]> Git Repo - linux.git/blob - drivers/nvme/host/tcp.c
block: add a sanity check for non-write flush/fua bios
[linux.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45         struct sock *sk = sock->sk;
46
47         if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48                 return;
49
50         switch (sk->sk_family) {
51         case AF_INET:
52                 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53                                               &nvme_tcp_slock_key[0],
54                                               "sk_lock-AF_INET-NVME",
55                                               &nvme_tcp_sk_key[0]);
56                 break;
57         case AF_INET6:
58                 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59                                               &nvme_tcp_slock_key[1],
60                                               "sk_lock-AF_INET6-NVME",
61                                               &nvme_tcp_sk_key[1]);
62                 break;
63         default:
64                 WARN_ON_ONCE(1);
65         }
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70
71 enum nvme_tcp_send_state {
72         NVME_TCP_SEND_CMD_PDU = 0,
73         NVME_TCP_SEND_H2C_PDU,
74         NVME_TCP_SEND_DATA,
75         NVME_TCP_SEND_DDGST,
76 };
77
78 struct nvme_tcp_request {
79         struct nvme_request     req;
80         void                    *pdu;
81         struct nvme_tcp_queue   *queue;
82         u32                     data_len;
83         u32                     pdu_len;
84         u32                     pdu_sent;
85         u32                     h2cdata_left;
86         u32                     h2cdata_offset;
87         u16                     ttag;
88         __le16                  status;
89         struct list_head        entry;
90         struct llist_node       lentry;
91         __le32                  ddgst;
92
93         struct bio              *curr_bio;
94         struct iov_iter         iter;
95
96         /* send state */
97         size_t                  offset;
98         size_t                  data_sent;
99         enum nvme_tcp_send_state state;
100 };
101
102 enum nvme_tcp_queue_flags {
103         NVME_TCP_Q_ALLOCATED    = 0,
104         NVME_TCP_Q_LIVE         = 1,
105         NVME_TCP_Q_POLLING      = 2,
106 };
107
108 enum nvme_tcp_recv_state {
109         NVME_TCP_RECV_PDU = 0,
110         NVME_TCP_RECV_DATA,
111         NVME_TCP_RECV_DDGST,
112 };
113
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116         struct socket           *sock;
117         struct work_struct      io_work;
118         int                     io_cpu;
119
120         struct mutex            queue_lock;
121         struct mutex            send_mutex;
122         struct llist_head       req_list;
123         struct list_head        send_list;
124
125         /* recv state */
126         void                    *pdu;
127         int                     pdu_remaining;
128         int                     pdu_offset;
129         size_t                  data_remaining;
130         size_t                  ddgst_remaining;
131         unsigned int            nr_cqe;
132
133         /* send state */
134         struct nvme_tcp_request *request;
135
136         u32                     maxh2cdata;
137         size_t                  cmnd_capsule_len;
138         struct nvme_tcp_ctrl    *ctrl;
139         unsigned long           flags;
140         bool                    rd_enabled;
141
142         bool                    hdr_digest;
143         bool                    data_digest;
144         struct ahash_request    *rcv_hash;
145         struct ahash_request    *snd_hash;
146         __le32                  exp_ddgst;
147         __le32                  recv_ddgst;
148
149         struct page_frag_cache  pf_cache;
150
151         void (*state_change)(struct sock *);
152         void (*data_ready)(struct sock *);
153         void (*write_space)(struct sock *);
154 };
155
156 struct nvme_tcp_ctrl {
157         /* read only in the hot path */
158         struct nvme_tcp_queue   *queues;
159         struct blk_mq_tag_set   tag_set;
160
161         /* other member variables */
162         struct list_head        list;
163         struct blk_mq_tag_set   admin_tag_set;
164         struct sockaddr_storage addr;
165         struct sockaddr_storage src_addr;
166         struct nvme_ctrl        ctrl;
167
168         struct work_struct      err_work;
169         struct delayed_work     connect_work;
170         struct nvme_tcp_request async_req;
171         u32                     io_queues[HCTX_MAX_TYPES];
172 };
173
174 static LIST_HEAD(nvme_tcp_ctrl_list);
175 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
176 static struct workqueue_struct *nvme_tcp_wq;
177 static const struct blk_mq_ops nvme_tcp_mq_ops;
178 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
179 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
180
181 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
184 }
185
186 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
187 {
188         return queue - queue->ctrl->queues;
189 }
190
191 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
192 {
193         u32 queue_idx = nvme_tcp_queue_id(queue);
194
195         if (queue_idx == 0)
196                 return queue->ctrl->admin_tag_set.tags[queue_idx];
197         return queue->ctrl->tag_set.tags[queue_idx - 1];
198 }
199
200 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
201 {
202         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
203 }
204
205 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
206 {
207         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
208 }
209
210 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
211 {
212         if (nvme_is_fabrics(req->req.cmd))
213                 return NVME_TCP_ADMIN_CCSZ;
214         return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
215 }
216
217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
218 {
219         return req == &req->queue->ctrl->async_req;
220 }
221
222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
223 {
224         struct request *rq;
225
226         if (unlikely(nvme_tcp_async_req(req)))
227                 return false; /* async events don't have a request */
228
229         rq = blk_mq_rq_from_pdu(req);
230
231         return rq_data_dir(rq) == WRITE && req->data_len &&
232                 req->data_len <= nvme_tcp_inline_data_size(req);
233 }
234
235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
236 {
237         return req->iter.bvec->bv_page;
238 }
239
240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
241 {
242         return req->iter.bvec->bv_offset + req->iter.iov_offset;
243 }
244
245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
246 {
247         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
248                         req->pdu_len - req->pdu_sent);
249 }
250
251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252 {
253         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254                         req->pdu_len - req->pdu_sent : 0;
255 }
256
257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258                 int len)
259 {
260         return nvme_tcp_pdu_data_left(req) <= len;
261 }
262
263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264                 unsigned int dir)
265 {
266         struct request *rq = blk_mq_rq_from_pdu(req);
267         struct bio_vec *vec;
268         unsigned int size;
269         int nr_bvec;
270         size_t offset;
271
272         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273                 vec = &rq->special_vec;
274                 nr_bvec = 1;
275                 size = blk_rq_payload_bytes(rq);
276                 offset = 0;
277         } else {
278                 struct bio *bio = req->curr_bio;
279                 struct bvec_iter bi;
280                 struct bio_vec bv;
281
282                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
283                 nr_bvec = 0;
284                 bio_for_each_bvec(bv, bio, bi) {
285                         nr_bvec++;
286                 }
287                 size = bio->bi_iter.bi_size;
288                 offset = bio->bi_iter.bi_bvec_done;
289         }
290
291         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
292         req->iter.iov_offset = offset;
293 }
294
295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
296                 int len)
297 {
298         req->data_sent += len;
299         req->pdu_sent += len;
300         iov_iter_advance(&req->iter, len);
301         if (!iov_iter_count(&req->iter) &&
302             req->data_sent < req->data_len) {
303                 req->curr_bio = req->curr_bio->bi_next;
304                 nvme_tcp_init_iter(req, ITER_SOURCE);
305         }
306 }
307
308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
309 {
310         int ret;
311
312         /* drain the send queue as much as we can... */
313         do {
314                 ret = nvme_tcp_try_send(queue);
315         } while (ret > 0);
316 }
317
318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
319 {
320         return !list_empty(&queue->send_list) ||
321                 !llist_empty(&queue->req_list);
322 }
323
324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
325                 bool sync, bool last)
326 {
327         struct nvme_tcp_queue *queue = req->queue;
328         bool empty;
329
330         empty = llist_add(&req->lentry, &queue->req_list) &&
331                 list_empty(&queue->send_list) && !queue->request;
332
333         /*
334          * if we're the first on the send_list and we can try to send
335          * directly, otherwise queue io_work. Also, only do that if we
336          * are on the same cpu, so we don't introduce contention.
