]> Git Repo - linux.git/blob - drivers/scsi/sd.c
block: add a sanity check for non-write flush/fua bios
[linux.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <[email protected]> original
11  *       - Eric Youngdale <[email protected]> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <[email protected]> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <[email protected]> support devfs.
17  *       - Torben Mathiasen <[email protected]> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <[email protected]> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <[email protected]> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <[email protected]>, Matthew Wilcox 
24  *         <[email protected]>, Kurt Garloff <[email protected]>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS       16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static struct kmem_cache *sd_cdb_cache;
125 static mempool_t *sd_page_pool;
126 static struct lock_class_key sd_bio_compl_lkclass;
127
128 static const char *sd_cache_types[] = {
129         "write through", "none", "write back",
130         "write back, no read (daft)"
131 };
132
133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
134 {
135         bool wc = false, fua = false;
136
137         if (sdkp->WCE) {
138                 wc = true;
139                 if (sdkp->DPOFUA)
140                         fua = true;
141         }
142
143         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
144 }
145
146 static ssize_t
147 cache_type_store(struct device *dev, struct device_attribute *attr,
148                  const char *buf, size_t count)
149 {
150         int ct, rcd, wce, sp;
151         struct scsi_disk *sdkp = to_scsi_disk(dev);
152         struct scsi_device *sdp = sdkp->device;
153         char buffer[64];
154         char *buffer_data;
155         struct scsi_mode_data data;
156         struct scsi_sense_hdr sshdr;
157         static const char temp[] = "temporary ";
158         int len;
159
160         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
161                 /* no cache control on RBC devices; theoretically they
162                  * can do it, but there's probably so many exceptions
163                  * it's not worth the risk */
164                 return -EINVAL;
165
166         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
167                 buf += sizeof(temp) - 1;
168                 sdkp->cache_override = 1;
169         } else {
170                 sdkp->cache_override = 0;
171         }
172
173         ct = sysfs_match_string(sd_cache_types, buf);
174         if (ct < 0)
175                 return -EINVAL;
176
177         rcd = ct & 0x01 ? 1 : 0;
178         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
179
180         if (sdkp->cache_override) {
181                 sdkp->WCE = wce;
182                 sdkp->RCD = rcd;
183                 sd_set_flush_flag(sdkp);
184                 return count;
185         }
186
187         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
188                             sdkp->max_retries, &data, NULL))
189                 return -EINVAL;
190         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191                   data.block_descriptor_length);
192         buffer_data = buffer + data.header_length +
193                 data.block_descriptor_length;
194         buffer_data[2] &= ~0x05;
195         buffer_data[2] |= wce << 2 | rcd;
196         sp = buffer_data[0] & 0x80 ? 1 : 0;
197         buffer_data[0] &= ~0x80;
198
199         /*
200          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201          * received mode parameter buffer before doing MODE SELECT.
202          */
203         data.device_specific = 0;
204
205         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206                              sdkp->max_retries, &data, &sshdr)) {
207                 if (scsi_sense_valid(&sshdr))
208                         sd_print_sense_hdr(sdkp, &sshdr);
209                 return -EINVAL;
210         }
211         sd_revalidate_disk(sdkp->disk);
212         return count;
213 }
214
215 static ssize_t
216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
217                        char *buf)
218 {
219         struct scsi_disk *sdkp = to_scsi_disk(dev);
220         struct scsi_device *sdp = sdkp->device;
221
222         return sprintf(buf, "%u\n", sdp->manage_start_stop);
223 }
224
225 static ssize_t
226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
227                         const char *buf, size_t count)
228 {
229         struct scsi_disk *sdkp = to_scsi_disk(dev);
230         struct scsi_device *sdp = sdkp->device;
231         bool v;
232
233         if (!capable(CAP_SYS_ADMIN))
234                 return -EACCES;
235
236         if (kstrtobool(buf, &v))
237                 return -EINVAL;
238
239         sdp->manage_start_stop = v;
240
241         return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244
245 static ssize_t
246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248         struct scsi_disk *sdkp = to_scsi_disk(dev);
249
250         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
251 }
252
253 static ssize_t
254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255                     const char *buf, size_t count)
256 {
257         bool v;
258         struct scsi_disk *sdkp = to_scsi_disk(dev);
259         struct scsi_device *sdp = sdkp->device;
260
261         if (!capable(CAP_SYS_ADMIN))
262                 return -EACCES;
263
264         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
265                 return -EINVAL;
266
267         if (kstrtobool(buf, &v))
268                 return -EINVAL;
269
270         sdp->allow_restart = v;
271
272         return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279         struct scsi_disk *sdkp = to_scsi_disk(dev);
280         int ct = sdkp->RCD + 2*sdkp->WCE;
281
282         return sprintf(buf, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289         struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291         return sprintf(buf, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297                      char *buf)
298 {
299         struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301         return sprintf(buf, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306                       const char *buf, size_t count)
307 {
308         struct scsi_disk *sdkp = to_scsi_disk(dev);
309         unsigned int val;
310         int err;
311
312         if (!capable(CAP_SYS_ADMIN))
313                 return -EACCES;
314
315         err = kstrtouint(buf, 10, &val);
316
317         if (err)
318                 return err;
319
320         if (val <= T10_PI_TYPE3_PROTECTION)
321                 sdkp->protection_type = val;
322
323         return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329                      char *buf)
330 {
331         struct scsi_disk *sdkp = to_scsi_disk(dev);
332         struct scsi_device *sdp = sdkp->device;
333         unsigned int dif, dix;
334
335         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339                 dif = 0;
340                 dix = 1;
341         }
342
343         if (!dif && !dix)
344                 return sprintf(buf, "none\n");
345
346         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353         struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355         return sprintf(buf, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361                        char *buf)
362 {
363         struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365         return sprintf(buf, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 /* sysfs_match_string() requires dense arrays */
370 static const char *lbp_mode[] = {
371         [SD_LBP_FULL]           = "full",
372         [SD_LBP_UNMAP]          = "unmap",
373         [SD_LBP_WS16]           = "writesame_16",
374         [SD_LBP_WS10]           = "writesame_10",
375         [SD_LBP_ZERO]           = "writesame_zero",
376         [SD_LBP_DISABLE]        = "disabled",
377 };
378
379 static ssize_t
380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
381                        char *buf)
382 {
383         struct scsi_disk *sdkp = to_scsi_disk(dev);
384
385         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
386 }
387
388 static ssize_t
389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
390                         const char *buf, size_t count)
391 {
392         struct scsi_disk *sdkp = to_scsi_disk(dev);
393         struct scsi_device *sdp = sdkp->device;
394         int mode;
395
396         if (!capable(CAP_SYS_ADMIN))
397                 return -EACCES;
398
399         if (sd_is_zoned(sdkp)) {
400                 sd_config_discard(sdkp, SD_LBP_DISABLE);
401                 return count;
402         }
403
404         if (sdp->type != TYPE_DISK)
405                 return -EINVAL;
406
407         mode = sysfs_match_string(lbp_mode, buf);
408         if (mode < 0)
409                 return -EINVAL;
410
411         sd_config_discard(sdkp, mode);
412
413         return count;
414 }
415 static DEVICE_ATTR_RW(provisioning_mode);
416
417 /* sysfs_match_string() requires dense arrays */
418 static const char *zeroing_mode[] = {
419         [SD_ZERO_WRITE]         = "write",
420         [SD_ZERO_WS]            = "writesame",
421         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
422         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
423 };
424
425 static ssize_t
426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
427                   char *buf)
428 {
429         struct scsi_disk *sdkp = to_scsi_disk(dev);
430
431         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
432 }
433
434 static ssize_t
435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
436                    const char *buf, size_t count)
437 {
438         struct scsi_disk *sdkp = to_scsi_disk(dev);
439         int mode;
440
441         if (!capable(CAP_SYS_ADMIN))
442                 return -EACCES;
443
444         mode = sysfs_match_string(zeroing_mode, buf);
445         if (mode < 0)
446                 return -EINVAL;
447
448         sdkp->zeroing_mode = mode;
449
450         return count;
451 }
452 static DEVICE_ATTR_RW(zeroing_mode);
453
454 static ssize_t
455 max_medium_access_timeouts_show(struct device *dev,
456                                 struct device_attribute *attr, char *buf)
457 {
458         struct scsi_disk *sdkp = to_scsi_disk(dev);
459
460         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
461 }
462
463 static ssize_t
464 max_medium_access_timeouts_store(struct device *dev,
465                                  struct device_attribute *attr, const char *buf,
466                                  size_t count)
467 {
468         struct scsi_disk *sdkp = to_scsi_disk(dev);
469         int err;
470
471         if (!capable(CAP_SYS_ADMIN))
472                 return -EACCES;
473
474         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
475
476         return err ? err : count;
477 }
478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
479
480 static ssize_t
481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
482                            char *buf)
483 {
484         struct scsi_disk *sdkp = to_scsi_disk(dev);
485
486         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
487 }
488
489 static ssize_t
490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
491                             const char *buf, size_t count)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494         struct scsi_device *sdp = sdkp->device;
495         unsigned long max;
496         int err;
497
498         if (!capable(CAP_SYS_ADMIN))
499                 return -EACCES;
500
501         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
502                 return -EINVAL;
503
504         err = kstrtoul(buf, 10, &max);
505
506         if (err)
507                 return err;
508
509         if (max == 0)
510                 sdp->no_write_same = 1;
511         else if (max <= SD_MAX_WS16_BLOCKS) {
512                 sdp->no_write_same = 0;
513                 sdkp->max_ws_blocks = max;
514         }
515
516         sd_config_write_same(sdkp);
517
518         return count;
519 }
520 static DEVICE_ATTR_RW(max_write_same_blocks);
521
522 static ssize_t
523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525         struct scsi_disk *sdkp = to_scsi_disk(dev);
526
527         if (sdkp->device->type == TYPE_ZBC)
528                 return sprintf(buf, "host-managed\n");
529         if (sdkp->zoned == 1)
530                 return sprintf(buf, "host-aware\n");
531         if (sdkp->zoned == 2)
532                 return sprintf(buf, "drive-managed\n");
533         return sprintf(buf, "none\n");
534 }
535 static DEVICE_ATTR_RO(zoned_cap);
536
537 static ssize_t
538 max_retries_store(struct device *dev, struct device_attribute *attr,
539                   const char *buf, size_t count)
540 {
541         struct scsi_disk *sdkp = to_scsi_disk(dev);
542         struct scsi_device *sdev = sdkp->device;
543         int retries, err;
544
545         err = kstrtoint(buf, 10, &retries);
546         if (err)
547                 return err;
548
549         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
550                 sdkp->max_retries = retries;
551                 return count;
552         }
553
554         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
555                     SD_MAX_RETRIES);
556         return -EINVAL;
557 }
558
559 static ssize_t
560 max_retries_show(struct device *dev, struct device_attribute *attr,
561                  char *buf)
562 {
563         struct scsi_disk *sdkp = to_scsi_disk(dev);
564
565         return sprintf(buf, "%d\n", sdkp->max_retries);
566 }
567
568 static DEVICE_ATTR_RW(max_retries);
569
570 static struct attribute *sd_disk_attrs[] = {
571         &dev_attr_cache_type.attr,
572         &dev_attr_FUA.attr,
573         &dev_attr_allow_restart.attr,
574         &dev_attr_manage_start_stop.attr,
575         &dev_attr_protection_type.attr,
576         &dev_attr_protection_mode.attr,
577         &dev_attr_app_tag_own.attr,
578         &dev_attr_thin_provisioning.attr,
579         &dev_attr_provisioning_mode.attr,
580         &dev_attr_zeroing_mode.attr,
581         &dev_attr_max_write_same_blocks.attr,
582         &dev_attr_max_medium_access_timeouts.attr,
583         &dev_attr_zoned_cap.attr,
584         &dev_attr_max_retries.attr,
585         NULL,
586 };
587 ATTRIBUTE_GROUPS(sd_disk);
588
589 static struct class sd_disk_class = {
590         .name           = "scsi_disk",
591         .owner          = THIS_MODULE,
592         .dev_release    = scsi_disk_release,
593         .dev_groups     = sd_disk_groups,
594 };
595
596 static const struct dev_pm_ops sd_pm_ops = {
597         .suspend                = sd_suspend_system,
598         .resume                 = sd_resume_system,
599         .poweroff               = sd_suspend_system,
600         .restore                = sd_resume_system,
601         .runtime_suspend        = sd_suspend_runtime,
602         .runtime_resume         = sd_resume_runtime,
603 };
604
605 static struct scsi_driver sd_template = {
606         .gendrv = {
607                 .name           = "sd",
608                 .owner          = THIS_MODULE,
609                 .probe          = sd_probe,
610                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
611                 .remove         = sd_remove,
612                 .shutdown       = sd_shutdown,
613                 .pm             = &sd_pm_ops,
614         },
615         .rescan                 = sd_rescan,
616         .init_command           = sd_init_command,
617         .uninit_command         = sd_uninit_command,
618         .done                   = sd_done,
619         .eh_action              = sd_eh_action,
620         .eh_reset               = sd_eh_reset,
621 };
622
623 /*
624  * Don't request a new module, as that could deadlock in multipath
625  * environment.
626  */
627 static void sd_default_probe(dev_t devt)
628 {
629 }
630
631 /*
632  * Device no to disk mapping:
633  * 
634  *       major         disc2     disc  p1
635  *   |............|.............|....|....| <- dev_t
636  *    31        20 19          8 7  4 3  0
637  * 
638  * Inside a major, we have 16k disks, however mapped non-
639  * contiguously. The first 16 disks are for major0, the next
640  * ones with major1, ... Disk 256 is for major0 again, disk 272 
641  * for major1, ... 
642  * As we stay compatible with our numbering scheme, we can reuse 
643  * the well-know SCSI majors 8, 65--71, 136--143.
