1 // SPDX-License-Identifier: GPL-2.0+
3 * Driver for AMBA serial ports
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
43 #include <linux/acpi.h>
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
51 #define AMBA_ISR_PASS_LIMIT 256
53 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX (1 << 16)
82 /* The size of the array - must be last */
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
102 /* There is by now at least one vendor with differing details, so handle it */
104 const u16 *reg_offset;
106 unsigned int fr_busy;
114 bool cts_event_workaround;
118 unsigned int (*get_fifosize)(struct amba_device *dev);
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
123 return amba_rev(dev) < 3 ? 16 : 32;
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
199 static unsigned int get_fifosize_st(struct amba_device *dev)
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
219 /* Deals with DMA transactions */
222 struct scatterlist sg;
226 struct pl011_dmarx_data {
227 struct dma_chan *chan;
228 struct completion complete;
230 struct pl011_sgbuf sgbuf_a;
231 struct pl011_sgbuf sgbuf_b;
234 struct timer_list timer;
235 unsigned int last_residue;
236 unsigned long last_jiffies;
238 unsigned int poll_rate;
239 unsigned int poll_timeout;
242 struct pl011_dmatx_data {
243 struct dma_chan *chan;
244 struct scatterlist sg;
250 * We wrap our port structure around the generic uart_port.
252 struct uart_amba_port {
253 struct uart_port port;
254 const u16 *reg_offset;
256 const struct vendor_data *vendor;
257 unsigned int dmacr; /* dma control reg */
258 unsigned int im; /* interrupt mask */
259 unsigned int old_status;
260 unsigned int fifosize; /* vendor-specific */
261 unsigned int fixed_baud; /* vendor-set fixed baud rate */
263 bool rs485_tx_started;
264 unsigned int rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
269 struct pl011_dmarx_data dmarx;
270 struct pl011_dmatx_data dmatx;
275 static unsigned int pl011_tx_empty(struct uart_port *port);
277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 return uap->reg_offset[reg];
283 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
288 return (uap->port.iotype == UPIO_MEM32) ?
289 readl_relaxed(addr) : readw_relaxed(addr);
292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
297 if (uap->port.iotype == UPIO_MEM32)
298 writel_relaxed(val, addr);
300 writew_relaxed(val, addr);
304 * Reads up to 256 characters from the FIFO or until it's empty and
305 * inserts them into the TTY layer. Returns the number of characters
306 * read from the FIFO.
308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
310 unsigned int ch, flag, fifotaken;
314 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 status = pl011_read(uap, REG_FR);
316 if (status & UART01x_FR_RXFE)
319 /* Take chars from the FIFO and update status */
320 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 uap->port.icount.rx++;
324 if (unlikely(ch & UART_DR_ERROR)) {
325 if (ch & UART011_DR_BE) {
326 ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 uap->port.icount.brk++;
328 if (uart_handle_break(&uap->port))
330 } else if (ch & UART011_DR_PE)
331 uap->port.icount.parity++;
332 else if (ch & UART011_DR_FE)
333 uap->port.icount.frame++;
334 if (ch & UART011_DR_OE)
335 uap->port.icount.overrun++;
337 ch &= uap->port.read_status_mask;
339 if (ch & UART011_DR_BE)
341 else if (ch & UART011_DR_PE)
343 else if (ch & UART011_DR_FE)
347 spin_unlock(&uap->port.lock);
348 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
349 spin_lock(&uap->port.lock);
352 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
364 #ifdef CONFIG_DMA_ENGINE
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
369 enum dma_data_direction dir)
373 sg->buf = dma_alloc_coherent(chan->device->dev,
374 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
378 sg_init_table(&sg->sg, 1);
379 sg_set_page(&sg->sg, phys_to_page(dma_addr),
380 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
381 sg_dma_address(&sg->sg) = dma_addr;
382 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
387 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 enum dma_data_direction dir)
391 dma_free_coherent(chan->device->dev,
392 PL011_DMA_BUFFER_SIZE, sg->buf,
393 sg_dma_address(&sg->sg));
397 static void pl011_dma_probe(struct uart_amba_port *uap)
399 /* DMA is the sole user of the platform data right now */
400 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
401 struct device *dev = uap->port.dev;
402 struct dma_slave_config tx_conf = {
403 .dst_addr = uap->port.mapbase +
404 pl011_reg_to_offset(uap, REG_DR),
405 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
406 .direction = DMA_MEM_TO_DEV,
407 .dst_maxburst = uap->fifosize >> 1,
410 struct dma_chan *chan;
413 uap->dma_probed = true;
414 chan = dma_request_chan(dev, "tx");
416 if (PTR_ERR(chan) == -EPROBE_DEFER) {
417 uap->dma_probed = false;
421 /* We need platform data */
422 if (!plat || !plat->dma_filter) {
423 dev_info(uap->port.dev, "no DMA platform data\n");
427 /* Try to acquire a generic DMA engine slave TX channel */
429 dma_cap_set(DMA_SLAVE, mask);
431 chan = dma_request_channel(mask, plat->dma_filter,
434 dev_err(uap->port.dev, "no TX DMA channel!\n");
439 dmaengine_slave_config(chan, &tx_conf);
440 uap->dmatx.chan = chan;
442 dev_info(uap->port.dev, "DMA channel TX %s\n",
443 dma_chan_name(uap->dmatx.chan));
445 /* Optionally make use of an RX channel as well */
446 chan = dma_request_slave_channel(dev, "rx");
448 if (!chan && plat && plat->dma_rx_param) {
449 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
452 dev_err(uap->port.dev, "no RX DMA channel!\n");
458 struct dma_slave_config rx_conf = {
459 .src_addr = uap->port.mapbase +
460 pl011_reg_to_offset(uap, REG_DR),
461 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
462 .direction = DMA_DEV_TO_MEM,
463 .src_maxburst = uap->fifosize >> 2,
466 struct dma_slave_caps caps;
469 * Some DMA controllers provide information on their capabilities.
470 * If the controller does, check for suitable residue processing
471 * otherwise assime all is well.
473 if (0 == dma_get_slave_caps(chan, &caps)) {
474 if (caps.residue_granularity ==
475 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
476 dma_release_channel(chan);
477 dev_info(uap->port.dev,
478 "RX DMA disabled - no residue processing\n");
482 dmaengine_slave_config(chan, &rx_conf);
483 uap->dmarx.chan = chan;
485 uap->dmarx.auto_poll_rate = false;
486 if (plat && plat->dma_rx_poll_enable) {
487 /* Set poll rate if specified. */
488 if (plat->dma_rx_poll_rate) {
489 uap->dmarx.auto_poll_rate = false;
490 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
493 * 100 ms defaults to poll rate if not
494 * specified. This will be adjusted with
495 * the baud rate at set_termios.
497 uap->dmarx.auto_poll_rate = true;
498 uap->dmarx.poll_rate = 100;
500 /* 3 secs defaults poll_timeout if not specified. */
501 if (plat->dma_rx_poll_timeout)
502 uap->dmarx.poll_timeout =
503 plat->dma_rx_poll_timeout;
505 uap->dmarx.poll_timeout = 3000;
506 } else if (!plat && dev->of_node) {
507 uap->dmarx.auto_poll_rate = of_property_read_bool(
508 dev->of_node, "auto-poll");
509 if (uap->dmarx.auto_poll_rate) {
512 if (0 == of_property_read_u32(dev->of_node,
514 uap->dmarx.poll_rate = x;
516 uap->dmarx.poll_rate = 100;
517 if (0 == of_property_read_u32(dev->of_node,
518 "poll-timeout-ms", &x))
519 uap->dmarx.poll_timeout = x;
521 uap->dmarx.poll_timeout = 3000;
524 dev_info(uap->port.dev, "DMA channel RX %s\n",
525 dma_chan_name(uap->dmarx.chan));
529 static void pl011_dma_remove(struct uart_amba_port *uap)
532 dma_release_channel(uap->dmatx.chan);
534 dma_release_channel(uap->dmarx.chan);
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
542 * The current DMA TX buffer has been sent.
543 * Try to queue up another DMA buffer.
