]> Git Repo - linux.git/blob - drivers/iommu/intel/dmar.c
iommu/vt-d: Remove commented-out code
[linux.git] / drivers / iommu / intel / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <[email protected]>
7  * Author: Shaohua Li <[email protected]>
8  * Author: Anil S Keshavamurthy <[email protected]>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 #include "perfmon.h"
38
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
42         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
43         bool                    ignore_unhandled;
44         bool                    print_entry;
45 };
46
47 /*
48  * Assumptions:
49  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50  *    before IO devices managed by that unit.
51  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52  *    after IO devices managed by that unit.
53  * 3) Hotplug events are rare.
54  *
55  * Locking rules for DMA and interrupt remapping related global data structures:
56  * 1) Use dmar_global_lock in process context
57  * 2) Use RCU in interrupt context
58  */
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
61
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static DEFINE_IDA(dmar_seq_ids);
65
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
68
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71         /*
72          * add INCLUDE_ALL at the tail, so scan the list will find it at
73          * the very end.
74          */
75         if (drhd->include_all)
76                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77         else
78                 list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83         struct acpi_dmar_device_scope *scope;
84
85         *cnt = 0;
86         while (start < end) {
87                 scope = start;
88                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91                         (*cnt)++;
92                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94                         pr_warn("Unsupported device scope\n");
95                 }
96                 start += scope->length;
97         }
98         if (*cnt == 0)
99                 return NULL;
100
101         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106         int i;
107         struct device *tmp_dev;
108
109         if (*devices && *cnt) {
110                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111                         put_device(tmp_dev);
112                 kfree(*devices);
113         }
114
115         *devices = NULL;
116         *cnt = 0;
117 }
118
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125         int level = 0;
126         size_t size;
127         struct pci_dev *tmp;
128         struct dmar_pci_notify_info *info;
129
130         /*
131          * Ignore devices that have a domain number higher than what can
132          * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
133          */
134         if (pci_domain_nr(dev->bus) > U16_MAX)
135                 return NULL;
136
137         /* Only generate path[] for device addition event */
138         if (event == BUS_NOTIFY_ADD_DEVICE)
139                 for (tmp = dev; tmp; tmp = tmp->bus->self)
140                         level++;
141
142         size = struct_size(info, path, level);
143         if (size <= sizeof(dmar_pci_notify_info_buf)) {
144                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
145         } else {
146                 info = kzalloc(size, GFP_KERNEL);
147                 if (!info) {
148                         if (dmar_dev_scope_status == 0)
149                                 dmar_dev_scope_status = -ENOMEM;
150                         return NULL;
151                 }
152         }
153
154         info->event = event;
155         info->dev = dev;
156         info->seg = pci_domain_nr(dev->bus);
157         info->level = level;
158         if (event == BUS_NOTIFY_ADD_DEVICE) {
159                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
160                         level--;
161                         info->path[level].bus = tmp->bus->number;
162                         info->path[level].device = PCI_SLOT(tmp->devfn);
163                         info->path[level].function = PCI_FUNC(tmp->devfn);
164                         if (pci_is_root_bus(tmp->bus))
165                                 info->bus = tmp->bus->number;
166                 }
167         }
168
169         return info;
170 }
171
172 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
173 {
174         if ((void *)info != dmar_pci_notify_info_buf)
175                 kfree(info);
176 }
177
178 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
179                                 struct acpi_dmar_pci_path *path, int count)
180 {
181         int i;
182
183         if (info->bus != bus)
184                 goto fallback;
185         if (info->level != count)
186                 goto fallback;
187
188         for (i = 0; i < count; i++) {
189                 if (path[i].device != info->path[i].device ||
190                     path[i].function != info->path[i].function)
191                         goto fallback;
192         }
193
194         return true;
195
196 fallback:
197
198         if (count != 1)
199                 return false;
200
201         i = info->level - 1;
202         if (bus              == info->path[i].bus &&
203             path[0].device   == info->path[i].device &&
204             path[0].function == info->path[i].function) {
205                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
206                         bus, path[0].device, path[0].function);
207                 return true;
208         }
209
210         return false;
211 }
212
213 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
214 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
215                           void *start, void*end, u16 segment,
216                           struct dmar_dev_scope *devices,
217                           int devices_cnt)
218 {
219         int i, level;
220         struct device *tmp, *dev = &info->dev->dev;
221         struct acpi_dmar_device_scope *scope;
222         struct acpi_dmar_pci_path *path;
223
224         if (segment != info->seg)
225                 return 0;
226
227         for (; start < end; start += scope->length) {
228                 scope = start;
229                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
230                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
231                         continue;
232
233                 path = (struct acpi_dmar_pci_path *)(scope + 1);
234                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
235                 if (!dmar_match_pci_path(info, scope->bus, path, level))
236                         continue;
237
238                 /*
239                  * We expect devices with endpoint scope to have normal PCI
240                  * headers, and devices with bridge scope to have bridge PCI
241                  * headers.  However PCI NTB devices may be listed in the
242                  * DMAR table with bridge scope, even though they have a
243                  * normal PCI header.  NTB devices are identified by class
244                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
245                  * for this special case.
246                  */
247                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
248                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
249                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
250                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
251                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
252                         pr_warn("Device scope type does not match for %s\n",
253                                 pci_name(info->dev));
254                         return -EINVAL;
255                 }
256
257                 for_each_dev_scope(devices, devices_cnt, i, tmp)
258                         if (tmp == NULL) {
259                                 devices[i].bus = info->dev->bus->number;
260                                 devices[i].devfn = info->dev->devfn;
261                                 rcu_assign_pointer(devices[i].dev,
262                                                    get_device(dev));
263                                 return 1;
264                         }
265                 if (WARN_ON(i >= devices_cnt))
266                         return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273                           struct dmar_dev_scope *devices, int count)
274 {
275         int index;
276         struct device *tmp;
277
278         if (info->seg != segment)
279                 return 0;
280
281         for_each_active_dev_scope(devices, count, index, tmp)
282                 if (tmp == &info->dev->dev) {
283                         RCU_INIT_POINTER(devices[index].dev, NULL);
284                         synchronize_rcu();
285                         put_device(tmp);
286                         return 1;
287                 }
288
289         return 0;
290 }
291
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294         int ret = 0;
295         struct dmar_drhd_unit *dmaru;
296         struct acpi_dmar_hardware_unit *drhd;
297
298         for_each_drhd_unit(dmaru) {
299                 if (dmaru->include_all)
300                         continue;
301
302                 drhd = container_of(dmaru->hdr,
303                                     struct acpi_dmar_hardware_unit, header);
304                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305                                 ((void *)drhd) + drhd->header.length,
306                                 dmaru->segment,
307                                 dmaru->devices, dmaru->devices_cnt);
308                 if (ret)
309                         break;
310         }
311         if (ret >= 0)
312                 ret = dmar_iommu_notify_scope_dev(info);
313         if (ret < 0 && dmar_dev_scope_status == 0)
314                 dmar_dev_scope_status = ret;
315
316         if (ret >= 0)
317                 intel_irq_remap_add_device(info);
318
319         return ret;
320 }
321
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324         struct dmar_drhd_unit *dmaru;
325
326         for_each_drhd_unit(dmaru)
327                 if (dmar_remove_dev_scope(info, dmaru->segment,
328                         dmaru->devices, dmaru->devices_cnt))
329                         break;
330         dmar_iommu_notify_scope_dev(info);
331 }
332
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335         struct pci_dev *physfn = pci_physfn(pdev);
336
337         dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341                                  unsigned long action, void *data)
342 {
343         struct pci_dev *pdev = to_pci_dev(data);
344         struct dmar_pci_notify_info *info;
345
346         /* Only care about add/remove events for physical functions.
347          * For VFs we actually do the lookup based on the corresponding
348          * PF in device_to_iommu() anyway. */
349         if (pdev->is_virtfn) {
350                 /*
351                  * Ensure that the VF device inherits the irq domain of the
352                  * PF device. Ideally the device would inherit the domain
353                  * from the bus, but DMAR can have multiple units per bus
354                  * which makes this impossible. The VF 'bus' could inherit
355                  * from the PF device, but that's yet another x86'sism to
356                  * inflict on everybody else.