644  */
645 static int sd_major(int major_idx)
646 {
647         switch (major_idx) {
648         case 0:
649                 return SCSI_DISK0_MAJOR;
650         case 1 ... 7:
651                 return SCSI_DISK1_MAJOR + major_idx - 1;
652         case 8 ... 15:
653                 return SCSI_DISK8_MAJOR + major_idx - 8;
654         default:
655                 BUG();
656                 return 0;       /* shut up gcc */
657         }
658 }
659
660 #ifdef CONFIG_BLK_SED_OPAL
661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
662                 size_t len, bool send)
663 {
664         struct scsi_disk *sdkp = data;
665         struct scsi_device *sdev = sdkp->device;
666         u8 cdb[12] = { 0, };
667         int ret;
668
669         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
670         cdb[1] = secp;
671         put_unaligned_be16(spsp, &cdb[2]);
672         put_unaligned_be32(len, &cdb[6]);
673
674         ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
675                 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
676                 RQF_PM, NULL);
677         return ret <= 0 ? ret : -EIO;
678 }
679 #endif /* CONFIG_BLK_SED_OPAL */
680
681 /*
682  * Look up the DIX operation based on whether the command is read or
683  * write and whether dix and dif are enabled.
684  */
685 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
686 {
687         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
688         static const unsigned int ops[] = {     /* wrt dix dif */
689                 SCSI_PROT_NORMAL,               /*  0   0   0  */
690                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
691                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
692                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
693                 SCSI_PROT_NORMAL,               /*  1   0   0  */
694                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
695                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
696                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
697         };
698
699         return ops[write << 2 | dix << 1 | dif];
700 }
701
702 /*
703  * Returns a mask of the protection flags that are valid for a given DIX
704  * operation.
705  */
706 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
707 {
708         static const unsigned int flag_mask[] = {
709                 [SCSI_PROT_NORMAL]              = 0,
710
711                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
712                                                   SCSI_PROT_GUARD_CHECK |
713                                                   SCSI_PROT_REF_CHECK |
714                                                   SCSI_PROT_REF_INCREMENT,
715
716                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
717                                                   SCSI_PROT_IP_CHECKSUM,
718
719                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
720                                                   SCSI_PROT_GUARD_CHECK |
721                                                   SCSI_PROT_REF_CHECK |
722                                                   SCSI_PROT_REF_INCREMENT |
723                                                   SCSI_PROT_IP_CHECKSUM,
724
725                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
726                                                   SCSI_PROT_REF_INCREMENT,
727
728                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
729                                                   SCSI_PROT_REF_CHECK |
730                                                   SCSI_PROT_REF_INCREMENT |
731                                                   SCSI_PROT_IP_CHECKSUM,
732
733                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
734                                                   SCSI_PROT_GUARD_CHECK |
735                                                   SCSI_PROT_REF_CHECK |
736                                                   SCSI_PROT_REF_INCREMENT |
737                                                   SCSI_PROT_IP_CHECKSUM,
738         };
739
740         return flag_mask[prot_op];
741 }
742
743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
744                                            unsigned int dix, unsigned int dif)
745 {
746         struct request *rq = scsi_cmd_to_rq(scmd);
747         struct bio *bio = rq->bio;
748         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
749         unsigned int protect = 0;
750
751         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
752                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
753                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
754
755                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
756                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
757         }
758
759         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
760                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
761
762                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
763                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
764         }
765
766         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
767                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
768
769                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
770                         protect = 3 << 5;       /* Disable target PI checking */
771                 else
772                         protect = 1 << 5;       /* Enable target PI checking */
773         }
774
775         scsi_set_prot_op(scmd, prot_op);
776         scsi_set_prot_type(scmd, dif);
777         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
778
779         return protect;
780 }
781
782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
783 {
784         struct request_queue *q = sdkp->disk->queue;
785         unsigned int logical_block_size = sdkp->device->sector_size;
786         unsigned int max_blocks = 0;
787
788         q->limits.discard_alignment =
789                 sdkp->unmap_alignment * logical_block_size;
790         q->limits.discard_granularity =
791                 max(sdkp->physical_block_size,
792                     sdkp->unmap_granularity * logical_block_size);
793         sdkp->provisioning_mode = mode;
794
795         switch (mode) {
796
797         case SD_LBP_FULL:
798         case SD_LBP_DISABLE:
799                 blk_queue_max_discard_sectors(q, 0);
800                 return;
801
802         case SD_LBP_UNMAP:
803                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
804                                           (u32)SD_MAX_WS16_BLOCKS);
805                 break;
806
807         case SD_LBP_WS16:
808                 if (sdkp->device->unmap_limit_for_ws)
809                         max_blocks = sdkp->max_unmap_blocks;
810                 else
811                         max_blocks = sdkp->max_ws_blocks;
812
813                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
814                 break;
815
816         case SD_LBP_WS10:
817                 if (sdkp->device->unmap_limit_for_ws)
818                         max_blocks = sdkp->max_unmap_blocks;
819                 else
820                         max_blocks = sdkp->max_ws_blocks;
821
822                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
823                 break;
824
825         case SD_LBP_ZERO:
826                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
827                                           (u32)SD_MAX_WS10_BLOCKS);
828                 break;
829         }
830
831         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
832 }
833
834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
835 {
836         struct scsi_device *sdp = cmd->device;
837         struct request *rq = scsi_cmd_to_rq(cmd);
838         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
839         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
840         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
841         unsigned int data_len = 24;
842         char *buf;
843
844         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
845         if (!rq->special_vec.bv_page)
846                 return BLK_STS_RESOURCE;
847         clear_highpage(rq->special_vec.bv_page);
848         rq->special_vec.bv_offset = 0;
849         rq->special_vec.bv_len = data_len;
850         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
851
852         cmd->cmd_len = 10;
853         cmd->cmnd[0] = UNMAP;
854         cmd->cmnd[8] = 24;
855
856         buf = bvec_virt(&rq->special_vec);
857         put_unaligned_be16(6 + 16, &buf[0]);
858         put_unaligned_be16(16, &buf[2]);
859         put_unaligned_be64(lba, &buf[8]);
860         put_unaligned_be32(nr_blocks, &buf[16]);
861
862         cmd->allowed = sdkp->max_retries;
863         cmd->transfersize = data_len;
864         rq->timeout = SD_TIMEOUT;
865
866         return scsi_alloc_sgtables(cmd);
867 }
868
869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
870                 bool unmap)
871 {
872         struct scsi_device *sdp = cmd->device;
873         struct request *rq = scsi_cmd_to_rq(cmd);
874         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
875         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877         u32 data_len = sdp->sector_size;
878
879         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880         if (!rq->special_vec.bv_page)
881                 return BLK_STS_RESOURCE;
882         clear_highpage(rq->special_vec.bv_page);
883         rq->special_vec.bv_offset = 0;
884         rq->special_vec.bv_len = data_len;
885         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886
887         cmd->cmd_len = 16;
888         cmd->cmnd[0] = WRITE_SAME_16;
889         if (unmap)
890                 cmd->cmnd[1] = 0x8; /* UNMAP */
891         put_unaligned_be64(lba, &cmd->cmnd[2]);
892         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
893
894         cmd->allowed = sdkp->max_retries;
895         cmd->transfersize = data_len;
896         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
897
898         return scsi_alloc_sgtables(cmd);
899 }
900
901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
902                 bool unmap)
903 {
904         struct scsi_device *sdp = cmd->device;
905         struct request *rq = scsi_cmd_to_rq(cmd);
906         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
907         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
908         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
909         u32 data_len = sdp->sector_size;
910
911         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
912         if (!rq->special_vec.bv_page)
913                 return BLK_STS_RESOURCE;
914         clear_highpage(rq->special_vec.bv_page);
915         rq->special_vec.bv_offset = 0;
916         rq->special_vec.bv_len = data_len;
917         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
918
919         cmd->cmd_len = 10;
920         cmd->cmnd[0] = WRITE_SAME;
921         if (unmap)
922                 cmd->cmnd[1] = 0x8; /* UNMAP */
923         put_unaligned_be32(lba, &cmd->cmnd[2]);
924         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
925
926         cmd->allowed = sdkp->max_retries;
927         cmd->transfersize = data_len;
928         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
929
930         return scsi_alloc_sgtables(cmd);
931 }
932
933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
934 {
935         struct request *rq = scsi_cmd_to_rq(cmd);
936         struct scsi_device *sdp = cmd->device;
937         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
938         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
939         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
940
941         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
942                 switch (sdkp->zeroing_mode) {
943                 case SD_ZERO_WS16_UNMAP:
944                         return sd_setup_write_same16_cmnd(cmd, true);
945                 case SD_ZERO_WS10_UNMAP:
946                         return sd_setup_write_same10_cmnd(cmd, true);
947                 }
948         }
949
950         if (sdp->no_write_same) {
951                 rq->rq_flags |= RQF_QUIET;
952                 return BLK_STS_TARGET;
953         }
954
955         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
956                 return sd_setup_write_same16_cmnd(cmd, false);
957
958         return sd_setup_write_same10_cmnd(cmd, false);
959 }
960
961 static void sd_config_write_same(struct scsi_disk *sdkp)
962 {
963         struct request_queue *q = sdkp->disk->queue;
964         unsigned int logical_block_size = sdkp->device->sector_size;
965
966         if (sdkp->device->no_write_same) {
967                 sdkp->max_ws_blocks = 0;
968                 goto out;
969         }
970
971         /* Some devices can not handle block counts above 0xffff despite
972          * supporting WRITE SAME(16). Consequently we default to 64k
973          * blocks per I/O unless the device explicitly advertises a
974          * bigger limit.
975          */
976         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
977                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
978                                                    (u32)SD_MAX_WS16_BLOCKS);
979         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
980                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981                                                    (u32)SD_MAX_WS10_BLOCKS);
982         else {
983                 sdkp->device->no_write_same = 1;
984                 sdkp->max_ws_blocks = 0;
985         }
986
987         if (sdkp->lbprz && sdkp->lbpws)
988                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
989         else if (sdkp->lbprz && sdkp->lbpws10)
990                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
991         else if (sdkp->max_ws_blocks)
992                 sdkp->zeroing_mode = SD_ZERO_WS;
993         else
994                 sdkp->zeroing_mode = SD_ZERO_WRITE;
995
996         if (sdkp->max_ws_blocks &&
997             sdkp->physical_block_size > logical_block_size) {
998                 /*
999                  * Reporting a maximum number of blocks that is not aligned
1000                  * on the device physical size would cause a large write same
1001                  * request to be split into physically unaligned chunks by
1002                  * __blkdev_issue_write_zeroes() even if the caller of this
1003                  * functions took care to align the large request. So make sure
1004                  * the maximum reported is aligned to the device physical block
1005                  * size. This is only an optional optimization for regular
1006                  * disks, but this is mandatory to avoid failure of large write
1007                  * same requests directed at sequential write required zones of
1008                  * host-managed ZBC disks.
1009                  */
1010                 sdkp->max_ws_blocks =
1011                         round_down(sdkp->max_ws_blocks,
1012                                    bytes_to_logical(sdkp->device,
1013                                                     sdkp->physical_block_size));
1014         }
1015
1016 out:
1017         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018                                          (logical_block_size >> 9));
1019 }
1020
1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026         /* flush requests don't perform I/O, zero the S/G table */
1027         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029         if (cmd->device->use_16_for_sync) {
1030                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1031                 cmd->cmd_len = 16;
1032         } else {
1033                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1034                 cmd->cmd_len = 10;
1035         }
1036         cmd->transfersize = 0;
1037         cmd->allowed = sdkp->max_retries;
1038
1039         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1040         return BLK_STS_OK;
1041 }
1042
1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1044                                        sector_t lba, unsigned int nr_blocks,
1045                                        unsigned char flags)
1046 {
1047         cmd->cmd_len = SD_EXT_CDB_SIZE;
1048         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1049         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1050         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1051         cmd->cmnd[10] = flags;
1052         put_unaligned_be64(lba, &cmd->cmnd[12]);
1053         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1054         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1055
1056         return BLK_STS_OK;
1057 }
1058
1059 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1060                                        sector_t lba, unsigned int nr_blocks,
1061                                        unsigned char flags)
1062 {
1063         cmd->cmd_len  = 16;
1064         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1065         cmd->cmnd[1]  = flags;
1066         cmd->cmnd[14] = 0;
1067         cmd->cmnd[15] = 0;
1068         put_unaligned_be64(lba, &cmd->cmnd[2]);
1069         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1070
1071         return BLK_STS_OK;
1072 }
1073
1074 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1075                                        sector_t lba, unsigned int nr_blocks,
1076                                        unsigned char flags)
1077 {
1078         cmd->cmd_len = 10;
1079         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1080         cmd->cmnd[1] = flags;
1081         cmd->cmnd[6] = 0;
1082         cmd->cmnd[9] = 0;
1083         put_unaligned_be32(lba, &cmd->cmnd[2]);
1084         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1085
1086         return BLK_STS_OK;
1087 }
1088
1089 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1090                                       sector_t lba, unsigned int nr_blocks,
1091                                       unsigned char flags)
1092 {
1093         /* Avoid that 0 blocks gets translated into 256 blocks. */
1094         if (WARN_ON_ONCE(nr_blocks == 0))
1095                 return BLK_STS_IOERR;
1096
1097         if (unlikely(flags & 0x8)) {
1098                 /*
1099                  * This happens only if this drive failed 10byte rw
1100                  * command with ILLEGAL_REQUEST during operation and
1101                  * thus turned off use_10_for_rw.
1102                  */
1103                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1104                 return BLK_STS_IOERR;
1105         }
1106
1107         cmd->cmd_len = 6;
1108         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1109         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1110         cmd->cmnd[2] = (lba >> 8) & 0xff;
1111         cmd->cmnd[3] = lba & 0xff;
1112         cmd->cmnd[4] = nr_blocks;
1113         cmd->cmnd[5] = 0;
1114
1115         return BLK_STS_OK;
1116 }
1117
1118 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1119 {
1120         struct request *rq = scsi_cmd_to_rq(cmd);
1121         struct scsi_device *sdp = cmd->device;
1122         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1123         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1124         sector_t threshold;
1125         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1126         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1127         bool write = rq_data_dir(rq) == WRITE;
1128         unsigned char protect, fua;
1129         blk_status_t ret;
1130         unsigned int dif;
1131         bool dix;
1132
1133         ret = scsi_alloc_sgtables(cmd);
1134         if (ret != BLK_STS_OK)
1135                 return ret;
1136
1137         ret = BLK_STS_IOERR;
1138         if (!scsi_device_online(sdp) || sdp->changed) {
1139                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1140                 goto fail;
1141         }
1142
1143         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1144                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1145                 goto fail;
1146         }
1147
1148         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1149                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1150                 goto fail;
1151         }
1152
1153         /*
1154          * Some SD card readers can't handle accesses which touch the
1155          * last one or two logical blocks. Split accesses as needed.