337          */
338         if (queue->io_cpu == raw_smp_processor_id() &&
339             sync && empty && mutex_trylock(&queue->send_mutex)) {
340                 nvme_tcp_send_all(queue);
341                 mutex_unlock(&queue->send_mutex);
342         }
343
344         if (last && nvme_tcp_queue_more(queue))
345                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
346 }
347
348 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
349 {
350         struct nvme_tcp_request *req;
351         struct llist_node *node;
352
353         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
354                 req = llist_entry(node, struct nvme_tcp_request, lentry);
355                 list_add(&req->entry, &queue->send_list);
356         }
357 }
358
359 static inline struct nvme_tcp_request *
360 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
361 {
362         struct nvme_tcp_request *req;
363
364         req = list_first_entry_or_null(&queue->send_list,
365                         struct nvme_tcp_request, entry);
366         if (!req) {
367                 nvme_tcp_process_req_list(queue);
368                 req = list_first_entry_or_null(&queue->send_list,
369                                 struct nvme_tcp_request, entry);
370                 if (unlikely(!req))
371                         return NULL;
372         }
373
374         list_del(&req->entry);
375         return req;
376 }
377
378 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
379                 __le32 *dgst)
380 {
381         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
382         crypto_ahash_final(hash);
383 }
384
385 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
386                 struct page *page, off_t off, size_t len)
387 {
388         struct scatterlist sg;
389
390         sg_init_table(&sg, 1);
391         sg_set_page(&sg, page, len, off);
392         ahash_request_set_crypt(hash, &sg, NULL, len);
393         crypto_ahash_update(hash);
394 }
395
396 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
397                 void *pdu, size_t len)
398 {
399         struct scatterlist sg;
400
401         sg_init_one(&sg, pdu, len);
402         ahash_request_set_crypt(hash, &sg, pdu + len, len);
403         crypto_ahash_digest(hash);
404 }
405
406 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
407                 void *pdu, size_t pdu_len)
408 {
409         struct nvme_tcp_hdr *hdr = pdu;
410         __le32 recv_digest;
411         __le32 exp_digest;
412
413         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
414                 dev_err(queue->ctrl->ctrl.device,
415                         "queue %d: header digest flag is cleared\n",
416                         nvme_tcp_queue_id(queue));
417                 return -EPROTO;
418         }
419
420         recv_digest = *(__le32 *)(pdu + hdr->hlen);
421         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
422         exp_digest = *(__le32 *)(pdu + hdr->hlen);
423         if (recv_digest != exp_digest) {
424                 dev_err(queue->ctrl->ctrl.device,
425                         "header digest error: recv %#x expected %#x\n",
426                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
427                 return -EIO;
428         }
429
430         return 0;
431 }
432
433 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
434 {
435         struct nvme_tcp_hdr *hdr = pdu;
436         u8 digest_len = nvme_tcp_hdgst_len(queue);
437         u32 len;
438
439         len = le32_to_cpu(hdr->plen) - hdr->hlen -
440                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
441
442         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
443                 dev_err(queue->ctrl->ctrl.device,
444                         "queue %d: data digest flag is cleared\n",
445                 nvme_tcp_queue_id(queue));
446                 return -EPROTO;
447         }
448         crypto_ahash_init(queue->rcv_hash);
449
450         return 0;
451 }
452
453 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
454                 struct request *rq, unsigned int hctx_idx)
455 {
456         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
457
458         page_frag_free(req->pdu);
459 }
460
461 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
462                 struct request *rq, unsigned int hctx_idx,
463                 unsigned int numa_node)
464 {
465         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
466         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
467         struct nvme_tcp_cmd_pdu *pdu;
468         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
469         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
470         u8 hdgst = nvme_tcp_hdgst_len(queue);
471
472         req->pdu = page_frag_alloc(&queue->pf_cache,
473                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
474                 GFP_KERNEL | __GFP_ZERO);
475         if (!req->pdu)
476                 return -ENOMEM;
477
478         pdu = req->pdu;
479         req->queue = queue;
480         nvme_req(rq)->ctrl = &ctrl->ctrl;
481         nvme_req(rq)->cmd = &pdu->cmd;
482
483         return 0;
484 }
485
486 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
487                 unsigned int hctx_idx)
488 {
489         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
490         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
491
492         hctx->driver_data = queue;
493         return 0;
494 }
495
496 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
497                 unsigned int hctx_idx)
498 {
499         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
500         struct nvme_tcp_queue *queue = &ctrl->queues[0];
501
502         hctx->driver_data = queue;
503         return 0;
504 }
505
506 static enum nvme_tcp_recv_state
507 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
508 {
509         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
510                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
511                 NVME_TCP_RECV_DATA;
512 }
513
514 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
515 {
516         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
517                                 nvme_tcp_hdgst_len(queue);
518         queue->pdu_offset = 0;
519         queue->data_remaining = -1;
520         queue->ddgst_remaining = 0;
521 }
522
523 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
524 {
525         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
526                 return;
527
528         dev_warn(ctrl->device, "starting error recovery\n");
529         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
530 }
531
532 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
533                 struct nvme_completion *cqe)
534 {
535         struct nvme_tcp_request *req;
536         struct request *rq;
537
538         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
539         if (!rq) {
540                 dev_err(queue->ctrl->ctrl.device,
541                         "got bad cqe.command_id %#x on queue %d\n",
542                         cqe->command_id, nvme_tcp_queue_id(queue));
543                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
544                 return -EINVAL;
545         }
546
547         req = blk_mq_rq_to_pdu(rq);
548         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
549                 req->status = cqe->status;
550
551         if (!nvme_try_complete_req(rq, req->status, cqe->result))
552                 nvme_complete_rq(rq);
553         queue->nr_cqe++;
554
555         return 0;
556 }
557
558 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
559                 struct nvme_tcp_data_pdu *pdu)
560 {
561         struct request *rq;
562
563         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
564         if (!rq) {
565                 dev_err(queue->ctrl->ctrl.device,
566                         "got bad c2hdata.command_id %#x on queue %d\n",
567                         pdu->command_id, nvme_tcp_queue_id(queue));
568                 return -ENOENT;
569         }
570
571         if (!blk_rq_payload_bytes(rq)) {
572                 dev_err(queue->ctrl->ctrl.device,
573                         "queue %d tag %#x unexpected data\n",
574                         nvme_tcp_queue_id(queue), rq->tag);
575                 return -EIO;
576         }
577
578         queue->data_remaining = le32_to_cpu(pdu->data_length);
579
580         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
581             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
582                 dev_err(queue->ctrl->ctrl.device,
583                         "queue %d tag %#x SUCCESS set but not last PDU\n",
584                         nvme_tcp_queue_id(queue), rq->tag);
585                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
586                 return -EPROTO;
587         }
588
589         return 0;
590 }
591
592 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
593                 struct nvme_tcp_rsp_pdu *pdu)
594 {
595         struct nvme_completion *cqe = &pdu->cqe;
596         int ret = 0;
597
598         /*
599          * AEN requests are special as they don't time out and can
600          * survive any kind of queue freeze and often don't respond to
601          * aborts.  We don't even bother to allocate a struct request
602          * for them but rather special case them here.
603          */
604         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
605                                      cqe->command_id)))
606                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
607                                 &cqe->result);
608         else
609                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
610
611         return ret;
612 }
613
614 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
615 {
616         struct nvme_tcp_data_pdu *data = req->pdu;
617         struct nvme_tcp_queue *queue = req->queue;
618         struct request *rq = blk_mq_rq_from_pdu(req);
619         u32 h2cdata_sent = req->pdu_len;
620         u8 hdgst = nvme_tcp_hdgst_len(queue);
621         u8 ddgst = nvme_tcp_ddgst_len(queue);
622
623         req->state = NVME_TCP_SEND_H2C_PDU;
624         req->offset = 0;
625         req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
626         req->pdu_sent = 0;
627         req->h2cdata_left -= req->pdu_len;
628         req->h2cdata_offset += h2cdata_sent;
629
630         memset(data, 0, sizeof(*data));
631         data->hdr.type = nvme_tcp_h2c_data;
632         if (!req->h2cdata_left)
633                 data->hdr.flags = NVME_TCP_F_DATA_LAST;
634         if (queue->hdr_digest)
635                 data->hdr.flags |= NVME_TCP_F_HDGST;
636         if (queue->data_digest)
637                 data->hdr.flags |= NVME_TCP_F_DDGST;
638         data->hdr.hlen = sizeof(*data);
639         data->hdr.pdo = data->hdr.hlen + hdgst;
640         data->hdr.plen =
641                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
642         data->ttag = req->ttag;
643         data->command_id = nvme_cid(rq);
644         data->data_offset = cpu_to_le32(req->h2cdata_offset);
645         data->data_length = cpu_to_le32(req->pdu_len);
646 }
647
648 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
649                 struct nvme_tcp_r2t_pdu *pdu)
650 {
651         struct nvme_tcp_request *req;
652         struct request *rq;
653         u32 r2t_length = le32_to_cpu(pdu->r2t_length);
654         u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
655
656         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
657         if (!rq) {
658                 dev_err(queue->ctrl->ctrl.device,
659                         "got bad r2t.command_id %#x on queue %d\n",
660                         pdu->command_id, nvme_tcp_queue_id(queue));
661                 return -ENOENT;
662         }
663         req = blk_mq_rq_to_pdu(rq);
664
665         if (unlikely(!r2t_length)) {
666                 dev_err(queue->ctrl->ctrl.device,
667                         "req %d r2t len is %u, probably a bug...\n",
668                         rq->tag, r2t_length);
669                 return -EPROTO;
670         }
671
672         if (unlikely(req->data_sent + r2t_length > req->data_len)) {
673                 dev_err(queue->ctrl->ctrl.device,
674                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
675                         rq->tag, r2t_length, req->data_len, req->data_sent);
676                 return -EPROTO;
677         }
678
679         if (unlikely(r2t_offset < req->data_sent)) {
680                 dev_err(queue->ctrl->ctrl.device,
681                         "req %d unexpected r2t offset %u (expected %zu)\n",