545 static void pl011_dma_tx_callback(void *data)
547 struct uart_amba_port *uap = data;
548 struct pl011_dmatx_data *dmatx = &uap->dmatx;
552 spin_lock_irqsave(&uap->port.lock, flags);
553 if (uap->dmatx.queued)
554 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
558 uap->dmacr = dmacr & ~UART011_TXDMAE;
559 pl011_write(uap->dmacr, uap, REG_DMACR);
562 * If TX DMA was disabled, it means that we've stopped the DMA for
563 * some reason (eg, XOFF received, or we want to send an X-char.)
565 * Note: we need to be careful here of a potential race between DMA
566 * and the rest of the driver - if the driver disables TX DMA while
567 * a TX buffer completing, we must update the tx queued status to
568 * get further refills (hence we check dmacr).
570 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 uart_circ_empty(&uap->port.state->xmit)) {
572 uap->dmatx.queued = false;
573 spin_unlock_irqrestore(&uap->port.lock, flags);
577 if (pl011_dma_tx_refill(uap) <= 0)
579 * We didn't queue a DMA buffer for some reason, but we
580 * have data pending to be sent. Re-enable the TX IRQ.
582 pl011_start_tx_pio(uap);
584 spin_unlock_irqrestore(&uap->port.lock, flags);
588 * Try to refill the TX DMA buffer.
589 * Locking: called with port lock held and IRQs disabled.
591 * 1 if we queued up a TX DMA buffer.
592 * 0 if we didn't want to handle this by DMA
595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 struct dma_chan *chan = dmatx->chan;
599 struct dma_device *dma_dev = chan->device;
600 struct dma_async_tx_descriptor *desc;
601 struct circ_buf *xmit = &uap->port.state->xmit;
605 * Try to avoid the overhead involved in using DMA if the
606 * transaction fits in the first half of the FIFO, by using
607 * the standard interrupt handling. This ensures that we
608 * issue a uart_write_wakeup() at the appropriate time.
610 count = uart_circ_chars_pending(xmit);
611 if (count < (uap->fifosize >> 1)) {
612 uap->dmatx.queued = false;
617 * Bodge: don't send the last character by DMA, as this
618 * will prevent XON from notifying us to restart DMA.
622 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 if (count > PL011_DMA_BUFFER_SIZE)
624 count = PL011_DMA_BUFFER_SIZE;
626 if (xmit->tail < xmit->head)
627 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 size_t first = UART_XMIT_SIZE - xmit->tail;
634 second = count - first;
636 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
641 dmatx->sg.length = count;
643 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
644 uap->dmatx.queued = false;
645 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
649 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
650 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
653 uap->dmatx.queued = false;
655 * If DMA cannot be used right now, we complete this
656 * transaction via IRQ and let the TTY layer retry.
658 dev_dbg(uap->port.dev, "TX DMA busy\n");
662 /* Some data to go along to the callback */
663 desc->callback = pl011_dma_tx_callback;
664 desc->callback_param = uap;
666 /* All errors should happen at prepare time */
667 dmaengine_submit(desc);
669 /* Fire the DMA transaction */
670 dma_dev->device_issue_pending(chan);
672 uap->dmacr |= UART011_TXDMAE;
673 pl011_write(uap->dmacr, uap, REG_DMACR);
674 uap->dmatx.queued = true;
677 * Now we know that DMA will fire, so advance the ring buffer
678 * with the stuff we just dispatched.
680 uart_xmit_advance(&uap->port, count);
682 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
683 uart_write_wakeup(&uap->port);
689 * We received a transmit interrupt without a pending X-char but with
690 * pending characters.
691 * Locking: called with port lock held and IRQs disabled.
693 * false if we want to use PIO to transmit
694 * true if we queued a DMA buffer
696 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 if (!uap->using_tx_dma)
702 * If we already have a TX buffer queued, but received a
703 * TX interrupt, it will be because we've just sent an X-char.
704 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 if (uap->dmatx.queued) {
707 uap->dmacr |= UART011_TXDMAE;
708 pl011_write(uap->dmacr, uap, REG_DMACR);
709 uap->im &= ~UART011_TXIM;
710 pl011_write(uap->im, uap, REG_IMSC);
715 * We don't have a TX buffer queued, so try to queue one.
716 * If we successfully queued a buffer, mask the TX IRQ.
718 if (pl011_dma_tx_refill(uap) > 0) {
719 uap->im &= ~UART011_TXIM;
720 pl011_write(uap->im, uap, REG_IMSC);
727 * Stop the DMA transmit (eg, due to received XOFF).
728 * Locking: called with port lock held and IRQs disabled.
730 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 if (uap->dmatx.queued) {
733 uap->dmacr &= ~UART011_TXDMAE;
734 pl011_write(uap->dmacr, uap, REG_DMACR);
739 * Try to start a DMA transmit, or in the case of an XON/OFF
740 * character queued for send, try to get that character out ASAP.
741 * Locking: called with port lock held and IRQs disabled.
743 * false if we want the TX IRQ to be enabled
744 * true if we have a buffer queued
746 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
750 if (!uap->using_tx_dma)
753 if (!uap->port.x_char) {
754 /* no X-char, try to push chars out in DMA mode */
757 if (!uap->dmatx.queued) {
758 if (pl011_dma_tx_refill(uap) > 0) {
759 uap->im &= ~UART011_TXIM;
760 pl011_write(uap->im, uap, REG_IMSC);
763 } else if (!(uap->dmacr & UART011_TXDMAE)) {
764 uap->dmacr |= UART011_TXDMAE;
765 pl011_write(uap->dmacr, uap, REG_DMACR);
771 * We have an X-char to send. Disable DMA to prevent it loading
772 * the TX fifo, and then see if we can stuff it into the FIFO.
775 uap->dmacr &= ~UART011_TXDMAE;
776 pl011_write(uap->dmacr, uap, REG_DMACR);
778 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 * No space in the FIFO, so enable the transmit interrupt
781 * so we know when there is space. Note that once we've
782 * loaded the character, we should just re-enable DMA.
787 pl011_write(uap->port.x_char, uap, REG_DR);
788 uap->port.icount.tx++;
789 uap->port.x_char = 0;
791 /* Success - restore the DMA state */
793 pl011_write(dmacr, uap, REG_DMACR);
799 * Flush the transmit buffer.
800 * Locking: called with port lock held and IRQs disabled.
802 static void pl011_dma_flush_buffer(struct uart_port *port)
803 __releases(&uap->port.lock)
804 __acquires(&uap->port.lock)
806 struct uart_amba_port *uap =
807 container_of(port, struct uart_amba_port, port);
809 if (!uap->using_tx_dma)
812 dmaengine_terminate_async(uap->dmatx.chan);
814 if (uap->dmatx.queued) {
815 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 uap->dmatx.queued = false;
818 uap->dmacr &= ~UART011_TXDMAE;
819 pl011_write(uap->dmacr, uap, REG_DMACR);
823 static void pl011_dma_rx_callback(void *data);
825 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 struct dma_chan *rxchan = uap->dmarx.chan;
828 struct pl011_dmarx_data *dmarx = &uap->dmarx;
829 struct dma_async_tx_descriptor *desc;
830 struct pl011_sgbuf *sgbuf;
835 /* Start the RX DMA job */
836 sgbuf = uap->dmarx.use_buf_b ?
837 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
838 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 * If the DMA engine is busy and cannot prepare a
843 * channel, no big deal, the driver will fall back
844 * to interrupt mode as a result of this error code.
847 uap->dmarx.running = false;
848 dmaengine_terminate_all(rxchan);
852 /* Some data to go along to the callback */
853 desc->callback = pl011_dma_rx_callback;
854 desc->callback_param = uap;
855 dmarx->cookie = dmaengine_submit(desc);
856 dma_async_issue_pending(rxchan);
858 uap->dmacr |= UART011_RXDMAE;
859 pl011_write(uap->dmacr, uap, REG_DMACR);
860 uap->dmarx.running = true;
862 uap->im &= ~UART011_RXIM;
863 pl011_write(uap->im, uap, REG_IMSC);
869 * This is called when either the DMA job is complete, or
870 * the FIFO timeout interrupt occurred. This must be called
871 * with the port spinlock uap->port.lock held.
873 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
874 u32 pending, bool use_buf_b,
877 struct tty_port *port = &uap->port.state->port;
878 struct pl011_sgbuf *sgbuf = use_buf_b ?