357                  */
358                 if (action == BUS_NOTIFY_ADD_DEVICE)
359                         vf_inherit_msi_domain(pdev);
360                 return NOTIFY_DONE;
361         }
362
363         if (action != BUS_NOTIFY_ADD_DEVICE &&
364             action != BUS_NOTIFY_REMOVED_DEVICE)
365                 return NOTIFY_DONE;
366
367         info = dmar_alloc_pci_notify_info(pdev, action);
368         if (!info)
369                 return NOTIFY_DONE;
370
371         down_write(&dmar_global_lock);
372         if (action == BUS_NOTIFY_ADD_DEVICE)
373                 dmar_pci_bus_add_dev(info);
374         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375                 dmar_pci_bus_del_dev(info);
376         up_write(&dmar_global_lock);
377
378         dmar_free_pci_notify_info(info);
379
380         return NOTIFY_OK;
381 }
382
383 static struct notifier_block dmar_pci_bus_nb = {
384         .notifier_call = dmar_pci_bus_notifier,
385         .priority = 1,
386 };
387
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391         struct dmar_drhd_unit *dmaru;
392
393         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394                                 dmar_rcu_check())
395                 if (dmaru->segment == drhd->segment &&
396                     dmaru->reg_base_addr == drhd->address)
397                         return dmaru;
398
399         return NULL;
400 }
401
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409         struct acpi_dmar_hardware_unit *drhd;
410         struct dmar_drhd_unit *dmaru;
411         int ret;
412
413         drhd = (struct acpi_dmar_hardware_unit *)header;
414         dmaru = dmar_find_dmaru(drhd);
415         if (dmaru)
416                 goto out;
417
418         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419         if (!dmaru)
420                 return -ENOMEM;
421
422         /*
423          * If header is allocated from slab by ACPI _DSM method, we need to
424          * copy the content because the memory buffer will be freed on return.
425          */
426         dmaru->hdr = (void *)(dmaru + 1);
427         memcpy(dmaru->hdr, header, header->length);
428         dmaru->reg_base_addr = drhd->address;
429         dmaru->segment = drhd->segment;
430         /* The size of the register set is 2 ^ N 4 KB pages. */
431         dmaru->reg_size = 1UL << (drhd->size + 12);
432         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
433         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
434                                               ((void *)drhd) + drhd->header.length,
435                                               &dmaru->devices_cnt);
436         if (dmaru->devices_cnt && dmaru->devices == NULL) {
437                 kfree(dmaru);
438                 return -ENOMEM;
439         }
440
441         ret = alloc_iommu(dmaru);
442         if (ret) {
443                 dmar_free_dev_scope(&dmaru->devices,
444                                     &dmaru->devices_cnt);
445                 kfree(dmaru);
446                 return ret;
447         }
448         dmar_register_drhd_unit(dmaru);
449
450 out:
451         if (arg)
452                 (*(int *)arg)++;
453
454         return 0;
455 }
456
457 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
458 {
459         if (dmaru->devices && dmaru->devices_cnt)
460                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
461         if (dmaru->iommu)
462                 free_iommu(dmaru->iommu);
463         kfree(dmaru);
464 }
465
466 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
467                                       void *arg)
468 {
469         struct acpi_dmar_andd *andd = (void *)header;
470
471         /* Check for NUL termination within the designated length */
472         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
473                 pr_warn(FW_BUG
474                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
475                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
476                            dmi_get_system_info(DMI_BIOS_VENDOR),
477                            dmi_get_system_info(DMI_BIOS_VERSION),
478                            dmi_get_system_info(DMI_PRODUCT_VERSION));
479                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
480                 return -EINVAL;
481         }
482         pr_info("ANDD device: %x name: %s\n", andd->device_number,
483                 andd->device_name);
484
485         return 0;
486 }
487
488 #ifdef CONFIG_ACPI_NUMA
489 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
490 {
491         struct acpi_dmar_rhsa *rhsa;
492         struct dmar_drhd_unit *drhd;
493
494         rhsa = (struct acpi_dmar_rhsa *)header;
495         for_each_drhd_unit(drhd) {
496                 if (drhd->reg_base_addr == rhsa->base_address) {
497                         int node = pxm_to_node(rhsa->proximity_domain);
498
499                         if (node != NUMA_NO_NODE && !node_online(node))
500                                 node = NUMA_NO_NODE;
501                         drhd->iommu->node = node;
502                         return 0;
503                 }
504         }
505         pr_warn(FW_BUG
506                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
507                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
508                 rhsa->base_address,
509                 dmi_get_system_info(DMI_BIOS_VENDOR),
510                 dmi_get_system_info(DMI_BIOS_VERSION),
511                 dmi_get_system_info(DMI_PRODUCT_VERSION));
512         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
513
514         return 0;
515 }
516 #else
517 #define dmar_parse_one_rhsa             dmar_res_noop
518 #endif
519
520 static void
521 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
522 {
523         struct acpi_dmar_hardware_unit *drhd;
524         struct acpi_dmar_reserved_memory *rmrr;
525         struct acpi_dmar_atsr *atsr;
526         struct acpi_dmar_rhsa *rhsa;
527         struct acpi_dmar_satc *satc;
528
529         switch (header->type) {
530         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
532                                     header);
533                 pr_info("DRHD base: %#016Lx flags: %#x\n",
534                         (unsigned long long)drhd->address, drhd->flags);
535                 break;
536         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538                                     header);
539                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540                         (unsigned long long)rmrr->base_address,
541                         (unsigned long long)rmrr->end_address);
542                 break;
543         case ACPI_DMAR_TYPE_ROOT_ATS:
544                 atsr = container_of(header, struct acpi_dmar_atsr, header);
545                 pr_info("ATSR flags: %#x\n", atsr->flags);
546                 break;
547         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550                        (unsigned long long)rhsa->base_address,
551                        rhsa->proximity_domain);
552                 break;
553         case ACPI_DMAR_TYPE_NAMESPACE:
554                 /* We don't print this here because we need to sanity-check
555                    it first. So print it in dmar_parse_one_andd() instead. */
556                 break;
557         case ACPI_DMAR_TYPE_SATC:
558                 satc = container_of(header, struct acpi_dmar_satc, header);
559                 pr_info("SATC flags: 0x%x\n", satc->flags);
560                 break;
561         }
562 }
563
564 /**
565  * dmar_table_detect - checks to see if the platform supports DMAR devices
566  */
567 static int __init dmar_table_detect(void)
568 {
569         acpi_status status = AE_OK;
570
571         /* if we could find DMAR table, then there are DMAR devices */
572         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
573
574         if (ACPI_SUCCESS(status) && !dmar_tbl) {
575                 pr_warn("Unable to map DMAR\n");
576                 status = AE_NOT_FOUND;
577         }
578
579         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
580 }
581
582 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
583                                        size_t len, struct dmar_res_callback *cb)
584 {
585         struct acpi_dmar_header *iter, *next;
586         struct acpi_dmar_header *end = ((void *)start) + len;
587
588         for (iter = start; iter < end; iter = next) {
589                 next = (void *)iter + iter->length;
590                 if (iter->length == 0) {
591                         /* Avoid looping forever on bad ACPI tables */
592                         pr_debug(FW_BUG "Invalid 0-length structure\n");
593                         break;
594                 } else if (next > end) {
595                         /* Avoid passing table end */
596                         pr_warn(FW_BUG "Record passes table end\n");
597                         return -EINVAL;
598                 }
599
600                 if (cb->print_entry)
601                         dmar_table_print_dmar_entry(iter);
602
603                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
604                         /* continue for forward compatibility */
605                         pr_debug("Unknown DMAR structure type %d\n",
606                                  iter->type);
607                 } else if (cb->cb[iter->type]) {
608                         int ret;
609
610                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
611                         if (ret)
612                                 return ret;
613                 } else if (!cb->ignore_unhandled) {
614                         pr_warn("No handler for DMAR structure type %d\n",
615                                 iter->type);
616                         return -EINVAL;
617                 }
618         }
619
620         return 0;
621 }
622
623 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
624                                        struct dmar_res_callback *cb)
625 {
626         return dmar_walk_remapping_entries((void *)(dmar + 1),
627                         dmar->header.length - sizeof(*dmar), cb);
628 }
629
630 /**
631  * parse_dmar_table - parses the DMA reporting table
632  */
633 static int __init
634 parse_dmar_table(void)
635 {
636         struct acpi_table_dmar *dmar;
637         int drhd_count = 0;
638         int ret;
639         struct dmar_res_callback cb = {
640                 .print_entry = true,
641                 .ignore_unhandled = true,
642                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
643                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
644                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
645                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
646                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
647                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
648                 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
649         };
650
651         /*
652          * Do it again, earlier dmar_tbl mapping could be mapped with
653          * fixed map.
