table see include/linux/hmm.h
920 int hmm_range_register(struct hmm_range *range,
921 struct mm_struct *mm,
926 unsigned long mask = ((1UL << page_shift) - 1UL);
928 range->valid = false;
931 if ((start & mask) || (end & mask))
936 range->page_shift = page_shift;
937 range->start = start;
940 range->hmm = hmm_get_or_create(mm);
944 /* Check if hmm_mm_destroy() was call. */
945 if (range->hmm->mm == NULL || range->hmm->dead) {
950 /* Initialize range to track CPU page table update */
951 mutex_lock(&range->hmm->lock);
953 list_add_rcu(&range->list, &range->hmm->ranges);
956 * If there are any concurrent notifiers we have to wait for them for
957 * the range to be valid (see hmm_range_wait_until_valid()).
959 if (!range->hmm->notifiers)
961 mutex_unlock(&range->hmm->lock);
965 EXPORT_SYMBOL(hmm_range_register);
968 * hmm_range_unregister() - stop tracking change to CPU page table over a range
971 * Range struct is used to track updates to the CPU page table after a call to
972 * hmm_range_register(). See include/linux/hmm.h for how to use it.
974 void hmm_range_unregister(struct hmm_range *range)
976 /* Sanity check this really should not happen. */
977 if (range->hmm == NULL || range->end <= range->start)
980 mutex_lock(&range->hmm->lock);
981 list_del_rcu(&range->list);
982 mutex_unlock(&range->hmm->lock);
984 /* Drop reference taken by hmm_range_register() */
985 range->valid = false;
989 EXPORT_SYMBOL(hmm_range_unregister);
992 * hmm_range_snapshot() - snapshot CPU page table for a range
994 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
995 * permission (for instance asking for write and range is read only),
996 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997 * vma or it is illegal to access that range), number of valid pages
998 * in range->pfns[] (from range start address).
1000 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001 * validity is tracked by range struct. See in include/linux/hmm.h for example
1004 long hmm_range_snapshot(struct hmm_range *range)
1006 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1007 unsigned long start = range->start, end;
1008 struct hmm_vma_walk hmm_vma_walk;
1009 struct hmm *hmm = range->hmm;
1010 struct vm_area_struct *vma;
1011 struct mm_walk mm_walk;
1013 /* Check if hmm_mm_destroy() was call. */
1014 if (hmm->mm == NULL || hmm->dead)
1018 /* If range is no longer valid force retry. */
1022 vma = find_vma(hmm->mm, start);
1023 if (vma == NULL || (vma->vm_flags & device_vma))
1026 if (is_vm_hugetlb_page(vma)) {
1027 struct hstate *h = hstate_vma(vma);
1029 if (huge_page_shift(h) != range->page_shift &&
1030 range->page_shift != PAGE_SHIFT)
1033 if (range->page_shift != PAGE_SHIFT)
1037 if (!(vma->vm_flags & VM_READ)) {
1039 * If vma do not allow read access, then assume that it
1040 * does not allow write access, either. HMM does not
1041 * support architecture that allow write without read.
1043 hmm_pfns_clear(range, range->pfns,
1044 range->start, range->end);
1049 hmm_vma_walk.pgmap = NULL;
1050 hmm_vma_walk.last = start;
1051 hmm_vma_walk.fault = false;
1052 hmm_vma_walk.range = range;
1053 mm_walk.private = &hmm_vma_walk;
1054 end = min(range->end, vma->vm_end);
1057 mm_walk.mm = vma->vm_mm;
1058 mm_walk.pte_entry = NULL;
1059 mm_walk.test_walk = NULL;
1060 mm_walk.hugetlb_entry = NULL;
1061 mm_walk.pud_entry = hmm_vma_walk_pud;
1062 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1063 mm_walk.pte_hole = hmm_vma_walk_hole;
1064 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1066 walk_page_range(start, end, &mm_walk);
1068 } while (start < range->end);
1070 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1072 EXPORT_SYMBOL(hmm_range_snapshot);
1075 * hmm_range_fault() - try to fault some address in a virtual address range
1076 * @range: range being faulted
1077 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1078 * Returns: number of valid pages in range->pfns[] (from range start
1079 * address). This may be zero. If the return value is negative,
1080 * then one of the following values may be returned:
1082 * -EINVAL invalid arguments or mm or virtual address are in an
1083 * invalid vma (for instance device file vma).