879 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 u32 fifotaken = 0; /* only used for vdbg() */
883 struct pl011_dmarx_data *dmarx = &uap->dmarx;
886 if (uap->dmarx.poll_rate) {
887 /* The data can be taken by polling */
888 dmataken = sgbuf->sg.length - dmarx->last_residue;
889 /* Recalculate the pending size */
890 if (pending >= dmataken)
894 /* Pick the remain data from the DMA */
898 * First take all chars in the DMA pipe, then look in the FIFO.
899 * Note that tty_insert_flip_buf() tries to take as many chars
902 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
905 uap->port.icount.rx += dma_count;
906 if (dma_count < pending)
907 dev_warn(uap->port.dev,
908 "couldn't insert all characters (TTY is full?)\n");
911 /* Reset the last_residue for Rx DMA poll */
912 if (uap->dmarx.poll_rate)
913 dmarx->last_residue = sgbuf->sg.length;
916 * Only continue with trying to read the FIFO if all DMA chars have
919 if (dma_count == pending && readfifo) {
920 /* Clear any error flags */
921 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
922 UART011_FEIS, uap, REG_ICR);
925 * If we read all the DMA'd characters, and we had an
926 * incomplete buffer, that could be due to an rx error, or
927 * maybe we just timed out. Read any pending chars and check
930 * Error conditions will only occur in the FIFO, these will
931 * trigger an immediate interrupt and stop the DMA job, so we
932 * will always find the error in the FIFO, never in the DMA
935 fifotaken = pl011_fifo_to_tty(uap);
938 dev_vdbg(uap->port.dev,
939 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
940 dma_count, fifotaken);
941 tty_flip_buffer_push(port);
944 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 struct pl011_dmarx_data *dmarx = &uap->dmarx;
947 struct dma_chan *rxchan = dmarx->chan;
948 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
949 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 struct dma_tx_state state;
952 enum dma_status dmastat;
955 * Pause the transfer so we can trust the current counter,
956 * do this before we pause the PL011 block, else we may
959 if (dmaengine_pause(rxchan))
960 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
961 dmastat = rxchan->device->device_tx_status(rxchan,
962 dmarx->cookie, &state);
963 if (dmastat != DMA_PAUSED)
964 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966 /* Disable RX DMA - incoming data will wait in the FIFO */
967 uap->dmacr &= ~UART011_RXDMAE;
968 pl011_write(uap->dmacr, uap, REG_DMACR);
969 uap->dmarx.running = false;
971 pending = sgbuf->sg.length - state.residue;
972 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
973 /* Then we terminate the transfer - we now know our residue */
974 dmaengine_terminate_all(rxchan);
977 * This will take the chars we have so far and insert
978 * into the framework.
980 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982 /* Switch buffer & re-trigger DMA job */
983 dmarx->use_buf_b = !dmarx->use_buf_b;
984 if (pl011_dma_rx_trigger_dma(uap)) {
985 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
986 "fall back to interrupt mode\n");
987 uap->im |= UART011_RXIM;
988 pl011_write(uap->im, uap, REG_IMSC);
992 static void pl011_dma_rx_callback(void *data)
994 struct uart_amba_port *uap = data;
995 struct pl011_dmarx_data *dmarx = &uap->dmarx;
996 struct dma_chan *rxchan = dmarx->chan;
997 bool lastbuf = dmarx->use_buf_b;
998 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
999 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 struct dma_tx_state state;
1005 * This completion interrupt occurs typically when the
1006 * RX buffer is totally stuffed but no timeout has yet
1007 * occurred. When that happens, we just want the RX
1008 * routine to flush out the secondary DMA buffer while
1009 * we immediately trigger the next DMA job.
1011 spin_lock_irq(&uap->port.lock);
1013 * Rx data can be taken by the UART interrupts during
1014 * the DMA irq handler. So we check the residue here.
1016 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1017 pending = sgbuf->sg.length - state.residue;
1018 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1019 /* Then we terminate the transfer - we now know our residue */
1020 dmaengine_terminate_all(rxchan);
1022 uap->dmarx.running = false;
1023 dmarx->use_buf_b = !lastbuf;
1024 ret = pl011_dma_rx_trigger_dma(uap);
1026 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1027 spin_unlock_irq(&uap->port.lock);
1029 * Do this check after we picked the DMA chars so we don't
1030 * get some IRQ immediately from RX.
1033 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1034 "fall back to interrupt mode\n");
1035 uap->im |= UART011_RXIM;
1036 pl011_write(uap->im, uap, REG_IMSC);
1041 * Stop accepting received characters, when we're shutting down or
1042 * suspending this port.
1043 * Locking: called with port lock held and IRQs disabled.
1045 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 if (!uap->using_rx_dma)
1050 /* FIXME. Just disable the DMA enable */
1051 uap->dmacr &= ~UART011_RXDMAE;
1052 pl011_write(uap->dmacr, uap, REG_DMACR);
1056 * Timer handler for Rx DMA polling.
1057 * Every polling, It checks the residue in the dma buffer and transfer
1058 * data to the tty. Also, last_residue is updated for the next polling.
1060 static void pl011_dma_rx_poll(struct timer_list *t)
1062 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1063 struct tty_port *port = &uap->port.state->port;
1064 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1065 struct dma_chan *rxchan = uap->dmarx.chan;
1066 unsigned long flags;
1067 unsigned int dmataken = 0;
1068 unsigned int size = 0;
1069 struct pl011_sgbuf *sgbuf;
1071 struct dma_tx_state state;
1073 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1074 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1075 if (likely(state.residue < dmarx->last_residue)) {
1076 dmataken = sgbuf->sg.length - dmarx->last_residue;
1077 size = dmarx->last_residue - state.residue;
1078 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1080 if (dma_count == size)
1081 dmarx->last_residue = state.residue;
1082 dmarx->last_jiffies = jiffies;
1084 tty_flip_buffer_push(port);
1087 * If no data is received in poll_timeout, the driver will fall back
1088 * to interrupt mode. We will retrigger DMA at the first interrupt.
1090 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1091 > uap->dmarx.poll_timeout) {
1093 spin_lock_irqsave(&uap->port.lock, flags);
1094 pl011_dma_rx_stop(uap);
1095 uap->im |= UART011_RXIM;
1096 pl011_write(uap->im, uap, REG_IMSC);
1097 spin_unlock_irqrestore(&uap->port.lock, flags);
1099 uap->dmarx.running = false;
1100 dmaengine_terminate_all(rxchan);
1101 del_timer(&uap->dmarx.timer);
1103 mod_timer(&uap->dmarx.timer,
1104 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 if (!uap->dma_probed)
1113 pl011_dma_probe(uap);
1115 if (!uap->dmatx.chan)
1118 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1119 if (!uap->dmatx.buf) {
1120 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1121 uap->port.fifosize = uap->fifosize;
1125 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1127 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1128 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1129 uap->using_tx_dma = true;
1131 if (!uap->dmarx.chan)
1134 /* Allocate and map DMA RX buffers */
1135 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1138 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1139 "RX buffer A", ret);
1143 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1146 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1147 "RX buffer B", ret);
1148 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1153 uap->using_rx_dma = true;
1156 /* Turn on DMA error (RX/TX will be enabled on demand) */
1157 uap->dmacr |= UART011_DMAONERR;
1158 pl011_write(uap->dmacr, uap, REG_DMACR);
1161 * ST Micro variants has some specific dma burst threshold
1162 * compensation. Set this to 16 bytes, so burst will only
1163 * be issued above/below 16 bytes.