682                         rq->tag, r2t_offset, req->data_sent);
683                 return -EPROTO;
684         }
685
686         req->pdu_len = 0;
687         req->h2cdata_left = r2t_length;
688         req->h2cdata_offset = r2t_offset;
689         req->ttag = pdu->ttag;
690
691         nvme_tcp_setup_h2c_data_pdu(req);
692         nvme_tcp_queue_request(req, false, true);
693
694         return 0;
695 }
696
697 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
698                 unsigned int *offset, size_t *len)
699 {
700         struct nvme_tcp_hdr *hdr;
701         char *pdu = queue->pdu;
702         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
703         int ret;
704
705         ret = skb_copy_bits(skb, *offset,
706                 &pdu[queue->pdu_offset], rcv_len);
707         if (unlikely(ret))
708                 return ret;
709
710         queue->pdu_remaining -= rcv_len;
711         queue->pdu_offset += rcv_len;
712         *offset += rcv_len;
713         *len -= rcv_len;
714         if (queue->pdu_remaining)
715                 return 0;
716
717         hdr = queue->pdu;
718         if (queue->hdr_digest) {
719                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
720                 if (unlikely(ret))
721                         return ret;
722         }
723
724
725         if (queue->data_digest) {
726                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
727                 if (unlikely(ret))
728                         return ret;
729         }
730
731         switch (hdr->type) {
732         case nvme_tcp_c2h_data:
733                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
734         case nvme_tcp_rsp:
735                 nvme_tcp_init_recv_ctx(queue);
736                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
737         case nvme_tcp_r2t:
738                 nvme_tcp_init_recv_ctx(queue);
739                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
740         default:
741                 dev_err(queue->ctrl->ctrl.device,
742                         "unsupported pdu type (%d)\n", hdr->type);
743                 return -EINVAL;
744         }
745 }
746
747 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
748 {
749         union nvme_result res = {};
750
751         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
752                 nvme_complete_rq(rq);
753 }
754
755 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
756                               unsigned int *offset, size_t *len)
757 {
758         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
759         struct request *rq =
760                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
761         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
762
763         while (true) {
764                 int recv_len, ret;
765
766                 recv_len = min_t(size_t, *len, queue->data_remaining);
767                 if (!recv_len)
768                         break;
769
770                 if (!iov_iter_count(&req->iter)) {
771                         req->curr_bio = req->curr_bio->bi_next;
772
773                         /*
774                          * If we don`t have any bios it means that controller
775                          * sent more data than we requested, hence error
776                          */
777                         if (!req->curr_bio) {
778                                 dev_err(queue->ctrl->ctrl.device,
779                                         "queue %d no space in request %#x",
780                                         nvme_tcp_queue_id(queue), rq->tag);
781                                 nvme_tcp_init_recv_ctx(queue);
782                                 return -EIO;
783                         }
784                         nvme_tcp_init_iter(req, ITER_DEST);
785                 }
786
787                 /* we can read only from what is left in this bio */
788                 recv_len = min_t(size_t, recv_len,
789                                 iov_iter_count(&req->iter));
790
791                 if (queue->data_digest)
792                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
793                                 &req->iter, recv_len, queue->rcv_hash);
794                 else
795                         ret = skb_copy_datagram_iter(skb, *offset,
796                                         &req->iter, recv_len);
797                 if (ret) {
798                         dev_err(queue->ctrl->ctrl.device,
799                                 "queue %d failed to copy request %#x data",
800                                 nvme_tcp_queue_id(queue), rq->tag);
801                         return ret;
802                 }
803
804                 *len -= recv_len;
805                 *offset += recv_len;
806                 queue->data_remaining -= recv_len;
807         }
808
809         if (!queue->data_remaining) {
810                 if (queue->data_digest) {
811                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
812                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
813                 } else {
814                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
815                                 nvme_tcp_end_request(rq,
816                                                 le16_to_cpu(req->status));
817                                 queue->nr_cqe++;
818                         }
819                         nvme_tcp_init_recv_ctx(queue);
820                 }
821         }
822
823         return 0;
824 }
825
826 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
827                 struct sk_buff *skb, unsigned int *offset, size_t *len)
828 {
829         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
830         char *ddgst = (char *)&queue->recv_ddgst;
831         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
832         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
833         int ret;
834
835         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
836         if (unlikely(ret))
837                 return ret;
838
839         queue->ddgst_remaining -= recv_len;
840         *offset += recv_len;
841         *len -= recv_len;
842         if (queue->ddgst_remaining)
843                 return 0;
844
845         if (queue->recv_ddgst != queue->exp_ddgst) {
846                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
847                                         pdu->command_id);
848                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
849
850                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
851
852                 dev_err(queue->ctrl->ctrl.device,
853                         "data digest error: recv %#x expected %#x\n",
854                         le32_to_cpu(queue->recv_ddgst),
855                         le32_to_cpu(queue->exp_ddgst));
856         }
857
858         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
859                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
860                                         pdu->command_id);
861                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
862
863                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
864                 queue->nr_cqe++;
865         }
866
867         nvme_tcp_init_recv_ctx(queue);
868         return 0;
869 }
870
871 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
872                              unsigned int offset, size_t len)
873 {
874         struct nvme_tcp_queue *queue = desc->arg.data;
875         size_t consumed = len;
876         int result;
877
878         while (len) {
879                 switch (nvme_tcp_recv_state(queue)) {
880                 case NVME_TCP_RECV_PDU:
881                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
882                         break;
883                 case NVME_TCP_RECV_DATA:
884                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
885                         break;
886                 case NVME_TCP_RECV_DDGST:
887                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
888                         break;
889                 default:
890                         result = -EFAULT;
891                 }
892                 if (result) {
893                         dev_err(queue->ctrl->ctrl.device,
894                                 "receive failed:  %d\n", result);
895                         queue->rd_enabled = false;
896                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
897                         return result;
898                 }
899         }
900
901         return consumed;
902 }
903
904 static void nvme_tcp_data_ready(struct sock *sk)
905 {
906         struct nvme_tcp_queue *queue;
907
908         read_lock_bh(&sk->sk_callback_lock);
909         queue = sk->sk_user_data;
910         if (likely(queue && queue->rd_enabled) &&
911             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
912                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
913         read_unlock_bh(&sk->sk_callback_lock);
914 }
915
916 static void nvme_tcp_write_space(struct sock *sk)
917 {
918         struct nvme_tcp_queue *queue;
919
920         read_lock_bh(&sk->sk_callback_lock);
921         queue = sk->sk_user_data;
922         if (likely(queue && sk_stream_is_writeable(sk))) {
923                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
924                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
925         }
926         read_unlock_bh(&sk->sk_callback_lock);
927 }
928
929 static void nvme_tcp_state_change(struct sock *sk)
930 {
931         struct nvme_tcp_queue *queue;
932
933         read_lock_bh(&sk->sk_callback_lock);
934         queue = sk->sk_user_data;
935         if (!queue)
936                 goto done;
937
938         switch (sk->sk_state) {
939         case TCP_CLOSE:
940         case TCP_CLOSE_WAIT:
941         case TCP_LAST_ACK:
942         case TCP_FIN_WAIT1:
943         case TCP_FIN_WAIT2:
944                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
945                 break;
946         default:
947                 dev_info(queue->ctrl->ctrl.device,
948                         "queue %d socket state %d\n",
949                         nvme_tcp_queue_id(queue), sk->sk_state);
950         }
951
952         queue->state_change(sk);
953 done:
954         read_unlock_bh(&sk->sk_callback_lock);
955 }
956
957 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
958 {
959         queue->request = NULL;
960 }
961
962 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
963 {
964         if (nvme_tcp_async_req(req)) {
965                 union nvme_result res = {};
966
967                 nvme_complete_async_event(&req->queue->ctrl->ctrl,
968                                 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
969         } else {
970                 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
971                                 NVME_SC_HOST_PATH_ERROR);
972         }
973 }
974
975 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
976 {
977         struct nvme_tcp_queue *queue = req->queue;
978         int req_data_len = req->data_len;
979         u32 h2cdata_left = req->h2cdata_left;
980
981         while (true) {
982                 struct page *page = nvme_tcp_req_cur_page(req);
983                 size_t offset = nvme_tcp_req_cur_offset(req);
984                 size_t len = nvme_tcp_req_cur_length(req);
985                 bool last = nvme_tcp_pdu_last_send(req, len);
986                 int req_data_sent = req->data_sent;
987                 int ret, flags = MSG_DONTWAIT;
988
989                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
990                         flags |= MSG_EOR;
991                 else
992                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
993
994                 if (sendpage_ok(page)) {
995                         ret = kernel_sendpage(queue->sock, page, offset, len,
996                                         flags);
997                 } else {
998                         ret = sock_no_sendpage(queue->sock, page, offset, len,
999                                         flags);
1000                 }
1001                 if (ret <= 0)
1002                         return ret;
1003
1004                 if (queue->data_digest)
1005                         nvme_tcp_ddgst_update(queue->snd_hash, page,
1006                                         offset, ret);
1007
1008                 /*
1009                  * update the request iterator except for the last payload send
1010                  * in the request where we don't want to modify it as we may
1011                  * compete with the RX path completing the request.