1084 * -ENOMEM: Out of memory.
1085 * -EPERM: Invalid permission (for instance asking for write and
1086 * range is read only).
1087 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1088 * happens if block argument is false.
1089 * -EBUSY: If the the range is being invalidated and you should wait
1090 * for invalidation to finish.
1091 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1092 * that range), number of valid pages in range->pfns[] (from
1093 * range start address).
1095 * This is similar to a regular CPU page fault except that it will not trigger
1096 * any memory migration if the memory being faulted is not accessible by CPUs
1097 * and caller does not ask for migration.
1099 * On error, for one virtual address in the range, the function will mark the
1100 * corresponding HMM pfn entry with an error flag.
1102 long hmm_range_fault(struct hmm_range *range, bool block)
1104 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1105 unsigned long start = range->start, end;
1106 struct hmm_vma_walk hmm_vma_walk;
1107 struct hmm *hmm = range->hmm;
1108 struct vm_area_struct *vma;
1109 struct mm_walk mm_walk;
1112 /* Check if hmm_mm_destroy() was call. */
1113 if (hmm->mm == NULL || hmm->dead)
1117 /* If range is no longer valid force retry. */
1118 if (!range->valid) {
1119 up_read(&hmm->mm->mmap_sem);
1123 vma = find_vma(hmm->mm, start);
1124 if (vma == NULL || (vma->vm_flags & device_vma))
1127 if (is_vm_hugetlb_page(vma)) {
1128 if (huge_page_shift(hstate_vma(vma)) !=
1129 range->page_shift &&
1130 range->page_shift != PAGE_SHIFT)
1133 if (range->page_shift != PAGE_SHIFT)
1137 if (!(vma->vm_flags & VM_READ)) {
1139 * If vma do not allow read access, then assume that it
1140 * does not allow write access, either. HMM does not
1141 * support architecture that allow write without read.
1143 hmm_pfns_clear(range, range->pfns,
1144 range->start, range->end);
1149 hmm_vma_walk.pgmap = NULL;
1150 hmm_vma_walk.last = start;
1151 hmm_vma_walk.fault = true;
1152 hmm_vma_walk.block = block;
1153 hmm_vma_walk.range = range;
1154 mm_walk.private = &hmm_vma_walk;
1155 end = min(range->end, vma->vm_end);
1158 mm_walk.mm = vma->vm_mm;
1159 mm_walk.pte_entry = NULL;
1160 mm_walk.test_walk = NULL;
1161 mm_walk.hugetlb_entry = NULL;
1162 mm_walk.pud_entry = hmm_vma_walk_pud;
1163 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1164 mm_walk.pte_hole = hmm_vma_walk_hole;
1165 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1168 ret = walk_page_range(start, end, &mm_walk);
1169 start = hmm_vma_walk.last;
1171 /* Keep trying while the range is valid. */
1172 } while (ret == -EBUSY && range->valid);
1177 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 hmm_pfns_clear(range, &range->pfns[i],
1179 hmm_vma_walk.last, range->end);
1184 } while (start < range->end);
1186 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1188 EXPORT_SYMBOL(hmm_range_fault);
1191 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1192 * @range: range being faulted
1193 * @device: device against to dma map page to
1194 * @daddrs: dma address of mapped pages
1195 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1196 * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1197 * drop and you need to try again, some other error value otherwise
1199 * Note same usage pattern as hmm_range_fault().
1201 long hmm_range_dma_map(struct hmm_range *range,
1202 struct device *device,
1206 unsigned long i, npages, mapped;
1209 ret = hmm_range_fault(range, block);
1211 return ret ? ret : -EBUSY;
1213 npages = (range->end - range->start) >> PAGE_SHIFT;
1214 for (i = 0, mapped = 0; i < npages; ++i) {
1215 enum dma_data_direction dir = DMA_TO_DEVICE;
1219 * FIXME need to update DMA API to provide invalid DMA address
1220 * value instead of a function to test dma address value. This
1221 * would remove lot of dumb code duplicated accross many arch.
1223 * For now setting it to 0 here is good enough as the pfns[]
1224 * value is what is use to check what is valid and what isn't.