1165 if (uap->vendor->dma_threshold)
1166 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1169 if (uap->using_rx_dma) {
1170 if (pl011_dma_rx_trigger_dma(uap))
1171 dev_dbg(uap->port.dev, "could not trigger initial "
1172 "RX DMA job, fall back to interrupt mode\n");
1173 if (uap->dmarx.poll_rate) {
1174 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1175 mod_timer(&uap->dmarx.timer,
1177 msecs_to_jiffies(uap->dmarx.poll_rate));
1178 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1179 uap->dmarx.last_jiffies = jiffies;
1184 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1186 if (!(uap->using_tx_dma || uap->using_rx_dma))
1189 /* Disable RX and TX DMA */
1190 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1193 spin_lock_irq(&uap->port.lock);
1194 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1195 pl011_write(uap->dmacr, uap, REG_DMACR);
1196 spin_unlock_irq(&uap->port.lock);
1198 if (uap->using_tx_dma) {
1199 /* In theory, this should already be done by pl011_dma_flush_buffer */
1200 dmaengine_terminate_all(uap->dmatx.chan);
1201 if (uap->dmatx.queued) {
1202 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1204 uap->dmatx.queued = false;
1207 kfree(uap->dmatx.buf);
1208 uap->using_tx_dma = false;
1211 if (uap->using_rx_dma) {
1212 dmaengine_terminate_all(uap->dmarx.chan);
1213 /* Clean up the RX DMA */
1214 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1215 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1216 if (uap->dmarx.poll_rate)
1217 del_timer_sync(&uap->dmarx.timer);
1218 uap->using_rx_dma = false;
1222 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1224 return uap->using_rx_dma;
1227 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1229 return uap->using_rx_dma && uap->dmarx.running;
1233 /* Blank functions if the DMA engine is not available */
1234 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1238 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1242 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1246 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1251 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1255 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1260 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1264 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1268 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1273 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1278 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1283 #define pl011_dma_flush_buffer NULL
1286 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1289 * To be on the safe side only time out after twice as many iterations
1292 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1293 struct uart_port *port = &uap->port;
1297 /* Wait until hardware tx queue is empty */
1298 while (!pl011_tx_empty(port)) {
1299 if (i > MAX_TX_DRAIN_ITERS) {
1301 "timeout while draining hardware tx queue\n");
1305 udelay(uap->rs485_tx_drain_interval);
1309 if (port->rs485.delay_rts_after_send)
1310 mdelay(port->rs485.delay_rts_after_send);
1312 cr = pl011_read(uap, REG_CR);
1314 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1315 cr &= ~UART011_CR_RTS;
1317 cr |= UART011_CR_RTS;
1319 /* Disable the transmitter and reenable the transceiver */
1320 cr &= ~UART011_CR_TXE;
1321 cr |= UART011_CR_RXE;
1322 pl011_write(cr, uap, REG_CR);
1324 uap->rs485_tx_started = false;
1327 static void pl011_stop_tx(struct uart_port *port)
1329 struct uart_amba_port *uap =
1330 container_of(port, struct uart_amba_port, port);
1332 uap->im &= ~UART011_TXIM;
1333 pl011_write(uap->im, uap, REG_IMSC);
1334 pl011_dma_tx_stop(uap);
1336 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1337 pl011_rs485_tx_stop(uap);
1340 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1342 /* Start TX with programmed I/O only (no DMA) */
1343 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1345 if (pl011_tx_chars(uap, false)) {
1346 uap->im |= UART011_TXIM;
1347 pl011_write(uap->im, uap, REG_IMSC);
1351 static void pl011_start_tx(struct uart_port *port)
1353 struct uart_amba_port *uap =
1354 container_of(port, struct uart_amba_port, port);
1356 if (!pl011_dma_tx_start(uap))
1357 pl011_start_tx_pio(uap);
1360 static void pl011_stop_rx(struct uart_port *port)
1362 struct uart_amba_port *uap =
1363 container_of(port, struct uart_amba_port, port);
1365 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1366 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1367 pl011_write(uap->im, uap, REG_IMSC);
1369 pl011_dma_rx_stop(uap);
1372 static void pl011_throttle_rx(struct uart_port *port)
1374 unsigned long flags;
1376 spin_lock_irqsave(&port->lock, flags);
1377 pl011_stop_rx(port);
1378 spin_unlock_irqrestore(&port->lock, flags);
1381 static void pl011_enable_ms(struct uart_port *port)
1383 struct uart_amba_port *uap =
1384 container_of(port, struct uart_amba_port, port);
1386 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1387 pl011_write(uap->im, uap, REG_IMSC);
1390 static void pl011_rx_chars(struct uart_amba_port *uap)
1391 __releases(&uap->port.lock)
1392 __acquires(&uap->port.lock)
1394 pl011_fifo_to_tty(uap);
1396 spin_unlock(&uap->port.lock);
1397 tty_flip_buffer_push(&uap->port.state->port);
1399 * If we were temporarily out of DMA mode for a while,
1400 * attempt to switch back to DMA mode again.
1402 if (pl011_dma_rx_available(uap)) {
1403 if (pl011_dma_rx_trigger_dma(uap)) {
1404 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1405 "fall back to interrupt mode again\n");
1406 uap->im |= UART011_RXIM;
1407 pl011_write(uap->im, uap, REG_IMSC);
1409 #ifdef CONFIG_DMA_ENGINE
1410 /* Start Rx DMA poll */
1411 if (uap->dmarx.poll_rate) {
1412 uap->dmarx.last_jiffies = jiffies;
1413 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1414 mod_timer(&uap->dmarx.timer,
1416 msecs_to_jiffies(uap->dmarx.poll_rate));
1421 spin_lock(&uap->port.lock);
1424 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1427 if (unlikely(!from_irq) &&
1428 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1429 return false; /* unable to transmit character */
1431 pl011_write(c, uap, REG_DR);
1432 uap->port.icount.tx++;
1437 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1439 struct uart_port *port = &uap->port;
1442 /* Enable transmitter */
1443 cr = pl011_read(uap, REG_CR);
1444 cr |= UART011_CR_TXE;
1446 /* Disable receiver if half-duplex */
1447 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1448 cr &= ~UART011_CR_RXE;
1450 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1451 cr &= ~UART011_CR_RTS;
1453 cr |= UART011_CR_RTS;
1455 pl011_write(cr, uap, REG_CR);
1457 if (port->rs485.delay_rts_before_send)
1458 mdelay(port->rs485.delay_rts_before_send);
1460 uap->rs485_tx_started = true;
1463 /* Returns true if tx interrupts have to be (kept) enabled */
1464 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1466 struct circ_buf *xmit = &uap->port.state->xmit;
1467 int count = uap->fifosize >> 1;
1469 if (uap->port.x_char) {
1470 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1472 uap->port.x_char = 0;
1475 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1476 pl011_stop_tx(&uap->port);
1480 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1481 !uap->rs485_tx_started)
1482 pl011_rs485_tx_start(uap);
1484 /* If we are using DMA mode, try to send some characters. */
1485 if (pl011_dma_tx_irq(uap))
1489 if (likely(from_irq) && count-- == 0)
1492 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1495 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1496 } while (!uart_circ_empty(xmit));
1498 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1499 uart_write_wakeup(&uap->port);
1501 if (uart_circ_empty(xmit)) {
1502 pl011_stop_tx(&uap->port);
1508 static void pl011_modem_status(struct uart_amba_port *uap)
1510 unsigned int status, delta;
1512 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1514 delta = status ^ uap->old_status;
1515 uap->old_status = status;
1520 if (delta & UART01x_FR_DCD)
1521 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1523 if (delta & uap->vendor->fr_dsr)
1524 uap->port.icount.dsr++;
1526 if (delta & uap->vendor->fr_cts)
1527 uart_handle_cts_change(&uap->port,
1528 status & uap->vendor->fr_cts);
1530 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1533 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1535 if (!uap->vendor->cts_event_workaround)
1538 /* workaround to make sure that all bits are unlocked.. */
1539 pl011_write(0x00, uap, REG_ICR);
1542 * WA: introduce 26ns(1 uart clk) delay before W1C;
1543 * single apb access will incur 2 pclk(133.12Mhz) delay,
1544 * so add 2 dummy reads
1546 pl011_read(uap, REG_ICR);
1547 pl011_read(uap, REG_ICR);
1550 static irqreturn_t pl011_int(int irq, void *dev_id)
1552 struct uart_amba_port *uap = dev_id;