1012                  */
1013                 if (req_data_sent + ret < req_data_len)
1014                         nvme_tcp_advance_req(req, ret);
1015
1016                 /* fully successful last send in current PDU */
1017                 if (last && ret == len) {
1018                         if (queue->data_digest) {
1019                                 nvme_tcp_ddgst_final(queue->snd_hash,
1020                                         &req->ddgst);
1021                                 req->state = NVME_TCP_SEND_DDGST;
1022                                 req->offset = 0;
1023                         } else {
1024                                 if (h2cdata_left)
1025                                         nvme_tcp_setup_h2c_data_pdu(req);
1026                                 else
1027                                         nvme_tcp_done_send_req(queue);
1028                         }
1029                         return 1;
1030                 }
1031         }
1032         return -EAGAIN;
1033 }
1034
1035 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1036 {
1037         struct nvme_tcp_queue *queue = req->queue;
1038         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1039         bool inline_data = nvme_tcp_has_inline_data(req);
1040         u8 hdgst = nvme_tcp_hdgst_len(queue);
1041         int len = sizeof(*pdu) + hdgst - req->offset;
1042         int flags = MSG_DONTWAIT;
1043         int ret;
1044
1045         if (inline_data || nvme_tcp_queue_more(queue))
1046                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1047         else
1048                 flags |= MSG_EOR;
1049
1050         if (queue->hdr_digest && !req->offset)
1051                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1052
1053         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1054                         offset_in_page(pdu) + req->offset, len,  flags);
1055         if (unlikely(ret <= 0))
1056                 return ret;
1057
1058         len -= ret;
1059         if (!len) {
1060                 if (inline_data) {
1061                         req->state = NVME_TCP_SEND_DATA;
1062                         if (queue->data_digest)
1063                                 crypto_ahash_init(queue->snd_hash);
1064                 } else {
1065                         nvme_tcp_done_send_req(queue);
1066                 }
1067                 return 1;
1068         }
1069         req->offset += ret;
1070
1071         return -EAGAIN;
1072 }
1073
1074 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1075 {
1076         struct nvme_tcp_queue *queue = req->queue;
1077         struct nvme_tcp_data_pdu *pdu = req->pdu;
1078         u8 hdgst = nvme_tcp_hdgst_len(queue);
1079         int len = sizeof(*pdu) - req->offset + hdgst;
1080         int ret;
1081
1082         if (queue->hdr_digest && !req->offset)
1083                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1084
1085         if (!req->h2cdata_left)
1086                 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1087                                 offset_in_page(pdu) + req->offset, len,
1088                                 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1089         else
1090                 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1091                                 offset_in_page(pdu) + req->offset, len,
1092                                 MSG_DONTWAIT | MSG_MORE);
1093         if (unlikely(ret <= 0))
1094                 return ret;
1095
1096         len -= ret;
1097         if (!len) {
1098                 req->state = NVME_TCP_SEND_DATA;
1099                 if (queue->data_digest)
1100                         crypto_ahash_init(queue->snd_hash);
1101                 return 1;
1102         }
1103         req->offset += ret;
1104
1105         return -EAGAIN;
1106 }
1107
1108 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1109 {
1110         struct nvme_tcp_queue *queue = req->queue;
1111         size_t offset = req->offset;
1112         u32 h2cdata_left = req->h2cdata_left;
1113         int ret;
1114         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1115         struct kvec iov = {
1116                 .iov_base = (u8 *)&req->ddgst + req->offset,
1117                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1118         };
1119
1120         if (nvme_tcp_queue_more(queue))
1121                 msg.msg_flags |= MSG_MORE;
1122         else
1123                 msg.msg_flags |= MSG_EOR;
1124
1125         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1126         if (unlikely(ret <= 0))
1127                 return ret;
1128
1129         if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1130                 if (h2cdata_left)
1131                         nvme_tcp_setup_h2c_data_pdu(req);
1132                 else
1133                         nvme_tcp_done_send_req(queue);
1134                 return 1;
1135         }
1136
1137         req->offset += ret;
1138         return -EAGAIN;
1139 }
1140
1141 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1142 {
1143         struct nvme_tcp_request *req;
1144         unsigned int noreclaim_flag;
1145         int ret = 1;
1146
1147         if (!queue->request) {
1148                 queue->request = nvme_tcp_fetch_request(queue);
1149                 if (!queue->request)
1150                         return 0;
1151         }
1152         req = queue->request;
1153
1154         noreclaim_flag = memalloc_noreclaim_save();
1155         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1156                 ret = nvme_tcp_try_send_cmd_pdu(req);
1157                 if (ret <= 0)
1158                         goto done;
1159                 if (!nvme_tcp_has_inline_data(req))
1160                         goto out;
1161         }
1162
1163         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1164                 ret = nvme_tcp_try_send_data_pdu(req);
1165                 if (ret <= 0)
1166                         goto done;
1167         }
1168
1169         if (req->state == NVME_TCP_SEND_DATA) {
1170                 ret = nvme_tcp_try_send_data(req);
1171                 if (ret <= 0)
1172                         goto done;
1173         }
1174
1175         if (req->state == NVME_TCP_SEND_DDGST)
1176                 ret = nvme_tcp_try_send_ddgst(req);
1177 done:
1178         if (ret == -EAGAIN) {
1179                 ret = 0;
1180         } else if (ret < 0) {
1181                 dev_err(queue->ctrl->ctrl.device,
1182                         "failed to send request %d\n", ret);
1183                 nvme_tcp_fail_request(queue->request);
1184                 nvme_tcp_done_send_req(queue);
1185         }
1186 out:
1187         memalloc_noreclaim_restore(noreclaim_flag);
1188         return ret;
1189 }
1190
1191 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1192 {
1193         struct socket *sock = queue->sock;
1194         struct sock *sk = sock->sk;
1195         read_descriptor_t rd_desc;
1196         int consumed;
1197
1198         rd_desc.arg.data = queue;
1199         rd_desc.count = 1;
1200         lock_sock(sk);
1201         queue->nr_cqe = 0;
1202         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1203         release_sock(sk);
1204         return consumed;
1205 }
1206
1207 static void nvme_tcp_io_work(struct work_struct *w)
1208 {
1209         struct nvme_tcp_queue *queue =
1210                 container_of(w, struct nvme_tcp_queue, io_work);
1211         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1212
1213         do {
1214                 bool pending = false;
1215                 int result;
1216
1217                 if (mutex_trylock(&queue->send_mutex)) {
1218                         result = nvme_tcp_try_send(queue);
1219                         mutex_unlock(&queue->send_mutex);
1220                         if (result > 0)
1221                                 pending = true;
1222                         else if (unlikely(result < 0))
1223                                 break;
1224                 }
1225
1226                 result = nvme_tcp_try_recv(queue);
1227                 if (result > 0)
1228                         pending = true;
1229                 else if (unlikely(result < 0))
1230                         return;
1231
1232                 if (!pending || !queue->rd_enabled)
1233                         return;
1234
1235         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1236
1237         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1238 }
1239
1240 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1241 {
1242         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1243
1244         ahash_request_free(queue->rcv_hash);
1245         ahash_request_free(queue->snd_hash);
1246         crypto_free_ahash(tfm);
1247 }
1248
1249 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1250 {
1251         struct crypto_ahash *tfm;
1252
1253         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1254         if (IS_ERR(tfm))
1255                 return PTR_ERR(tfm);
1256
1257         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1258         if (!queue->snd_hash)
1259                 goto free_tfm;
1260         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1261
1262         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1263         if (!queue->rcv_hash)
1264                 goto free_snd_hash;
1265         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1266
1267         return 0;
1268 free_snd_hash:
1269         ahash_request_free(queue->snd_hash);
1270 free_tfm:
1271         crypto_free_ahash(tfm);
1272         return -ENOMEM;
1273 }
1274
1275 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1276 {
1277         struct nvme_tcp_request *async = &ctrl->async_req;
1278
1279         page_frag_free(async->pdu);
1280 }
1281
1282 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1283 {
1284         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1285         struct nvme_tcp_request *async = &ctrl->async_req;
1286         u8 hdgst = nvme_tcp_hdgst_len(queue);
1287
1288         async->pdu = page_frag_alloc(&queue->pf_cache,
1289                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1290                 GFP_KERNEL | __GFP_ZERO);
1291         if (!async->pdu)
1292                 return -ENOMEM;
1293
1294         async->queue = &ctrl->queues[0];
1295         return 0;
1296 }
1297
1298 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1299 {
1300         struct page *page;
1301         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1302         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1303         unsigned int noreclaim_flag;
1304
1305         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1306                 return;
1307
1308         if (queue->hdr_digest || queue->data_digest)
1309                 nvme_tcp_free_crypto(queue);
1310
1311         if (queue->pf_cache.va) {
1312                 page = virt_to_head_page(queue->pf_cache.va);
1313                 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1314                 queue->pf_cache.va = NULL;
1315         }
1316
1317         noreclaim_flag = memalloc_noreclaim_save();
1318         sock_release(queue->sock);
1319         memalloc_noreclaim_restore(noreclaim_flag);
1320
1321         kfree(queue->pdu);
1322         mutex_destroy(&queue->send_mutex);
1323         mutex_destroy(&queue->queue_lock);
1324 }
1325
1326 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1327 {
1328         struct nvme_tcp_icreq_pdu *icreq;
1329         struct nvme_tcp_icresp_pdu *icresp;
1330         struct msghdr msg = {};
1331         struct kvec iov;
1332         bool ctrl_hdgst, ctrl_ddgst;
1333         u32 maxh2cdata;
1334         int ret;
1335
1336         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1337         if (!icreq)
1338                 return -ENOMEM;
1339
1340         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1341         if (!icresp) {
1342                 ret = -ENOMEM;
1343                 goto free_icreq;
1344         }
1345
1346         icreq->hdr.type = nvme_tcp_icreq;
1347         icreq->hdr.hlen = sizeof(*icreq);
1348         icreq->hdr.pdo = 0;
1349         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1350         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1351         icreq->maxr2t = 0; /* single inflight r2t supported */
1352         icreq->hpda = 0; /* no alignment constraint */
1353         if (queue->hdr_digest)
1354                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1355         if (queue->data_digest)
1356                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1357
1358         iov.iov_base = icreq;
1359         iov.iov_len = sizeof(*icreq);
1360         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1361         if (ret < 0)
1362                 goto free_icresp;
1363
1364         memset(&msg, 0, sizeof(msg));
1365         iov.iov_base = icresp;
1366         iov.iov_len = sizeof(*icresp);
1367         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1368                         iov.iov_len, msg.msg_flags);
1369         if (ret < 0)
1370                 goto free_icresp;
1371
1372         ret = -EINVAL;
1373         if (icresp->hdr.type != nvme_tcp_icresp) {
1374                 pr_err("queue %d: bad type returned %d\n",
1375                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1376                 goto free_icresp;
1377         }
1378
1379         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1380                 pr_err("queue %d: bad pdu length returned %d\n",
1381                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1382                 goto free_icresp;
1383         }
1384
1385         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1386                 pr_err("queue %d: bad pfv returned %d\n",
1387                         nvme_tcp_queue_id(queue), icresp->pfv);
1388                 goto free_icresp;
1389         }
1390
1391         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1392         if ((queue->data_digest && !ctrl_ddgst) ||
1393             (!queue->data_digest && ctrl_ddgst)) {
1394                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1395                         nvme_tcp_queue_id(queue),
1396                         queue->data_digest ? "enabled" : "disabled",
1397                         ctrl_ddgst ? "enabled" : "disabled");
1398                 goto free_icresp;
1399         }
1400
1401         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1402         if ((queue->hdr_digest && !ctrl_hdgst) ||
1403             (!queue->hdr_digest && ctrl_hdgst)) {