654          */
655         dmar_table_detect();
656
657         /*
658          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
659          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
660          */
661         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
662
663         dmar = (struct acpi_table_dmar *)dmar_tbl;
664         if (!dmar)
665                 return -ENODEV;
666
667         if (dmar->width < PAGE_SHIFT - 1) {
668                 pr_warn("Invalid DMAR haw\n");
669                 return -EINVAL;
670         }
671
672         pr_info("Host address width %d\n", dmar->width + 1);
673         ret = dmar_walk_dmar_table(dmar, &cb);
674         if (ret == 0 && drhd_count == 0)
675                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
676
677         return ret;
678 }
679
680 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
681                                  int cnt, struct pci_dev *dev)
682 {
683         int index;
684         struct device *tmp;
685
686         while (dev) {
687                 for_each_active_dev_scope(devices, cnt, index, tmp)
688                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
689                                 return 1;
690
691                 /* Check our parent */
692                 dev = dev->bus->self;
693         }
694
695         return 0;
696 }
697
698 struct dmar_drhd_unit *
699 dmar_find_matched_drhd_unit(struct pci_dev *dev)
700 {
701         struct dmar_drhd_unit *dmaru;
702         struct acpi_dmar_hardware_unit *drhd;
703
704         dev = pci_physfn(dev);
705
706         rcu_read_lock();
707         for_each_drhd_unit(dmaru) {
708                 drhd = container_of(dmaru->hdr,
709                                     struct acpi_dmar_hardware_unit,
710                                     header);
711
712                 if (dmaru->include_all &&
713                     drhd->segment == pci_domain_nr(dev->bus))
714                         goto out;
715
716                 if (dmar_pci_device_match(dmaru->devices,
717                                           dmaru->devices_cnt, dev))
718                         goto out;
719         }
720         dmaru = NULL;
721 out:
722         rcu_read_unlock();
723
724         return dmaru;
725 }
726
727 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
728                                               struct acpi_device *adev)
729 {
730         struct dmar_drhd_unit *dmaru;
731         struct acpi_dmar_hardware_unit *drhd;
732         struct acpi_dmar_device_scope *scope;
733         struct device *tmp;
734         int i;
735         struct acpi_dmar_pci_path *path;
736
737         for_each_drhd_unit(dmaru) {
738                 drhd = container_of(dmaru->hdr,
739                                     struct acpi_dmar_hardware_unit,
740                                     header);
741
742                 for (scope = (void *)(drhd + 1);
743                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
744                      scope = ((void *)scope) + scope->length) {
745                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
746                                 continue;
747                         if (scope->enumeration_id != device_number)
748                                 continue;
749
750                         path = (void *)(scope + 1);
751                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
752                                 dev_name(&adev->dev), dmaru->reg_base_addr,
753                                 scope->bus, path->device, path->function);
754                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
755                                 if (tmp == NULL) {
756                                         dmaru->devices[i].bus = scope->bus;
757                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
758                                                                             path->function);
759                                         rcu_assign_pointer(dmaru->devices[i].dev,
760                                                            get_device(&adev->dev));
761                                         return;
762                                 }
763                         BUG_ON(i >= dmaru->devices_cnt);
764                 }
765         }
766         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
767                 device_number, dev_name(&adev->dev));
768 }
769
770 static int __init dmar_acpi_dev_scope_init(void)
771 {
772         struct acpi_dmar_andd *andd;
773
774         if (dmar_tbl == NULL)
775                 return -ENODEV;
776
777         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
778              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
779              andd = ((void *)andd) + andd->header.length) {
780                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
781                         acpi_handle h;
782                         struct acpi_device *adev;
783
784                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
785                                                           andd->device_name,
786                                                           &h))) {
787                                 pr_err("Failed to find handle for ACPI object %s\n",
788                                        andd->device_name);
789                                 continue;
790                         }
791                         adev = acpi_fetch_acpi_dev(h);
792                         if (!adev) {
793                                 pr_err("Failed to get device for ACPI object %s\n",
794                                        andd->device_name);
795                                 continue;
796                         }
797                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
798                 }
799         }
800         return 0;
801 }
802
803 int __init dmar_dev_scope_init(void)
804 {
805         struct pci_dev *dev = NULL;
806         struct dmar_pci_notify_info *info;
807
808         if (dmar_dev_scope_status != 1)
809                 return dmar_dev_scope_status;
810
811         if (list_empty(&dmar_drhd_units)) {
812                 dmar_dev_scope_status = -ENODEV;
813         } else {
814                 dmar_dev_scope_status = 0;
815
816                 dmar_acpi_dev_scope_init();
817
818                 for_each_pci_dev(dev) {
819                         if (dev->is_virtfn)
820                                 continue;
821
822                         info = dmar_alloc_pci_notify_info(dev,
823                                         BUS_NOTIFY_ADD_DEVICE);
824                         if (!info) {
825                                 pci_dev_put(dev);
826                                 return dmar_dev_scope_status;
827                         } else {
828                                 dmar_pci_bus_add_dev(info);
829                                 dmar_free_pci_notify_info(info);
830                         }
831                 }
832         }
833
834         return dmar_dev_scope_status;
835 }
836
837 void __init dmar_register_bus_notifier(void)
838 {
839         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
840 }
841
842
843 int __init dmar_table_init(void)
844 {
845         static int dmar_table_initialized;
846         int ret;
847
848         if (dmar_table_initialized == 0) {
849                 ret = parse_dmar_table();
850                 if (ret < 0) {
851                         if (ret != -ENODEV)
852                                 pr_info("Parse DMAR table failure.\n");
853                 } else  if (list_empty(&dmar_drhd_units)) {
854                         pr_info("No DMAR devices found\n");
855                         ret = -ENODEV;
856                 }
857
858                 if (ret < 0)
859                         dmar_table_initialized = ret;
860                 else
861                         dmar_table_initialized = 1;
862         }
863
864         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
865 }
866
867 static void warn_invalid_dmar(u64 addr, const char *message)
868 {
869         pr_warn_once(FW_BUG
870                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
871                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
872                 addr, message,
873                 dmi_get_system_info(DMI_BIOS_VENDOR),
874                 dmi_get_system_info(DMI_BIOS_VERSION),
875                 dmi_get_system_info(DMI_PRODUCT_VERSION));
876         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
877 }
878
879 static int __ref
880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
881 {
882         struct acpi_dmar_hardware_unit *drhd;
883         void __iomem *addr;
884         u64 cap, ecap;
885
886         drhd = (void *)entry;
887         if (!drhd->address) {
888                 warn_invalid_dmar(0, "");
889                 return -EINVAL;
890         }
891
892         if (arg)
893                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
894         else
895                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
896         if (!addr) {
897                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
898                 return -EINVAL;
899         }
900
901         cap = dmar_readq(addr + DMAR_CAP_REG);
902         ecap = dmar_readq(addr + DMAR_ECAP_REG);
903
904         if (arg)
905                 iounmap(addr);
906         else
907                 early_iounmap(addr, VTD_PAGE_SIZE);
908
909         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
910                 warn_invalid_dmar(drhd->address, " returns all ones");
911                 return -EINVAL;
912         }
913
914         return 0;
915 }
916
917 void __init detect_intel_iommu(void)
918 {
919         int ret;
920         struct dmar_res_callback validate_drhd_cb = {
921                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
922                 .ignore_unhandled = true,
923         };
924
925         down_write(&dmar_global_lock);
926         ret = dmar_table_detect();
927         if (!ret)
928                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
929                                            &validate_drhd_cb);
930         if (!ret && !no_iommu && !iommu_detected &&
931             (!dmar_disabled || dmar_platform_optin())) {
932                 iommu_detected = 1;
933                 /* Make sure ACS will be enabled */
934                 pci_request_acs();
935         }
936
937 #ifdef CONFIG_X86
938         if (!ret) {
939                 x86_init.iommu.iommu_init = intel_iommu_init;
940                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
941         }
942
943 #endif
944
945         if (dmar_tbl) {
946                 acpi_put_table(dmar_tbl);
947                 dmar_tbl = NULL;
948         }
949         up_write(&dmar_global_lock);
950 }
951
952 static void unmap_iommu(struct intel_iommu *iommu)
953 {
954         iounmap(iommu->reg);
955         release_mem_region(iommu->reg_phys, iommu->reg_size);
956 }
957
958 /**
959  * map_iommu: map the iommu's registers
960  * @iommu: the iommu to map
961  * @drhd: DMA remapping hardware definition structure
962  *
963  * Memory map the iommu's registers.  Start w/ a single page, and
964  * possibly expand if that turns out to be insufficent.