1553 unsigned long flags;
1554 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1557 spin_lock_irqsave(&uap->port.lock, flags);
1558 status = pl011_read(uap, REG_RIS) & uap->im;
1561 check_apply_cts_event_workaround(uap);
1563 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1567 if (status & (UART011_RTIS|UART011_RXIS)) {
1568 if (pl011_dma_rx_running(uap))
1569 pl011_dma_rx_irq(uap);
1571 pl011_rx_chars(uap);
1573 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1574 UART011_CTSMIS|UART011_RIMIS))
1575 pl011_modem_status(uap);
1576 if (status & UART011_TXIS)
1577 pl011_tx_chars(uap, true);
1579 if (pass_counter-- == 0)
1582 status = pl011_read(uap, REG_RIS) & uap->im;
1583 } while (status != 0);
1587 spin_unlock_irqrestore(&uap->port.lock, flags);
1589 return IRQ_RETVAL(handled);
1592 static unsigned int pl011_tx_empty(struct uart_port *port)
1594 struct uart_amba_port *uap =
1595 container_of(port, struct uart_amba_port, port);
1597 /* Allow feature register bits to be inverted to work around errata */
1598 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1600 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1604 static unsigned int pl011_get_mctrl(struct uart_port *port)
1606 struct uart_amba_port *uap =
1607 container_of(port, struct uart_amba_port, port);
1608 unsigned int result = 0;
1609 unsigned int status = pl011_read(uap, REG_FR);
1611 #define TIOCMBIT(uartbit, tiocmbit) \
1612 if (status & uartbit) \
1615 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1616 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1617 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1618 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1623 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1625 struct uart_amba_port *uap =
1626 container_of(port, struct uart_amba_port, port);
1629 cr = pl011_read(uap, REG_CR);
1631 #define TIOCMBIT(tiocmbit, uartbit) \
1632 if (mctrl & tiocmbit) \
1637 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1638 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1639 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1640 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1641 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1643 if (port->status & UPSTAT_AUTORTS) {
1644 /* We need to disable auto-RTS if we want to turn RTS off */
1645 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1649 pl011_write(cr, uap, REG_CR);
1652 static void pl011_break_ctl(struct uart_port *port, int break_state)
1654 struct uart_amba_port *uap =
1655 container_of(port, struct uart_amba_port, port);
1656 unsigned long flags;
1659 spin_lock_irqsave(&uap->port.lock, flags);
1660 lcr_h = pl011_read(uap, REG_LCRH_TX);
1661 if (break_state == -1)
1662 lcr_h |= UART01x_LCRH_BRK;
1664 lcr_h &= ~UART01x_LCRH_BRK;
1665 pl011_write(lcr_h, uap, REG_LCRH_TX);
1666 spin_unlock_irqrestore(&uap->port.lock, flags);
1669 #ifdef CONFIG_CONSOLE_POLL
1671 static void pl011_quiesce_irqs(struct uart_port *port)
1673 struct uart_amba_port *uap =
1674 container_of(port, struct uart_amba_port, port);
1676 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1678 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1679 * we simply mask it. start_tx() will unmask it.
1681 * Note we can race with start_tx(), and if the race happens, the
1682 * polling user might get another interrupt just after we clear it.
1683 * But it should be OK and can happen even w/o the race, e.g.
1684 * controller immediately got some new data and raised the IRQ.
1686 * And whoever uses polling routines assumes that it manages the device
1687 * (including tx queue), so we're also fine with start_tx()'s caller
1690 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1694 static int pl011_get_poll_char(struct uart_port *port)
1696 struct uart_amba_port *uap =
1697 container_of(port, struct uart_amba_port, port);
1698 unsigned int status;
1701 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1704 pl011_quiesce_irqs(port);
1706 status = pl011_read(uap, REG_FR);
1707 if (status & UART01x_FR_RXFE)
1708 return NO_POLL_CHAR;
1710 return pl011_read(uap, REG_DR);
1713 static void pl011_put_poll_char(struct uart_port *port,
1716 struct uart_amba_port *uap =
1717 container_of(port, struct uart_amba_port, port);
1719 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1722 pl011_write(ch, uap, REG_DR);
1725 #endif /* CONFIG_CONSOLE_POLL */
1727 static int pl011_hwinit(struct uart_port *port)
1729 struct uart_amba_port *uap =
1730 container_of(port, struct uart_amba_port, port);
1733 /* Optionaly enable pins to be muxed in and configured */
1734 pinctrl_pm_select_default_state(port->dev);
1737 * Try to enable the clock producer.
1739 retval = clk_prepare_enable(uap->clk);
1743 uap->port.uartclk = clk_get_rate(uap->clk);
1745 /* Clear pending error and receive interrupts */
1746 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1747 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1751 * Save interrupts enable mask, and enable RX interrupts in case if
1752 * the interrupt is used for NMI entry.
1754 uap->im = pl011_read(uap, REG_IMSC);
1755 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1757 if (dev_get_platdata(uap->port.dev)) {
1758 struct amba_pl011_data *plat;
1760 plat = dev_get_platdata(uap->port.dev);
1767 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1769 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1770 pl011_reg_to_offset(uap, REG_LCRH_TX);
1773 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1775 pl011_write(lcr_h, uap, REG_LCRH_RX);
1776 if (pl011_split_lcrh(uap)) {
1779 * Wait 10 PCLKs before writing LCRH_TX register,
1780 * to get this delay write read only register 10 times
1782 for (i = 0; i < 10; ++i)
1783 pl011_write(0xff, uap, REG_MIS);
1784 pl011_write(lcr_h, uap, REG_LCRH_TX);
1788 static int pl011_allocate_irq(struct uart_amba_port *uap)
1790 pl011_write(uap->im, uap, REG_IMSC);
1792 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1796 * Enable interrupts, only timeouts when using DMA
1797 * if initial RX DMA job failed, start in interrupt mode
1800 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1802 unsigned long flags;
1805 spin_lock_irqsave(&uap->port.lock, flags);
1807 /* Clear out any spuriously appearing RX interrupts */
1808 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1811 * RXIS is asserted only when the RX FIFO transitions from below
1812 * to above the trigger threshold. If the RX FIFO is already
1813 * full to the threshold this can't happen and RXIS will now be
1814 * stuck off. Drain the RX FIFO explicitly to fix this:
1816 for (i = 0; i < uap->fifosize * 2; ++i) {
1817 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1820 pl011_read(uap, REG_DR);
1823 uap->im = UART011_RTIM;
1824 if (!pl011_dma_rx_running(uap))
1825 uap->im |= UART011_RXIM;
1826 pl011_write(uap->im, uap, REG_IMSC);
1827 spin_unlock_irqrestore(&uap->port.lock, flags);
1830 static void pl011_unthrottle_rx(struct uart_port *port)
1832 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1833 unsigned long flags;
1835 spin_lock_irqsave(&uap->port.lock, flags);
1837 uap->im = UART011_RTIM;
1838 if (!pl011_dma_rx_running(uap))
1839 uap->im |= UART011_RXIM;
1841 pl011_write(uap->im, uap, REG_IMSC);
1843 spin_unlock_irqrestore(&uap->port.lock, flags);
1846 static int pl011_startup(struct uart_port *port)
1848 struct uart_amba_port *uap =
1849 container_of(port, struct uart_amba_port, port);
1853 retval = pl011_hwinit(port);
1857 retval = pl011_allocate_irq(uap);
1861 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1863 spin_lock_irq(&uap->port.lock);
1865 cr = pl011_read(uap, REG_CR);
1866 cr &= UART011_CR_RTS | UART011_CR_DTR;
1867 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1869 if (!(port->rs485.flags & SER_RS485_ENABLED))
1870 cr |= UART011_CR_TXE;
1872 pl011_write(cr, uap, REG_CR);
1874 spin_unlock_irq(&uap->port.lock);
1877 * initialise the old status of the modem signals
1879 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1882 pl011_dma_startup(uap);
1884 pl011_enable_interrupts(uap);
1889 clk_disable_unprepare(uap->clk);
1893 static int sbsa_uart_startup(struct uart_port *port)
1895 struct uart_amba_port *uap =
1896 container_of(port, struct uart_amba_port, port);
1899 retval = pl011_hwinit(port);
1903 retval = pl011_allocate_irq(uap);
1907 /* The SBSA UART does not support any modem status lines. */
1908 uap->old_status = 0;
1910 pl011_enable_interrupts(uap);
1915 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1920 val = pl011_read(uap, lcrh);
1921 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1922 pl011_write(val, uap, lcrh);
1926 * disable the port. It should not disable RTS and DTR.
1927 * Also RTS and DTR state should be preserved to restore
1928 * it during startup().