1404                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1405                         nvme_tcp_queue_id(queue),
1406                         queue->hdr_digest ? "enabled" : "disabled",
1407                         ctrl_hdgst ? "enabled" : "disabled");
1408                 goto free_icresp;
1409         }
1410
1411         if (icresp->cpda != 0) {
1412                 pr_err("queue %d: unsupported cpda returned %d\n",
1413                         nvme_tcp_queue_id(queue), icresp->cpda);
1414                 goto free_icresp;
1415         }
1416
1417         maxh2cdata = le32_to_cpu(icresp->maxdata);
1418         if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1419                 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1420                        nvme_tcp_queue_id(queue), maxh2cdata);
1421                 goto free_icresp;
1422         }
1423         queue->maxh2cdata = maxh2cdata;
1424
1425         ret = 0;
1426 free_icresp:
1427         kfree(icresp);
1428 free_icreq:
1429         kfree(icreq);
1430         return ret;
1431 }
1432
1433 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1434 {
1435         return nvme_tcp_queue_id(queue) == 0;
1436 }
1437
1438 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1439 {
1440         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1441         int qid = nvme_tcp_queue_id(queue);
1442
1443         return !nvme_tcp_admin_queue(queue) &&
1444                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1445 }
1446
1447 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1448 {
1449         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1450         int qid = nvme_tcp_queue_id(queue);
1451
1452         return !nvme_tcp_admin_queue(queue) &&
1453                 !nvme_tcp_default_queue(queue) &&
1454                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1455                           ctrl->io_queues[HCTX_TYPE_READ];
1456 }
1457
1458 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1459 {
1460         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1461         int qid = nvme_tcp_queue_id(queue);
1462
1463         return !nvme_tcp_admin_queue(queue) &&
1464                 !nvme_tcp_default_queue(queue) &&
1465                 !nvme_tcp_read_queue(queue) &&
1466                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1467                           ctrl->io_queues[HCTX_TYPE_READ] +
1468                           ctrl->io_queues[HCTX_TYPE_POLL];
1469 }
1470
1471 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1472 {
1473         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1474         int qid = nvme_tcp_queue_id(queue);
1475         int n = 0;
1476
1477         if (nvme_tcp_default_queue(queue))
1478                 n = qid - 1;
1479         else if (nvme_tcp_read_queue(queue))
1480                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1481         else if (nvme_tcp_poll_queue(queue))
1482                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1483                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1484         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1485 }
1486
1487 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1488 {
1489         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1490         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1491         int ret, rcv_pdu_size;
1492
1493         mutex_init(&queue->queue_lock);
1494         queue->ctrl = ctrl;
1495         init_llist_head(&queue->req_list);
1496         INIT_LIST_HEAD(&queue->send_list);
1497         mutex_init(&queue->send_mutex);
1498         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1499
1500         if (qid > 0)
1501                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1502         else
1503                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1504                                                 NVME_TCP_ADMIN_CCSZ;
1505
1506         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1507                         IPPROTO_TCP, &queue->sock);
1508         if (ret) {
1509                 dev_err(nctrl->device,
1510                         "failed to create socket: %d\n", ret);
1511                 goto err_destroy_mutex;
1512         }
1513
1514         nvme_tcp_reclassify_socket(queue->sock);
1515
1516         /* Single syn retry */
1517         tcp_sock_set_syncnt(queue->sock->sk, 1);
1518
1519         /* Set TCP no delay */
1520         tcp_sock_set_nodelay(queue->sock->sk);
1521
1522         /*
1523          * Cleanup whatever is sitting in the TCP transmit queue on socket
1524          * close. This is done to prevent stale data from being sent should
1525          * the network connection be restored before TCP times out.
1526          */
1527         sock_no_linger(queue->sock->sk);
1528
1529         if (so_priority > 0)
1530                 sock_set_priority(queue->sock->sk, so_priority);
1531
1532         /* Set socket type of service */
1533         if (nctrl->opts->tos >= 0)
1534                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1535
1536         /* Set 10 seconds timeout for icresp recvmsg */
1537         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1538
1539         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1540         queue->sock->sk->sk_use_task_frag = false;
1541         nvme_tcp_set_queue_io_cpu(queue);
1542         queue->request = NULL;
1543         queue->data_remaining = 0;
1544         queue->ddgst_remaining = 0;
1545         queue->pdu_remaining = 0;
1546         queue->pdu_offset = 0;
1547         sk_set_memalloc(queue->sock->sk);
1548
1549         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1550                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1551                         sizeof(ctrl->src_addr));
1552                 if (ret) {
1553                         dev_err(nctrl->device,
1554                                 "failed to bind queue %d socket %d\n",
1555                                 qid, ret);
1556                         goto err_sock;
1557                 }
1558         }
1559
1560         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1561                 char *iface = nctrl->opts->host_iface;
1562                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1563
1564                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1565                                       optval, strlen(iface));
1566                 if (ret) {
1567                         dev_err(nctrl->device,
1568                           "failed to bind to interface %s queue %d err %d\n",
1569                           iface, qid, ret);
1570                         goto err_sock;
1571                 }
1572         }
1573
1574         queue->hdr_digest = nctrl->opts->hdr_digest;
1575         queue->data_digest = nctrl->opts->data_digest;
1576         if (queue->hdr_digest || queue->data_digest) {
1577                 ret = nvme_tcp_alloc_crypto(queue);
1578                 if (ret) {
1579                         dev_err(nctrl->device,
1580                                 "failed to allocate queue %d crypto\n", qid);
1581                         goto err_sock;
1582                 }
1583         }
1584
1585         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1586                         nvme_tcp_hdgst_len(queue);
1587         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1588         if (!queue->pdu) {
1589                 ret = -ENOMEM;
1590                 goto err_crypto;
1591         }
1592
1593         dev_dbg(nctrl->device, "connecting queue %d\n",
1594                         nvme_tcp_queue_id(queue));
1595
1596         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1597                 sizeof(ctrl->addr), 0);
1598         if (ret) {
1599                 dev_err(nctrl->device,
1600                         "failed to connect socket: %d\n", ret);
1601                 goto err_rcv_pdu;
1602         }
1603
1604         ret = nvme_tcp_init_connection(queue);
1605         if (ret)
1606                 goto err_init_connect;
1607
1608         queue->rd_enabled = true;
1609         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1610         nvme_tcp_init_recv_ctx(queue);
1611
1612         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1613         queue->sock->sk->sk_user_data = queue;
1614         queue->state_change = queue->sock->sk->sk_state_change;
1615         queue->data_ready = queue->sock->sk->sk_data_ready;
1616         queue->write_space = queue->sock->sk->sk_write_space;
1617         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1618         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1619         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1620 #ifdef CONFIG_NET_RX_BUSY_POLL
1621         queue->sock->sk->sk_ll_usec = 1;
1622 #endif
1623         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1624
1625         return 0;
1626
1627 err_init_connect:
1628         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1629 err_rcv_pdu:
1630         kfree(queue->pdu);
1631 err_crypto:
1632         if (queue->hdr_digest || queue->data_digest)
1633                 nvme_tcp_free_crypto(queue);
1634 err_sock:
1635         sock_release(queue->sock);
1636         queue->sock = NULL;
1637 err_destroy_mutex:
1638         mutex_destroy(&queue->send_mutex);
1639         mutex_destroy(&queue->queue_lock);
1640         return ret;
1641 }
1642
1643 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1644 {
1645         struct socket *sock = queue->sock;
1646
1647         write_lock_bh(&sock->sk->sk_callback_lock);
1648         sock->sk->sk_user_data  = NULL;
1649         sock->sk->sk_data_ready = queue->data_ready;
1650         sock->sk->sk_state_change = queue->state_change;
1651         sock->sk->sk_write_space  = queue->write_space;
1652         write_unlock_bh(&sock->sk->sk_callback_lock);
1653 }
1654
1655 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1656 {
1657         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1658         nvme_tcp_restore_sock_calls(queue);
1659         cancel_work_sync(&queue->io_work);
1660 }
1661
1662 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1663 {
1664         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1665         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1666
1667         if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1668                 return;
1669
1670         mutex_lock(&queue->queue_lock);
1671         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1672                 __nvme_tcp_stop_queue(queue);
1673         mutex_unlock(&queue->queue_lock);
1674 }
1675
1676 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1677 {
1678         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1679         int ret;
1680
1681         if (idx)
1682                 ret = nvmf_connect_io_queue(nctrl, idx);
1683         else
1684                 ret = nvmf_connect_admin_queue(nctrl);
1685
1686         if (!ret) {
1687                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1688         } else {
1689                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1690                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1691                 dev_err(nctrl->device,
1692                         "failed to connect queue: %d ret=%d\n", idx, ret);
1693         }
1694         return ret;
1695 }
1696
1697 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1698 {
1699         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1700                 cancel_work_sync(&ctrl->async_event_work);
1701                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1702                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1703         }
1704
1705         nvme_tcp_free_queue(ctrl, 0);
1706 }
1707
1708 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1709 {
1710         int i;
1711
1712         for (i = 1; i < ctrl->queue_count; i++)
1713                 nvme_tcp_free_queue(ctrl, i);
1714 }
1715
1716 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1717 {
1718         int i;
1719
1720         for (i = 1; i < ctrl->queue_count; i++)
1721                 nvme_tcp_stop_queue(ctrl, i);
1722 }
1723
1724 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1725                                     int first, int last)
1726 {
1727         int i, ret;
1728
1729         for (i = first; i < last; i++) {
1730                 ret = nvme_tcp_start_queue(ctrl, i);
1731                 if (ret)
1732                         goto out_stop_queues;
1733         }
1734
1735         return 0;
1736
1737 out_stop_queues:
1738         for (i--; i >= first; i--)
1739                 nvme_tcp_stop_queue(ctrl, i);
1740         return ret;
1741 }
1742
1743 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1744 {
1745         int ret;
1746
1747         ret = nvme_tcp_alloc_queue(ctrl, 0);
1748         if (ret)
1749                 return ret;
1750
1751         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1752         if (ret)
1753                 goto out_free_queue;
1754
1755         return 0;
1756
1757 out_free_queue:
1758         nvme_tcp_free_queue(ctrl, 0);
1759         return ret;
1760 }
1761
1762 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1763 {
1764         int i, ret;
1765
1766         for (i = 1; i < ctrl->queue_count; i++) {
1767                 ret = nvme_tcp_alloc_queue(ctrl, i);
1768                 if (ret)
1769                         goto out_free_queues;
1770         }
1771
1772         return 0;
1773
1774 out_free_queues:
1775         for (i--; i >= 1; i--)
1776                 nvme_tcp_free_queue(ctrl, i);
1777
1778         return ret;
1779 }
1780
1781 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1782 {
1783         unsigned int nr_io_queues;
1784
1785         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1786         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1787         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1788
1789         return nr_io_queues;
1790 }
1791
1792 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1793                 unsigned int nr_io_queues)
1794 {
1795         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1796         struct nvmf_ctrl_options *opts = nctrl->opts;
1797
1798         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1799                 /*
1800                  * separate read/write queues
1801                  * hand out dedicated default queues only after we have
1802                  * sufficient read queues.