965  */
966 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
967 {
968         u64 phys_addr = drhd->reg_base_addr;
969         int map_size, err=0;
970
971         iommu->reg_phys = phys_addr;
972         iommu->reg_size = drhd->reg_size;
973
974         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
975                 pr_err("Can't reserve memory\n");
976                 err = -EBUSY;
977                 goto out;
978         }
979
980         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
981         if (!iommu->reg) {
982                 pr_err("Can't map the region\n");
983                 err = -ENOMEM;
984                 goto release;
985         }
986
987         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
988         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
989
990         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
991                 err = -EINVAL;
992                 warn_invalid_dmar(phys_addr, " returns all ones");
993                 goto unmap;
994         }
995
996         /* the registers might be more than one page */
997         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
998                          cap_max_fault_reg_offset(iommu->cap));
999         map_size = VTD_PAGE_ALIGN(map_size);
1000         if (map_size > iommu->reg_size) {
1001                 iounmap(iommu->reg);
1002                 release_mem_region(iommu->reg_phys, iommu->reg_size);
1003                 iommu->reg_size = map_size;
1004                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005                                         iommu->name)) {
1006                         pr_err("Can't reserve memory\n");
1007                         err = -EBUSY;
1008                         goto out;
1009                 }
1010                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011                 if (!iommu->reg) {
1012                         pr_err("Can't map the region\n");
1013                         err = -ENOMEM;
1014                         goto release;
1015                 }
1016         }
1017
1018         if (cap_ecmds(iommu->cap)) {
1019                 int i;
1020
1021                 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022                         iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023                                                        i * DMA_ECMD_REG_STEP);
1024                 }
1025         }
1026
1027         err = 0;
1028         goto out;
1029
1030 unmap:
1031         iounmap(iommu->reg);
1032 release:
1033         release_mem_region(iommu->reg_phys, iommu->reg_size);
1034 out:
1035         return err;
1036 }
1037
1038 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039 {
1040         struct intel_iommu *iommu;
1041         u32 ver, sts;
1042         int agaw = -1;
1043         int msagaw = -1;
1044         int err;
1045
1046         if (!drhd->reg_base_addr) {
1047                 warn_invalid_dmar(0, "");
1048                 return -EINVAL;
1049         }
1050
1051         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052         if (!iommu)
1053                 return -ENOMEM;
1054
1055         iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056                                         DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057         if (iommu->seq_id < 0) {
1058                 pr_err("Failed to allocate seq_id\n");
1059                 err = iommu->seq_id;
1060                 goto error;
1061         }
1062         sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064         err = map_iommu(iommu, drhd);
1065         if (err) {
1066                 pr_err("Failed to map %s\n", iommu->name);
1067                 goto error_free_seq_id;
1068         }
1069
1070         err = -EINVAL;
1071         if (!cap_sagaw(iommu->cap) &&
1072             (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073                 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074                         iommu->name);
1075                 drhd->ignored = 1;
1076         }
1077
1078         if (!drhd->ignored) {
1079                 agaw = iommu_calculate_agaw(iommu);
1080                 if (agaw < 0) {
1081                         pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082                                iommu->seq_id);
1083                         drhd->ignored = 1;
1084                 }
1085         }
1086         if (!drhd->ignored) {
1087                 msagaw = iommu_calculate_max_sagaw(iommu);
1088                 if (msagaw < 0) {
1089                         pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090                                iommu->seq_id);
1091                         drhd->ignored = 1;
1092                         agaw = -1;
1093                 }
1094         }
1095         iommu->agaw = agaw;
1096         iommu->msagaw = msagaw;
1097         iommu->segment = drhd->segment;
1098
1099         iommu->node = NUMA_NO_NODE;
1100
1101         ver = readl(iommu->reg + DMAR_VER_REG);
1102         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1103                 iommu->name,
1104                 (unsigned long long)drhd->reg_base_addr,
1105                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1106                 (unsigned long long)iommu->cap,
1107                 (unsigned long long)iommu->ecap);
1108
1109         /* Reflect status in gcmd */
1110         sts = readl(iommu->reg + DMAR_GSTS_REG);
1111         if (sts & DMA_GSTS_IRES)
1112                 iommu->gcmd |= DMA_GCMD_IRE;
1113         if (sts & DMA_GSTS_TES)
1114                 iommu->gcmd |= DMA_GCMD_TE;
1115         if (sts & DMA_GSTS_QIES)
1116                 iommu->gcmd |= DMA_GCMD_QIE;
1117
1118         if (alloc_iommu_pmu(iommu))
1119                 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1120
1121         raw_spin_lock_init(&iommu->register_lock);
1122
1123         /*
1124          * A value of N in PSS field of eCap register indicates hardware
1125          * supports PASID field of N+1 bits.
1126          */
1127         if (pasid_supported(iommu))
1128                 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1129
1130         /*
1131          * This is only for hotplug; at boot time intel_iommu_enabled won't
1132          * be set yet. When intel_iommu_init() runs, it registers the units
1133          * present at boot time, then sets intel_iommu_enabled.
1134          */
1135         if (intel_iommu_enabled && !drhd->ignored) {
1136                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1137                                              intel_iommu_groups,
1138                                              "%s", iommu->name);
1139                 if (err)
1140                         goto err_unmap;
1141
1142                 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1143                 if (err)
1144                         goto err_sysfs;
1145
1146                 iommu_pmu_register(iommu);
1147         }
1148
1149         drhd->iommu = iommu;
1150         iommu->drhd = drhd;
1151
1152         return 0;
1153
1154 err_sysfs:
1155         iommu_device_sysfs_remove(&iommu->iommu);
1156 err_unmap:
1157         free_iommu_pmu(iommu);
1158         unmap_iommu(iommu);
1159 error_free_seq_id:
1160         ida_free(&dmar_seq_ids, iommu->seq_id);
1161 error:
1162         kfree(iommu);
1163         return err;
1164 }
1165
1166 static void free_iommu(struct intel_iommu *iommu)
1167 {
1168         if (intel_iommu_enabled && !iommu->drhd->ignored) {
1169                 iommu_pmu_unregister(iommu);
1170                 iommu_device_unregister(&iommu->iommu);
1171                 iommu_device_sysfs_remove(&iommu->iommu);
1172         }
1173
1174         free_iommu_pmu(iommu);
1175
1176         if (iommu->irq) {
1177                 if (iommu->pr_irq) {
1178                         free_irq(iommu->pr_irq, iommu);
1179                         dmar_free_hwirq(iommu->pr_irq);
1180                         iommu->pr_irq = 0;
1181                 }
1182                 free_irq(iommu->irq, iommu);
1183                 dmar_free_hwirq(iommu->irq);
1184                 iommu->irq = 0;
1185         }
1186
1187         if (iommu->qi) {
1188                 free_page((unsigned long)iommu->qi->desc);
1189                 kfree(iommu->qi->desc_status);
1190                 kfree(iommu->qi);
1191         }
1192
1193         if (iommu->reg)
1194                 unmap_iommu(iommu);
1195
1196         ida_free(&dmar_seq_ids, iommu->seq_id);
1197         kfree(iommu);
1198 }
1199
1200 /*
1201  * Reclaim all the submitted descriptors which have completed its work.
1202  */
1203 static inline void reclaim_free_desc(struct q_inval *qi)
1204 {
1205         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1206                qi->desc_status[qi->free_tail] == QI_ABORT) {
1207                 qi->desc_status[qi->free_tail] = QI_FREE;
1208                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209                 qi->free_cnt++;
1210         }
1211 }
1212
1213 static const char *qi_type_string(u8 type)
1214 {
1215         switch (type) {
1216         case QI_CC_TYPE:
1217                 return "Context-cache Invalidation";
1218         case QI_IOTLB_TYPE:
1219                 return "IOTLB Invalidation";
1220         case QI_DIOTLB_TYPE:
1221                 return "Device-TLB Invalidation";
1222         case QI_IEC_TYPE:
1223                 return "Interrupt Entry Cache Invalidation";
1224         case QI_IWD_TYPE:
1225                 return "Invalidation Wait";
1226         case QI_EIOTLB_TYPE:
1227                 return "PASID-based IOTLB Invalidation";
1228         case QI_PC_TYPE:
1229                 return "PASID-cache Invalidation";
1230         case QI_DEIOTLB_TYPE:
1231                 return "PASID-based Device-TLB Invalidation";
1232         case QI_PGRP_RESP_TYPE:
1233                 return "Page Group Response";
1234         default:
1235                 return "UNKNOWN";
1236         }
1237 }
1238
1239 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240 {
1241         unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242         u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243         struct qi_desc *desc = iommu->qi->desc + head;
1244
1245         if (fault & DMA_FSTS_IQE)
1246                 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247                        DMAR_IQER_REG_IQEI(iqe_err));
1248         if (fault & DMA_FSTS_ITE)
1249                 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250                        DMAR_IQER_REG_ITESID(iqe_err));
1251         if (fault & DMA_FSTS_ICE)
1252                 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253                        DMAR_IQER_REG_ICESID(iqe_err));
1254
1255         pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256                qi_type_string(desc->qw0 & 0xf),
1257                (unsigned long long)desc->qw0,
1258                (unsigned long long)desc->qw1);
1259
1260         head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261         head <<= qi_shift(iommu);
1262         desc = iommu->qi->desc + head;
1263
1264         pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265                qi_type_string(desc->qw0 & 0xf),
1266                (unsigned long long)desc->qw0,
1267                (unsigned long long)desc->qw1);
1268 }
1269
1270 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271 {
1272         u32 fault;
1273         int head, tail;
1274         struct q_inval *qi = iommu->qi;
1275         int shift = qi_shift(iommu);
1276
1277         if (qi->desc_status[wait_index] == QI_ABORT)
1278                 return -EAGAIN;
1279
1280         fault = readl(iommu->reg + DMAR_FSTS_REG);
1281         if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1282                 qi_dump_fault(iommu, fault);
1283
1284         /*
1285          * If IQE happens, the head points to the descriptor associated
1286          * with the error. No new descriptors are fetched until the IQE
1287          * is cleared.