1156          */
1157         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1158
1159         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1160                 if (lba < threshold) {
1161                         /* Access up to the threshold but not beyond */
1162                         nr_blocks = threshold - lba;
1163                 } else {
1164                         /* Access only a single logical block */
1165                         nr_blocks = 1;
1166                 }
1167         }
1168
1169         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1170                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1171                 if (ret)
1172                         goto fail;
1173         }
1174
1175         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1176         dix = scsi_prot_sg_count(cmd);
1177         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1178
1179         if (dif || dix)
1180                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1181         else
1182                 protect = 0;
1183
1184         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1185                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1186                                          protect | fua);
1187         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1188                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1189                                          protect | fua);
1190         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1191                    sdp->use_10_for_rw || protect) {
1192                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1193                                          protect | fua);
1194         } else {
1195                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1196                                         protect | fua);
1197         }
1198
1199         if (unlikely(ret != BLK_STS_OK))
1200                 goto fail;
1201
1202         /*
1203          * We shouldn't disconnect in the middle of a sector, so with a dumb
1204          * host adapter, it's safe to assume that we can at least transfer
1205          * this many bytes between each connect / disconnect.
1206          */
1207         cmd->transfersize = sdp->sector_size;
1208         cmd->underflow = nr_blocks << 9;
1209         cmd->allowed = sdkp->max_retries;
1210         cmd->sdb.length = nr_blocks * sdp->sector_size;
1211
1212         SCSI_LOG_HLQUEUE(1,
1213                          scmd_printk(KERN_INFO, cmd,
1214                                      "%s: block=%llu, count=%d\n", __func__,
1215                                      (unsigned long long)blk_rq_pos(rq),
1216                                      blk_rq_sectors(rq)));
1217         SCSI_LOG_HLQUEUE(2,
1218                          scmd_printk(KERN_INFO, cmd,
1219                                      "%s %d/%u 512 byte blocks.\n",
1220                                      write ? "writing" : "reading", nr_blocks,
1221                                      blk_rq_sectors(rq)));
1222
1223         /*
1224          * This indicates that the command is ready from our end to be queued.
1225          */
1226         return BLK_STS_OK;
1227 fail:
1228         scsi_free_sgtables(cmd);
1229         return ret;
1230 }
1231
1232 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1233 {
1234         struct request *rq = scsi_cmd_to_rq(cmd);
1235
1236         switch (req_op(rq)) {
1237         case REQ_OP_DISCARD:
1238                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1239                 case SD_LBP_UNMAP:
1240                         return sd_setup_unmap_cmnd(cmd);
1241                 case SD_LBP_WS16:
1242                         return sd_setup_write_same16_cmnd(cmd, true);
1243                 case SD_LBP_WS10:
1244                         return sd_setup_write_same10_cmnd(cmd, true);
1245                 case SD_LBP_ZERO:
1246                         return sd_setup_write_same10_cmnd(cmd, false);
1247                 default:
1248                         return BLK_STS_TARGET;
1249                 }
1250         case REQ_OP_WRITE_ZEROES:
1251                 return sd_setup_write_zeroes_cmnd(cmd);
1252         case REQ_OP_FLUSH:
1253                 return sd_setup_flush_cmnd(cmd);
1254         case REQ_OP_READ:
1255         case REQ_OP_WRITE:
1256         case REQ_OP_ZONE_APPEND:
1257                 return sd_setup_read_write_cmnd(cmd);
1258         case REQ_OP_ZONE_RESET:
1259                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1260                                                    false);
1261         case REQ_OP_ZONE_RESET_ALL:
1262                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1263                                                    true);
1264         case REQ_OP_ZONE_OPEN:
1265                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1266         case REQ_OP_ZONE_CLOSE:
1267                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1268         case REQ_OP_ZONE_FINISH:
1269                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1270         default:
1271                 WARN_ON_ONCE(1);
1272                 return BLK_STS_NOTSUPP;
1273         }
1274 }
1275
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278         struct request *rq = scsi_cmd_to_rq(SCpnt);
1279
1280         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1281                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1282 }
1283
1284 static bool sd_need_revalidate(struct block_device *bdev,
1285                 struct scsi_disk *sdkp)
1286 {
1287         if (sdkp->device->removable || sdkp->write_prot) {
1288                 if (bdev_check_media_change(bdev))
1289                         return true;
1290         }
1291
1292         /*
1293          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1294          * nothing to do with partitions, BLKRRPART is used to force a full
1295          * revalidate after things like a format for historical reasons.
1296          */
1297         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1298 }
1299
1300 /**
1301  *      sd_open - open a scsi disk device
1302  *      @bdev: Block device of the scsi disk to open
1303  *      @mode: FMODE_* mask
1304  *
1305  *      Returns 0 if successful. Returns a negated errno value in case 
1306  *      of error.
1307  *
1308  *      Note: This can be called from a user context (e.g. fsck(1) )
1309  *      or from within the kernel (e.g. as a result of a mount(1) ).
1310  *      In the latter case @inode and @filp carry an abridged amount
1311  *      of information as noted above.
1312  *
1313  *      Locking: called with bdev->bd_disk->open_mutex held.
1314  **/
1315 static int sd_open(struct block_device *bdev, fmode_t mode)
1316 {
1317         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1318         struct scsi_device *sdev = sdkp->device;
1319         int retval;
1320
1321         if (scsi_device_get(sdev))
1322                 return -ENXIO;
1323
1324         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326         /*
1327          * If the device is in error recovery, wait until it is done.
1328          * If the device is offline, then disallow any access to it.
1329          */
1330         retval = -ENXIO;
1331         if (!scsi_block_when_processing_errors(sdev))
1332                 goto error_out;
1333
1334         if (sd_need_revalidate(bdev, sdkp))
1335                 sd_revalidate_disk(bdev->bd_disk);
1336
1337         /*
1338          * If the drive is empty, just let the open fail.
1339          */
1340         retval = -ENOMEDIUM;
1341         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1342                 goto error_out;
1343
1344         /*
1345          * If the device has the write protect tab set, have the open fail
1346          * if the user expects to be able to write to the thing.
1347          */
1348         retval = -EROFS;
1349         if (sdkp->write_prot && (mode & FMODE_WRITE))
1350                 goto error_out;
1351
1352         /*
1353          * It is possible that the disk changing stuff resulted in
1354          * the device being taken offline.  If this is the case,
1355          * report this to the user, and don't pretend that the
1356          * open actually succeeded.
1357          */
1358         retval = -ENXIO;
1359         if (!scsi_device_online(sdev))
1360                 goto error_out;
1361
1362         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1363                 if (scsi_block_when_processing_errors(sdev))
1364                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1365         }
1366
1367         return 0;
1368
1369 error_out:
1370         scsi_device_put(sdev);
1371         return retval;  
1372 }
1373
1374 /**
1375  *      sd_release - invoked when the (last) close(2) is called on this
1376  *      scsi disk.
1377  *      @disk: disk to release
1378  *      @mode: FMODE_* mask
1379  *
1380  *      Returns 0. 
1381  *
1382  *      Note: may block (uninterruptible) if error recovery is underway
1383  *      on this disk.
1384  *
1385  *      Locking: called with bdev->bd_disk->open_mutex held.
1386  **/
1387 static void sd_release(struct gendisk *disk, fmode_t mode)
1388 {
1389         struct scsi_disk *sdkp = scsi_disk(disk);
1390         struct scsi_device *sdev = sdkp->device;
1391
1392         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1393
1394         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1395                 if (scsi_block_when_processing_errors(sdev))
1396                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1397         }
1398
1399         scsi_device_put(sdev);
1400 }
1401
1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1403 {
1404         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1405         struct scsi_device *sdp = sdkp->device;
1406         struct Scsi_Host *host = sdp->host;
1407         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1408         int diskinfo[4];
1409
1410         /* default to most commonly used values */
1411         diskinfo[0] = 0x40;     /* 1 << 6 */
1412         diskinfo[1] = 0x20;     /* 1 << 5 */
1413         diskinfo[2] = capacity >> 11;
1414
1415         /* override with calculated, extended default, or driver values */
1416         if (host->hostt->bios_param)
1417                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1418         else
1419                 scsicam_bios_param(bdev, capacity, diskinfo);
1420
1421         geo->heads = diskinfo[0];
1422         geo->sectors = diskinfo[1];
1423         geo->cylinders = diskinfo[2];
1424         return 0;
1425 }
1426
1427 /**
1428  *      sd_ioctl - process an ioctl
1429  *      @bdev: target block device
1430  *      @mode: FMODE_* mask
1431  *      @cmd: ioctl command number
1432  *      @arg: this is third argument given to ioctl(2) system call.
1433  *      Often contains a pointer.
1434  *
1435  *      Returns 0 if successful (some ioctls return positive numbers on
1436  *      success as well). Returns a negated errno value in case of error.
1437  *
1438  *      Note: most ioctls are forward onto the block subsystem or further
1439  *      down in the scsi subsystem.
1440  **/
1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1442                     unsigned int cmd, unsigned long arg)
1443 {
1444         struct gendisk *disk = bdev->bd_disk;
1445         struct scsi_disk *sdkp = scsi_disk(disk);
1446         struct scsi_device *sdp = sdkp->device;
1447         void __user *p = (void __user *)arg;
1448         int error;
1449     
1450         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1451                                     "cmd=0x%x\n", disk->disk_name, cmd));
1452
1453         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1454                 return -ENOIOCTLCMD;
1455
1456         /*
1457          * If we are in the middle of error recovery, don't let anyone
1458          * else try and use this device.  Also, if error recovery fails, it
1459          * may try and take the device offline, in which case all further
1460          * access to the device is prohibited.
1461          */
1462         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1463                         (mode & FMODE_NDELAY) != 0);
1464         if (error)
1465                 return error;
1466
1467         if (is_sed_ioctl(cmd))
1468                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1469         return scsi_ioctl(sdp, mode, cmd, p);
1470 }
1471
1472 static void set_media_not_present(struct scsi_disk *sdkp)
1473 {
1474         if (sdkp->media_present)
1475                 sdkp->device->changed = 1;
1476
1477         if (sdkp->device->removable) {
1478                 sdkp->media_present = 0;
1479                 sdkp->capacity = 0;
1480         }
1481 }
1482
1483 static int media_not_present(struct scsi_disk *sdkp,
1484                              struct scsi_sense_hdr *sshdr)
1485 {
1486         if (!scsi_sense_valid(sshdr))
1487                 return 0;
1488
1489         /* not invoked for commands that could return deferred errors */
1490         switch (sshdr->sense_key) {
1491         case UNIT_ATTENTION:
1492         case NOT_READY:
1493                 /* medium not present */
1494                 if (sshdr->asc == 0x3A) {
1495                         set_media_not_present(sdkp);
1496                         return 1;
1497                 }
1498         }
1499         return 0;
1500 }
1501
1502 /**
1503  *      sd_check_events - check media events
1504  *      @disk: kernel device descriptor
1505  *      @clearing: disk events currently being cleared
1506  *
1507  *      Returns mask of DISK_EVENT_*.
1508  *
1509  *      Note: this function is invoked from the block subsystem.
1510  **/
1511 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1512 {
1513         struct scsi_disk *sdkp = disk->private_data;
1514         struct scsi_device *sdp;
1515         int retval;
1516         bool disk_changed;
1517
1518         if (!sdkp)
1519                 return 0;
1520
1521         sdp = sdkp->device;
1522         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1523
1524         /*
1525          * If the device is offline, don't send any commands - just pretend as
1526          * if the command failed.  If the device ever comes back online, we
1527          * can deal with it then.  It is only because of unrecoverable errors
1528          * that we would ever take a device offline in the first place.
1529          */
1530         if (!scsi_device_online(sdp)) {
1531                 set_media_not_present(sdkp);
1532                 goto out;
1533         }
1534
1535         /*
1536          * Using TEST_UNIT_READY enables differentiation between drive with
1537          * no cartridge loaded - NOT READY, drive with changed cartridge -
1538          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1539          *
1540          * Drives that auto spin down. eg iomega jaz 1G, will be started
1541          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1542          * sd_revalidate() is called.
1543          */
1544         if (scsi_block_when_processing_errors(sdp)) {
1545                 struct scsi_sense_hdr sshdr = { 0, };
1546
1547                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1548                                               &sshdr);
1549
1550                 /* failed to execute TUR, assume media not present */
1551                 if (retval < 0 || host_byte(retval)) {
1552                         set_media_not_present(sdkp);
1553                         goto out;
1554                 }
1555
1556                 if (media_not_present(sdkp, &sshdr))
1557                         goto out;
1558         }
1559
1560         /*
1561          * For removable scsi disk we have to recognise the presence
1562          * of a disk in the drive.
1563          */
1564         if (!sdkp->media_present)
1565                 sdp->changed = 1;
1566         sdkp->media_present = 1;
1567 out:
1568         /*
1569          * sdp->changed is set under the following conditions:
1570          *
1571          *      Medium present state has changed in either direction.
1572          *      Device has indicated UNIT_ATTENTION.
1573          */
1574         disk_changed = sdp->changed;
1575         sdp->changed = 0;
1576         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1577 }
1578
1579 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1580 {
1581         int retries, res;
1582         struct scsi_device *sdp = sdkp->device;
1583         const int timeout = sdp->request_queue->rq_timeout
1584                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1585         struct scsi_sense_hdr my_sshdr;
1586
1587         if (!scsi_device_online(sdp))
1588                 return -ENODEV;
1589
1590         /* caller might not be interested in sense, but we need it */
1591         if (!sshdr)
1592                 sshdr = &my_sshdr;
1593
1594         for (retries = 3; retries > 0; --retries) {
1595                 unsigned char cmd[16] = { 0 };
1596
1597                 if (sdp->use_16_for_sync)
1598                         cmd[0] = SYNCHRONIZE_CACHE_16;
1599                 else
1600                         cmd[0] = SYNCHRONIZE_CACHE;
1601                 /*
1602                  * Leave the rest of the command zero to indicate
1603                  * flush everything.