1803                  */
1804                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1805                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1806                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1807                         min(opts->nr_write_queues, nr_io_queues);
1808                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1809         } else {
1810                 /*
1811                  * shared read/write queues
1812                  * either no write queues were requested, or we don't have
1813                  * sufficient queue count to have dedicated default queues.
1814                  */
1815                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1816                         min(opts->nr_io_queues, nr_io_queues);
1817                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1818         }
1819
1820         if (opts->nr_poll_queues && nr_io_queues) {
1821                 /* map dedicated poll queues only if we have queues left */
1822                 ctrl->io_queues[HCTX_TYPE_POLL] =
1823                         min(opts->nr_poll_queues, nr_io_queues);
1824         }
1825 }
1826
1827 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1828 {
1829         unsigned int nr_io_queues;
1830         int ret;
1831
1832         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1833         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1834         if (ret)
1835                 return ret;
1836
1837         if (nr_io_queues == 0) {
1838                 dev_err(ctrl->device,
1839                         "unable to set any I/O queues\n");
1840                 return -ENOMEM;
1841         }
1842
1843         ctrl->queue_count = nr_io_queues + 1;
1844         dev_info(ctrl->device,
1845                 "creating %d I/O queues.\n", nr_io_queues);
1846
1847         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1848
1849         return __nvme_tcp_alloc_io_queues(ctrl);
1850 }
1851
1852 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1853 {
1854         nvme_tcp_stop_io_queues(ctrl);
1855         if (remove)
1856                 nvme_remove_io_tag_set(ctrl);
1857         nvme_tcp_free_io_queues(ctrl);
1858 }
1859
1860 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1861 {
1862         int ret, nr_queues;
1863
1864         ret = nvme_tcp_alloc_io_queues(ctrl);
1865         if (ret)
1866                 return ret;
1867
1868         if (new) {
1869                 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1870                                 &nvme_tcp_mq_ops,
1871                                 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1872                                 sizeof(struct nvme_tcp_request));
1873                 if (ret)
1874                         goto out_free_io_queues;
1875         }
1876
1877         /*
1878          * Only start IO queues for which we have allocated the tagset
1879          * and limitted it to the available queues. On reconnects, the
1880          * queue number might have changed.
1881          */
1882         nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1883         ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1884         if (ret)
1885                 goto out_cleanup_connect_q;
1886
1887         if (!new) {
1888                 nvme_unquiesce_io_queues(ctrl);
1889                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1890                         /*
1891                          * If we timed out waiting for freeze we are likely to
1892                          * be stuck.  Fail the controller initialization just
1893                          * to be safe.
1894                          */
1895                         ret = -ENODEV;
1896                         goto out_wait_freeze_timed_out;
1897                 }
1898                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1899                         ctrl->queue_count - 1);
1900                 nvme_unfreeze(ctrl);
1901         }
1902
1903         /*
1904          * If the number of queues has increased (reconnect case)
1905          * start all new queues now.
1906          */
1907         ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1908                                        ctrl->tagset->nr_hw_queues + 1);
1909         if (ret)
1910                 goto out_wait_freeze_timed_out;
1911
1912         return 0;
1913
1914 out_wait_freeze_timed_out:
1915         nvme_quiesce_io_queues(ctrl);
1916         nvme_sync_io_queues(ctrl);
1917         nvme_tcp_stop_io_queues(ctrl);
1918 out_cleanup_connect_q:
1919         nvme_cancel_tagset(ctrl);
1920         if (new)
1921                 nvme_remove_io_tag_set(ctrl);
1922 out_free_io_queues:
1923         nvme_tcp_free_io_queues(ctrl);
1924         return ret;
1925 }
1926
1927 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1928 {
1929         nvme_tcp_stop_queue(ctrl, 0);
1930         if (remove)
1931                 nvme_remove_admin_tag_set(ctrl);
1932         nvme_tcp_free_admin_queue(ctrl);
1933 }
1934
1935 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1936 {
1937         int error;
1938
1939         error = nvme_tcp_alloc_admin_queue(ctrl);
1940         if (error)
1941                 return error;
1942
1943         if (new) {
1944                 error = nvme_alloc_admin_tag_set(ctrl,
1945                                 &to_tcp_ctrl(ctrl)->admin_tag_set,
1946                                 &nvme_tcp_admin_mq_ops,
1947                                 sizeof(struct nvme_tcp_request));
1948                 if (error)
1949                         goto out_free_queue;
1950         }
1951
1952         error = nvme_tcp_start_queue(ctrl, 0);
1953         if (error)
1954                 goto out_cleanup_tagset;
1955
1956         error = nvme_enable_ctrl(ctrl);
1957         if (error)
1958                 goto out_stop_queue;
1959
1960         nvme_unquiesce_admin_queue(ctrl);
1961
1962         error = nvme_init_ctrl_finish(ctrl, false);
1963         if (error)
1964                 goto out_quiesce_queue;
1965
1966         return 0;
1967
1968 out_quiesce_queue:
1969         nvme_quiesce_admin_queue(ctrl);
1970         blk_sync_queue(ctrl->admin_q);
1971 out_stop_queue:
1972         nvme_tcp_stop_queue(ctrl, 0);
1973         nvme_cancel_admin_tagset(ctrl);
1974 out_cleanup_tagset:
1975         if (new)
1976                 nvme_remove_admin_tag_set(ctrl);
1977 out_free_queue:
1978         nvme_tcp_free_admin_queue(ctrl);
1979         return error;
1980 }
1981
1982 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1983                 bool remove)
1984 {
1985         nvme_quiesce_admin_queue(ctrl);
1986         blk_sync_queue(ctrl->admin_q);
1987         nvme_tcp_stop_queue(ctrl, 0);
1988         nvme_cancel_admin_tagset(ctrl);
1989         if (remove)
1990                 nvme_unquiesce_admin_queue(ctrl);
1991         nvme_tcp_destroy_admin_queue(ctrl, remove);
1992 }
1993
1994 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1995                 bool remove)
1996 {
1997         if (ctrl->queue_count <= 1)
1998                 return;
1999         nvme_quiesce_admin_queue(ctrl);
2000         nvme_start_freeze(ctrl);
2001         nvme_quiesce_io_queues(ctrl);
2002         nvme_sync_io_queues(ctrl);
2003         nvme_tcp_stop_io_queues(ctrl);
2004         nvme_cancel_tagset(ctrl);
2005         if (remove)
2006                 nvme_unquiesce_io_queues(ctrl);
2007         nvme_tcp_destroy_io_queues(ctrl, remove);
2008 }
2009
2010 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2011 {
2012         /* If we are resetting/deleting then do nothing */
2013         if (ctrl->state != NVME_CTRL_CONNECTING) {
2014                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2015                         ctrl->state == NVME_CTRL_LIVE);
2016                 return;
2017         }
2018
2019         if (nvmf_should_reconnect(ctrl)) {
2020                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2021                         ctrl->opts->reconnect_delay);
2022                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2023                                 ctrl->opts->reconnect_delay * HZ);
2024         } else {
2025                 dev_info(ctrl->device, "Removing controller...\n");
2026                 nvme_delete_ctrl(ctrl);
2027         }
2028 }
2029
2030 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2031 {
2032         struct nvmf_ctrl_options *opts = ctrl->opts;
2033         int ret;
2034
2035         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2036         if (ret)
2037                 return ret;
2038
2039         if (ctrl->icdoff) {
2040                 ret = -EOPNOTSUPP;
2041                 dev_err(ctrl->device, "icdoff is not supported!\n");
2042                 goto destroy_admin;
2043         }
2044
2045         if (!nvme_ctrl_sgl_supported(ctrl)) {
2046                 ret = -EOPNOTSUPP;
2047                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2048                 goto destroy_admin;
2049         }
2050
2051         if (opts->queue_size > ctrl->sqsize + 1)
2052                 dev_warn(ctrl->device,
2053                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2054                         opts->queue_size, ctrl->sqsize + 1);
2055
2056         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2057                 dev_warn(ctrl->device,
2058                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2059                         ctrl->sqsize + 1, ctrl->maxcmd);
2060                 ctrl->sqsize = ctrl->maxcmd - 1;
2061         }
2062
2063         if (ctrl->queue_count > 1) {
2064                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2065                 if (ret)
2066                         goto destroy_admin;
2067         }
2068
2069         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2070                 /*
2071                  * state change failure is ok if we started ctrl delete,
2072                  * unless we're during creation of a new controller to
2073                  * avoid races with teardown flow.