1288          */
1289         if (fault & DMA_FSTS_IQE) {
1290                 head = readl(iommu->reg + DMAR_IQH_REG);
1291                 if ((head >> shift) == index) {
1292                         struct qi_desc *desc = qi->desc + head;
1293
1294                         /*
1295                          * desc->qw2 and desc->qw3 are either reserved or
1296                          * used by software as private data. We won't print
1297                          * out these two qw's for security consideration.
1298                          */
1299                         memcpy(desc, qi->desc + (wait_index << shift),
1300                                1 << shift);
1301                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1302                         pr_info("Invalidation Queue Error (IQE) cleared\n");
1303                         return -EINVAL;
1304                 }
1305         }
1306
1307         /*
1308          * If ITE happens, all pending wait_desc commands are aborted.
1309          * No new descriptors are fetched until the ITE is cleared.
1310          */
1311         if (fault & DMA_FSTS_ITE) {
1312                 head = readl(iommu->reg + DMAR_IQH_REG);
1313                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1314                 head |= 1;
1315                 tail = readl(iommu->reg + DMAR_IQT_REG);
1316                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317
1318                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1319                 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1320
1321                 do {
1322                         if (qi->desc_status[head] == QI_IN_USE)
1323                                 qi->desc_status[head] = QI_ABORT;
1324                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1325                 } while (head != tail);
1326
1327                 if (qi->desc_status[wait_index] == QI_ABORT)
1328                         return -EAGAIN;
1329         }
1330
1331         if (fault & DMA_FSTS_ICE) {
1332                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1333                 pr_info("Invalidation Completion Error (ICE) cleared\n");
1334         }
1335
1336         return 0;
1337 }
1338
1339 /*
1340  * Function to submit invalidation descriptors of all types to the queued
1341  * invalidation interface(QI). Multiple descriptors can be submitted at a
1342  * time, a wait descriptor will be appended to each submission to ensure
1343  * hardware has completed the invalidation before return. Wait descriptors
1344  * can be part of the submission but it will not be polled for completion.
1345  */
1346 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1347                    unsigned int count, unsigned long options)
1348 {
1349         struct q_inval *qi = iommu->qi;
1350         s64 devtlb_start_ktime = 0;
1351         s64 iotlb_start_ktime = 0;
1352         s64 iec_start_ktime = 0;
1353         struct qi_desc wait_desc;
1354         int wait_index, index;
1355         unsigned long flags;
1356         int offset, shift;
1357         int rc, i;
1358         u64 type;
1359
1360         if (!qi)
1361                 return 0;
1362
1363         type = desc->qw0 & GENMASK_ULL(3, 0);
1364
1365         if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1366             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1367                 iotlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369         if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1370             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1371                 devtlb_start_ktime = ktime_to_ns(ktime_get());
1372
1373         if (type == QI_IEC_TYPE &&
1374             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1375                 iec_start_ktime = ktime_to_ns(ktime_get());
1376
1377 restart:
1378         rc = 0;
1379
1380         raw_spin_lock_irqsave(&qi->q_lock, flags);
1381         /*
1382          * Check if we have enough empty slots in the queue to submit,
1383          * the calculation is based on:
1384          * # of desc + 1 wait desc + 1 space between head and tail
1385          */
1386         while (qi->free_cnt < count + 2) {
1387                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1388                 cpu_relax();
1389                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1390         }
1391
1392         index = qi->free_head;
1393         wait_index = (index + count) % QI_LENGTH;
1394         shift = qi_shift(iommu);
1395
1396         for (i = 0; i < count; i++) {
1397                 offset = ((index + i) % QI_LENGTH) << shift;
1398                 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1399                 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1400                 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1401                                 desc[i].qw2, desc[i].qw3);
1402         }
1403         qi->desc_status[wait_index] = QI_IN_USE;
1404
1405         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1406                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1407         if (options & QI_OPT_WAIT_DRAIN)
1408                 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1409         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1410         wait_desc.qw2 = 0;
1411         wait_desc.qw3 = 0;
1412
1413         offset = wait_index << shift;
1414         memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1415
1416         qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1417         qi->free_cnt -= count + 1;
1418
1419         /*
1420          * update the HW tail register indicating the presence of
1421          * new descriptors.
1422          */
1423         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1424
1425         while (qi->desc_status[wait_index] != QI_DONE) {
1426                 /*
1427                  * We will leave the interrupts disabled, to prevent interrupt
1428                  * context to queue another cmd while a cmd is already submitted
1429                  * and waiting for completion on this cpu. This is to avoid
1430                  * a deadlock where the interrupt context can wait indefinitely
1431                  * for free slots in the queue.
1432                  */
1433                 rc = qi_check_fault(iommu, index, wait_index);
1434                 if (rc)
1435                         break;
1436
1437                 raw_spin_unlock(&qi->q_lock);
1438                 cpu_relax();
1439                 raw_spin_lock(&qi->q_lock);
1440         }
1441
1442         for (i = 0; i < count; i++)
1443                 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1444
1445         reclaim_free_desc(qi);
1446         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1447
1448         if (rc == -EAGAIN)
1449                 goto restart;
1450
1451         if (iotlb_start_ktime)
1452                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1453                                 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1454
1455         if (devtlb_start_ktime)
1456                 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1457                                 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1458
1459         if (iec_start_ktime)
1460                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1461                                 ktime_to_ns(ktime_get()) - iec_start_ktime);
1462
1463         return rc;
1464 }
1465
1466 /*
1467  * Flush the global interrupt entry cache.
1468  */
1469 void qi_global_iec(struct intel_iommu *iommu)
1470 {
1471         struct qi_desc desc;
1472
1473         desc.qw0 = QI_IEC_TYPE;
1474         desc.qw1 = 0;
1475         desc.qw2 = 0;
1476         desc.qw3 = 0;
1477
1478         /* should never fail */
1479         qi_submit_sync(iommu, &desc, 1, 0);
1480 }
1481
1482 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1483                       u64 type)
1484 {
1485         struct qi_desc desc;
1486
1487         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1488                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1489         desc.qw1 = 0;
1490         desc.qw2 = 0;
1491         desc.qw3 = 0;
1492
1493         qi_submit_sync(iommu, &desc, 1, 0);
1494 }
1495
1496 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1497                     unsigned int size_order, u64 type)
1498 {
1499         u8 dw = 0, dr = 0;
1500
1501         struct qi_desc desc;
1502         int ih = 0;
1503
1504         if (cap_write_drain(iommu->cap))
1505                 dw = 1;
1506
1507         if (cap_read_drain(iommu->cap))
1508                 dr = 1;
1509
1510         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1511                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1512         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1513                 | QI_IOTLB_AM(size_order);
1514         desc.qw2 = 0;
1515         desc.qw3 = 0;
1516
1517         qi_submit_sync(iommu, &desc, 1, 0);
1518 }
1519
1520 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1521                         u16 qdep, u64 addr, unsigned mask)
1522 {
1523         struct qi_desc desc;
1524
1525         if (mask) {
1526                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1527                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1528         } else
1529                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1530
1531         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1532                 qdep = 0;
1533
1534         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1535                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1536         desc.qw2 = 0;
1537         desc.qw3 = 0;
1538
1539         qi_submit_sync(iommu, &desc, 1, 0);
1540 }
1541
1542 /* PASID-based IOTLB invalidation */
1543 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1544                      unsigned long npages, bool ih)
1545 {
1546         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1547
1548         /*
1549          * npages == -1 means a PASID-selective invalidation, otherwise,
1550          * a positive value for Page-selective-within-PASID invalidation.
1551          * 0 is not a valid input.