1930 static void pl011_disable_uart(struct uart_amba_port *uap)
1934 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1935 spin_lock_irq(&uap->port.lock);
1936 cr = pl011_read(uap, REG_CR);
1937 cr &= UART011_CR_RTS | UART011_CR_DTR;
1938 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1939 pl011_write(cr, uap, REG_CR);
1940 spin_unlock_irq(&uap->port.lock);
1943 * disable break condition and fifos
1945 pl011_shutdown_channel(uap, REG_LCRH_RX);
1946 if (pl011_split_lcrh(uap))
1947 pl011_shutdown_channel(uap, REG_LCRH_TX);
1950 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1952 spin_lock_irq(&uap->port.lock);
1954 /* mask all interrupts and clear all pending ones */
1956 pl011_write(uap->im, uap, REG_IMSC);
1957 pl011_write(0xffff, uap, REG_ICR);
1959 spin_unlock_irq(&uap->port.lock);
1962 static void pl011_shutdown(struct uart_port *port)
1964 struct uart_amba_port *uap =
1965 container_of(port, struct uart_amba_port, port);
1967 pl011_disable_interrupts(uap);
1969 pl011_dma_shutdown(uap);
1971 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1972 pl011_rs485_tx_stop(uap);
1974 free_irq(uap->port.irq, uap);
1976 pl011_disable_uart(uap);
1979 * Shut down the clock producer
1981 clk_disable_unprepare(uap->clk);
1982 /* Optionally let pins go into sleep states */
1983 pinctrl_pm_select_sleep_state(port->dev);
1985 if (dev_get_platdata(uap->port.dev)) {
1986 struct amba_pl011_data *plat;
1988 plat = dev_get_platdata(uap->port.dev);
1993 if (uap->port.ops->flush_buffer)
1994 uap->port.ops->flush_buffer(port);
1997 static void sbsa_uart_shutdown(struct uart_port *port)
1999 struct uart_amba_port *uap =
2000 container_of(port, struct uart_amba_port, port);
2002 pl011_disable_interrupts(uap);
2004 free_irq(uap->port.irq, uap);
2006 if (uap->port.ops->flush_buffer)
2007 uap->port.ops->flush_buffer(port);
2011 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2013 port->read_status_mask = UART011_DR_OE | 255;
2014 if (termios->c_iflag & INPCK)
2015 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2016 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2017 port->read_status_mask |= UART011_DR_BE;
2020 * Characters to ignore
2022 port->ignore_status_mask = 0;
2023 if (termios->c_iflag & IGNPAR)
2024 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2025 if (termios->c_iflag & IGNBRK) {
2026 port->ignore_status_mask |= UART011_DR_BE;
2028 * If we're ignoring parity and break indicators,
2029 * ignore overruns too (for real raw support).
2031 if (termios->c_iflag & IGNPAR)
2032 port->ignore_status_mask |= UART011_DR_OE;
2036 * Ignore all characters if CREAD is not set.
2038 if ((termios->c_cflag & CREAD) == 0)
2039 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2043 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2044 const struct ktermios *old)
2046 struct uart_amba_port *uap =
2047 container_of(port, struct uart_amba_port, port);
2048 unsigned int lcr_h, old_cr;
2049 unsigned long flags;
2050 unsigned int baud, quot, clkdiv;
2053 if (uap->vendor->oversampling)
2059 * Ask the core to calculate the divisor for us.
2061 baud = uart_get_baud_rate(port, termios, old, 0,
2062 port->uartclk / clkdiv);
2063 #ifdef CONFIG_DMA_ENGINE
2065 * Adjust RX DMA polling rate with baud rate if not specified.
2067 if (uap->dmarx.auto_poll_rate)
2068 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2071 if (baud > port->uartclk/16)
2072 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2074 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2076 switch (termios->c_cflag & CSIZE) {
2078 lcr_h = UART01x_LCRH_WLEN_5;
2081 lcr_h = UART01x_LCRH_WLEN_6;
2084 lcr_h = UART01x_LCRH_WLEN_7;
2087 lcr_h = UART01x_LCRH_WLEN_8;
2090 if (termios->c_cflag & CSTOPB)
2091 lcr_h |= UART01x_LCRH_STP2;
2092 if (termios->c_cflag & PARENB) {
2093 lcr_h |= UART01x_LCRH_PEN;
2094 if (!(termios->c_cflag & PARODD))
2095 lcr_h |= UART01x_LCRH_EPS;
2096 if (termios->c_cflag & CMSPAR)
2097 lcr_h |= UART011_LCRH_SPS;
2099 if (uap->fifosize > 1)
2100 lcr_h |= UART01x_LCRH_FEN;
2102 bits = tty_get_frame_size(termios->c_cflag);
2104 spin_lock_irqsave(&port->lock, flags);
2107 * Update the per-port timeout.
2109 uart_update_timeout(port, termios->c_cflag, baud);
2112 * Calculate the approximated time it takes to transmit one character
2113 * with the given baud rate. We use this as the poll interval when we
2114 * wait for the tx queue to empty.
2116 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2118 pl011_setup_status_masks(port, termios);
2120 if (UART_ENABLE_MS(port, termios->c_cflag))
2121 pl011_enable_ms(port);
2123 if (port->rs485.flags & SER_RS485_ENABLED)
2124 termios->c_cflag &= ~CRTSCTS;
2126 old_cr = pl011_read(uap, REG_CR);
2128 if (termios->c_cflag & CRTSCTS) {
2129 if (old_cr & UART011_CR_RTS)
2130 old_cr |= UART011_CR_RTSEN;
2132 old_cr |= UART011_CR_CTSEN;
2133 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2135 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2136 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2139 if (uap->vendor->oversampling) {
2140 if (baud > port->uartclk / 16)
2141 old_cr |= ST_UART011_CR_OVSFACT;
2143 old_cr &= ~ST_UART011_CR_OVSFACT;
2147 * Workaround for the ST Micro oversampling variants to
2148 * increase the bitrate slightly, by lowering the divisor,
2149 * to avoid delayed sampling of start bit at high speeds,
2150 * else we see data corruption.
2152 if (uap->vendor->oversampling) {
2153 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2155 else if ((baud > 3250000) && (quot > 2))
2159 pl011_write(quot & 0x3f, uap, REG_FBRD);
2160 pl011_write(quot >> 6, uap, REG_IBRD);
2163 * ----------v----------v----------v----------v-----
2164 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2165 * REG_FBRD & REG_IBRD.
2166 * ----------^----------^----------^----------^-----
2168 pl011_write_lcr_h(uap, lcr_h);
2169 pl011_write(old_cr, uap, REG_CR);
2171 spin_unlock_irqrestore(&port->lock, flags);
2175 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2176 const struct ktermios *old)
2178 struct uart_amba_port *uap =
2179 container_of(port, struct uart_amba_port, port);
2180 unsigned long flags;
2182 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2184 /* The SBSA UART only supports 8n1 without hardware flow control. */
2185 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2186 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2187 termios->c_cflag |= CS8 | CLOCAL;
2189 spin_lock_irqsave(&port->lock, flags);
2190 uart_update_timeout(port, CS8, uap->fixed_baud);
2191 pl011_setup_status_masks(port, termios);
2192 spin_unlock_irqrestore(&port->lock, flags);
2195 static const char *pl011_type(struct uart_port *port)
2197 struct uart_amba_port *uap =
2198 container_of(port, struct uart_amba_port, port);
2199 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2203 * Configure/autoconfigure the port.
2205 static void pl011_config_port(struct uart_port *port, int flags)
2207 if (flags & UART_CONFIG_TYPE)
2208 port->type = PORT_AMBA;
2212 * verify the new serial_struct (for TIOCSSERIAL).