1604                  */
1605                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1606                                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1607                 if (res == 0)
1608                         break;
1609         }
1610
1611         if (res) {
1612                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1613
1614                 if (res < 0)
1615                         return res;
1616
1617                 if (scsi_status_is_check_condition(res) &&
1618                     scsi_sense_valid(sshdr)) {
1619                         sd_print_sense_hdr(sdkp, sshdr);
1620
1621                         /* we need to evaluate the error return  */
1622                         if (sshdr->asc == 0x3a ||       /* medium not present */
1623                             sshdr->asc == 0x20 ||       /* invalid command */
1624                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1625                                 /* this is no error here */
1626                                 return 0;
1627                 }
1628
1629                 switch (host_byte(res)) {
1630                 /* ignore errors due to racing a disconnection */
1631                 case DID_BAD_TARGET:
1632                 case DID_NO_CONNECT:
1633                         return 0;
1634                 /* signal the upper layer it might try again */
1635                 case DID_BUS_BUSY:
1636                 case DID_IMM_RETRY:
1637                 case DID_REQUEUE:
1638                 case DID_SOFT_ERROR:
1639                         return -EBUSY;
1640                 default:
1641                         return -EIO;
1642                 }
1643         }
1644         return 0;
1645 }
1646
1647 static void sd_rescan(struct device *dev)
1648 {
1649         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1650
1651         sd_revalidate_disk(sdkp->disk);
1652 }
1653
1654 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1655                 enum blk_unique_id type)
1656 {
1657         struct scsi_device *sdev = scsi_disk(disk)->device;
1658         const struct scsi_vpd *vpd;
1659         const unsigned char *d;
1660         int ret = -ENXIO, len;
1661
1662         rcu_read_lock();
1663         vpd = rcu_dereference(sdev->vpd_pg83);
1664         if (!vpd)
1665                 goto out_unlock;
1666
1667         ret = -EINVAL;
1668         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1669                 /* we only care about designators with LU association */
1670                 if (((d[1] >> 4) & 0x3) != 0x00)
1671                         continue;
1672                 if ((d[1] & 0xf) != type)
1673                         continue;
1674
1675                 /*
1676                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1677                  * keep looking as one with more entropy might still show up.
1678                  */
1679                 len = d[3];
1680                 if (len != 8 && len != 12 && len != 16)
1681                         continue;
1682                 ret = len;
1683                 memcpy(id, d + 4, len);
1684                 if (len == 16)
1685                         break;
1686         }
1687 out_unlock:
1688         rcu_read_unlock();
1689         return ret;
1690 }
1691
1692 static char sd_pr_type(enum pr_type type)
1693 {
1694         switch (type) {
1695         case PR_WRITE_EXCLUSIVE:
1696                 return 0x01;
1697         case PR_EXCLUSIVE_ACCESS:
1698                 return 0x03;
1699         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1700                 return 0x05;
1701         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1702                 return 0x06;
1703         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1704                 return 0x07;
1705         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1706                 return 0x08;
1707         default:
1708                 return 0;
1709         }
1710 };
1711
1712 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1713 {
1714         switch (host_byte(result)) {
1715         case DID_TRANSPORT_MARGINAL:
1716         case DID_TRANSPORT_DISRUPTED:
1717         case DID_BUS_BUSY:
1718                 return PR_STS_RETRY_PATH_FAILURE;
1719         case DID_NO_CONNECT:
1720                 return PR_STS_PATH_FAILED;
1721         case DID_TRANSPORT_FAILFAST:
1722                 return PR_STS_PATH_FAST_FAILED;
1723         }
1724
1725         switch (status_byte(result)) {
1726         case SAM_STAT_RESERVATION_CONFLICT:
1727                 return PR_STS_RESERVATION_CONFLICT;
1728         case SAM_STAT_CHECK_CONDITION:
1729                 if (!scsi_sense_valid(sshdr))
1730                         return PR_STS_IOERR;
1731
1732                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1733                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1734                         return -EINVAL;
1735
1736                 fallthrough;
1737         default:
1738                 return PR_STS_IOERR;
1739         }
1740 }
1741
1742 static int sd_pr_command(struct block_device *bdev, u8 sa,
1743                 u64 key, u64 sa_key, u8 type, u8 flags)
1744 {
1745         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1746         struct scsi_device *sdev = sdkp->device;
1747         struct scsi_sense_hdr sshdr;
1748         int result;
1749         u8 cmd[16] = { 0, };
1750         u8 data[24] = { 0, };
1751
1752         cmd[0] = PERSISTENT_RESERVE_OUT;
1753         cmd[1] = sa;
1754         cmd[2] = type;
1755         put_unaligned_be32(sizeof(data), &cmd[5]);
1756
1757         put_unaligned_be64(key, &data[0]);
1758         put_unaligned_be64(sa_key, &data[8]);
1759         data[20] = flags;
1760
1761         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1762                         &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1763
1764         if (scsi_status_is_check_condition(result) &&
1765             scsi_sense_valid(&sshdr)) {
1766                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1767                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1768         }
1769
1770         if (result <= 0)
1771                 return result;
1772
1773         return sd_scsi_to_pr_err(&sshdr, result);
1774 }
1775
1776 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1777                 u32 flags)
1778 {
1779         if (flags & ~PR_FL_IGNORE_KEY)
1780                 return -EOPNOTSUPP;
1781         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1782                         old_key, new_key, 0,
1783                         (1 << 0) /* APTPL */);
1784 }
1785
1786 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1787                 u32 flags)
1788 {
1789         if (flags)
1790                 return -EOPNOTSUPP;
1791         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1792 }
1793
1794 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1795 {
1796         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1797 }
1798
1799 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1800                 enum pr_type type, bool abort)
1801 {
1802         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1803                              sd_pr_type(type), 0);
1804 }
1805
1806 static int sd_pr_clear(struct block_device *bdev, u64 key)
1807 {
1808         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1809 }
1810
1811 static const struct pr_ops sd_pr_ops = {
1812         .pr_register    = sd_pr_register,
1813         .pr_reserve     = sd_pr_reserve,
1814         .pr_release     = sd_pr_release,
1815         .pr_preempt     = sd_pr_preempt,
1816         .pr_clear       = sd_pr_clear,
1817 };
1818
1819 static void scsi_disk_free_disk(struct gendisk *disk)
1820 {
1821         struct scsi_disk *sdkp = scsi_disk(disk);
1822
1823         put_device(&sdkp->disk_dev);
1824 }
1825
1826 static const struct block_device_operations sd_fops = {
1827         .owner                  = THIS_MODULE,
1828         .open                   = sd_open,
1829         .release                = sd_release,
1830         .ioctl                  = sd_ioctl,
1831         .getgeo                 = sd_getgeo,
1832         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1833         .check_events           = sd_check_events,
1834         .unlock_native_capacity = sd_unlock_native_capacity,
1835         .report_zones           = sd_zbc_report_zones,
1836         .get_unique_id          = sd_get_unique_id,
1837         .free_disk              = scsi_disk_free_disk,
1838         .pr_ops                 = &sd_pr_ops,
1839 };
1840
1841 /**
1842  *      sd_eh_reset - reset error handling callback
1843  *      @scmd:          sd-issued command that has failed
1844  *
1845  *      This function is called by the SCSI midlayer before starting
1846  *      SCSI EH. When counting medium access failures we have to be
1847  *      careful to register it only only once per device and SCSI EH run;
1848  *      there might be several timed out commands which will cause the
1849  *      'max_medium_access_timeouts' counter to trigger after the first
1850  *      SCSI EH run already and set the device to offline.
1851  *      So this function resets the internal counter before starting SCSI EH.
1852  **/
1853 static void sd_eh_reset(struct scsi_cmnd *scmd)
1854 {
1855         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1856
1857         /* New SCSI EH run, reset gate variable */
1858         sdkp->ignore_medium_access_errors = false;
1859 }
1860
1861 /**
1862  *      sd_eh_action - error handling callback
1863  *      @scmd:          sd-issued command that has failed
1864  *      @eh_disp:       The recovery disposition suggested by the midlayer
1865  *
1866  *      This function is called by the SCSI midlayer upon completion of an
1867  *      error test command (currently TEST UNIT READY). The result of sending
1868  *      the eh command is passed in eh_disp.  We're looking for devices that
1869  *      fail medium access commands but are OK with non access commands like
1870  *      test unit ready (so wrongly see the device as having a successful
1871  *      recovery)
1872  **/
1873 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1874 {
1875         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1876         struct scsi_device *sdev = scmd->device;
1877
1878         if (!scsi_device_online(sdev) ||
1879             !scsi_medium_access_command(scmd) ||
1880             host_byte(scmd->result) != DID_TIME_OUT ||
1881             eh_disp != SUCCESS)
1882                 return eh_disp;
1883
1884         /*
1885          * The device has timed out executing a medium access command.
1886          * However, the TEST UNIT READY command sent during error
1887          * handling completed successfully. Either the device is in the
1888          * process of recovering or has it suffered an internal failure
1889          * that prevents access to the storage medium.
1890          */
1891         if (!sdkp->ignore_medium_access_errors) {
1892                 sdkp->medium_access_timed_out++;
1893                 sdkp->ignore_medium_access_errors = true;
1894         }
1895
1896         /*
1897          * If the device keeps failing read/write commands but TEST UNIT
1898          * READY always completes successfully we assume that medium
1899          * access is no longer possible and take the device offline.
1900          */
1901         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1902                 scmd_printk(KERN_ERR, scmd,
1903                             "Medium access timeout failure. Offlining disk!\n");
1904                 mutex_lock(&sdev->state_mutex);
1905                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1906                 mutex_unlock(&sdev->state_mutex);
1907
1908                 return SUCCESS;
1909         }
1910
1911         return eh_disp;
1912 }
1913
1914 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1915 {
1916         struct request *req = scsi_cmd_to_rq(scmd);
1917         struct scsi_device *sdev = scmd->device;
1918         unsigned int transferred, good_bytes;
1919         u64 start_lba, end_lba, bad_lba;
1920
1921         /*
1922          * Some commands have a payload smaller than the device logical
1923          * block size (e.g. INQUIRY on a 4K disk).
1924          */
1925         if (scsi_bufflen(scmd) <= sdev->sector_size)
1926                 return 0;
1927
1928         /* Check if we have a 'bad_lba' information */
1929         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1930                                      SCSI_SENSE_BUFFERSIZE,
1931                                      &bad_lba))
1932                 return 0;
1933
1934         /*
1935          * If the bad lba was reported incorrectly, we have no idea where
1936          * the error is.
1937          */
1938         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1939         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1940         if (bad_lba < start_lba || bad_lba >= end_lba)
1941                 return 0;
1942
1943         /*
1944          * resid is optional but mostly filled in.  When it's unused,
1945          * its value is zero, so we assume the whole buffer transferred
1946          */
1947         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1948
1949         /* This computation should always be done in terms of the
1950          * resolution of the device's medium.
1951          */
1952         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1953
1954         return min(good_bytes, transferred);
1955 }
1956
1957 /**
1958  *      sd_done - bottom half handler: called when the lower level
1959  *      driver has completed (successfully or otherwise) a scsi command.
1960  *      @SCpnt: mid-level's per command structure.
1961  *
1962  *      Note: potentially run from within an ISR. Must not block.
1963  **/
1964 static int sd_done(struct scsi_cmnd *SCpnt)
1965 {
1966         int result = SCpnt->result;
1967         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1968         unsigned int sector_size = SCpnt->device->sector_size;
1969         unsigned int resid;
1970         struct scsi_sense_hdr sshdr;
1971         struct request *req = scsi_cmd_to_rq(SCpnt);
1972         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1973         int sense_valid = 0;
1974         int sense_deferred = 0;
1975
1976         switch (req_op(req)) {
1977         case REQ_OP_DISCARD:
1978         case REQ_OP_WRITE_ZEROES:
1979         case REQ_OP_ZONE_RESET:
1980         case REQ_OP_ZONE_RESET_ALL:
1981         case REQ_OP_ZONE_OPEN:
1982         case REQ_OP_ZONE_CLOSE:
1983         case REQ_OP_ZONE_FINISH:
1984                 if (!result) {
1985                         good_bytes = blk_rq_bytes(req);
1986                         scsi_set_resid(SCpnt, 0);
1987                 } else {
1988                         good_bytes = 0;
1989                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1990                 }
1991                 break;
1992         default:
1993                 /*
1994                  * In case of bogus fw or device, we could end up having
1995                  * an unaligned partial completion. Check this here and force
1996                  * alignment.
1997                  */
1998                 resid = scsi_get_resid(SCpnt);
1999                 if (resid & (sector_size - 1)) {
2000                         sd_printk(KERN_INFO, sdkp,
2001                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2002                                 resid, sector_size);
2003                         scsi_print_command(SCpnt);
2004                         resid = min(scsi_bufflen(SCpnt),
2005                                     round_up(resid, sector_size));
2006                         scsi_set_resid(SCpnt, resid);
2007                 }
2008         }
2009
2010         if (result) {
2011                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2012                 if (sense_valid)
2013                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2014         }
2015         sdkp->medium_access_timed_out = 0;
2016
2017         if (!scsi_status_is_check_condition(result) &&
2018             (!sense_valid || sense_deferred))
2019                 goto out;
2020
2021         switch (sshdr.sense_key) {
2022         case HARDWARE_ERROR:
2023         case MEDIUM_ERROR:
2024                 good_bytes = sd_completed_bytes(SCpnt);
2025                 break;
2026         case RECOVERED_ERROR:
2027                 good_bytes = scsi_bufflen(SCpnt);
2028                 break;
2029         case NO_SENSE:
2030                 /* This indicates a false check condition, so ignore it.  An
2031                  * unknown amount of data was transferred so treat it as an
2032                  * error.
2033                  */
2034                 SCpnt->result = 0;
2035                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2036                 break;
2037         case ABORTED_COMMAND:
2038                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2039                         good_bytes = sd_completed_bytes(SCpnt);
2040                 break;
2041         case ILLEGAL_REQUEST:
2042                 switch (sshdr.asc) {
2043                 case 0x10:      /* DIX: Host detected corruption */
2044                         good_bytes = sd_completed_bytes(SCpnt);
2045                         break;
2046                 case 0x20:      /* INVALID COMMAND OPCODE */
2047                 case 0x24:      /* INVALID FIELD IN CDB */
2048                         switch (SCpnt->cmnd[0]) {
2049                         case UNMAP:
2050                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2051                                 break;
2052                         case WRITE_SAME_16:
2053                         case WRITE_SAME:
2054                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2055                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2056                                 } else {
2057                                         sdkp->device->no_write_same = 1;
2058                                         sd_config_write_same(sdkp);
2059                                         req->rq_flags |= RQF_QUIET;
2060                                 }
2061                                 break;
2062                         }
2063                 }
2064                 break;
2065         default:
2066                 break;
2067         }
2068
2069  out:
2070         if (sd_is_zoned(sdkp))
2071                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2072
2073         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2074                                            "sd_done: completed %d of %d bytes\n",
2075                                            good_bytes, scsi_bufflen(SCpnt)));
2076
2077         return good_bytes;
2078 }
2079
2080 /*
2081  * spinup disk - called only in sd_revalidate_disk()
2082  */
2083 static void
2084 sd_spinup_disk(struct scsi_disk *sdkp)
2085 {
2086         unsigned char cmd[10];
2087         unsigned long spintime_expire = 0;
2088         int retries, spintime;
2089         unsigned int the_result;
2090         struct scsi_sense_hdr sshdr;
2091         int sense_valid = 0;
2092
2093         spintime = 0;
2094
2095         /* Spin up drives, as required.  Only do this at boot time */
2096         /* Spinup needs to be done for module loads too. */
2097         do {
2098                 retries = 0;
2099
2100                 do {
2101                         bool media_was_present = sdkp->media_present;
2102
2103                         cmd[0] = TEST_UNIT_READY;
2104                         memset((void *) &cmd[1], 0, 9);
2105
2106                         the_result = scsi_execute_req(sdkp->device, cmd,
2107                                                       DMA_NONE, NULL, 0,
2108                                                       &sshdr, SD_TIMEOUT,
2109                                                       sdkp->max_retries, NULL);
2110
2111                         /*
2112                          * If the drive has indicated to us that it
2113                          * doesn't have any media in it, don't bother
2114                          * with any more polling.
2115                          */
2116                         if (media_not_present(sdkp, &sshdr)) {
2117                                 if (media_was_present)
2118                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2119                                 return;
2120                         }
2121
2122                         if (the_result)
2123                                 sense_valid = scsi_sense_valid(&sshdr);
2124                         retries++;
2125                 } while (retries < 3 &&
2126                          (!scsi_status_is_good(the_result) ||
2127                           (scsi_status_is_check_condition(the_result) &&
2128                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2129
2130                 if (!scsi_status_is_check_condition(the_result)) {
2131                         /* no sense, TUR either succeeded or failed
2132                          * with a status error */
2133                         if(!spintime && !scsi_status_is_good(the_result)) {
2134                                 sd_print_result(sdkp, "Test Unit Ready failed",
2135                                                 the_result);
2136                         }
2137                         break;
2138                 }
2139
2140                 /*
2141                  * The device does not want the automatic start to be issued.
2142                  */
2143                 if (sdkp->device->no_start_on_add)
2144                         break;
2145
2146                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2147                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2148                                 break;  /* manual intervention required */
2149                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2150                                 break;  /* standby */
2151                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2152                                 break;  /* unavailable */
2153                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2154                                 break;  /* sanitize in progress */
2155                         /*
2156                          * Issue command to spin up drive when not ready
2157                          */
2158                         if (!spintime) {
2159                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2160                                 cmd[0] = START_STOP;
2161                                 cmd[1] = 1;     /* Return immediately */
2162                                 memset((void *) &cmd[2], 0, 8);
2163                                 cmd[4] = 1;     /* Start spin cycle */
2164                                 if (sdkp->device->start_stop_pwr_cond)
2165                                         cmd[4] |= 1 << 4;
2166                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2167                                                  NULL, 0, &sshdr,
2168                                                  SD_TIMEOUT, sdkp->max_retries,
2169                                                  NULL);
2170                                 spintime_expire = jiffies + 100 * HZ;
2171                                 spintime = 1;
2172                         }
2173                         /* Wait 1 second for next try */
2174                         msleep(1000);
2175                         printk(KERN_CONT ".");
2176
2177                 /*
2178                  * Wait for USB flash devices with slow firmware.
2179                  * Yes, this sense key/ASC combination shouldn't
2180                  * occur here.  It's characteristic of these devices.
2181                  */
2182                 } else if (sense_valid &&
2183                                 sshdr.sense_key == UNIT_ATTENTION &&
2184                                 sshdr.asc == 0x28) {
2185                         if (!spintime) {
2186                                 spintime_expire = jiffies + 5 * HZ;
2187                                 spintime = 1;
2188                         }
2189                         /* Wait 1 second for next try */
2190                         msleep(1000);
2191                 } else {
2192                         /* we don't understand the sense code, so it's
2193                          * probably pointless to loop */
2194                         if(!spintime) {
2195                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2196                                 sd_print_sense_hdr(sdkp, &sshdr);
2197                         }
2198                         break;
2199                 }
2200                                 
2201         } while (spintime && time_before_eq(jiffies, spintime_expire));
2202
2203         if (spintime) {
2204                 if (scsi_status_is_good(the_result))
2205                         printk(KERN_CONT "ready\n");
2206                 else
2207                         printk(KERN_CONT "not responding...\n");
2208         }
2209 }
2210
2211 /*
2212  * Determine whether disk supports Data Integrity Field.
2213  */
2214 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2215 {
2216         struct scsi_device *sdp = sdkp->device;
2217         u8 type;
2218
2219         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2220                 sdkp->protection_type = 0;
2221                 return 0;
2222         }
2223
2224         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2225
2226         if (type > T10_PI_TYPE3_PROTECTION) {
2227                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2228                           " protection type %u. Disabling disk!\n",
2229                           type);
2230                 sdkp->protection_type = 0;
2231                 return -ENODEV;
2232         }
2233
2234         sdkp->protection_type = type;
2235
2236         return 0;
2237 }
2238
2239 static void sd_config_protection(struct scsi_disk *sdkp)
2240 {
2241         struct scsi_device *sdp = sdkp->device;
2242
2243         if (!sdkp->first_scan)
2244                 return;
2245
2246         sd_dif_config_host(sdkp);
2247
2248         if (!sdkp->protection_type)
2249                 return;
2250
2251         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2252                 sd_printk(KERN_NOTICE, sdkp,
2253                           "Disabling DIF Type %u protection\n",
2254                           sdkp->protection_type);
2255                 sdkp->protection_type = 0;
2256         }
2257
2258         sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2259                   sdkp->protection_type);
2260 }
2261
2262 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2263                         struct scsi_sense_hdr *sshdr, int sense_valid,
2264                         int the_result)
2265 {
2266         if (sense_valid)
2267                 sd_print_sense_hdr(sdkp, sshdr);
2268         else
2269                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2270
2271         /*
2272          * Set dirty bit for removable devices if not ready -
2273          * sometimes drives will not report this properly.
2274          */
2275         if (sdp->removable &&
2276             sense_valid && sshdr->sense_key == NOT_READY)
2277                 set_media_not_present(sdkp);
2278
2279         /*
2280          * We used to set media_present to 0 here to indicate no media
2281          * in the drive, but some drives fail read capacity even with
2282          * media present, so we can't do that.
2283          */
2284         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2285 }
2286
2287 #define RC16_LEN 32
2288 #if RC16_LEN > SD_BUF_SIZE
2289 #error RC16_LEN must not be more than SD_BUF_SIZE
2290 #endif
2291
2292 #define READ_CAPACITY_RETRIES_ON_RESET  10
2293
2294 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2295                                                 unsigned char *buffer)
2296 {
2297         unsigned char cmd[16];
2298         struct scsi_sense_hdr sshdr;
2299         int sense_valid = 0;
2300         int the_result;
2301         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2302         unsigned int alignment;
2303         unsigned long long lba;
2304         unsigned sector_size;
2305
2306         if (sdp->no_read_capacity_16)
2307                 return -EINVAL;
2308
2309         do {
2310                 memset(cmd, 0, 16);
2311                 cmd[0] = SERVICE_ACTION_IN_16;
2312                 cmd[1] = SAI_READ_CAPACITY_16;
2313                 cmd[13] = RC16_LEN;
2314                 memset(buffer, 0, RC16_LEN);
2315
2316                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2317                                         buffer, RC16_LEN, &sshdr,
2318                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2319
2320                 if (media_not_present(sdkp, &sshdr))
2321                         return -ENODEV;
2322
2323                 if (the_result > 0) {
2324                         sense_valid = scsi_sense_valid(&sshdr);
2325                         if (sense_valid &&
2326                             sshdr.sense_key == ILLEGAL_REQUEST &&
2327                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2328                             sshdr.ascq == 0x00)
2329                                 /* Invalid Command Operation Code or
2330                                  * Invalid Field in CDB, just retry
2331                                  * silently with RC10 */
2332                                 return -EINVAL;
2333                         if (sense_valid &&
2334                             sshdr.sense_key == UNIT_ATTENTION &&
2335                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2336                                 /* Device reset might occur several times,
2337                                  * give it one more chance */
2338                                 if (--reset_retries > 0)
2339                                         continue;
2340                 }
2341                 retries--;
2342
2343         } while (the_result && retries);
2344
2345         if (the_result) {
2346                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2347                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2348                 return -EINVAL;
2349         }
2350
2351         sector_size = get_unaligned_be32(&buffer[8]);
2352         lba = get_unaligned_be64(&buffer[0]);
2353
2354         if (sd_read_protection_type(sdkp, buffer) < 0) {
2355                 sdkp->capacity = 0;
2356                 return -ENODEV;
2357         }
2358
2359         /* Logical blocks per physical block exponent */
2360         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2361
2362         /* RC basis */
2363         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2364
2365         /* Lowest aligned logical block */
2366         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2367         blk_queue_alignment_offset(sdp->request_queue, alignment);
2368         if (alignment && sdkp->first_scan)
2369                 sd_printk(KERN_NOTICE, sdkp,
2370                           "physical block alignment offset: %u\n", alignment);
2371
2372         if (buffer[14] & 0x80) { /* LBPME */
2373                 sdkp->lbpme = 1;
2374
2375                 if (buffer[14] & 0x40) /* LBPRZ */
2376                         sdkp->lbprz = 1;
2377
2378                 sd_config_discard(sdkp, SD_LBP_WS16);
2379         }
2380
2381         sdkp->capacity = lba + 1;
2382         return sector_size;
2383 }
2384
2385 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2386                                                 unsigned char *buffer)
2387 {
2388         unsigned char cmd[16];
2389         struct scsi_sense_hdr sshdr;
2390         int sense_valid = 0;
2391         int the_result;
2392         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2393         sector_t lba;
2394         unsigned sector_size;
2395
2396         do {
2397                 cmd[0] = READ_CAPACITY;
2398                 memset(&cmd[1], 0, 9);
2399                 memset(buffer, 0, 8);
2400
2401                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2402                                         buffer, 8, &sshdr,
2403                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2404
2405                 if (media_not_present(sdkp, &sshdr))
2406                         return -ENODEV;
2407
2408                 if (the_result > 0) {
2409                         sense_valid = scsi_sense_valid(&sshdr);
2410                         if (sense_valid &&
2411                             sshdr.sense_key == UNIT_ATTENTION &&
2412                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2413                                 /* Device reset might occur several times,
2414                                  * give it one more chance */
2415                                 if (--reset_retries > 0)
2416                                         continue;
2417                 }
2418                 retries--;
2419
2420         } while (the_result && retries);
2421
2422         if (the_result) {
2423                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2424                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2425                 return -EINVAL;
2426         }
2427
2428         sector_size = get_unaligned_be32(&buffer[4]);
2429         lba = get_unaligned_be32(&buffer[0]);
2430
2431         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2432                 /* Some buggy (usb cardreader) devices return an lba of
2433                    0xffffffff when the want to report a size of 0 (with
2434                    which they really mean no media is present) */
2435                 sdkp->capacity = 0;
2436                 sdkp->physical_block_size = sector_size;
2437                 return sector_size;
2438         }
2439
2440         sdkp->capacity = lba + 1;
2441         sdkp->physical_block_size = sector_size;
2442         return sector_size;
2443 }
2444
2445 static int sd_try_rc16_first(struct scsi_device *sdp)
2446 {
2447         if (sdp->host->max_cmd_len < 16)
2448                 return 0;
2449         if (sdp->try_rc_10_first)
2450                 return 0;
2451         if (sdp->scsi_level > SCSI_SPC_2)
2452                 return 1;
2453         if (scsi_device_protection(sdp))
2454                 return 1;
2455         return 0;
2456 }
2457
2458 /*
2459  * read disk capacity
2460  */
2461 static void
2462 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2463 {
2464         int sector_size;
2465         struct scsi_device *sdp = sdkp->device;
2466
2467         if (sd_try_rc16_first(sdp)) {
2468                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2469                 if (sector_size == -EOVERFLOW)
2470                         goto got_data;
2471                 if (sector_size == -ENODEV)
2472                         return;
2473                 if (sector_size < 0)
2474                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2475                 if (sector_size < 0)
2476                         return;
2477         } else {
2478                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2479                 if (sector_size == -EOVERFLOW)
2480                         goto got_data;
2481                 if (sector_size < 0)
2482                         return;
2483                 if ((sizeof(sdkp->capacity) > 4) &&
2484                     (sdkp->capacity > 0xffffffffULL)) {
2485                         int old_sector_size = sector_size;
2486                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2487                                         "Trying to use READ CAPACITY(16).\n");
2488                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2489                         if (sector_size < 0) {
2490                                 sd_printk(KERN_NOTICE, sdkp,
2491                                         "Using 0xffffffff as device size\n");
2492                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2493                                 sector_size = old_sector_size;
2494                                 goto got_data;
2495                         }
2496                         /* Remember that READ CAPACITY(16) succeeded */
2497                         sdp->try_rc_10_first = 0;
2498                 }
2499         }
2500
2501         /* Some devices are known to return the total number of blocks,
2502          * not the highest block number.  Some devices have versions
2503          * which do this and others which do not.  Some devices we might
2504          * suspect of doing this but we don't know for certain.