2074                  */
2075                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2076                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2077                 WARN_ON_ONCE(new);
2078                 ret = -EINVAL;
2079                 goto destroy_io;
2080         }
2081
2082         nvme_start_ctrl(ctrl);
2083         return 0;
2084
2085 destroy_io:
2086         if (ctrl->queue_count > 1) {
2087                 nvme_quiesce_io_queues(ctrl);
2088                 nvme_sync_io_queues(ctrl);
2089                 nvme_tcp_stop_io_queues(ctrl);
2090                 nvme_cancel_tagset(ctrl);
2091                 nvme_tcp_destroy_io_queues(ctrl, new);
2092         }
2093 destroy_admin:
2094         nvme_quiesce_admin_queue(ctrl);
2095         blk_sync_queue(ctrl->admin_q);
2096         nvme_tcp_stop_queue(ctrl, 0);
2097         nvme_cancel_admin_tagset(ctrl);
2098         nvme_tcp_destroy_admin_queue(ctrl, new);
2099         return ret;
2100 }
2101
2102 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2103 {
2104         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2105                         struct nvme_tcp_ctrl, connect_work);
2106         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2107
2108         ++ctrl->nr_reconnects;
2109
2110         if (nvme_tcp_setup_ctrl(ctrl, false))
2111                 goto requeue;
2112
2113         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2114                         ctrl->nr_reconnects);
2115
2116         ctrl->nr_reconnects = 0;
2117
2118         return;
2119
2120 requeue:
2121         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2122                         ctrl->nr_reconnects);
2123         nvme_tcp_reconnect_or_remove(ctrl);
2124 }
2125
2126 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2127 {
2128         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2129                                 struct nvme_tcp_ctrl, err_work);
2130         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2131
2132         nvme_stop_keep_alive(ctrl);
2133         flush_work(&ctrl->async_event_work);
2134         nvme_tcp_teardown_io_queues(ctrl, false);
2135         /* unquiesce to fail fast pending requests */
2136         nvme_unquiesce_io_queues(ctrl);
2137         nvme_tcp_teardown_admin_queue(ctrl, false);
2138         nvme_unquiesce_admin_queue(ctrl);
2139         nvme_auth_stop(ctrl);
2140
2141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2142                 /* state change failure is ok if we started ctrl delete */
2143                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2144                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2145                 return;
2146         }
2147
2148         nvme_tcp_reconnect_or_remove(ctrl);
2149 }
2150
2151 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2152 {
2153         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2154         nvme_quiesce_admin_queue(ctrl);
2155         nvme_disable_ctrl(ctrl, shutdown);
2156         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2157 }
2158
2159 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2160 {
2161         nvme_tcp_teardown_ctrl(ctrl, true);
2162 }
2163
2164 static void nvme_reset_ctrl_work(struct work_struct *work)
2165 {
2166         struct nvme_ctrl *ctrl =
2167                 container_of(work, struct nvme_ctrl, reset_work);
2168
2169         nvme_stop_ctrl(ctrl);
2170         nvme_tcp_teardown_ctrl(ctrl, false);
2171
2172         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2173                 /* state change failure is ok if we started ctrl delete */
2174                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2175                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2176                 return;
2177         }
2178
2179         if (nvme_tcp_setup_ctrl(ctrl, false))
2180                 goto out_fail;
2181
2182         return;
2183
2184 out_fail:
2185         ++ctrl->nr_reconnects;
2186         nvme_tcp_reconnect_or_remove(ctrl);
2187 }
2188
2189 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2190 {
2191         flush_work(&to_tcp_ctrl(ctrl)->err_work);
2192         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2193 }
2194
2195 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2196 {
2197         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2198
2199         if (list_empty(&ctrl->list))
2200                 goto free_ctrl;
2201
2202         mutex_lock(&nvme_tcp_ctrl_mutex);
2203         list_del(&ctrl->list);
2204         mutex_unlock(&nvme_tcp_ctrl_mutex);
2205
2206         nvmf_free_options(nctrl->opts);
2207 free_ctrl:
2208         kfree(ctrl->queues);
2209         kfree(ctrl);
2210 }
2211
2212 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2213 {
2214         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2215
2216         sg->addr = 0;
2217         sg->length = 0;
2218         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2219                         NVME_SGL_FMT_TRANSPORT_A;
2220 }
2221
2222 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2223                 struct nvme_command *c, u32 data_len)
2224 {
2225         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2226
2227         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2228         sg->length = cpu_to_le32(data_len);
2229         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2230 }
2231
2232 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2233                 u32 data_len)
2234 {
2235         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2236
2237         sg->addr = 0;
2238         sg->length = cpu_to_le32(data_len);
2239         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2240                         NVME_SGL_FMT_TRANSPORT_A;
2241 }
2242
2243 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2244 {
2245         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2246         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2247         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2248         struct nvme_command *cmd = &pdu->cmd;
2249         u8 hdgst = nvme_tcp_hdgst_len(queue);
2250
2251         memset(pdu, 0, sizeof(*pdu));
2252         pdu->hdr.type = nvme_tcp_cmd;
2253         if (queue->hdr_digest)
2254                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2255         pdu->hdr.hlen = sizeof(*pdu);
2256         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2257
2258         cmd->common.opcode = nvme_admin_async_event;
2259         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2260         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2261         nvme_tcp_set_sg_null(cmd);
2262
2263         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2264         ctrl->async_req.offset = 0;
2265         ctrl->async_req.curr_bio = NULL;
2266         ctrl->async_req.data_len = 0;
2267
2268         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2269 }
2270
2271 static void nvme_tcp_complete_timed_out(struct request *rq)
2272 {
2273         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2274         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2275
2276         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2277         nvmf_complete_timed_out_request(rq);
2278 }
2279
2280 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2281 {
2282         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2283         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2284         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2285
2286         dev_warn(ctrl->device,
2287                 "queue %d: timeout request %#x type %d\n",
2288                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2289
2290         if (ctrl->state != NVME_CTRL_LIVE) {
2291                 /*
2292                  * If we are resetting, connecting or deleting we should
2293                  * complete immediately because we may block controller
2294                  * teardown or setup sequence
2295                  * - ctrl disable/shutdown fabrics requests
2296                  * - connect requests
2297                  * - initialization admin requests
2298                  * - I/O requests that entered after unquiescing and
2299                  *   the controller stopped responding
2300                  *
2301                  * All other requests should be cancelled by the error
2302                  * recovery work, so it's fine that we fail it here.
2303                  */
2304                 nvme_tcp_complete_timed_out(rq);
2305                 return BLK_EH_DONE;
2306         }
2307
2308         /*
2309          * LIVE state should trigger the normal error recovery which will
2310          * handle completing this request.
2311          */
2312         nvme_tcp_error_recovery(ctrl);
2313         return BLK_EH_RESET_TIMER;
2314 }
2315
2316 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2317                         struct request *rq)
2318 {
2319         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2320         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2321         struct nvme_command *c = &pdu->cmd;
2322
2323         c->common.flags |= NVME_CMD_SGL_METABUF;
2324
2325         if (!blk_rq_nr_phys_segments(rq))
2326                 nvme_tcp_set_sg_null(c);
2327         else if (rq_data_dir(rq) == WRITE &&
2328             req->data_len <= nvme_tcp_inline_data_size(req))
2329                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2330         else
2331                 nvme_tcp_set_sg_host_data(c, req->data_len);
2332
2333         return 0;
2334 }
2335
2336 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2337                 struct request *rq)
2338 {
2339         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2340         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2341         struct nvme_tcp_queue *queue = req->queue;
2342         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2343         blk_status_t ret;
2344
2345         ret = nvme_setup_cmd(ns, rq);
2346         if (ret)
2347                 return ret;
2348
2349         req->state = NVME_TCP_SEND_CMD_PDU;
2350         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2351         req->offset = 0;
2352         req->data_sent = 0;
2353         req->pdu_len = 0;
2354         req->pdu_sent = 0;
2355         req->h2cdata_left = 0;
2356         req->data_len = blk_rq_nr_phys_segments(rq) ?