1552          */
1553         if (WARN_ON(!npages)) {
1554                 pr_err("Invalid input npages = %ld\n", npages);
1555                 return;
1556         }
1557
1558         if (npages == -1) {
1559                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1560                                 QI_EIOTLB_DID(did) |
1561                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1562                                 QI_EIOTLB_TYPE;
1563                 desc.qw1 = 0;
1564         } else {
1565                 int mask = ilog2(__roundup_pow_of_two(npages));
1566                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1567
1568                 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1569                         addr = ALIGN_DOWN(addr, align);
1570
1571                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1572                                 QI_EIOTLB_DID(did) |
1573                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1574                                 QI_EIOTLB_TYPE;
1575                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1576                                 QI_EIOTLB_IH(ih) |
1577                                 QI_EIOTLB_AM(mask);
1578         }
1579
1580         qi_submit_sync(iommu, &desc, 1, 0);
1581 }
1582
1583 /* PASID-based device IOTLB Invalidate */
1584 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1585                               u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1586 {
1587         unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1588         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1589
1590         desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1591                 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1592                 QI_DEV_IOTLB_PFSID(pfsid);
1593
1594         /*
1595          * If S bit is 0, we only flush a single page. If S bit is set,
1596          * The least significant zero bit indicates the invalidation address
1597          * range. VT-d spec 6.5.2.6.
1598          * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1599          * size order = 0 is PAGE_SIZE 4KB
1600          * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1601          * ECAP.
1602          */
1603         if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1604                 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1605                                     addr, size_order);
1606
1607         /* Take page address */
1608         desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1609
1610         if (size_order) {
1611                 /*
1612                  * Existing 0s in address below size_order may be the least
1613                  * significant bit, we must set them to 1s to avoid having
1614                  * smaller size than desired.
1615                  */
1616                 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1617                                         VTD_PAGE_SHIFT);
1618                 /* Clear size_order bit to indicate size */
1619                 desc.qw1 &= ~mask;
1620                 /* Set the S bit to indicate flushing more than 1 page */
1621                 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1622         }
1623
1624         qi_submit_sync(iommu, &desc, 1, 0);
1625 }
1626
1627 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1628                           u64 granu, u32 pasid)
1629 {
1630         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1631
1632         desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1633                         QI_PC_GRAN(granu) | QI_PC_TYPE;
1634         qi_submit_sync(iommu, &desc, 1, 0);
1635 }
1636
1637 /*
1638  * Disable Queued Invalidation interface.
1639  */
1640 void dmar_disable_qi(struct intel_iommu *iommu)
1641 {
1642         unsigned long flags;
1643         u32 sts;
1644         cycles_t start_time = get_cycles();
1645
1646         if (!ecap_qis(iommu->ecap))
1647                 return;
1648
1649         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1650
1651         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1652         if (!(sts & DMA_GSTS_QIES))
1653                 goto end;
1654
1655         /*
1656          * Give a chance to HW to complete the pending invalidation requests.
1657          */
1658         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1659                 readl(iommu->reg + DMAR_IQH_REG)) &&
1660                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1661                 cpu_relax();
1662
1663         iommu->gcmd &= ~DMA_GCMD_QIE;
1664         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1665
1666         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1667                       !(sts & DMA_GSTS_QIES), sts);
1668 end:
1669         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1670 }
1671
1672 /*
1673  * Enable queued invalidation.
1674  */
1675 static void __dmar_enable_qi(struct intel_iommu *iommu)
1676 {
1677         u32 sts;
1678         unsigned long flags;
1679         struct q_inval *qi = iommu->qi;
1680         u64 val = virt_to_phys(qi->desc);
1681
1682         qi->free_head = qi->free_tail = 0;
1683         qi->free_cnt = QI_LENGTH;
1684
1685         /*
1686          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1687          * is present.
1688          */
1689         if (ecap_smts(iommu->ecap))
1690                 val |= BIT_ULL(11) | BIT_ULL(0);
1691
1692         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1693
1694         /* write zero to the tail reg */
1695         writel(0, iommu->reg + DMAR_IQT_REG);
1696
1697         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1698
1699         iommu->gcmd |= DMA_GCMD_QIE;
1700         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1701
1702         /* Make sure hardware complete it */
1703         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1704
1705         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1706 }
1707
1708 /*
1709  * Enable Queued Invalidation interface. This is a must to support
1710  * interrupt-remapping. Also used by DMA-remapping, which replaces
1711  * register based IOTLB invalidation.
1712  */
1713 int dmar_enable_qi(struct intel_iommu *iommu)
1714 {
1715         struct q_inval *qi;
1716         struct page *desc_page;
1717
1718         if (!ecap_qis(iommu->ecap))
1719                 return -ENOENT;
1720
1721         /*
1722          * queued invalidation is already setup and enabled.
1723          */
1724         if (iommu->qi)
1725                 return 0;
1726
1727         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1728         if (!iommu->qi)
1729                 return -ENOMEM;
1730
1731         qi = iommu->qi;
1732
1733         /*
1734          * Need two pages to accommodate 256 descriptors of 256 bits each
1735          * if the remapping hardware supports scalable mode translation.
1736          */
1737         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1738                                      !!ecap_smts(iommu->ecap));
1739         if (!desc_page) {
1740                 kfree(qi);
1741                 iommu->qi = NULL;
1742                 return -ENOMEM;
1743         }
1744
1745         qi->desc = page_address(desc_page);
1746
1747         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1748         if (!qi->desc_status) {
1749                 free_page((unsigned long) qi->desc);
1750                 kfree(qi);
1751                 iommu->qi = NULL;
1752                 return -ENOMEM;
1753         }
1754
1755         raw_spin_lock_init(&qi->q_lock);
1756
1757         __dmar_enable_qi(iommu);
1758
1759         return 0;
1760 }
1761
1762 /* iommu interrupt handling. Most stuff are MSI-like. */
1763
1764 enum faulttype {
1765         DMA_REMAP,
1766         INTR_REMAP,
1767         UNKNOWN,
1768 };
1769
1770 static const char *dma_remap_fault_reasons[] =
1771 {
1772         "Software",
1773         "Present bit in root entry is clear",
1774         "Present bit in context entry is clear",
1775         "Invalid context entry",
1776         "Access beyond MGAW",
1777         "PTE Write access is not set",
1778         "PTE Read access is not set",
1779         "Next page table ptr is invalid",
1780         "Root table address invalid",
1781         "Context table ptr is invalid",
1782         "non-zero reserved fields in RTP",
1783         "non-zero reserved fields in CTP",
1784         "non-zero reserved fields in PTE",
1785         "PCE for translation request specifies blocking",
1786 };
1787
1788 static const char * const dma_remap_sm_fault_reasons[] = {
1789         "SM: Invalid Root Table Address",
1790         "SM: TTM 0 for request with PASID",
1791         "SM: TTM 0 for page group request",
1792         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1793         "SM: Error attempting to access Root Entry",
1794         "SM: Present bit in Root Entry is clear",
1795         "SM: Non-zero reserved field set in Root Entry",
1796         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1797         "SM: Error attempting to access Context Entry",
1798         "SM: Present bit in Context Entry is clear",
1799         "SM: Non-zero reserved field set in the Context Entry",
1800         "SM: Invalid Context Entry",
1801         "SM: DTE field in Context Entry is clear",
1802         "SM: PASID Enable field in Context Entry is clear",
1803         "SM: PASID is larger than the max in Context Entry",
1804         "SM: PRE field in Context-Entry is clear",
1805         "SM: RID_PASID field error in Context-Entry",
1806         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1807         "SM: Error attempting to access the PASID Directory Entry",
1808         "SM: Present bit in Directory Entry is clear",
1809         "SM: Non-zero reserved field set in PASID Directory Entry",
1810         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1811         "SM: Error attempting to access PASID Table Entry",
1812         "SM: Present bit in PASID Table Entry is clear",
1813         "SM: Non-zero reserved field set in PASID Table Entry",
1814         "SM: Invalid Scalable-Mode PASID Table Entry",
1815         "SM: ERE field is clear in PASID Table Entry",
1816         "SM: SRE field is clear in PASID Table Entry",
1817         "Unknown", "Unknown",/* 0x5E-0x5F */
1818         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1819         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1820         "SM: Error attempting to access first-level paging entry",
1821         "SM: Present bit in first-level paging entry is clear",
1822         "SM: Non-zero reserved field set in first-level paging entry",
1823         "SM: Error attempting to access FL-PML4 entry",
1824         "SM: First-level entry address beyond MGAW in Nested translation",
1825         "SM: Read permission error in FL-PML4 entry in Nested translation",
1826         "SM: Read permission error in first-level paging entry in Nested translation",
1827         "SM: Write permission error in first-level paging entry in Nested translation",
1828         "SM: Error attempting to access second-level paging entry",
1829         "SM: Read/Write permission error in second-level paging entry",
1830         "SM: Non-zero reserved field set in second-level paging entry",
1831         "SM: Invalid second-level page table pointer",