2214 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2217 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2219 if (ser->irq < 0 || ser->irq >= nr_irqs)
2221 if (ser->baud_base < 9600)
2223 if (port->mapbase != (unsigned long) ser->iomem_base)
2228 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2229 struct serial_rs485 *rs485)
2231 struct uart_amba_port *uap =
2232 container_of(port, struct uart_amba_port, port);
2234 if (port->rs485.flags & SER_RS485_ENABLED)
2235 pl011_rs485_tx_stop(uap);
2237 /* Make sure auto RTS is disabled */
2238 if (rs485->flags & SER_RS485_ENABLED) {
2239 u32 cr = pl011_read(uap, REG_CR);
2241 cr &= ~UART011_CR_RTSEN;
2242 pl011_write(cr, uap, REG_CR);
2243 port->status &= ~UPSTAT_AUTORTS;
2249 static const struct uart_ops amba_pl011_pops = {
2250 .tx_empty = pl011_tx_empty,
2251 .set_mctrl = pl011_set_mctrl,
2252 .get_mctrl = pl011_get_mctrl,
2253 .stop_tx = pl011_stop_tx,
2254 .start_tx = pl011_start_tx,
2255 .stop_rx = pl011_stop_rx,
2256 .throttle = pl011_throttle_rx,
2257 .unthrottle = pl011_unthrottle_rx,
2258 .enable_ms = pl011_enable_ms,
2259 .break_ctl = pl011_break_ctl,
2260 .startup = pl011_startup,
2261 .shutdown = pl011_shutdown,
2262 .flush_buffer = pl011_dma_flush_buffer,
2263 .set_termios = pl011_set_termios,
2265 .config_port = pl011_config_port,
2266 .verify_port = pl011_verify_port,
2267 #ifdef CONFIG_CONSOLE_POLL
2268 .poll_init = pl011_hwinit,
2269 .poll_get_char = pl011_get_poll_char,
2270 .poll_put_char = pl011_put_poll_char,
2274 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2278 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2283 static const struct uart_ops sbsa_uart_pops = {
2284 .tx_empty = pl011_tx_empty,
2285 .set_mctrl = sbsa_uart_set_mctrl,
2286 .get_mctrl = sbsa_uart_get_mctrl,
2287 .stop_tx = pl011_stop_tx,
2288 .start_tx = pl011_start_tx,
2289 .stop_rx = pl011_stop_rx,
2290 .startup = sbsa_uart_startup,
2291 .shutdown = sbsa_uart_shutdown,
2292 .set_termios = sbsa_uart_set_termios,
2294 .config_port = pl011_config_port,
2295 .verify_port = pl011_verify_port,
2296 #ifdef CONFIG_CONSOLE_POLL
2297 .poll_init = pl011_hwinit,
2298 .poll_get_char = pl011_get_poll_char,
2299 .poll_put_char = pl011_put_poll_char,
2303 static struct uart_amba_port *amba_ports[UART_NR];
2305 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2307 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2309 struct uart_amba_port *uap =
2310 container_of(port, struct uart_amba_port, port);
2312 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2314 pl011_write(ch, uap, REG_DR);
2318 pl011_console_write(struct console *co, const char *s, unsigned int count)
2320 struct uart_amba_port *uap = amba_ports[co->index];
2321 unsigned int old_cr = 0, new_cr;
2322 unsigned long flags;
2325 clk_enable(uap->clk);
2327 local_irq_save(flags);
2328 if (uap->port.sysrq)
2330 else if (oops_in_progress)
2331 locked = spin_trylock(&uap->port.lock);
2333 spin_lock(&uap->port.lock);
2336 * First save the CR then disable the interrupts
2338 if (!uap->vendor->always_enabled) {
2339 old_cr = pl011_read(uap, REG_CR);
2340 new_cr = old_cr & ~UART011_CR_CTSEN;
2341 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2342 pl011_write(new_cr, uap, REG_CR);
2345 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2348 * Finally, wait for transmitter to become empty and restore the
2349 * TCR. Allow feature register bits to be inverted to work around
2352 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2353 & uap->vendor->fr_busy)
2355 if (!uap->vendor->always_enabled)
2356 pl011_write(old_cr, uap, REG_CR);
2359 spin_unlock(&uap->port.lock);
2360 local_irq_restore(flags);
2362 clk_disable(uap->clk);
2365 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2366 int *parity, int *bits)
2368 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2369 unsigned int lcr_h, ibrd, fbrd;
2371 lcr_h = pl011_read(uap, REG_LCRH_TX);
2374 if (lcr_h & UART01x_LCRH_PEN) {
2375 if (lcr_h & UART01x_LCRH_EPS)
2381 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2386 ibrd = pl011_read(uap, REG_IBRD);
2387 fbrd = pl011_read(uap, REG_FBRD);
2389 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2391 if (uap->vendor->oversampling) {
2392 if (pl011_read(uap, REG_CR)
2393 & ST_UART011_CR_OVSFACT)
2399 static int pl011_console_setup(struct console *co, char *options)
2401 struct uart_amba_port *uap;
2409 * Check whether an invalid uart number has been specified, and
2410 * if so, search for the first available port that does have
2413 if (co->index >= UART_NR)
2415 uap = amba_ports[co->index];
2419 /* Allow pins to be muxed in and configured */
2420 pinctrl_pm_select_default_state(uap->port.dev);
2422 ret = clk_prepare(uap->clk);
2426 if (dev_get_platdata(uap->port.dev)) {
2427 struct amba_pl011_data *plat;
2429 plat = dev_get_platdata(uap->port.dev);
2434 uap->port.uartclk = clk_get_rate(uap->clk);
2436 if (uap->vendor->fixed_options) {
2437 baud = uap->fixed_baud;
2440 uart_parse_options(options,
2441 &baud, &parity, &bits, &flow);
2443 pl011_console_get_options(uap, &baud, &parity, &bits);
2446 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2450 * pl011_console_match - non-standard console matching
2451 * @co: registering console
2452 * @name: name from console command line
2453 * @idx: index from console command line
2454 * @options: ptr to option string from console command line
2456 * Only attempts to match console command lines of the form:
2457 * console=pl011,mmio|mmio32,<addr>[,<options>]
2458 * console=pl011,0x<addr>[,<options>]
2459 * This form is used to register an initial earlycon boot console and
2460 * replace it with the amba_console at pl011 driver init.
2462 * Performs console setup for a match (as required by interface)
2463 * If no <options> are specified, then assume the h/w is already setup.
2465 * Returns 0 if console matches; otherwise non-zero to use default matching
2467 static int pl011_console_match(struct console *co, char *name, int idx,
2470 unsigned char iotype;
2471 resource_size_t addr;
2475 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2476 * have a distinct console name, so make sure we check for that.
2477 * The actual implementation of the erratum occurs in the probe
2480 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2483 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2486 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2489 /* try to match the port specified on the command line */
2490 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2491 struct uart_port *port;
2496 port = &amba_ports[i]->port;
2498 if (port->mapbase != addr)
2503 return pl011_console_setup(co, options);
2509 static struct uart_driver amba_reg;
2510 static struct console amba_console = {
2512 .write = pl011_console_write,
2513 .device = uart_console_device,
2514 .setup = pl011_console_setup,
2515 .match = pl011_console_match,
2516 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2521 #define AMBA_CONSOLE (&amba_console)
2523 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2525 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2527 writel(c, port->membase + UART01x_DR);
2528 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2532 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2534 struct earlycon_device *dev = con->data;
2536 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2539 static void pl011_putc(struct uart_port *port, unsigned char c)
2541 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2543 if (port->iotype == UPIO_MEM32)
2544 writel(c, port->membase + UART01x_DR);
2546 writeb(c, port->membase + UART01x_DR);
2547 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2551 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2553 struct earlycon_device *dev = con->data;
2555 uart_console_write(&dev->port, s, n, pl011_putc);
2558 #ifdef CONFIG_CONSOLE_POLL
2559 static int pl011_getc(struct uart_port *port)
2561 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2562 return NO_POLL_CHAR;
2564 if (port->iotype == UPIO_MEM32)
2565 return readl(port->membase + UART01x_DR);
2567 return readb(port->membase + UART01x_DR);
2570 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2572 struct earlycon_device *dev = con->data;
2573 int ch, num_read = 0;
2575 while (num_read < n) {
2576 ch = pl011_getc(&dev->port);
2577 if (ch == NO_POLL_CHAR)
2586 #define pl011_early_read NULL
2590 * On non-ACPI systems, earlycon is enabled by specifying
2591 * "earlycon=pl011,<address>" on the kernel command line.
2593 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2594 * by specifying only "earlycon" on the command line. Because it requires
2595 * SPCR, the console starts after ACPI is parsed, which is later than a
2596 * traditional early console.