2505          *
2506          * If we know the reported capacity is wrong, decrement it.  If
2507          * we can only guess, then assume the number of blocks is even
2508          * (usually true but not always) and err on the side of lowering
2509          * the capacity.
2510          */
2511         if (sdp->fix_capacity ||
2512             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2513                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2514                                 "from its reported value: %llu\n",
2515                                 (unsigned long long) sdkp->capacity);
2516                 --sdkp->capacity;
2517         }
2518
2519 got_data:
2520         if (sector_size == 0) {
2521                 sector_size = 512;
2522                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2523                           "assuming 512.\n");
2524         }
2525
2526         if (sector_size != 512 &&
2527             sector_size != 1024 &&
2528             sector_size != 2048 &&
2529             sector_size != 4096) {
2530                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2531                           sector_size);
2532                 /*
2533                  * The user might want to re-format the drive with
2534                  * a supported sectorsize.  Once this happens, it
2535                  * would be relatively trivial to set the thing up.
2536                  * For this reason, we leave the thing in the table.
2537                  */
2538                 sdkp->capacity = 0;
2539                 /*
2540                  * set a bogus sector size so the normal read/write
2541                  * logic in the block layer will eventually refuse any
2542                  * request on this device without tripping over power
2543                  * of two sector size assumptions
2544                  */
2545                 sector_size = 512;
2546         }
2547         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2548         blk_queue_physical_block_size(sdp->request_queue,
2549                                       sdkp->physical_block_size);
2550         sdkp->device->sector_size = sector_size;
2551
2552         if (sdkp->capacity > 0xffffffff)
2553                 sdp->use_16_for_rw = 1;
2554
2555 }
2556
2557 /*
2558  * Print disk capacity
2559  */
2560 static void
2561 sd_print_capacity(struct scsi_disk *sdkp,
2562                   sector_t old_capacity)
2563 {
2564         int sector_size = sdkp->device->sector_size;
2565         char cap_str_2[10], cap_str_10[10];
2566
2567         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2568                 return;
2569
2570         string_get_size(sdkp->capacity, sector_size,
2571                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2572         string_get_size(sdkp->capacity, sector_size,
2573                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2574
2575         sd_printk(KERN_NOTICE, sdkp,
2576                   "%llu %d-byte logical blocks: (%s/%s)\n",
2577                   (unsigned long long)sdkp->capacity,
2578                   sector_size, cap_str_10, cap_str_2);
2579
2580         if (sdkp->physical_block_size != sector_size)
2581                 sd_printk(KERN_NOTICE, sdkp,
2582                           "%u-byte physical blocks\n",
2583                           sdkp->physical_block_size);
2584 }
2585
2586 /* called with buffer of length 512 */
2587 static inline int
2588 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2589                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2590                  struct scsi_sense_hdr *sshdr)
2591 {
2592         /*
2593          * If we must use MODE SENSE(10), make sure that the buffer length
2594          * is at least 8 bytes so that the mode sense header fits.
2595          */
2596         if (sdkp->device->use_10_for_ms && len < 8)
2597                 len = 8;
2598
2599         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2600                                SD_TIMEOUT, sdkp->max_retries, data,
2601                                sshdr);
2602 }
2603
2604 /*
2605  * read write protect setting, if possible - called only in sd_revalidate_disk()
2606  * called with buffer of length SD_BUF_SIZE
2607  */
2608 static void
2609 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2610 {
2611         int res;
2612         struct scsi_device *sdp = sdkp->device;
2613         struct scsi_mode_data data;
2614         int old_wp = sdkp->write_prot;
2615
2616         set_disk_ro(sdkp->disk, 0);
2617         if (sdp->skip_ms_page_3f) {
2618                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2619                 return;
2620         }
2621
2622         if (sdp->use_192_bytes_for_3f) {
2623                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2624         } else {
2625                 /*
2626                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2627                  * We have to start carefully: some devices hang if we ask
2628                  * for more than is available.
2629                  */
2630                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2631
2632                 /*
2633                  * Second attempt: ask for page 0 When only page 0 is
2634                  * implemented, a request for page 3F may return Sense Key
2635                  * 5: Illegal Request, Sense Code 24: Invalid field in
2636                  * CDB.
2637                  */
2638                 if (res < 0)
2639                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2640
2641                 /*
2642                  * Third attempt: ask 255 bytes, as we did earlier.
2643                  */
2644                 if (res < 0)
2645                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2646                                                &data, NULL);
2647         }
2648
2649         if (res < 0) {
2650                 sd_first_printk(KERN_WARNING, sdkp,
2651                           "Test WP failed, assume Write Enabled\n");
2652         } else {
2653                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2654                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2655                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2656                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2657                                   sdkp->write_prot ? "on" : "off");
2658                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2659                 }
2660         }
2661 }
2662
2663 /*
2664  * sd_read_cache_type - called only from sd_revalidate_disk()
2665  * called with buffer of length SD_BUF_SIZE
2666  */
2667 static void
2668 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2669 {
2670         int len = 0, res;
2671         struct scsi_device *sdp = sdkp->device;
2672
2673         int dbd;
2674         int modepage;
2675         int first_len;
2676         struct scsi_mode_data data;
2677         struct scsi_sense_hdr sshdr;
2678         int old_wce = sdkp->WCE;
2679         int old_rcd = sdkp->RCD;
2680         int old_dpofua = sdkp->DPOFUA;
2681
2682
2683         if (sdkp->cache_override)
2684                 return;
2685
2686         first_len = 4;
2687         if (sdp->skip_ms_page_8) {
2688                 if (sdp->type == TYPE_RBC)
2689                         goto defaults;
2690                 else {
2691                         if (sdp->skip_ms_page_3f)
2692                                 goto defaults;
2693                         modepage = 0x3F;
2694                         if (sdp->use_192_bytes_for_3f)
2695                                 first_len = 192;
2696                         dbd = 0;
2697                 }
2698         } else if (sdp->type == TYPE_RBC) {
2699                 modepage = 6;
2700                 dbd = 8;
2701         } else {
2702                 modepage = 8;
2703                 dbd = 0;
2704         }
2705
2706         /* cautiously ask */
2707         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2708                         &data, &sshdr);
2709
2710         if (res < 0)
2711                 goto bad_sense;
2712
2713         if (!data.header_length) {
2714                 modepage = 6;
2715                 first_len = 0;
2716                 sd_first_printk(KERN_ERR, sdkp,
2717                                 "Missing header in MODE_SENSE response\n");
2718         }
2719
2720         /* that went OK, now ask for the proper length */
2721         len = data.length;
2722
2723         /*
2724          * We're only interested in the first three bytes, actually.
2725          * But the data cache page is defined for the first 20.
2726          */
2727         if (len < 3)
2728                 goto bad_sense;
2729         else if (len > SD_BUF_SIZE) {
2730                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2731                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2732                 len = SD_BUF_SIZE;
2733         }
2734         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2735                 len = 192;
2736
2737         /* Get the data */
2738         if (len > first_len)
2739                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2740                                 &data, &sshdr);
2741
2742         if (!res) {
2743                 int offset = data.header_length + data.block_descriptor_length;
2744
2745                 while (offset < len) {
2746                         u8 page_code = buffer[offset] & 0x3F;
2747                         u8 spf       = buffer[offset] & 0x40;
2748
2749                         if (page_code == 8 || page_code == 6) {
2750                                 /* We're interested only in the first 3 bytes.
2751                                  */
2752                                 if (len - offset <= 2) {
2753                                         sd_first_printk(KERN_ERR, sdkp,
2754                                                 "Incomplete mode parameter "
2755                                                         "data\n");
2756                                         goto defaults;
2757                                 } else {
2758                                         modepage = page_code;
2759                                         goto Page_found;
2760                                 }
2761                         } else {
2762                                 /* Go to the next page */
2763                                 if (spf && len - offset > 3)
2764                                         offset += 4 + (buffer[offset+2] << 8) +
2765                                                 buffer[offset+3];
2766                                 else if (!spf && len - offset > 1)
2767                                         offset += 2 + buffer[offset+1];
2768                                 else {
2769                                         sd_first_printk(KERN_ERR, sdkp,
2770                                                         "Incomplete mode "
2771                                                         "parameter data\n");
2772                                         goto defaults;
2773                                 }
2774                         }
2775                 }
2776
2777                 sd_first_printk(KERN_WARNING, sdkp,
2778                                 "No Caching mode page found\n");
2779                 goto defaults;
2780
2781         Page_found:
2782                 if (modepage == 8) {
2783                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2784                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2785                 } else {
2786                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2787                         sdkp->RCD = 0;
2788                 }
2789
2790                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2791                 if (sdp->broken_fua) {
2792                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2793                         sdkp->DPOFUA = 0;
2794                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2795                            !sdkp->device->use_16_for_rw) {
2796                         sd_first_printk(KERN_NOTICE, sdkp,
2797                                   "Uses READ/WRITE(6), disabling FUA\n");
2798                         sdkp->DPOFUA = 0;
2799                 }
2800
2801                 /* No cache flush allowed for write protected devices */
2802                 if (sdkp->WCE && sdkp->write_prot)
2803                         sdkp->WCE = 0;
2804
2805                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2806                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2807                         sd_printk(KERN_NOTICE, sdkp,
2808                                   "Write cache: %s, read cache: %s, %s\n",
2809                                   sdkp->WCE ? "enabled" : "disabled",
2810                                   sdkp->RCD ? "disabled" : "enabled",
2811                                   sdkp->DPOFUA ? "supports DPO and FUA"
2812                                   : "doesn't support DPO or FUA");
2813
2814                 return;
2815         }
2816
2817 bad_sense:
2818         if (scsi_sense_valid(&sshdr) &&
2819             sshdr.sense_key == ILLEGAL_REQUEST &&
2820             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2821                 /* Invalid field in CDB */
2822                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2823         else
2824                 sd_first_printk(KERN_ERR, sdkp,
2825                                 "Asking for cache data failed\n");
2826
2827 defaults:
2828         if (sdp->wce_default_on) {
2829                 sd_first_printk(KERN_NOTICE, sdkp,
2830                                 "Assuming drive cache: write back\n");
2831                 sdkp->WCE = 1;
2832         } else {
2833                 sd_first_printk(KERN_WARNING, sdkp,
2834                                 "Assuming drive cache: write through\n");
2835                 sdkp->WCE = 0;
2836         }
2837         sdkp->RCD = 0;
2838         sdkp->DPOFUA = 0;
2839 }
2840
2841 /*
2842  * The ATO bit indicates whether the DIF application tag is available
2843  * for use by the operating system.
2844  */
2845 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2846 {
2847         int res, offset;
2848         struct scsi_device *sdp = sdkp->device;
2849         struct scsi_mode_data data;
2850         struct scsi_sense_hdr sshdr;
2851
2852         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2853                 return;
2854
2855         if (sdkp->protection_type == 0)
2856                 return;
2857
2858         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2859                               sdkp->max_retries, &data, &sshdr);
2860
2861         if (res < 0 || !data.header_length ||
2862             data.length < 6) {
2863                 sd_first_printk(KERN_WARNING, sdkp,
2864                           "getting Control mode page failed, assume no ATO\n");
2865
2866                 if (scsi_sense_valid(&sshdr))
2867                         sd_print_sense_hdr(sdkp, &sshdr);
2868
2869                 return;
2870         }
2871
2872         offset = data.header_length + data.block_descriptor_length;
2873
2874         if ((buffer[offset] & 0x3f) != 0x0a) {
2875                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2876                 return;
2877         }
2878
2879         if ((buffer[offset + 5] & 0x80) == 0)
2880                 return;
2881
2882         sdkp->ATO = 1;
2883
2884         return;
2885 }
2886
2887 /**
2888  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2889  * @sdkp: disk to query
2890  */
2891 static void sd_read_block_limits(struct scsi_disk *sdkp)
2892 {
2893         struct scsi_vpd *vpd;
2894
2895         rcu_read_lock();
2896
2897         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2898         if (!vpd || vpd->len < 16)
2899                 goto out;
2900
2901         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2902         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2903         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2904
2905         if (vpd->len >= 64) {
2906                 unsigned int lba_count, desc_count;
2907
2908                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2909
2910                 if (!sdkp->lbpme)
2911                         goto out;
2912
2913                 lba_count = get_unaligned_be32(&vpd->data[20]);
2914                 desc_count = get_unaligned_be32(&vpd->data[24]);
2915
2916                 if (lba_count && desc_count)
2917                         sdkp->max_unmap_blocks = lba_count;
2918
2919                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2920
2921                 if (vpd->data[32] & 0x80)
2922                         sdkp->unmap_alignment =
2923                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2924
2925                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2926
2927                         if (sdkp->max_unmap_blocks)
2928                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2929                         else
2930                                 sd_config_discard(sdkp, SD_LBP_WS16);
2931
2932                 } else {        /* LBP VPD page tells us what to use */
2933                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2934                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2935                         else if (sdkp->lbpws)
2936                                 sd_config_discard(sdkp, SD_LBP_WS16);
2937                         else if (sdkp->lbpws10)
2938                                 sd_config_discard(sdkp, SD_LBP_WS10);
2939                         else
2940                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2941                 }
2942         }
2943
2944  out:
2945         rcu_read_unlock();
2946 }
2947
2948 /**
2949  * sd_read_block_characteristics - Query block dev. characteristics
2950  * @sdkp: disk to query
2951  */
2952 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2953 {
2954         struct request_queue *q = sdkp->disk->queue;
2955         struct scsi_vpd *vpd;
2956         u16 rot;
2957         u8 zoned;
2958
2959         rcu_read_lock();
2960         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2961
2962         if (!vpd || vpd->len < 8) {
2963                 rcu_read_unlock();
2964                 return;
2965         }
2966
2967         rot = get_unaligned_be16(&vpd->data[4]);
2968         zoned = (vpd->data[8] >> 4) & 3;
2969         rcu_read_unlock();
2970
2971         if (rot == 1) {
2972                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2973                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2974         }
2975
2976         if (sdkp->device->type == TYPE_ZBC) {
2977                 /* Host-managed */
2978                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2979         } else {
2980                 sdkp->zoned = zoned;
2981                 if (sdkp->zoned == 1) {
2982                         /* Host-aware */
2983                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2984                 } else {
2985                         /* Regular disk or drive managed disk */
2986                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2987                 }
2988         }
2989
2990         if (!sdkp->first_scan)
2991                 return;
2992
2993         if (blk_queue_is_zoned(q)) {
2994                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2995                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2996         } else {
2997                 if (sdkp->zoned == 1)
2998                         sd_printk(KERN_NOTICE, sdkp,
2999                                   "Host-aware SMR disk used as regular disk\n");
3000                 else if (sdkp->zoned == 2)
3001                         sd_printk(KERN_NOTICE, sdkp,
3002                                   "Drive-managed SMR disk\n");
3003         }
3004 }
3005
3006 /**
3007  * sd_read_block_provisioning - Query provisioning VPD page
3008  * @sdkp: disk to query
3009  */
3010 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3011 {
3012         struct scsi_vpd *vpd;
3013
3014         if (sdkp->lbpme == 0)
3015                 return;
3016
3017         rcu_read_lock();
3018         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3019
3020         if (!vpd || vpd->len < 8) {
3021                 rcu_read_unlock();
3022                 return;
3023         }
3024
3025         sdkp->lbpvpd    = 1;
3026         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3027         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3028         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3029         rcu_read_unlock();
3030 }
3031
3032 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3033 {
3034         struct scsi_device *sdev = sdkp->device;
3035
3036         if (sdev->host->no_write_same) {
3037                 sdev->no_write_same = 1;
3038
3039                 return;
3040         }
3041
3042         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3043                 struct scsi_vpd *vpd;
3044
3045                 sdev->no_report_opcodes = 1;
3046
3047                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3048                  * CODES is unsupported and the device has an ATA
3049                  * Information VPD page (SAT).