2357                                 blk_rq_payload_bytes(rq) : 0;
2358         req->curr_bio = rq->bio;
2359         if (req->curr_bio && req->data_len)
2360                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2361
2362         if (rq_data_dir(rq) == WRITE &&
2363             req->data_len <= nvme_tcp_inline_data_size(req))
2364                 req->pdu_len = req->data_len;
2365
2366         pdu->hdr.type = nvme_tcp_cmd;
2367         pdu->hdr.flags = 0;
2368         if (queue->hdr_digest)
2369                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2370         if (queue->data_digest && req->pdu_len) {
2371                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2372                 ddgst = nvme_tcp_ddgst_len(queue);
2373         }
2374         pdu->hdr.hlen = sizeof(*pdu);
2375         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2376         pdu->hdr.plen =
2377                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2378
2379         ret = nvme_tcp_map_data(queue, rq);
2380         if (unlikely(ret)) {
2381                 nvme_cleanup_cmd(rq);
2382                 dev_err(queue->ctrl->ctrl.device,
2383                         "Failed to map data (%d)\n", ret);
2384                 return ret;
2385         }
2386
2387         return 0;
2388 }
2389
2390 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2391 {
2392         struct nvme_tcp_queue *queue = hctx->driver_data;
2393
2394         if (!llist_empty(&queue->req_list))
2395                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2396 }
2397
2398 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2399                 const struct blk_mq_queue_data *bd)
2400 {
2401         struct nvme_ns *ns = hctx->queue->queuedata;
2402         struct nvme_tcp_queue *queue = hctx->driver_data;
2403         struct request *rq = bd->rq;
2404         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2405         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2406         blk_status_t ret;
2407
2408         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2409                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2410
2411         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2412         if (unlikely(ret))
2413                 return ret;
2414
2415         nvme_start_request(rq);
2416
2417         nvme_tcp_queue_request(req, true, bd->last);
2418
2419         return BLK_STS_OK;
2420 }
2421
2422 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2423 {
2424         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2425         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2426
2427         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2428                 /* separate read/write queues */
2429                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2430                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2431                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2432                 set->map[HCTX_TYPE_READ].nr_queues =
2433                         ctrl->io_queues[HCTX_TYPE_READ];
2434                 set->map[HCTX_TYPE_READ].queue_offset =
2435                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2436         } else {
2437                 /* shared read/write queues */
2438                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2439                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2440                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2441                 set->map[HCTX_TYPE_READ].nr_queues =
2442                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2443                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2444         }
2445         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2446         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2447
2448         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2449                 /* map dedicated poll queues only if we have queues left */
2450                 set->map[HCTX_TYPE_POLL].nr_queues =
2451                                 ctrl->io_queues[HCTX_TYPE_POLL];
2452                 set->map[HCTX_TYPE_POLL].queue_offset =
2453                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2454                         ctrl->io_queues[HCTX_TYPE_READ];
2455                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2456         }
2457
2458         dev_info(ctrl->ctrl.device,
2459                 "mapped %d/%d/%d default/read/poll queues.\n",
2460                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2461                 ctrl->io_queues[HCTX_TYPE_READ],
2462                 ctrl->io_queues[HCTX_TYPE_POLL]);
2463 }
2464
2465 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2466 {
2467         struct nvme_tcp_queue *queue = hctx->driver_data;
2468         struct sock *sk = queue->sock->sk;
2469
2470         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2471                 return 0;
2472
2473         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2474         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2475                 sk_busy_loop(sk, true);
2476         nvme_tcp_try_recv(queue);
2477         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2478         return queue->nr_cqe;
2479 }
2480
2481 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2482 {
2483         struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2484         struct sockaddr_storage src_addr;
2485         int ret, len;
2486
2487         len = nvmf_get_address(ctrl, buf, size);
2488
2489         ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2490         if (ret > 0) {
2491                 if (len > 0)
2492                         len--; /* strip trailing newline */
2493                 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2494                                 (len) ? "," : "", &src_addr);
2495         }
2496
2497         return len;
2498 }
2499
2500 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2501         .queue_rq       = nvme_tcp_queue_rq,
2502         .commit_rqs     = nvme_tcp_commit_rqs,
2503         .complete       = nvme_complete_rq,
2504         .init_request   = nvme_tcp_init_request,
2505         .exit_request   = nvme_tcp_exit_request,
2506         .init_hctx      = nvme_tcp_init_hctx,
2507         .timeout        = nvme_tcp_timeout,
2508         .map_queues     = nvme_tcp_map_queues,
2509         .poll           = nvme_tcp_poll,
2510 };
2511
2512 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2513         .queue_rq       = nvme_tcp_queue_rq,
2514         .complete       = nvme_complete_rq,
2515         .init_request   = nvme_tcp_init_request,
2516         .exit_request   = nvme_tcp_exit_request,
2517         .init_hctx      = nvme_tcp_init_admin_hctx,
2518         .timeout        = nvme_tcp_timeout,
2519 };
2520
2521 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2522         .name                   = "tcp",
2523         .module                 = THIS_MODULE,
2524         .flags                  = NVME_F_FABRICS | NVME_F_BLOCKING,
2525         .reg_read32             = nvmf_reg_read32,
2526         .reg_read64             = nvmf_reg_read64,
2527         .reg_write32            = nvmf_reg_write32,
2528         .free_ctrl              = nvme_tcp_free_ctrl,
2529         .submit_async_event     = nvme_tcp_submit_async_event,
2530         .delete_ctrl            = nvme_tcp_delete_ctrl,
2531         .get_address            = nvme_tcp_get_address,
2532         .stop_ctrl              = nvme_tcp_stop_ctrl,
2533 };
2534
2535 static bool
2536 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2537 {
2538         struct nvme_tcp_ctrl *ctrl;
2539         bool found = false;
2540
2541         mutex_lock(&nvme_tcp_ctrl_mutex);
2542         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2543                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2544                 if (found)
2545                         break;
2546         }
2547         mutex_unlock(&nvme_tcp_ctrl_mutex);
2548
2549         return found;
2550 }
2551
2552 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2553                 struct nvmf_ctrl_options *opts)
2554 {
2555         struct nvme_tcp_ctrl *ctrl;
2556         int ret;
2557
2558         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2559         if (!ctrl)
2560                 return ERR_PTR(-ENOMEM);
2561
2562         INIT_LIST_HEAD(&ctrl->list);
2563         ctrl->ctrl.opts = opts;
2564         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2565                                 opts->nr_poll_queues + 1;
2566         ctrl->ctrl.sqsize = opts->queue_size - 1;
2567         ctrl->ctrl.kato = opts->kato;
2568
2569         INIT_DELAYED_WORK(&ctrl->connect_work,
2570                         nvme_tcp_reconnect_ctrl_work);
2571         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2572         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2573
2574         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2575                 opts->trsvcid =
2576                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2577                 if (!opts->trsvcid) {
2578                         ret = -ENOMEM;
2579                         goto out_free_ctrl;
2580                 }
2581                 opts->mask |= NVMF_OPT_TRSVCID;
2582         }
2583
2584         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2585                         opts->traddr, opts->trsvcid, &ctrl->addr);
2586         if (ret) {
2587                 pr_err("malformed address passed: %s:%s\n",
2588                         opts->traddr, opts->trsvcid);
2589                 goto out_free_ctrl;
2590         }
2591
2592         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2593                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2594                         opts->host_traddr, NULL, &ctrl->src_addr);
2595                 if (ret) {
2596                         pr_err("malformed src address passed: %s\n",
2597                                opts->host_traddr);
2598                         goto out_free_ctrl;
2599                 }
2600         }
2601
2602         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2603                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2604                         pr_err("invalid interface passed: %s\n",
2605                                opts->host_iface);
2606                         ret = -ENODEV;
2607                         goto out_free_ctrl;
2608                 }
2609         }
2610
2611         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2612                 ret = -EALREADY;
2613                 goto out_free_ctrl;
2614         }
2615
2616         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2617                                 GFP_KERNEL);
2618         if (!ctrl->queues) {
2619                 ret = -ENOMEM;
2620                 goto out_free_ctrl;
2621         }
2622
2623         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2624         if (ret)
2625                 goto out_kfree_queues;
2626
2627         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2628                 WARN_ON_ONCE(1);
2629                 ret = -EINTR;
2630                 goto out_uninit_ctrl;
2631         }
2632
2633         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2634         if (ret)
2635                 goto out_uninit_ctrl;
2636
2637         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2638                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2639
2640         mutex_lock(&nvme_tcp_ctrl_mutex);
2641         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2642         mutex_unlock(&nvme_tcp_ctrl_mutex);
2643
2644         return &ctrl->ctrl;
2645
2646 out_uninit_ctrl:
2647         nvme_uninit_ctrl(&ctrl->ctrl);
2648         nvme_put_ctrl(&ctrl->ctrl);
2649         if (ret > 0)
2650                 ret = -EIO;
2651         return ERR_PTR(ret);
2652 out_kfree_queues:
2653         kfree(ctrl->queues);
2654 out_free_ctrl:
2655         kfree(ctrl);
2656         return ERR_PTR(ret);
2657 }
2658
2659 static struct nvmf_transport_ops nvme_tcp_transport = {
2660         .name           = "tcp",
2661         .module         = THIS_MODULE,
2662         .required_opts  = NVMF_OPT_TRADDR,
2663         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2664                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2665                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2666                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2667                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2668         .create_ctrl    = nvme_tcp_create_ctrl,
2669 };
2670
2671 static int __init nvme_tcp_init_module(void)
2672 {
2673         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2674                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2675         if (!nvme_tcp_wq)
2676                 return -ENOMEM;
2677
2678         nvmf_register_transport(&nvme_tcp_transport);
2679         return 0;
2680 }
2681
2682 static void __exit nvme_tcp_cleanup_module(void)
2683 {
2684         struct nvme_tcp_ctrl *ctrl;
2685
2686         nvmf_unregister_transport(&nvme_tcp_transport);
2687
2688         mutex_lock(&nvme_tcp_ctrl_mutex);
2689         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2690                 nvme_delete_ctrl(&ctrl->ctrl);
2691         mutex_unlock(&nvme_tcp_ctrl_mutex);
2692         flush_workqueue(nvme_delete_wq);
2693
2694         destroy_workqueue(nvme_tcp_wq);
2695 }
2696
2697 module_init(nvme_tcp_init_module);
2698 module_exit(nvme_tcp_cleanup_module);
2699
2700 MODULE_LICENSE("GPL v2");
This page took 0.202998 seconds and 4 git commands to generate.