2598 * To get the traditional early console that starts before ACPI is parsed,
2599 * specify the full "earlycon=pl011,<address>" option.
2601 static int __init pl011_early_console_setup(struct earlycon_device *device,
2604 if (!device->port.membase)
2607 device->con->write = pl011_early_write;
2608 device->con->read = pl011_early_read;
2612 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2613 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2616 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2617 * Erratum 44, traditional earlycon can be enabled by specifying
2618 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2620 * Alternatively, you can just specify "earlycon", and the early console
2621 * will be enabled with the information from the SPCR table. In this
2622 * case, the SPCR code will detect the need for the E44 work-around,
2623 * and set the console name to "qdf2400_e44".
2626 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2629 if (!device->port.membase)
2632 device->con->write = qdf2400_e44_early_write;
2635 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2638 #define AMBA_CONSOLE NULL
2641 static struct uart_driver amba_reg = {
2642 .owner = THIS_MODULE,
2643 .driver_name = "ttyAMA",
2644 .dev_name = "ttyAMA",
2645 .major = SERIAL_AMBA_MAJOR,
2646 .minor = SERIAL_AMBA_MINOR,
2648 .cons = AMBA_CONSOLE,
2651 static int pl011_probe_dt_alias(int index, struct device *dev)
2653 struct device_node *np;
2654 static bool seen_dev_with_alias = false;
2655 static bool seen_dev_without_alias = false;
2658 if (!IS_ENABLED(CONFIG_OF))
2665 ret = of_alias_get_id(np, "serial");
2667 seen_dev_without_alias = true;
2670 seen_dev_with_alias = true;
2671 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2672 dev_warn(dev, "requested serial port %d not available.\n", ret);
2677 if (seen_dev_with_alias && seen_dev_without_alias)
2678 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2683 /* unregisters the driver also if no more ports are left */
2684 static void pl011_unregister_port(struct uart_amba_port *uap)
2689 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690 if (amba_ports[i] == uap)
2691 amba_ports[i] = NULL;
2692 else if (amba_ports[i])
2695 pl011_dma_remove(uap);
2697 uart_unregister_driver(&amba_reg);
2700 static int pl011_find_free_port(void)
2704 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705 if (amba_ports[i] == NULL)
2711 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2713 struct uart_port *port = &uap->port;
2716 ret = uart_get_rs485_mode(port);
2723 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724 struct resource *mmiobase, int index)
2729 base = devm_ioremap_resource(dev, mmiobase);
2731 return PTR_ERR(base);
2733 index = pl011_probe_dt_alias(index, dev);
2735 uap->port.dev = dev;
2736 uap->port.mapbase = mmiobase->start;
2737 uap->port.membase = base;
2738 uap->port.fifosize = uap->fifosize;
2739 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740 uap->port.flags = UPF_BOOT_AUTOCONF;
2741 uap->port.line = index;
2743 ret = pl011_get_rs485_mode(uap);
2747 amba_ports[index] = uap;
2752 static int pl011_register_port(struct uart_amba_port *uap)
2756 /* Ensure interrupts from this UART are masked and cleared */
2757 pl011_write(0, uap, REG_IMSC);
2758 pl011_write(0xffff, uap, REG_ICR);
2760 if (!amba_reg.state) {
2761 ret = uart_register_driver(&amba_reg);
2763 dev_err(uap->port.dev,
2764 "Failed to register AMBA-PL011 driver\n");
2765 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766 if (amba_ports[i] == uap)
2767 amba_ports[i] = NULL;
2772 ret = uart_add_one_port(&amba_reg, &uap->port);
2774 pl011_unregister_port(uap);
2779 static const struct serial_rs485 pl011_rs485_supported = {
2780 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781 SER_RS485_RX_DURING_TX,
2782 .delay_rts_before_send = 1,
2783 .delay_rts_after_send = 1,
2786 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2788 struct uart_amba_port *uap;
2789 struct vendor_data *vendor = id->data;
2793 portnr = pl011_find_free_port();
2797 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2802 uap->clk = devm_clk_get(&dev->dev, NULL);
2803 if (IS_ERR(uap->clk))
2804 return PTR_ERR(uap->clk);
2806 uap->reg_offset = vendor->reg_offset;
2807 uap->vendor = vendor;
2808 uap->fifosize = vendor->get_fifosize(dev);
2809 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810 uap->port.irq = dev->irq[0];
2811 uap->port.ops = &amba_pl011_pops;
2812 uap->port.rs485_config = pl011_rs485_config;
2813 uap->port.rs485_supported = pl011_rs485_supported;
2814 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2816 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2819 uap->port.iotype = UPIO_MEM;
2822 uap->port.iotype = UPIO_MEM32;
2825 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2831 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2835 amba_set_drvdata(dev, uap);
2837 return pl011_register_port(uap);
2840 static void pl011_remove(struct amba_device *dev)
2842 struct uart_amba_port *uap = amba_get_drvdata(dev);
2844 uart_remove_one_port(&amba_reg, &uap->port);
2845 pl011_unregister_port(uap);
2848 #ifdef CONFIG_PM_SLEEP
2849 static int pl011_suspend(struct device *dev)
2851 struct uart_amba_port *uap = dev_get_drvdata(dev);
2856 return uart_suspend_port(&amba_reg, &uap->port);
2859 static int pl011_resume(struct device *dev)
2861 struct uart_amba_port *uap = dev_get_drvdata(dev);
2866 return uart_resume_port(&amba_reg, &uap->port);
2870 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2872 static int sbsa_uart_probe(struct platform_device *pdev)
2874 struct uart_amba_port *uap;
2880 * Check the mandatory baud rate parameter in the DT node early
2881 * so that we can easily exit with the error.
2883 if (pdev->dev.of_node) {
2884 struct device_node *np = pdev->dev.of_node;
2886 ret = of_property_read_u32(np, "current-speed", &baudrate);
2893 portnr = pl011_find_free_port();
2897 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2902 ret = platform_get_irq(pdev, 0);
2905 uap->port.irq = ret;
2907 #ifdef CONFIG_ACPI_SPCR_TABLE
2908 if (qdf2400_e44_present) {
2909 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2910 uap->vendor = &vendor_qdt_qdf2400_e44;
2913 uap->vendor = &vendor_sbsa;
2915 uap->reg_offset = uap->vendor->reg_offset;
2917 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2918 uap->port.ops = &sbsa_uart_pops;
2919 uap->fixed_baud = baudrate;
2921 snprintf(uap->type, sizeof(uap->type), "SBSA");
2923 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2925 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2929 platform_set_drvdata(pdev, uap);
2931 return pl011_register_port(uap);
2934 static int sbsa_uart_remove(struct platform_device *pdev)
2936 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2938 uart_remove_one_port(&amba_reg, &uap->port);
2939 pl011_unregister_port(uap);
2943 static const struct of_device_id sbsa_uart_of_match[] = {
2944 { .compatible = "arm,sbsa-uart", },
2947 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2949 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2954 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2956 static struct platform_driver arm_sbsa_uart_platform_driver = {
2957 .probe = sbsa_uart_probe,
2958 .remove = sbsa_uart_remove,
2960 .name = "sbsa-uart",
2961 .pm = &pl011_dev_pm_ops,
2962 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2963 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2964 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2968 static const struct amba_id pl011_ids[] = {
2972 .data = &vendor_arm,
2982 MODULE_DEVICE_TABLE(amba, pl011_ids);
2984 static struct amba_driver pl011_driver = {
2986 .name = "uart-pl011",
2987 .pm = &pl011_dev_pm_ops,
2988 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2990 .id_table = pl011_ids,
2991 .probe = pl011_probe,
2992 .remove = pl011_remove,
2995 static int __init pl011_init(void)
2997 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2999 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3000 pr_warn("could not register SBSA UART platform driver\n");
3001 return amba_driver_register(&pl011_driver);
3004 static void __exit pl011_exit(void)
3006 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3007 amba_driver_unregister(&pl011_driver);
3011 * While this can be a module, if builtin it's most likely the console
3012 * So let's leave module_exit but move module_init to an earlier place
3014 arch_initcall(pl011_init);
3015 module_exit(pl011_exit);
3017 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3018 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3019 MODULE_LICENSE("GPL");