3050                  */
3051                 rcu_read_lock();
3052                 vpd = rcu_dereference(sdev->vpd_pg89);
3053                 if (vpd)
3054                         sdev->no_write_same = 1;
3055                 rcu_read_unlock();
3056         }
3057
3058         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3059                 sdkp->ws16 = 1;
3060
3061         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3062                 sdkp->ws10 = 1;
3063 }
3064
3065 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3066 {
3067         struct scsi_device *sdev = sdkp->device;
3068
3069         if (!sdev->security_supported)
3070                 return;
3071
3072         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3073                         SECURITY_PROTOCOL_IN) == 1 &&
3074             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3075                         SECURITY_PROTOCOL_OUT) == 1)
3076                 sdkp->security = 1;
3077 }
3078
3079 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3080 {
3081         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3082 }
3083
3084 /**
3085  * sd_read_cpr - Query concurrent positioning ranges
3086  * @sdkp:       disk to query
3087  */
3088 static void sd_read_cpr(struct scsi_disk *sdkp)
3089 {
3090         struct blk_independent_access_ranges *iars = NULL;
3091         unsigned char *buffer = NULL;
3092         unsigned int nr_cpr = 0;
3093         int i, vpd_len, buf_len = SD_BUF_SIZE;
3094         u8 *desc;
3095
3096         /*
3097          * We need to have the capacity set first for the block layer to be
3098          * able to check the ranges.
3099          */
3100         if (sdkp->first_scan)
3101                 return;
3102
3103         if (!sdkp->capacity)
3104                 goto out;
3105
3106         /*
3107          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3108          * leading to a maximum page size of 64 + 256*32 bytes.
3109          */
3110         buf_len = 64 + 256*32;
3111         buffer = kmalloc(buf_len, GFP_KERNEL);
3112         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3113                 goto out;
3114
3115         /* We must have at least a 64B header and one 32B range descriptor */
3116         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3117         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3118                 sd_printk(KERN_ERR, sdkp,
3119                           "Invalid Concurrent Positioning Ranges VPD page\n");
3120                 goto out;
3121         }
3122
3123         nr_cpr = (vpd_len - 64) / 32;
3124         if (nr_cpr == 1) {
3125                 nr_cpr = 0;
3126                 goto out;
3127         }
3128
3129         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3130         if (!iars) {
3131                 nr_cpr = 0;
3132                 goto out;
3133         }
3134
3135         desc = &buffer[64];
3136         for (i = 0; i < nr_cpr; i++, desc += 32) {
3137                 if (desc[0] != i) {
3138                         sd_printk(KERN_ERR, sdkp,
3139                                 "Invalid Concurrent Positioning Range number\n");
3140                         nr_cpr = 0;
3141                         break;
3142                 }
3143
3144                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3145                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3146         }
3147
3148 out:
3149         disk_set_independent_access_ranges(sdkp->disk, iars);
3150         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3151                 sd_printk(KERN_NOTICE, sdkp,
3152                           "%u concurrent positioning ranges\n", nr_cpr);
3153                 sdkp->nr_actuators = nr_cpr;
3154         }
3155
3156         kfree(buffer);
3157 }
3158
3159 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3160 {
3161         struct scsi_device *sdp = sdkp->device;
3162         unsigned int min_xfer_bytes =
3163                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3164
3165         if (sdkp->min_xfer_blocks == 0)
3166                 return false;
3167
3168         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3169                 sd_first_printk(KERN_WARNING, sdkp,
3170                                 "Preferred minimum I/O size %u bytes not a " \
3171                                 "multiple of physical block size (%u bytes)\n",
3172                                 min_xfer_bytes, sdkp->physical_block_size);
3173                 sdkp->min_xfer_blocks = 0;
3174                 return false;
3175         }
3176
3177         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3178                         min_xfer_bytes);
3179         return true;
3180 }
3181
3182 /*
3183  * Determine the device's preferred I/O size for reads and writes
3184  * unless the reported value is unreasonably small, large, not a
3185  * multiple of the physical block size, or simply garbage.
3186  */
3187 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3188                                       unsigned int dev_max)
3189 {
3190         struct scsi_device *sdp = sdkp->device;
3191         unsigned int opt_xfer_bytes =
3192                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3193         unsigned int min_xfer_bytes =
3194                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3195
3196         if (sdkp->opt_xfer_blocks == 0)
3197                 return false;
3198
3199         if (sdkp->opt_xfer_blocks > dev_max) {
3200                 sd_first_printk(KERN_WARNING, sdkp,
3201                                 "Optimal transfer size %u logical blocks " \
3202                                 "> dev_max (%u logical blocks)\n",
3203                                 sdkp->opt_xfer_blocks, dev_max);
3204                 return false;
3205         }
3206
3207         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3208                 sd_first_printk(KERN_WARNING, sdkp,
3209                                 "Optimal transfer size %u logical blocks " \
3210                                 "> sd driver limit (%u logical blocks)\n",
3211                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3212                 return false;
3213         }
3214
3215         if (opt_xfer_bytes < PAGE_SIZE) {
3216                 sd_first_printk(KERN_WARNING, sdkp,
3217                                 "Optimal transfer size %u bytes < " \
3218                                 "PAGE_SIZE (%u bytes)\n",
3219                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3220                 return false;
3221         }
3222
3223         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3224                 sd_first_printk(KERN_WARNING, sdkp,
3225                                 "Optimal transfer size %u bytes not a " \
3226                                 "multiple of preferred minimum block " \
3227                                 "size (%u bytes)\n",
3228                                 opt_xfer_bytes, min_xfer_bytes);
3229                 return false;
3230         }
3231
3232         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3233                 sd_first_printk(KERN_WARNING, sdkp,
3234                                 "Optimal transfer size %u bytes not a " \
3235                                 "multiple of physical block size (%u bytes)\n",
3236                                 opt_xfer_bytes, sdkp->physical_block_size);
3237                 return false;
3238         }
3239
3240         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3241                         opt_xfer_bytes);
3242         return true;
3243 }
3244
3245 /**
3246  *      sd_revalidate_disk - called the first time a new disk is seen,
3247  *      performs disk spin up, read_capacity, etc.
3248  *      @disk: struct gendisk we care about
3249  **/
3250 static int sd_revalidate_disk(struct gendisk *disk)
3251 {
3252         struct scsi_disk *sdkp = scsi_disk(disk);
3253         struct scsi_device *sdp = sdkp->device;
3254         struct request_queue *q = sdkp->disk->queue;
3255         sector_t old_capacity = sdkp->capacity;
3256         unsigned char *buffer;
3257         unsigned int dev_max, rw_max;
3258
3259         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3260                                       "sd_revalidate_disk\n"));
3261
3262         /*
3263          * If the device is offline, don't try and read capacity or any
3264          * of the other niceties.
3265          */
3266         if (!scsi_device_online(sdp))
3267                 goto out;
3268
3269         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3270         if (!buffer) {
3271                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3272                           "allocation failure.\n");
3273                 goto out;
3274         }
3275
3276         sd_spinup_disk(sdkp);
3277
3278         /*
3279          * Without media there is no reason to ask; moreover, some devices
3280          * react badly if we do.
3281          */
3282         if (sdkp->media_present) {
3283                 sd_read_capacity(sdkp, buffer);
3284
3285                 /*
3286                  * set the default to rotational.  All non-rotational devices
3287                  * support the block characteristics VPD page, which will
3288                  * cause this to be updated correctly and any device which
3289                  * doesn't support it should be treated as rotational.
3290                  */
3291                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3292                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3293
3294                 if (scsi_device_supports_vpd(sdp)) {
3295                         sd_read_block_provisioning(sdkp);
3296                         sd_read_block_limits(sdkp);
3297                         sd_read_block_characteristics(sdkp);
3298                         sd_zbc_read_zones(sdkp, buffer);
3299                         sd_read_cpr(sdkp);
3300                 }
3301
3302                 sd_print_capacity(sdkp, old_capacity);
3303
3304                 sd_read_write_protect_flag(sdkp, buffer);
3305                 sd_read_cache_type(sdkp, buffer);
3306                 sd_read_app_tag_own(sdkp, buffer);
3307                 sd_read_write_same(sdkp, buffer);
3308                 sd_read_security(sdkp, buffer);
3309                 sd_config_protection(sdkp);
3310         }
3311
3312         /*
3313          * We now have all cache related info, determine how we deal
3314          * with flush requests.
3315          */
3316         sd_set_flush_flag(sdkp);
3317
3318         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3319         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3320
3321         /* Some devices report a maximum block count for READ/WRITE requests. */
3322         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3323         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3324
3325         if (sd_validate_min_xfer_size(sdkp))
3326                 blk_queue_io_min(sdkp->disk->queue,
3327                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3328         else
3329                 blk_queue_io_min(sdkp->disk->queue, 0);
3330
3331         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3332                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3333                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3334         } else {
3335                 q->limits.io_opt = 0;
3336                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3337                                       (sector_t)BLK_DEF_MAX_SECTORS);
3338         }
3339
3340         /*
3341          * Limit default to SCSI host optimal sector limit if set. There may be
3342          * an impact on performance for when the size of a request exceeds this
3343          * host limit.
3344          */
3345         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3346
3347         /* Do not exceed controller limit */
3348         rw_max = min(rw_max, queue_max_hw_sectors(q));
3349
3350         /*
3351          * Only update max_sectors if previously unset or if the current value
3352          * exceeds the capabilities of the hardware.
3353          */
3354         if (sdkp->first_scan ||
3355             q->limits.max_sectors > q->limits.max_dev_sectors ||
3356             q->limits.max_sectors > q->limits.max_hw_sectors)
3357                 q->limits.max_sectors = rw_max;
3358
3359         sdkp->first_scan = 0;
3360
3361         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3362         sd_config_write_same(sdkp);
3363         kfree(buffer);
3364
3365         /*
3366          * For a zoned drive, revalidating the zones can be done only once
3367          * the gendisk capacity is set. So if this fails, set back the gendisk
3368          * capacity to 0.
3369          */
3370         if (sd_zbc_revalidate_zones(sdkp))
3371                 set_capacity_and_notify(disk, 0);
3372
3373  out:
3374         return 0;
3375 }
3376
3377 /**
3378  *      sd_unlock_native_capacity - unlock native capacity
3379  *      @disk: struct gendisk to set capacity for
3380  *
3381  *      Block layer calls this function if it detects that partitions
3382  *      on @disk reach beyond the end of the device.  If the SCSI host
3383  *      implements ->unlock_native_capacity() method, it's invoked to
3384  *      give it a chance to adjust the device capacity.
3385  *
3386  *      CONTEXT:
3387  *      Defined by block layer.  Might sleep.
3388  */
3389 static void sd_unlock_native_capacity(struct gendisk *disk)
3390 {
3391         struct scsi_device *sdev = scsi_disk(disk)->device;
3392
3393         if (sdev->host->hostt->unlock_native_capacity)
3394                 sdev->host->hostt->unlock_native_capacity(sdev);
3395 }
3396
3397 /**
3398  *      sd_format_disk_name - format disk name
3399  *      @prefix: name prefix - ie. "sd" for SCSI disks
3400  *      @index: index of the disk to format name for
3401  *      @buf: output buffer
3402  *      @buflen: length of the output buffer
3403  *
3404  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3405  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3406  *      which is followed by sdaaa.
3407  *
3408  *      This is basically 26 base counting with one extra 'nil' entry
3409  *      at the beginning from the second digit on and can be
3410  *      determined using similar method as 26 base conversion with the
3411  *      index shifted -1 after each digit is computed.
3412  *
3413  *      CONTEXT:
3414  *      Don't care.
3415  *
3416  *      RETURNS:
3417  *      0 on success, -errno on failure.
3418  */
3419 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3420 {
3421         const int base = 'z' - 'a' + 1;
3422         char *begin = buf + strlen(prefix);
3423         char *end = buf + buflen;
3424         char *p;
3425         int unit;
3426
3427         p = end - 1;
3428         *p = '\0';
3429         unit = base;
3430         do {
3431                 if (p == begin)
3432                         return -EINVAL;
3433                 *--p = 'a' + (index % unit);
3434                 index = (index / unit) - 1;
3435         } while (index >= 0);
3436
3437         memmove(begin, p, end - p);
3438         memcpy(buf, prefix, strlen(prefix));
3439
3440         return 0;
3441 }
3442
3443 /**
3444  *      sd_probe - called during driver initialization and whenever a
3445  *      new scsi device is attached to the system. It is called once
3446  *      for each scsi device (not just disks) present.
3447  *      @dev: pointer to device object
3448  *
3449  *      Returns 0 if successful (or not interested in this scsi device 
3450  *      (e.g. scanner)); 1 when there is an error.
3451  *
3452  *      Note: this function is invoked from the scsi mid-level.
3453  *      This function sets up the mapping between a given 
3454  *      <host,channel,id,lun> (found in sdp) and new device name 
3455  *      (e.g. /dev/sda). More precisely it is the block device major 
3456  *      and minor number that is chosen here.
3457  *
3458  *      Assume sd_probe is not re-entrant (for time being)
3459  *      Also think about sd_probe() and sd_remove() running coincidentally.
3460  **/
3461 static int sd_probe(struct device *dev)
3462 {
3463         struct scsi_device *sdp = to_scsi_device(dev);
3464         struct scsi_disk *sdkp;
3465         struct gendisk *gd;
3466         int index;
3467         int error;
3468
3469         scsi_autopm_get_device(sdp);
3470         error = -ENODEV;
3471         if (sdp->type != TYPE_DISK &&
3472             sdp->type != TYPE_ZBC &&
3473             sdp->type != TYPE_MOD &&
3474             sdp->type != TYPE_RBC)
3475                 goto out;
3476
3477         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3478                 sdev_printk(KERN_WARNING, sdp,
3479                             "Unsupported ZBC host-managed device.\n");
3480                 goto out;
3481         }
3482
3483         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3484                                         "sd_probe\n"));
3485
3486         error = -ENOMEM;
3487         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3488         if (!sdkp)
3489                 goto out;
3490
3491         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3492                                          &sd_bio_compl_lkclass);
3493         if (!gd)
3494                 goto out_free;
3495
3496         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3497         if (index < 0) {
3498                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3499                 goto out_put;
3500         }
3501
3502         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3503         if (error) {
3504                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3505                 goto out_free_index;
3506         }
3507
3508         sdkp->device = sdp;
3509         sdkp->disk = gd;
3510         sdkp->index = index;
3511         sdkp->max_retries = SD_MAX_RETRIES;
3512         atomic_set(&sdkp->openers, 0);
3513         atomic_set(&sdkp->device->ioerr_cnt, 0);
3514
3515         if (!sdp->request_queue->rq_timeout) {
3516                 if (sdp->type != TYPE_MOD)
3517                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3518                 else
3519                         blk_queue_rq_timeout(sdp->request_queue,
3520                                              SD_MOD_TIMEOUT);
3521         }
3522
3523         device_initialize(&sdkp->disk_dev);
3524         sdkp->disk_dev.parent = get_device(dev);
3525         sdkp->disk_dev.class = &sd_disk_class;
3526         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3527
3528         error = device_add(&sdkp->disk_dev);
3529         if (error) {
3530                 put_device(&sdkp->disk_dev);
3531                 goto out;
3532         }
3533
3534         dev_set_drvdata(dev, sdkp);
3535
3536         gd->major = sd_major((index & 0xf0) >> 4);
3537         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3538         gd->minors = SD_MINORS;
3539
3540         gd->fops = &sd_fops;
3541         gd->private_data = sdkp;
3542
3543         /* defaults, until the device tells us otherwise */
3544         sdp->sector_size = 512;
3545         sdkp->capacity = 0;
3546         sdkp->media_present = 1;
3547         sdkp->write_prot = 0;
3548         sdkp->cache_override = 0;
3549         sdkp->WCE = 0;
3550         sdkp->RCD = 0;
3551         sdkp->ATO = 0;
3552         sdkp->first_scan = 1;
3553         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3554
3555         sd_revalidate_disk(gd);
3556
3557         if (sdp->removable) {
3558                 gd->flags |= GENHD_FL_REMOVABLE;
3559                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3560                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3561         }
3562
3563         blk_pm_runtime_init(sdp->request_queue, dev);
3564         if (sdp->rpm_autosuspend) {
3565                 pm_runtime_set_autosuspend_delay(dev,
3566                         sdp->host->hostt->rpm_autosuspend_delay);
3567         }
3568
3569         error = device_add_disk(dev, gd, NULL);
3570         if (error) {
3571                 put_device(&sdkp->disk_dev);
3572                 put_disk(gd);
3573                 goto out;
3574         }
3575
3576         if (sdkp->security) {
3577                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3578                 if (sdkp->opal_dev)
3579                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3580         }
3581
3582         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3583                   sdp->removable ? "removable " : "");
3584         scsi_autopm_put_device(sdp);
3585
3586         return 0;
3587
3588  out_free_index:
3589         ida_free(&sd_index_ida, index);
3590  out_put:
3591         put_disk(gd);
3592  out_free:
3593         kfree(sdkp);
3594  out:
3595         scsi_autopm_put_device(sdp);
3596         return error;
3597 }
3598
3599 /**
3600  *      sd_remove - called whenever a scsi disk (previously recognized by
3601  *      sd_probe) is detached from the system. It is called (potentially
3602  *      multiple times) during sd module unload.
3603  *      @dev: pointer to device object
3604  *
3605  *      Note: this function is invoked from the scsi mid-level.
3606  *      This function potentially frees up a device name (e.g. /dev/sdc)
3607  *      that could be re-used by a subsequent sd_probe().
3608  *      This function is not called when the built-in sd driver is "exit-ed".
3609  **/
3610 static int sd_remove(struct device *dev)
3611 {
3612         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3613
3614         scsi_autopm_get_device(sdkp->device);
3615
3616         device_del(&sdkp->disk_dev);
3617         del_gendisk(sdkp->disk);
3618         sd_shutdown(dev);
3619
3620         put_disk(sdkp->disk);
3621         return 0;
3622 }
3623
3624 static void scsi_disk_release(struct device *dev)
3625 {
3626         struct scsi_disk *sdkp = to_scsi_disk(dev);
3627
3628         ida_free(&sd_index_ida, sdkp->index);
3629         sd_zbc_free_zone_info(sdkp);
3630         put_device(&sdkp->device->sdev_gendev);
3631         free_opal_dev(sdkp->opal_dev);
3632
3633         kfree(sdkp);
3634 }
3635
3636 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3637 {
3638         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3639         struct scsi_sense_hdr sshdr;
3640         struct scsi_device *sdp = sdkp->device;
3641         int res;
3642
3643         if (start)
3644                 cmd[4] |= 1;    /* START */
3645
3646         if (sdp->start_stop_pwr_cond)
3647                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3648
3649         if (!scsi_device_online(sdp))
3650                 return -ENODEV;
3651
3652         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3653                         SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3654         if (res) {
3655                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3656                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3657                         sd_print_sense_hdr(sdkp, &sshdr);
3658                         /* 0x3a is medium not present */
3659                         if (sshdr.asc == 0x3a)
3660                                 res = 0;
3661                 }
3662         }
3663
3664         /* SCSI error codes must not go to the generic layer */
3665         if (res)
3666                 return -EIO;
3667
3668         return 0;
3669 }
3670
3671 /*
3672  * Send a SYNCHRONIZE CACHE instruction down to the device through
3673  * the normal SCSI command structure.  Wait for the command to
3674  * complete.
3675  */
3676 static void sd_shutdown(struct device *dev)
3677 {
3678         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3679
3680         if (!sdkp)
3681                 return;         /* this can happen */
3682
3683         if (pm_runtime_suspended(dev))
3684                 return;
3685
3686         if (sdkp->WCE && sdkp->media_present) {
3687                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3688                 sd_sync_cache(sdkp, NULL);
3689         }
3690
3691         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3692                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3693                 sd_start_stop_device(sdkp, 0);
3694         }
3695 }
3696
3697 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3698 {
3699         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3700         struct scsi_sense_hdr sshdr;
3701         int ret = 0;
3702
3703         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3704                 return 0;
3705
3706         if (sdkp->WCE && sdkp->media_present) {
3707                 if (!sdkp->device->silence_suspend)
3708                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3709                 ret = sd_sync_cache(sdkp, &sshdr);
3710
3711                 if (ret) {
3712                         /* ignore OFFLINE device */
3713                         if (ret == -ENODEV)
3714                                 return 0;
3715
3716                         if (!scsi_sense_valid(&sshdr) ||
3717                             sshdr.sense_key != ILLEGAL_REQUEST)
3718                                 return ret;
3719
3720                         /*
3721                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3722                          * doesn't support sync. There's not much to do and
3723                          * suspend shouldn't fail.
3724                          */
3725                         ret = 0;
3726                 }
3727         }
3728
3729         if (sdkp->device->manage_start_stop) {
3730                 if (!sdkp->device->silence_suspend)
3731                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3732                 /* an error is not worth aborting a system sleep */
3733                 ret = sd_start_stop_device(sdkp, 0);
3734                 if (ignore_stop_errors)
3735                         ret = 0;
3736         }
3737
3738         return ret;
3739 }
3740
3741 static int sd_suspend_system(struct device *dev)
3742 {
3743         if (pm_runtime_suspended(dev))
3744                 return 0;
3745
3746         return sd_suspend_common(dev, true);
3747 }
3748
3749 static int sd_suspend_runtime(struct device *dev)
3750 {
3751         return sd_suspend_common(dev, false);
3752 }
3753
3754 static int sd_resume(struct device *dev)
3755 {
3756         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3757         int ret;
3758
3759         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3760                 return 0;
3761
3762         if (!sdkp->device->manage_start_stop)
3763                 return 0;
3764
3765         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3766         ret = sd_start_stop_device(sdkp, 1);
3767         if (!ret)
3768                 opal_unlock_from_suspend(sdkp->opal_dev);
3769         return ret;
3770 }
3771
3772 static int sd_resume_system(struct device *dev)
3773 {
3774         if (pm_runtime_suspended(dev))
3775                 return 0;
3776
3777         return sd_resume(dev);
3778 }
3779
3780 static int sd_resume_runtime(struct device *dev)
3781 {
3782         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3783         struct scsi_device *sdp;
3784
3785         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3786                 return 0;
3787
3788         sdp = sdkp->device;
3789
3790         if (sdp->ignore_media_change) {
3791                 /* clear the device's sense data */
3792                 static const u8 cmd[10] = { REQUEST_SENSE };
3793
3794                 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3795                                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3796                                  RQF_PM, NULL))
3797                         sd_printk(KERN_NOTICE, sdkp,
3798                                   "Failed to clear sense data\n");
3799         }
3800
3801         return sd_resume(dev);
3802 }
3803
3804 /**
3805  *      init_sd - entry point for this driver (both when built in or when
3806  *      a module).
3807  *
3808  *      Note: this function registers this driver with the scsi mid-level.
3809  **/
3810 static int __init init_sd(void)
3811 {
3812         int majors = 0, i, err;
3813
3814         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3815
3816         for (i = 0; i < SD_MAJORS; i++) {
3817                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3818                         continue;
3819                 majors++;
3820         }
3821
3822         if (!majors)
3823                 return -ENODEV;
3824
3825         err = class_register(&sd_disk_class);
3826         if (err)
3827                 goto err_out;
3828
3829         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3830                                          0, 0, NULL);
3831         if (!sd_cdb_cache) {
3832                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3833                 err = -ENOMEM;
3834                 goto err_out_class;
3835         }
3836
3837         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3838         if (!sd_page_pool) {
3839                 printk(KERN_ERR "sd: can't init discard page pool\n");
3840                 err = -ENOMEM;
3841                 goto err_out_cache;
3842         }
3843
3844         err = scsi_register_driver(&sd_template.gendrv);
3845         if (err)
3846                 goto err_out_driver;
3847
3848         return 0;
3849
3850 err_out_driver:
3851         mempool_destroy(sd_page_pool);
3852
3853 err_out_cache:
3854         kmem_cache_destroy(sd_cdb_cache);
3855
3856 err_out_class:
3857         class_unregister(&sd_disk_class);
3858 err_out:
3859         for (i = 0; i < SD_MAJORS; i++)
3860                 unregister_blkdev(sd_major(i), "sd");
3861         return err;
3862 }
3863
3864 /**
3865  *      exit_sd - exit point for this driver (when it is a module).
3866  *
3867  *      Note: this function unregisters this driver from the scsi mid-level.
3868  **/
3869 static void __exit exit_sd(void)
3870 {
3871         int i;
3872
3873         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3874
3875         scsi_unregister_driver(&sd_template.gendrv);
3876         mempool_destroy(sd_page_pool);
3877         kmem_cache_destroy(sd_cdb_cache);
3878
3879         class_unregister(&sd_disk_class);
3880
3881         for (i = 0; i < SD_MAJORS; i++)
3882                 unregister_blkdev(sd_major(i), "sd");
3883 }
3884
3885 module_init(init_sd);
3886 module_exit(exit_sd);
3887
3888 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3889 {
3890         scsi_print_sense_hdr(sdkp->device,
3891                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3892 }
3893
3894 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3895 {
3896         const char *hb_string = scsi_hostbyte_string(result);
3897
3898         if (hb_string)
3899                 sd_printk(KERN_INFO, sdkp,
3900                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3901                           hb_string ? hb_string : "invalid",
3902                           "DRIVER_OK");
3903         else
3904                 sd_printk(KERN_INFO, sdkp,
3905                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3906                           msg, host_byte(result), "DRIVER_OK");
3907 }
This page took 0.248104 seconds and 4 git commands to generate.