1832         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1833         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1834         "SM: Address in first-level translation is not canonical",
1835         "SM: U/S set 0 for first-level translation with user privilege",
1836         "SM: No execute permission for request with PASID and ER=1",
1837         "SM: Address beyond the DMA hardware max",
1838         "SM: Second-level entry address beyond the max",
1839         "SM: No write permission for Write/AtomicOp request",
1840         "SM: No read permission for Read/AtomicOp request",
1841         "SM: Invalid address-interrupt address",
1842         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1843         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1844 };
1845
1846 static const char *irq_remap_fault_reasons[] =
1847 {
1848         "Detected reserved fields in the decoded interrupt-remapped request",
1849         "Interrupt index exceeded the interrupt-remapping table size",
1850         "Present field in the IRTE entry is clear",
1851         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1852         "Detected reserved fields in the IRTE entry",
1853         "Blocked a compatibility format interrupt request",
1854         "Blocked an interrupt request due to source-id verification failure",
1855 };
1856
1857 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1858 {
1859         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1860                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1861                 *fault_type = INTR_REMAP;
1862                 return irq_remap_fault_reasons[fault_reason - 0x20];
1863         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1864                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1865                 *fault_type = DMA_REMAP;
1866                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1867         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1868                 *fault_type = DMA_REMAP;
1869                 return dma_remap_fault_reasons[fault_reason];
1870         } else {
1871                 *fault_type = UNKNOWN;
1872                 return "Unknown";
1873         }
1874 }
1875
1876
1877 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1878 {
1879         if (iommu->irq == irq)
1880                 return DMAR_FECTL_REG;
1881         else if (iommu->pr_irq == irq)
1882                 return DMAR_PECTL_REG;
1883         else if (iommu->perf_irq == irq)
1884                 return DMAR_PERFINTRCTL_REG;
1885         else
1886                 BUG();
1887 }
1888
1889 void dmar_msi_unmask(struct irq_data *data)
1890 {
1891         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1892         int reg = dmar_msi_reg(iommu, data->irq);
1893         unsigned long flag;
1894
1895         /* unmask it */
1896         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1897         writel(0, iommu->reg + reg);
1898         /* Read a reg to force flush the post write */
1899         readl(iommu->reg + reg);
1900         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1901 }
1902
1903 void dmar_msi_mask(struct irq_data *data)
1904 {
1905         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1906         int reg = dmar_msi_reg(iommu, data->irq);
1907         unsigned long flag;
1908
1909         /* mask it */
1910         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1911         writel(DMA_FECTL_IM, iommu->reg + reg);
1912         /* Read a reg to force flush the post write */
1913         readl(iommu->reg + reg);
1914         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1915 }
1916
1917 void dmar_msi_write(int irq, struct msi_msg *msg)
1918 {
1919         struct intel_iommu *iommu = irq_get_handler_data(irq);
1920         int reg = dmar_msi_reg(iommu, irq);
1921         unsigned long flag;
1922
1923         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1924         writel(msg->data, iommu->reg + reg + 4);
1925         writel(msg->address_lo, iommu->reg + reg + 8);
1926         writel(msg->address_hi, iommu->reg + reg + 12);
1927         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1928 }
1929
1930 void dmar_msi_read(int irq, struct msi_msg *msg)
1931 {
1932         struct intel_iommu *iommu = irq_get_handler_data(irq);
1933         int reg = dmar_msi_reg(iommu, irq);
1934         unsigned long flag;
1935
1936         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1937         msg->data = readl(iommu->reg + reg + 4);
1938         msg->address_lo = readl(iommu->reg + reg + 8);
1939         msg->address_hi = readl(iommu->reg + reg + 12);
1940         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1941 }
1942
1943 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1944                 u8 fault_reason, u32 pasid, u16 source_id,
1945                 unsigned long long addr)
1946 {
1947         const char *reason;
1948         int fault_type;
1949
1950         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1951
1952         if (fault_type == INTR_REMAP) {
1953                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1954                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1956                        fault_reason, reason);
1957
1958                 return 0;
1959         }
1960
1961         if (pasid == IOMMU_PASID_INVALID)
1962                 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1963                        type ? "DMA Read" : "DMA Write",
1964                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1965                        PCI_FUNC(source_id & 0xFF), addr,
1966                        fault_reason, reason);
1967         else
1968                 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1969                        type ? "DMA Read" : "DMA Write", pasid,
1970                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1971                        PCI_FUNC(source_id & 0xFF), addr,
1972                        fault_reason, reason);
1973
1974         dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1975
1976         return 0;
1977 }
1978
1979 #define PRIMARY_FAULT_REG_LEN (16)
1980 irqreturn_t dmar_fault(int irq, void *dev_id)
1981 {
1982         struct intel_iommu *iommu = dev_id;
1983         int reg, fault_index;
1984         u32 fault_status;
1985         unsigned long flag;
1986         static DEFINE_RATELIMIT_STATE(rs,
1987                                       DEFAULT_RATELIMIT_INTERVAL,
1988                                       DEFAULT_RATELIMIT_BURST);
1989
1990         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1991         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1992         if (fault_status && __ratelimit(&rs))
1993                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1994
1995         /* TBD: ignore advanced fault log currently */
1996         if (!(fault_status & DMA_FSTS_PPF))
1997                 goto unlock_exit;
1998
1999         fault_index = dma_fsts_fault_record_index(fault_status);
2000         reg = cap_fault_reg_offset(iommu->cap);
2001         while (1) {
2002                 /* Disable printing, simply clear the fault when ratelimited */
2003                 bool ratelimited = !__ratelimit(&rs);
2004                 u8 fault_reason;
2005                 u16 source_id;
2006                 u64 guest_addr;
2007                 u32 pasid;
2008                 int type;
2009                 u32 data;
2010                 bool pasid_present;
2011
2012                 /* highest 32 bits */
2013                 data = readl(iommu->reg + reg +
2014                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2015                 if (!(data & DMA_FRCD_F))
2016                         break;
2017
2018                 if (!ratelimited) {
2019                         fault_reason = dma_frcd_fault_reason(data);
2020                         type = dma_frcd_type(data);
2021
2022                         pasid = dma_frcd_pasid_value(data);
2023                         data = readl(iommu->reg + reg +
2024                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
2025                         source_id = dma_frcd_source_id(data);
2026
2027                         pasid_present = dma_frcd_pasid_present(data);
2028                         guest_addr = dmar_readq(iommu->reg + reg +
2029                                         fault_index * PRIMARY_FAULT_REG_LEN);
2030                         guest_addr = dma_frcd_page_addr(guest_addr);
2031                 }
2032
2033                 /* clear the fault */
2034                 writel(DMA_FRCD_F, iommu->reg + reg +
2035                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
2036
2037                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2038
2039                 if (!ratelimited)
2040                         /* Using pasid -1 if pasid is not present */
2041                         dmar_fault_do_one(iommu, type, fault_reason,
2042                                           pasid_present ? pasid : IOMMU_PASID_INVALID,
2043                                           source_id, guest_addr);
2044
2045                 fault_index++;
2046                 if (fault_index >= cap_num_fault_regs(iommu->cap))
2047                         fault_index = 0;
2048                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2049         }
2050
2051         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2052                iommu->reg + DMAR_FSTS_REG);
2053
2054 unlock_exit:
2055         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2056         return IRQ_HANDLED;
2057 }
2058
2059 int dmar_set_interrupt(struct intel_iommu *iommu)
2060 {
2061         int irq, ret;
2062
2063         /*
2064          * Check if the fault interrupt is already initialized.
2065          */
2066         if (iommu->irq)
2067                 return 0;
2068
2069         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2070         if (irq > 0) {
2071                 iommu->irq = irq;
2072         } else {
2073                 pr_err("No free IRQ vectors\n");
2074                 return -EINVAL;
2075         }
2076
2077         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2078         if (ret)
2079                 pr_err("Can't request irq\n");
2080         return ret;
2081 }
2082
2083 int __init enable_drhd_fault_handling(void)
2084 {
2085         struct dmar_drhd_unit *drhd;
2086         struct intel_iommu *iommu;
2087
2088         /*
2089          * Enable fault control interrupt.
2090          */
2091         for_each_iommu(iommu, drhd) {
2092                 u32 fault_status;
2093                 int ret = dmar_set_interrupt(iommu);
2094
2095                 if (ret) {
2096                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2097                                (unsigned long long)drhd->reg_base_addr, ret);
2098                         return -1;
2099                 }
2100
2101                 /*
2102                  * Clear any previous faults.
2103                  */
2104                 dmar_fault(iommu->irq, iommu);
2105                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2106                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2107         }
2108
2109         return 0;
2110 }
2111
2112 /*
2113  * Re-enable Queued Invalidation interface.
2114  */
2115 int dmar_reenable_qi(struct intel_iommu *iommu)
2116 {
2117         if (!ecap_qis(iommu->ecap))
2118                 return -ENOENT;
2119
2120         if (!iommu->qi)
2121                 return -ENOENT;
2122
2123         /*
2124          * First disable queued invalidation.
2125          */
2126         dmar_disable_qi(iommu);
2127         /*
2128          * Then enable queued invalidation again. Since there is no pending
2129          * invalidation requests now, it's safe to re-enable queued
2130          * invalidation.
2131          */
2132         __dmar_enable_qi(iommu);
2133
2134         return 0;
2135 }
2136
2137 /*
2138  * Check interrupt remapping support in DMAR table description.
2139  */
2140 int __init dmar_ir_support(void)
2141 {
2142         struct acpi_table_dmar *dmar;
2143         dmar = (struct acpi_table_dmar *)dmar_tbl;
2144         if (!dmar)
2145                 return 0;
2146         return dmar->flags & 0x1;
2147 }
2148
2149 /* Check whether DMAR units are in use */
2150 static inline bool dmar_in_use(void)
2151 {
2152         return irq_remapping_enabled || intel_iommu_enabled;
2153 }
2154
2155 static int __init dmar_free_unused_resources(void)
2156 {
2157         struct dmar_drhd_unit *dmaru, *dmaru_n;
2158
2159         if (dmar_in_use())
2160                 return 0;
2161
2162         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2163                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2164
2165         down_write(&dmar_global_lock);
2166         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2167                 list_del(&dmaru->list);
2168                 dmar_free_drhd(dmaru);
2169         }
2170         up_write(&dmar_global_lock);
2171
2172         return 0;
2173 }
2174
2175 late_initcall(dmar_free_unused_resources);
2176
2177 /*
2178  * DMAR Hotplug Support
2179  * For more details, please refer to Intel(R) Virtualization Technology
2180  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2181  * "Remapping Hardware Unit Hot Plug".
2182  */
2183 static guid_t dmar_hp_guid =
2184         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2185                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2186
2187 /*
2188  * Currently there's only one revision and BIOS will not check the revision id,
2189  * so use 0 for safety.
2190  */
2191 #define DMAR_DSM_REV_ID                 0
2192 #define DMAR_DSM_FUNC_DRHD              1
2193 #define DMAR_DSM_FUNC_ATSR              2
2194 #define DMAR_DSM_FUNC_RHSA              3
2195 #define DMAR_DSM_FUNC_SATC              4
2196
2197 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2198 {
2199         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2200 }
2201
2202 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2203                                   dmar_res_handler_t handler, void *arg)
2204 {
2205         int ret = -ENODEV;
2206         union acpi_object *obj;
2207         struct acpi_dmar_header *start;
2208         struct dmar_res_callback callback;
2209         static int res_type[] = {
2210                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2211                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2212                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2213                 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2214         };
2215
2216         if (!dmar_detect_dsm(handle, func))
2217                 return 0;
2218
2219         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2220                                       func, NULL, ACPI_TYPE_BUFFER);
2221         if (!obj)
2222                 return -ENODEV;
2223
2224         memset(&callback, 0, sizeof(callback));
2225         callback.cb[res_type[func]] = handler;
2226         callback.arg[res_type[func]] = arg;
2227         start = (struct acpi_dmar_header *)obj->buffer.pointer;
2228         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2229
2230         ACPI_FREE(obj);
2231
2232         return ret;
2233 }
2234
2235 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2236 {
2237         int ret;
2238         struct dmar_drhd_unit *dmaru;
2239
2240         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2241         if (!dmaru)
2242                 return -ENODEV;
2243
2244         ret = dmar_ir_hotplug(dmaru, true);
2245         if (ret == 0)
2246                 ret = dmar_iommu_hotplug(dmaru, true);
2247
2248         return ret;
2249 }
2250
2251 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2252 {
2253         int i, ret;
2254         struct device *dev;
2255         struct dmar_drhd_unit *dmaru;
2256
2257         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2258         if (!dmaru)
2259                 return 0;
2260
2261         /*
2262          * All PCI devices managed by this unit should have been destroyed.
2263          */
2264         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2265                 for_each_active_dev_scope(dmaru->devices,
2266                                           dmaru->devices_cnt, i, dev)
2267                         return -EBUSY;
2268         }
2269
2270         ret = dmar_ir_hotplug(dmaru, false);
2271         if (ret == 0)
2272                 ret = dmar_iommu_hotplug(dmaru, false);
2273
2274         return ret;
2275 }
2276
2277 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2278 {
2279         struct dmar_drhd_unit *dmaru;
2280
2281         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2282         if (dmaru) {
2283                 list_del_rcu(&dmaru->list);
2284                 synchronize_rcu();
2285                 dmar_free_drhd(dmaru);
2286         }
2287
2288         return 0;
2289 }
2290
2291 static int dmar_hotplug_insert(acpi_handle handle)
2292 {
2293         int ret;
2294         int drhd_count = 0;
2295
2296         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2297                                      &dmar_validate_one_drhd, (void *)1);
2298         if (ret)
2299                 goto out;
2300
2301         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2302                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2303         if (ret == 0 && drhd_count == 0) {
2304                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2305                 goto out;
2306         } else if (ret) {
2307                 goto release_drhd;
2308         }
2309
2310         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2311                                      &dmar_parse_one_rhsa, NULL);
2312         if (ret)
2313                 goto release_drhd;
2314
2315         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2316                                      &dmar_parse_one_atsr, NULL);
2317         if (ret)
2318                 goto release_atsr;
2319
2320         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321                                      &dmar_hp_add_drhd, NULL);
2322         if (!ret)
2323                 return 0;
2324
2325         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2326                                &dmar_hp_remove_drhd, NULL);
2327 release_atsr:
2328         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2329                                &dmar_release_one_atsr, NULL);
2330 release_drhd:
2331         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2332                                &dmar_hp_release_drhd, NULL);
2333 out:
2334         return ret;
2335 }
2336
2337 static int dmar_hotplug_remove(acpi_handle handle)
2338 {
2339         int ret;
2340
2341         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2342                                      &dmar_check_one_atsr, NULL);
2343         if (ret)
2344                 return ret;
2345
2346         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2347                                      &dmar_hp_remove_drhd, NULL);
2348         if (ret == 0) {
2349                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2350                                                &dmar_release_one_atsr, NULL));
2351                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2352                                                &dmar_hp_release_drhd, NULL));
2353         } else {
2354                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2355                                        &dmar_hp_add_drhd, NULL);
2356         }
2357
2358         return ret;
2359 }
2360
2361 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2362                                        void *context, void **retval)
2363 {
2364         acpi_handle *phdl = retval;
2365
2366         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2367                 *phdl = handle;
2368                 return AE_CTRL_TERMINATE;
2369         }
2370
2371         return AE_OK;
2372 }
2373
2374 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2375 {
2376         int ret;
2377         acpi_handle tmp = NULL;
2378         acpi_status status;
2379
2380         if (!dmar_in_use())
2381                 return 0;
2382
2383         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2384                 tmp = handle;
2385         } else {
2386                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2387                                              ACPI_UINT32_MAX,
2388                                              dmar_get_dsm_handle,
2389                                              NULL, NULL, &tmp);
2390                 if (ACPI_FAILURE(status)) {
2391                         pr_warn("Failed to locate _DSM method.\n");
2392                         return -ENXIO;
2393                 }
2394         }
2395         if (tmp == NULL)
2396                 return 0;
2397
2398         down_write(&dmar_global_lock);
2399         if (insert)
2400                 ret = dmar_hotplug_insert(tmp);
2401         else
2402                 ret = dmar_hotplug_remove(tmp);
2403         up_write(&dmar_global_lock);
2404
2405         return ret;
2406 }
2407
2408 int dmar_device_add(acpi_handle handle)
2409 {
2410         return dmar_device_hotplug(handle, true);
2411 }
2412
2413 int dmar_device_remove(acpi_handle handle)
2414 {
2415         return dmar_device_hotplug(handle, false);
2416 }
2417
2418 /*
2419  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2420  *
2421  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2422  * the ACPI DMAR table. This means that the platform boot firmware has made
2423  * sure no device can issue DMA outside of RMRR regions.
2424  */
2425 bool dmar_platform_optin(void)
2426 {
2427         struct acpi_table_dmar *dmar;
2428         acpi_status status;
2429         bool ret;
2430
2431         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2432                                 (struct acpi_table_header **)&dmar);
2433         if (ACPI_FAILURE(status))
2434                 return false;
2435
2436         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2437         acpi_put_table((struct acpi_table_header *)dmar);
2438
2439         return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(dmar_platform_optin);
This page took 0.181291 seconds and 4 git commands to generate.