1228 page = hmm_device_entry_to_page(range, range->pfns[i]);
1232 /* Check if range is being invalidated */
1233 if (!range->valid) {
1238 /* If it is read and write than map bi-directional. */
1239 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1240 dir = DMA_BIDIRECTIONAL;
1242 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1243 if (dma_mapping_error(device, daddrs[i])) {
1254 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1255 enum dma_data_direction dir = DMA_TO_DEVICE;
1258 page = hmm_device_entry_to_page(range, range->pfns[i]);
1262 if (dma_mapping_error(device, daddrs[i]))
1265 /* If it is read and write than map bi-directional. */
1266 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1267 dir = DMA_BIDIRECTIONAL;
1269 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1275 EXPORT_SYMBOL(hmm_range_dma_map);
1278 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1279 * @range: range being unmapped
1280 * @vma: the vma against which the range (optional)
1281 * @device: device against which dma map was done
1282 * @daddrs: dma address of mapped pages
1283 * @dirty: dirty page if it had the write flag set
1284 * Returns: number of page unmapped on success, -EINVAL otherwise
1286 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1287 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1288 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1289 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1291 long hmm_range_dma_unmap(struct hmm_range *range,
1292 struct vm_area_struct *vma,
1293 struct device *device,
1297 unsigned long i, npages;
1301 if (range->end <= range->start)
1308 npages = (range->end - range->start) >> PAGE_SHIFT;
1309 for (i = 0; i < npages; ++i) {
1310 enum dma_data_direction dir = DMA_TO_DEVICE;
1313 page = hmm_device_entry_to_page(range, range->pfns[i]);
1317 /* If it is read and write than map bi-directional. */
1318 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1319 dir = DMA_BIDIRECTIONAL;
1322 * See comments in function description on why it is
1323 * safe here to call set_page_dirty()
1326 set_page_dirty(page);
1329 /* Unmap and clear pfns/dma address */
1330 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1331 range->pfns[i] = range->values[HMM_PFN_NONE];
1332 /* FIXME see comments in hmm_vma_dma_map() */
1339 EXPORT_SYMBOL(hmm_range_dma_unmap);
1340 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1343 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1344 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1349 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1355 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1358 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1360 struct hmm_devmem *devmem;
1362 devmem = container_of(ref, struct hmm_devmem, ref);
1363 complete(&devmem->completion);
1366 static void hmm_devmem_ref_exit(void *data)
1368 struct percpu_ref *ref = data;
1369 struct hmm_devmem *devmem;
1371 devmem = container_of(ref, struct hmm_devmem, ref);
1372 wait_for_completion(&devmem->completion);
1373 percpu_ref_exit(ref);
1376 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1378 percpu_ref_kill(ref);
1381 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1383 const struct page *page,
1387 struct hmm_devmem *devmem = page->pgmap->data;
1389 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1392 static void hmm_devmem_free(struct page *page, void *data)
1394 struct hmm_devmem *devmem = data;
1396 page->mapping = NULL;
1398 devmem->ops->free(devmem, page);
1402 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1404 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1405 * @device: device struct to bind the resource too
1406 * @size: size in bytes of the device memory to add
1407 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1409 * This function first finds an empty range of physical address big enough to
1410 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1411 * in turn allocates struct pages. It does not do anything beyond that; all
1412 * events affecting the memory will go through the various callbacks provided
1413 * by hmm_devmem_ops struct.
1415 * Device driver should call this function during device initialization and
1416 * is then responsible of memory management. HMM only provides helpers.
1418 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1419 struct device *device,
1422 struct hmm_devmem *devmem;
1423 resource_size_t addr;
1427 dev_pagemap_get_ops();
1429 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1431 return ERR_PTR(-ENOMEM);
1433 init_completion(&devmem->completion);
1434 devmem->pfn_first = -1UL;
1435 devmem->pfn_last = -1UL;
1436 devmem->resource = NULL;
1437 devmem->device = device;
1440 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1443 return ERR_PTR(ret);
1445 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1447 return ERR_PTR(ret);
1449 size = ALIGN(size, PA_SECTION_SIZE);
1450 addr = min((unsigned long)iomem_resource.end,
1451 (1UL << MAX_PHYSMEM_BITS) - 1);
1452 addr = addr - size + 1UL;
1455 * FIXME add a new helper to quickly walk resource tree and find free
1458 * FIXME what about ioport_resource resource ?
1460 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1461 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1462 if (ret != REGION_DISJOINT)
1465 devmem->resource = devm_request_mem_region(device, addr, size,
1467 if (!devmem->resource)
1468 return ERR_PTR(-ENOMEM);
1471 if (!devmem->resource)
1472 return ERR_PTR(-ERANGE);
1474 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1475 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1476 devmem->pfn_last = devmem->pfn_first +
1477 (resource_size(devmem->resource) >> PAGE_SHIFT);
1478 devmem->page_fault = hmm_devmem_fault;
1480 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1481 devmem->pagemap.res = *devmem->resource;
1482 devmem->pagemap.page_free = hmm_devmem_free;
1483 devmem->pagemap.altmap_valid = false;
1484 devmem->pagemap.ref = &devmem->ref;
1485 devmem->pagemap.data = devmem;
1486 devmem->pagemap.kill = hmm_devmem_ref_kill;
1488 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1493 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1495 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1496 struct device *device,
1497 struct resource *res)
1499 struct hmm_devmem *devmem;
1503 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1504 return ERR_PTR(-EINVAL);
1506 dev_pagemap_get_ops();
1508 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1510 return ERR_PTR(-ENOMEM);
1512 init_completion(&devmem->completion);
1513 devmem->pfn_first = -1UL;
1514 devmem->pfn_last = -1UL;
1515 devmem->resource = res;
1516 devmem->device = device;
1519 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1522 return ERR_PTR(ret);
1524 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1527 return ERR_PTR(ret);
1529 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1530 devmem->pfn_last = devmem->pfn_first +
1531 (resource_size(devmem->resource) >> PAGE_SHIFT);
1532 devmem->page_fault = hmm_devmem_fault;
1534 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1535 devmem->pagemap.res = *devmem->resource;
1536 devmem->pagemap.page_free = hmm_devmem_free;
1537 devmem->pagemap.altmap_valid = false;
1538 devmem->pagemap.ref = &devmem->ref;
1539 devmem->pagemap.data = devmem;
1540 devmem->pagemap.kill = hmm_devmem_ref_kill;
1542 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1547 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1550 * A device driver that wants to handle multiple devices memory through a
1551 * single fake device can use hmm_device to do so. This is purely a helper
1552 * and it is not needed to make use of any HMM functionality.
1554 #define HMM_DEVICE_MAX 256
1556 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1557 static DEFINE_SPINLOCK(hmm_device_lock);
1558 static struct class *hmm_device_class;
1559 static dev_t hmm_device_devt;
1561 static void hmm_device_release(struct device *device)
1563 struct hmm_device *hmm_device;
1565 hmm_device = container_of(device, struct hmm_device, device);
1566 spin_lock(&hmm_device_lock);
1567 clear_bit(hmm_device->minor, hmm_device_mask);
1568 spin_unlock(&hmm_device_lock);
1573 struct hmm_device *hmm_device_new(void *drvdata)
1575 struct hmm_device *hmm_device;
1577 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1579 return ERR_PTR(-ENOMEM);
1581 spin_lock(&hmm_device_lock);
1582 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1583 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1584 spin_unlock(&hmm_device_lock);
1586 return ERR_PTR(-EBUSY);
1588 set_bit(hmm_device->minor, hmm_device_mask);
1589 spin_unlock(&hmm_device_lock);
1591 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1592 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1594 hmm_device->device.release = hmm_device_release;
1595 dev_set_drvdata(&hmm_device->device, drvdata);
1596 hmm_device->device.class = hmm_device_class;
1597 device_initialize(&hmm_device->device);
1601 EXPORT_SYMBOL(hmm_device_new);
1603 void hmm_device_put(struct hmm_device *hmm_device)
1605 put_device(&hmm_device->device);
1607 EXPORT_SYMBOL(hmm_device_put);
1609 static int __init hmm_init(void)
1613 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1619 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1620 if (IS_ERR(hmm_device_class)) {
1621 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1622 return PTR_ERR(hmm_device_class);
1627 device_initcall(hmm_init);
1628 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */