1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
21 struct nvme_tcp_queue;
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36 * because dependencies are tracked for both nvme-tcp and user contexts. Using
37 * a separate class prevents lockdep from conflating nvme-tcp socket use with
38 * user-space socket API use.
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 struct sock *sk = sock->sk;
47 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
50 switch (sk->sk_family) {
52 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 &nvme_tcp_slock_key[0],
54 "sk_lock-AF_INET-NVME",
58 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 &nvme_tcp_slock_key[1],
60 "sk_lock-AF_INET6-NVME",
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
71 enum nvme_tcp_send_state {
72 NVME_TCP_SEND_CMD_PDU = 0,
73 NVME_TCP_SEND_H2C_PDU,
78 struct nvme_tcp_request {
79 struct nvme_request req;
81 struct nvme_tcp_queue *queue;
89 struct list_head entry;
90 struct llist_node lentry;
99 enum nvme_tcp_send_state state;
102 enum nvme_tcp_queue_flags {
103 NVME_TCP_Q_ALLOCATED = 0,
105 NVME_TCP_Q_POLLING = 2,
108 enum nvme_tcp_recv_state {
109 NVME_TCP_RECV_PDU = 0,
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
117 struct work_struct io_work;
120 struct mutex queue_lock;
121 struct mutex send_mutex;
122 struct llist_head req_list;
123 struct list_head send_list;
129 size_t data_remaining;
130 size_t ddgst_remaining;
134 struct nvme_tcp_request *request;
137 size_t cmnd_capsule_len;
138 struct nvme_tcp_ctrl *ctrl;
144 struct ahash_request *rcv_hash;
145 struct ahash_request *snd_hash;
149 struct page_frag_cache pf_cache;
151 void (*state_change)(struct sock *);
152 void (*data_ready)(struct sock *);
153 void (*write_space)(struct sock *);
156 struct nvme_tcp_ctrl {
157 /* read only in the hot path */
158 struct nvme_tcp_queue *queues;
159 struct blk_mq_tag_set tag_set;
161 /* other member variables */
162 struct list_head list;
163 struct blk_mq_tag_set admin_tag_set;
164 struct sockaddr_storage addr;
165 struct sockaddr_storage src_addr;
166 struct nvme_ctrl ctrl;
168 struct work_struct err_work;
169 struct delayed_work connect_work;
170 struct nvme_tcp_request async_req;
171 u32 io_queues[HCTX_MAX_TYPES];
174 static LIST_HEAD(nvme_tcp_ctrl_list);
175 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
176 static struct workqueue_struct *nvme_tcp_wq;
177 static const struct blk_mq_ops nvme_tcp_mq_ops;
178 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
179 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
186 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 return queue - queue->ctrl->queues;
191 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 u32 queue_idx = nvme_tcp_queue_id(queue);
196 return queue->ctrl->admin_tag_set.tags[queue_idx];
197 return queue->ctrl->tag_set.tags[queue_idx - 1];
200 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
210 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
212 if (nvme_is_fabrics(req->req.cmd))
213 return NVME_TCP_ADMIN_CCSZ;
214 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
219 return req == &req->queue->ctrl->async_req;
222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
226 if (unlikely(nvme_tcp_async_req(req)))
227 return false; /* async events don't have a request */
229 rq = blk_mq_rq_from_pdu(req);
231 return rq_data_dir(rq) == WRITE && req->data_len &&
232 req->data_len <= nvme_tcp_inline_data_size(req);
235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
237 return req->iter.bvec->bv_page;
240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
242 return req->iter.bvec->bv_offset + req->iter.iov_offset;
245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
247 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
248 req->pdu_len - req->pdu_sent);
251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
253 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254 req->pdu_len - req->pdu_sent : 0;
257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
260 return nvme_tcp_pdu_data_left(req) <= len;
263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
266 struct request *rq = blk_mq_rq_from_pdu(req);
272 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273 vec = &rq->special_vec;
275 size = blk_rq_payload_bytes(rq);
278 struct bio *bio = req->curr_bio;
282 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
284 bio_for_each_bvec(bv, bio, bi) {
287 size = bio->bi_iter.bi_size;
288 offset = bio->bi_iter.bi_bvec_done;
291 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
292 req->iter.iov_offset = offset;
295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
298 req->data_sent += len;
299 req->pdu_sent += len;
300 iov_iter_advance(&req->iter, len);
301 if (!iov_iter_count(&req->iter) &&
302 req->data_sent < req->data_len) {
303 req->curr_bio = req->curr_bio->bi_next;
304 nvme_tcp_init_iter(req, ITER_SOURCE);
308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
312 /* drain the send queue as much as we can... */
314 ret = nvme_tcp_try_send(queue);
318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
320 return !list_empty(&queue->send_list) ||
321 !llist_empty(&queue->req_list);
324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
325 bool sync, bool last)
327 struct nvme_tcp_queue *queue = req->queue;
330 empty = llist_add(&req->lentry, &queue->req_list) &&
331 list_empty(&queue->send_list) && !queue->request;
334 * if we're the first on the send_list and we can try to send
335 * directly, otherwise queue io_work. Also, only do that if we
336 * are on the same cpu, so we don't introduce contention.
338 if (queue->io_cpu == raw_smp_processor_id() &&
339 sync && empty && mutex_trylock(&queue->send_mutex)) {
340 nvme_tcp_send_all(queue);
341 mutex_unlock(&queue->send_mutex);
344 if (last && nvme_tcp_queue_more(queue))
345 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
348 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
350 struct nvme_tcp_request *req;
351 struct llist_node *node;
353 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
354 req = llist_entry(node, struct nvme_tcp_request, lentry);
355 list_add(&req->entry, &queue->send_list);
359 static inline struct nvme_tcp_request *
360 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
362 struct nvme_tcp_request *req;
364 req = list_first_entry_or_null(&queue->send_list,
365 struct nvme_tcp_request, entry);
367 nvme_tcp_process_req_list(queue);
368 req = list_first_entry_or_null(&queue->send_list,
369 struct nvme_tcp_request, entry);
374 list_del(&req->entry);
378 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
381 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
382 crypto_ahash_final(hash);
385 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
386 struct page *page, off_t off, size_t len)
388 struct scatterlist sg;
390 sg_init_table(&sg, 1);
391 sg_set_page(&sg, page, len, off);
392 ahash_request_set_crypt(hash, &sg, NULL, len);
393 crypto_ahash_update(hash);
396 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
397 void *pdu, size_t len)
399 struct scatterlist sg;
401 sg_init_one(&sg, pdu, len);
402 ahash_request_set_crypt(hash, &sg, pdu + len, len);
403 crypto_ahash_digest(hash);
406 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
407 void *pdu, size_t pdu_len)
409 struct nvme_tcp_hdr *hdr = pdu;
413 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
414 dev_err(queue->ctrl->ctrl.device,
415 "queue %d: header digest flag is cleared\n",
416 nvme_tcp_queue_id(queue));
420 recv_digest = *(__le32 *)(pdu + hdr->hlen);
421 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
422 exp_digest = *(__le32 *)(pdu + hdr->hlen);
423 if (recv_digest != exp_digest) {
424 dev_err(queue->ctrl->ctrl.device,
425 "header digest error: recv %#x expected %#x\n",
426 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
433 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
435 struct nvme_tcp_hdr *hdr = pdu;
436 u8 digest_len = nvme_tcp_hdgst_len(queue);
439 len = le32_to_cpu(hdr->plen) - hdr->hlen -
440 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
442 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
443 dev_err(queue->ctrl->ctrl.device,
444 "queue %d: data digest flag is cleared\n",
445 nvme_tcp_queue_id(queue));
448 crypto_ahash_init(queue->rcv_hash);
453 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
454 struct request *rq, unsigned int hctx_idx)
456 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
458 page_frag_free(req->pdu);
461 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
462 struct request *rq, unsigned int hctx_idx,
463 unsigned int numa_node)
465 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
466 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
467 struct nvme_tcp_cmd_pdu *pdu;
468 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
469 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
470 u8 hdgst = nvme_tcp_hdgst_len(queue);
472 req->pdu = page_frag_alloc(&queue->pf_cache,
473 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
474 GFP_KERNEL | __GFP_ZERO);
480 nvme_req(rq)->ctrl = &ctrl->ctrl;
481 nvme_req(rq)->cmd = &pdu->cmd;
486 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
487 unsigned int hctx_idx)
489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
490 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
492 hctx->driver_data = queue;
496 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
497 unsigned int hctx_idx)
499 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
500 struct nvme_tcp_queue *queue = &ctrl->queues[0];
502 hctx->driver_data = queue;
506 static enum nvme_tcp_recv_state
507 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
509 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
510 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
514 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
516 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
517 nvme_tcp_hdgst_len(queue);
518 queue->pdu_offset = 0;
519 queue->data_remaining = -1;
520 queue->ddgst_remaining = 0;
523 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
525 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
528 dev_warn(ctrl->device, "starting error recovery\n");
529 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
532 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
533 struct nvme_completion *cqe)
535 struct nvme_tcp_request *req;
538 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
540 dev_err(queue->ctrl->ctrl.device,
541 "got bad cqe.command_id %#x on queue %d\n",
542 cqe->command_id, nvme_tcp_queue_id(queue));
543 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547 req = blk_mq_rq_to_pdu(rq);
548 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
549 req->status = cqe->status;
551 if (!nvme_try_complete_req(rq, req->status, cqe->result))
552 nvme_complete_rq(rq);
558 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
559 struct nvme_tcp_data_pdu *pdu)
563 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
565 dev_err(queue->ctrl->ctrl.device,
566 "got bad c2hdata.command_id %#x on queue %d\n",
567 pdu->command_id, nvme_tcp_queue_id(queue));
571 if (!blk_rq_payload_bytes(rq)) {
572 dev_err(queue->ctrl->ctrl.device,
573 "queue %d tag %#x unexpected data\n",
574 nvme_tcp_queue_id(queue), rq->tag);
578 queue->data_remaining = le32_to_cpu(pdu->data_length);
580 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
581 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
582 dev_err(queue->ctrl->ctrl.device,
583 "queue %d tag %#x SUCCESS set but not last PDU\n",
584 nvme_tcp_queue_id(queue), rq->tag);
585 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
592 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
593 struct nvme_tcp_rsp_pdu *pdu)
595 struct nvme_completion *cqe = &pdu->cqe;
599 * AEN requests are special as they don't time out and can
600 * survive any kind of queue freeze and often don't respond to
601 * aborts. We don't even bother to allocate a struct request
602 * for them but rather special case them here.
604 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
606 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
609 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
614 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
616 struct nvme_tcp_data_pdu *data = req->pdu;
617 struct nvme_tcp_queue *queue = req->queue;
618 struct request *rq = blk_mq_rq_from_pdu(req);
619 u32 h2cdata_sent = req->pdu_len;
620 u8 hdgst = nvme_tcp_hdgst_len(queue);
621 u8 ddgst = nvme_tcp_ddgst_len(queue);
623 req->state = NVME_TCP_SEND_H2C_PDU;
625 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
627 req->h2cdata_left -= req->pdu_len;
628 req->h2cdata_offset += h2cdata_sent;
630 memset(data, 0, sizeof(*data));
631 data->hdr.type = nvme_tcp_h2c_data;
632 if (!req->h2cdata_left)
633 data->hdr.flags = NVME_TCP_F_DATA_LAST;
634 if (queue->hdr_digest)
635 data->hdr.flags |= NVME_TCP_F_HDGST;
636 if (queue->data_digest)
637 data->hdr.flags |= NVME_TCP_F_DDGST;
638 data->hdr.hlen = sizeof(*data);
639 data->hdr.pdo = data->hdr.hlen + hdgst;
641 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
642 data->ttag = req->ttag;
643 data->command_id = nvme_cid(rq);
644 data->data_offset = cpu_to_le32(req->h2cdata_offset);
645 data->data_length = cpu_to_le32(req->pdu_len);
648 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
649 struct nvme_tcp_r2t_pdu *pdu)
651 struct nvme_tcp_request *req;
653 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
654 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
656 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
658 dev_err(queue->ctrl->ctrl.device,
659 "got bad r2t.command_id %#x on queue %d\n",
660 pdu->command_id, nvme_tcp_queue_id(queue));
663 req = blk_mq_rq_to_pdu(rq);
665 if (unlikely(!r2t_length)) {
666 dev_err(queue->ctrl->ctrl.device,
667 "req %d r2t len is %u, probably a bug...\n",
668 rq->tag, r2t_length);
672 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
673 dev_err(queue->ctrl->ctrl.device,
674 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
675 rq->tag, r2t_length, req->data_len, req->data_sent);
679 if (unlikely(r2t_offset < req->data_sent)) {
680 dev_err(queue->ctrl->ctrl.device,
681 "req %d unexpected r2t offset %u (expected %zu)\n",
682 rq->tag, r2t_offset, req->data_sent);
687 req->h2cdata_left = r2t_length;
688 req->h2cdata_offset = r2t_offset;
689 req->ttag = pdu->ttag;
691 nvme_tcp_setup_h2c_data_pdu(req);
692 nvme_tcp_queue_request(req, false, true);
697 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
698 unsigned int *offset, size_t *len)
700 struct nvme_tcp_hdr *hdr;
701 char *pdu = queue->pdu;
702 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
705 ret = skb_copy_bits(skb, *offset,
706 &pdu[queue->pdu_offset], rcv_len);
710 queue->pdu_remaining -= rcv_len;
711 queue->pdu_offset += rcv_len;
714 if (queue->pdu_remaining)
718 if (queue->hdr_digest) {
719 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
725 if (queue->data_digest) {
726 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
732 case nvme_tcp_c2h_data:
733 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
735 nvme_tcp_init_recv_ctx(queue);
736 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
738 nvme_tcp_init_recv_ctx(queue);
739 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
741 dev_err(queue->ctrl->ctrl.device,
742 "unsupported pdu type (%d)\n", hdr->type);
747 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
749 union nvme_result res = {};
751 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
752 nvme_complete_rq(rq);
755 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
756 unsigned int *offset, size_t *len)
758 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
760 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
761 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
766 recv_len = min_t(size_t, *len, queue->data_remaining);
770 if (!iov_iter_count(&req->iter)) {
771 req->curr_bio = req->curr_bio->bi_next;
774 * If we don`t have any bios it means that controller
775 * sent more data than we requested, hence error
777 if (!req->curr_bio) {
778 dev_err(queue->ctrl->ctrl.device,
779 "queue %d no space in request %#x",
780 nvme_tcp_queue_id(queue), rq->tag);
781 nvme_tcp_init_recv_ctx(queue);
784 nvme_tcp_init_iter(req, ITER_DEST);
787 /* we can read only from what is left in this bio */
788 recv_len = min_t(size_t, recv_len,
789 iov_iter_count(&req->iter));
791 if (queue->data_digest)
792 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
793 &req->iter, recv_len, queue->rcv_hash);
795 ret = skb_copy_datagram_iter(skb, *offset,
796 &req->iter, recv_len);
798 dev_err(queue->ctrl->ctrl.device,
799 "queue %d failed to copy request %#x data",
800 nvme_tcp_queue_id(queue), rq->tag);
806 queue->data_remaining -= recv_len;
809 if (!queue->data_remaining) {
810 if (queue->data_digest) {
811 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
812 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
814 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
815 nvme_tcp_end_request(rq,
816 le16_to_cpu(req->status));
819 nvme_tcp_init_recv_ctx(queue);
826 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
827 struct sk_buff *skb, unsigned int *offset, size_t *len)
829 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
830 char *ddgst = (char *)&queue->recv_ddgst;
831 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
832 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
835 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
839 queue->ddgst_remaining -= recv_len;
842 if (queue->ddgst_remaining)
845 if (queue->recv_ddgst != queue->exp_ddgst) {
846 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
848 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
850 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
852 dev_err(queue->ctrl->ctrl.device,
853 "data digest error: recv %#x expected %#x\n",
854 le32_to_cpu(queue->recv_ddgst),
855 le32_to_cpu(queue->exp_ddgst));
858 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
863 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
867 nvme_tcp_init_recv_ctx(queue);
871 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
872 unsigned int offset, size_t len)
874 struct nvme_tcp_queue *queue = desc->arg.data;
875 size_t consumed = len;
879 switch (nvme_tcp_recv_state(queue)) {
880 case NVME_TCP_RECV_PDU:
881 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
883 case NVME_TCP_RECV_DATA:
884 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
886 case NVME_TCP_RECV_DDGST:
887 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
893 dev_err(queue->ctrl->ctrl.device,
894 "receive failed: %d\n", result);
895 queue->rd_enabled = false;
896 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
904 static void nvme_tcp_data_ready(struct sock *sk)
906 struct nvme_tcp_queue *queue;
908 read_lock_bh(&sk->sk_callback_lock);
909 queue = sk->sk_user_data;
910 if (likely(queue && queue->rd_enabled) &&
911 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
912 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
913 read_unlock_bh(&sk->sk_callback_lock);
916 static void nvme_tcp_write_space(struct sock *sk)
918 struct nvme_tcp_queue *queue;
920 read_lock_bh(&sk->sk_callback_lock);
921 queue = sk->sk_user_data;
922 if (likely(queue && sk_stream_is_writeable(sk))) {
923 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
924 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
926 read_unlock_bh(&sk->sk_callback_lock);
929 static void nvme_tcp_state_change(struct sock *sk)
931 struct nvme_tcp_queue *queue;
933 read_lock_bh(&sk->sk_callback_lock);
934 queue = sk->sk_user_data;
938 switch (sk->sk_state) {
944 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
947 dev_info(queue->ctrl->ctrl.device,
948 "queue %d socket state %d\n",
949 nvme_tcp_queue_id(queue), sk->sk_state);
952 queue->state_change(sk);
954 read_unlock_bh(&sk->sk_callback_lock);
957 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
959 queue->request = NULL;
962 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
964 if (nvme_tcp_async_req(req)) {
965 union nvme_result res = {};
967 nvme_complete_async_event(&req->queue->ctrl->ctrl,
968 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
970 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
971 NVME_SC_HOST_PATH_ERROR);
975 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
977 struct nvme_tcp_queue *queue = req->queue;
978 int req_data_len = req->data_len;
979 u32 h2cdata_left = req->h2cdata_left;
982 struct page *page = nvme_tcp_req_cur_page(req);
983 size_t offset = nvme_tcp_req_cur_offset(req);
984 size_t len = nvme_tcp_req_cur_length(req);
985 bool last = nvme_tcp_pdu_last_send(req, len);
986 int req_data_sent = req->data_sent;
987 int ret, flags = MSG_DONTWAIT;
989 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
992 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
994 if (sendpage_ok(page)) {
995 ret = kernel_sendpage(queue->sock, page, offset, len,
998 ret = sock_no_sendpage(queue->sock, page, offset, len,
1004 if (queue->data_digest)
1005 nvme_tcp_ddgst_update(queue->snd_hash, page,
1009 * update the request iterator except for the last payload send
1010 * in the request where we don't want to modify it as we may
1011 * compete with the RX path completing the request.
1013 if (req_data_sent + ret < req_data_len)
1014 nvme_tcp_advance_req(req, ret);
1016 /* fully successful last send in current PDU */
1017 if (last && ret == len) {
1018 if (queue->data_digest) {
1019 nvme_tcp_ddgst_final(queue->snd_hash,
1021 req->state = NVME_TCP_SEND_DDGST;
1025 nvme_tcp_setup_h2c_data_pdu(req);
1027 nvme_tcp_done_send_req(queue);
1035 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1037 struct nvme_tcp_queue *queue = req->queue;
1038 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1039 bool inline_data = nvme_tcp_has_inline_data(req);
1040 u8 hdgst = nvme_tcp_hdgst_len(queue);
1041 int len = sizeof(*pdu) + hdgst - req->offset;
1042 int flags = MSG_DONTWAIT;
1045 if (inline_data || nvme_tcp_queue_more(queue))
1046 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1050 if (queue->hdr_digest && !req->offset)
1051 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1053 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1054 offset_in_page(pdu) + req->offset, len, flags);
1055 if (unlikely(ret <= 0))
1061 req->state = NVME_TCP_SEND_DATA;
1062 if (queue->data_digest)
1063 crypto_ahash_init(queue->snd_hash);
1065 nvme_tcp_done_send_req(queue);
1074 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1076 struct nvme_tcp_queue *queue = req->queue;
1077 struct nvme_tcp_data_pdu *pdu = req->pdu;
1078 u8 hdgst = nvme_tcp_hdgst_len(queue);
1079 int len = sizeof(*pdu) - req->offset + hdgst;
1082 if (queue->hdr_digest && !req->offset)
1083 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1085 if (!req->h2cdata_left)
1086 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1087 offset_in_page(pdu) + req->offset, len,
1088 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1090 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1091 offset_in_page(pdu) + req->offset, len,
1092 MSG_DONTWAIT | MSG_MORE);
1093 if (unlikely(ret <= 0))
1098 req->state = NVME_TCP_SEND_DATA;
1099 if (queue->data_digest)
1100 crypto_ahash_init(queue->snd_hash);
1108 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1110 struct nvme_tcp_queue *queue = req->queue;
1111 size_t offset = req->offset;
1112 u32 h2cdata_left = req->h2cdata_left;
1114 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1116 .iov_base = (u8 *)&req->ddgst + req->offset,
1117 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1120 if (nvme_tcp_queue_more(queue))
1121 msg.msg_flags |= MSG_MORE;
1123 msg.msg_flags |= MSG_EOR;
1125 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1126 if (unlikely(ret <= 0))
1129 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1131 nvme_tcp_setup_h2c_data_pdu(req);
1133 nvme_tcp_done_send_req(queue);
1141 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1143 struct nvme_tcp_request *req;
1144 unsigned int noreclaim_flag;
1147 if (!queue->request) {
1148 queue->request = nvme_tcp_fetch_request(queue);
1149 if (!queue->request)
1152 req = queue->request;
1154 noreclaim_flag = memalloc_noreclaim_save();
1155 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1156 ret = nvme_tcp_try_send_cmd_pdu(req);
1159 if (!nvme_tcp_has_inline_data(req))
1163 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1164 ret = nvme_tcp_try_send_data_pdu(req);
1169 if (req->state == NVME_TCP_SEND_DATA) {
1170 ret = nvme_tcp_try_send_data(req);
1175 if (req->state == NVME_TCP_SEND_DDGST)
1176 ret = nvme_tcp_try_send_ddgst(req);
1178 if (ret == -EAGAIN) {
1180 } else if (ret < 0) {
1181 dev_err(queue->ctrl->ctrl.device,
1182 "failed to send request %d\n", ret);
1183 nvme_tcp_fail_request(queue->request);
1184 nvme_tcp_done_send_req(queue);
1187 memalloc_noreclaim_restore(noreclaim_flag);
1191 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1193 struct socket *sock = queue->sock;
1194 struct sock *sk = sock->sk;
1195 read_descriptor_t rd_desc;
1198 rd_desc.arg.data = queue;
1202 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1207 static void nvme_tcp_io_work(struct work_struct *w)
1209 struct nvme_tcp_queue *queue =
1210 container_of(w, struct nvme_tcp_queue, io_work);
1211 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1214 bool pending = false;
1217 if (mutex_trylock(&queue->send_mutex)) {
1218 result = nvme_tcp_try_send(queue);
1219 mutex_unlock(&queue->send_mutex);
1222 else if (unlikely(result < 0))
1226 result = nvme_tcp_try_recv(queue);
1229 else if (unlikely(result < 0))
1232 if (!pending || !queue->rd_enabled)
1235 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1237 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1240 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1242 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1244 ahash_request_free(queue->rcv_hash);
1245 ahash_request_free(queue->snd_hash);
1246 crypto_free_ahash(tfm);
1249 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1251 struct crypto_ahash *tfm;
1253 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1255 return PTR_ERR(tfm);
1257 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1258 if (!queue->snd_hash)
1260 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1262 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1263 if (!queue->rcv_hash)
1265 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1269 ahash_request_free(queue->snd_hash);
1271 crypto_free_ahash(tfm);
1275 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1277 struct nvme_tcp_request *async = &ctrl->async_req;
1279 page_frag_free(async->pdu);
1282 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1284 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1285 struct nvme_tcp_request *async = &ctrl->async_req;
1286 u8 hdgst = nvme_tcp_hdgst_len(queue);
1288 async->pdu = page_frag_alloc(&queue->pf_cache,
1289 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1290 GFP_KERNEL | __GFP_ZERO);
1294 async->queue = &ctrl->queues[0];
1298 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1301 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1302 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1303 unsigned int noreclaim_flag;
1305 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1308 if (queue->hdr_digest || queue->data_digest)
1309 nvme_tcp_free_crypto(queue);
1311 if (queue->pf_cache.va) {
1312 page = virt_to_head_page(queue->pf_cache.va);
1313 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1314 queue->pf_cache.va = NULL;
1317 noreclaim_flag = memalloc_noreclaim_save();
1318 sock_release(queue->sock);
1319 memalloc_noreclaim_restore(noreclaim_flag);
1322 mutex_destroy(&queue->send_mutex);
1323 mutex_destroy(&queue->queue_lock);
1326 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1328 struct nvme_tcp_icreq_pdu *icreq;
1329 struct nvme_tcp_icresp_pdu *icresp;
1330 struct msghdr msg = {};
1332 bool ctrl_hdgst, ctrl_ddgst;
1336 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1340 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1346 icreq->hdr.type = nvme_tcp_icreq;
1347 icreq->hdr.hlen = sizeof(*icreq);
1349 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1350 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1351 icreq->maxr2t = 0; /* single inflight r2t supported */
1352 icreq->hpda = 0; /* no alignment constraint */
1353 if (queue->hdr_digest)
1354 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1355 if (queue->data_digest)
1356 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1358 iov.iov_base = icreq;
1359 iov.iov_len = sizeof(*icreq);
1360 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1364 memset(&msg, 0, sizeof(msg));
1365 iov.iov_base = icresp;
1366 iov.iov_len = sizeof(*icresp);
1367 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1368 iov.iov_len, msg.msg_flags);
1373 if (icresp->hdr.type != nvme_tcp_icresp) {
1374 pr_err("queue %d: bad type returned %d\n",
1375 nvme_tcp_queue_id(queue), icresp->hdr.type);
1379 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1380 pr_err("queue %d: bad pdu length returned %d\n",
1381 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1385 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1386 pr_err("queue %d: bad pfv returned %d\n",
1387 nvme_tcp_queue_id(queue), icresp->pfv);
1391 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1392 if ((queue->data_digest && !ctrl_ddgst) ||
1393 (!queue->data_digest && ctrl_ddgst)) {
1394 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1395 nvme_tcp_queue_id(queue),
1396 queue->data_digest ? "enabled" : "disabled",
1397 ctrl_ddgst ? "enabled" : "disabled");
1401 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1402 if ((queue->hdr_digest && !ctrl_hdgst) ||
1403 (!queue->hdr_digest && ctrl_hdgst)) {
1404 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1405 nvme_tcp_queue_id(queue),
1406 queue->hdr_digest ? "enabled" : "disabled",
1407 ctrl_hdgst ? "enabled" : "disabled");
1411 if (icresp->cpda != 0) {
1412 pr_err("queue %d: unsupported cpda returned %d\n",
1413 nvme_tcp_queue_id(queue), icresp->cpda);
1417 maxh2cdata = le32_to_cpu(icresp->maxdata);
1418 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1419 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1420 nvme_tcp_queue_id(queue), maxh2cdata);
1423 queue->maxh2cdata = maxh2cdata;
1433 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1435 return nvme_tcp_queue_id(queue) == 0;
1438 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1440 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1441 int qid = nvme_tcp_queue_id(queue);
1443 return !nvme_tcp_admin_queue(queue) &&
1444 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1447 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1449 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1450 int qid = nvme_tcp_queue_id(queue);
1452 return !nvme_tcp_admin_queue(queue) &&
1453 !nvme_tcp_default_queue(queue) &&
1454 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1455 ctrl->io_queues[HCTX_TYPE_READ];
1458 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1460 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1461 int qid = nvme_tcp_queue_id(queue);
1463 return !nvme_tcp_admin_queue(queue) &&
1464 !nvme_tcp_default_queue(queue) &&
1465 !nvme_tcp_read_queue(queue) &&
1466 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1467 ctrl->io_queues[HCTX_TYPE_READ] +
1468 ctrl->io_queues[HCTX_TYPE_POLL];
1471 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1473 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1474 int qid = nvme_tcp_queue_id(queue);
1477 if (nvme_tcp_default_queue(queue))
1479 else if (nvme_tcp_read_queue(queue))
1480 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1481 else if (nvme_tcp_poll_queue(queue))
1482 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1483 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1484 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1487 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1490 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1491 int ret, rcv_pdu_size;
1493 mutex_init(&queue->queue_lock);
1495 init_llist_head(&queue->req_list);
1496 INIT_LIST_HEAD(&queue->send_list);
1497 mutex_init(&queue->send_mutex);
1498 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1501 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1503 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1504 NVME_TCP_ADMIN_CCSZ;
1506 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1507 IPPROTO_TCP, &queue->sock);
1509 dev_err(nctrl->device,
1510 "failed to create socket: %d\n", ret);
1511 goto err_destroy_mutex;
1514 nvme_tcp_reclassify_socket(queue->sock);
1516 /* Single syn retry */
1517 tcp_sock_set_syncnt(queue->sock->sk, 1);
1519 /* Set TCP no delay */
1520 tcp_sock_set_nodelay(queue->sock->sk);
1523 * Cleanup whatever is sitting in the TCP transmit queue on socket
1524 * close. This is done to prevent stale data from being sent should
1525 * the network connection be restored before TCP times out.
1527 sock_no_linger(queue->sock->sk);
1529 if (so_priority > 0)
1530 sock_set_priority(queue->sock->sk, so_priority);
1532 /* Set socket type of service */
1533 if (nctrl->opts->tos >= 0)
1534 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1536 /* Set 10 seconds timeout for icresp recvmsg */
1537 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1539 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1540 queue->sock->sk->sk_use_task_frag = false;
1541 nvme_tcp_set_queue_io_cpu(queue);
1542 queue->request = NULL;
1543 queue->data_remaining = 0;
1544 queue->ddgst_remaining = 0;
1545 queue->pdu_remaining = 0;
1546 queue->pdu_offset = 0;
1547 sk_set_memalloc(queue->sock->sk);
1549 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1550 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1551 sizeof(ctrl->src_addr));
1553 dev_err(nctrl->device,
1554 "failed to bind queue %d socket %d\n",
1560 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1561 char *iface = nctrl->opts->host_iface;
1562 sockptr_t optval = KERNEL_SOCKPTR(iface);
1564 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1565 optval, strlen(iface));
1567 dev_err(nctrl->device,
1568 "failed to bind to interface %s queue %d err %d\n",
1574 queue->hdr_digest = nctrl->opts->hdr_digest;
1575 queue->data_digest = nctrl->opts->data_digest;
1576 if (queue->hdr_digest || queue->data_digest) {
1577 ret = nvme_tcp_alloc_crypto(queue);
1579 dev_err(nctrl->device,
1580 "failed to allocate queue %d crypto\n", qid);
1585 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1586 nvme_tcp_hdgst_len(queue);
1587 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1593 dev_dbg(nctrl->device, "connecting queue %d\n",
1594 nvme_tcp_queue_id(queue));
1596 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1597 sizeof(ctrl->addr), 0);
1599 dev_err(nctrl->device,
1600 "failed to connect socket: %d\n", ret);
1604 ret = nvme_tcp_init_connection(queue);
1606 goto err_init_connect;
1608 queue->rd_enabled = true;
1609 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1610 nvme_tcp_init_recv_ctx(queue);
1612 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1613 queue->sock->sk->sk_user_data = queue;
1614 queue->state_change = queue->sock->sk->sk_state_change;
1615 queue->data_ready = queue->sock->sk->sk_data_ready;
1616 queue->write_space = queue->sock->sk->sk_write_space;
1617 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1618 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1619 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1620 #ifdef CONFIG_NET_RX_BUSY_POLL
1621 queue->sock->sk->sk_ll_usec = 1;
1623 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1628 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1632 if (queue->hdr_digest || queue->data_digest)
1633 nvme_tcp_free_crypto(queue);
1635 sock_release(queue->sock);
1638 mutex_destroy(&queue->send_mutex);
1639 mutex_destroy(&queue->queue_lock);
1643 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1645 struct socket *sock = queue->sock;
1647 write_lock_bh(&sock->sk->sk_callback_lock);
1648 sock->sk->sk_user_data = NULL;
1649 sock->sk->sk_data_ready = queue->data_ready;
1650 sock->sk->sk_state_change = queue->state_change;
1651 sock->sk->sk_write_space = queue->write_space;
1652 write_unlock_bh(&sock->sk->sk_callback_lock);
1655 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1657 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1658 nvme_tcp_restore_sock_calls(queue);
1659 cancel_work_sync(&queue->io_work);
1662 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1664 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1665 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1667 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1670 mutex_lock(&queue->queue_lock);
1671 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1672 __nvme_tcp_stop_queue(queue);
1673 mutex_unlock(&queue->queue_lock);
1676 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1678 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1682 ret = nvmf_connect_io_queue(nctrl, idx);
1684 ret = nvmf_connect_admin_queue(nctrl);
1687 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1689 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1690 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1691 dev_err(nctrl->device,
1692 "failed to connect queue: %d ret=%d\n", idx, ret);
1697 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1699 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1700 cancel_work_sync(&ctrl->async_event_work);
1701 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1702 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1705 nvme_tcp_free_queue(ctrl, 0);
1708 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1712 for (i = 1; i < ctrl->queue_count; i++)
1713 nvme_tcp_free_queue(ctrl, i);
1716 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1720 for (i = 1; i < ctrl->queue_count; i++)
1721 nvme_tcp_stop_queue(ctrl, i);
1724 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1725 int first, int last)
1729 for (i = first; i < last; i++) {
1730 ret = nvme_tcp_start_queue(ctrl, i);
1732 goto out_stop_queues;
1738 for (i--; i >= first; i--)
1739 nvme_tcp_stop_queue(ctrl, i);
1743 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1747 ret = nvme_tcp_alloc_queue(ctrl, 0);
1751 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1753 goto out_free_queue;
1758 nvme_tcp_free_queue(ctrl, 0);
1762 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1766 for (i = 1; i < ctrl->queue_count; i++) {
1767 ret = nvme_tcp_alloc_queue(ctrl, i);
1769 goto out_free_queues;
1775 for (i--; i >= 1; i--)
1776 nvme_tcp_free_queue(ctrl, i);
1781 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1783 unsigned int nr_io_queues;
1785 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1786 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1787 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1789 return nr_io_queues;
1792 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1793 unsigned int nr_io_queues)
1795 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1796 struct nvmf_ctrl_options *opts = nctrl->opts;
1798 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1800 * separate read/write queues
1801 * hand out dedicated default queues only after we have
1802 * sufficient read queues.
1804 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1805 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1806 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1807 min(opts->nr_write_queues, nr_io_queues);
1808 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 * shared read/write queues
1812 * either no write queues were requested, or we don't have
1813 * sufficient queue count to have dedicated default queues.
1815 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1816 min(opts->nr_io_queues, nr_io_queues);
1817 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1820 if (opts->nr_poll_queues && nr_io_queues) {
1821 /* map dedicated poll queues only if we have queues left */
1822 ctrl->io_queues[HCTX_TYPE_POLL] =
1823 min(opts->nr_poll_queues, nr_io_queues);
1827 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1829 unsigned int nr_io_queues;
1832 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1833 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1837 if (nr_io_queues == 0) {
1838 dev_err(ctrl->device,
1839 "unable to set any I/O queues\n");
1843 ctrl->queue_count = nr_io_queues + 1;
1844 dev_info(ctrl->device,
1845 "creating %d I/O queues.\n", nr_io_queues);
1847 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1849 return __nvme_tcp_alloc_io_queues(ctrl);
1852 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1854 nvme_tcp_stop_io_queues(ctrl);
1856 nvme_remove_io_tag_set(ctrl);
1857 nvme_tcp_free_io_queues(ctrl);
1860 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1864 ret = nvme_tcp_alloc_io_queues(ctrl);
1869 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1871 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1872 sizeof(struct nvme_tcp_request));
1874 goto out_free_io_queues;
1878 * Only start IO queues for which we have allocated the tagset
1879 * and limitted it to the available queues. On reconnects, the
1880 * queue number might have changed.
1882 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1883 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1885 goto out_cleanup_connect_q;
1888 nvme_unquiesce_io_queues(ctrl);
1889 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1891 * If we timed out waiting for freeze we are likely to
1892 * be stuck. Fail the controller initialization just
1896 goto out_wait_freeze_timed_out;
1898 blk_mq_update_nr_hw_queues(ctrl->tagset,
1899 ctrl->queue_count - 1);
1900 nvme_unfreeze(ctrl);
1904 * If the number of queues has increased (reconnect case)
1905 * start all new queues now.
1907 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1908 ctrl->tagset->nr_hw_queues + 1);
1910 goto out_wait_freeze_timed_out;
1914 out_wait_freeze_timed_out:
1915 nvme_quiesce_io_queues(ctrl);
1916 nvme_sync_io_queues(ctrl);
1917 nvme_tcp_stop_io_queues(ctrl);
1918 out_cleanup_connect_q:
1919 nvme_cancel_tagset(ctrl);
1921 nvme_remove_io_tag_set(ctrl);
1923 nvme_tcp_free_io_queues(ctrl);
1927 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1929 nvme_tcp_stop_queue(ctrl, 0);
1931 nvme_remove_admin_tag_set(ctrl);
1932 nvme_tcp_free_admin_queue(ctrl);
1935 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1939 error = nvme_tcp_alloc_admin_queue(ctrl);
1944 error = nvme_alloc_admin_tag_set(ctrl,
1945 &to_tcp_ctrl(ctrl)->admin_tag_set,
1946 &nvme_tcp_admin_mq_ops,
1947 sizeof(struct nvme_tcp_request));
1949 goto out_free_queue;
1952 error = nvme_tcp_start_queue(ctrl, 0);
1954 goto out_cleanup_tagset;
1956 error = nvme_enable_ctrl(ctrl);
1958 goto out_stop_queue;
1960 nvme_unquiesce_admin_queue(ctrl);
1962 error = nvme_init_ctrl_finish(ctrl, false);
1964 goto out_quiesce_queue;
1969 nvme_quiesce_admin_queue(ctrl);
1970 blk_sync_queue(ctrl->admin_q);
1972 nvme_tcp_stop_queue(ctrl, 0);
1973 nvme_cancel_admin_tagset(ctrl);
1976 nvme_remove_admin_tag_set(ctrl);
1978 nvme_tcp_free_admin_queue(ctrl);
1982 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1985 nvme_quiesce_admin_queue(ctrl);
1986 blk_sync_queue(ctrl->admin_q);
1987 nvme_tcp_stop_queue(ctrl, 0);
1988 nvme_cancel_admin_tagset(ctrl);
1990 nvme_unquiesce_admin_queue(ctrl);
1991 nvme_tcp_destroy_admin_queue(ctrl, remove);
1994 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1997 if (ctrl->queue_count <= 1)
1999 nvme_quiesce_admin_queue(ctrl);
2000 nvme_start_freeze(ctrl);
2001 nvme_quiesce_io_queues(ctrl);
2002 nvme_sync_io_queues(ctrl);
2003 nvme_tcp_stop_io_queues(ctrl);
2004 nvme_cancel_tagset(ctrl);
2006 nvme_unquiesce_io_queues(ctrl);
2007 nvme_tcp_destroy_io_queues(ctrl, remove);
2010 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2012 /* If we are resetting/deleting then do nothing */
2013 if (ctrl->state != NVME_CTRL_CONNECTING) {
2014 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2015 ctrl->state == NVME_CTRL_LIVE);
2019 if (nvmf_should_reconnect(ctrl)) {
2020 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2021 ctrl->opts->reconnect_delay);
2022 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2023 ctrl->opts->reconnect_delay * HZ);
2025 dev_info(ctrl->device, "Removing controller...\n");
2026 nvme_delete_ctrl(ctrl);
2030 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2032 struct nvmf_ctrl_options *opts = ctrl->opts;
2035 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2041 dev_err(ctrl->device, "icdoff is not supported!\n");
2045 if (!nvme_ctrl_sgl_supported(ctrl)) {
2047 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2051 if (opts->queue_size > ctrl->sqsize + 1)
2052 dev_warn(ctrl->device,
2053 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2054 opts->queue_size, ctrl->sqsize + 1);
2056 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2057 dev_warn(ctrl->device,
2058 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2059 ctrl->sqsize + 1, ctrl->maxcmd);
2060 ctrl->sqsize = ctrl->maxcmd - 1;
2063 if (ctrl->queue_count > 1) {
2064 ret = nvme_tcp_configure_io_queues(ctrl, new);
2069 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2071 * state change failure is ok if we started ctrl delete,
2072 * unless we're during creation of a new controller to
2073 * avoid races with teardown flow.
2075 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2076 ctrl->state != NVME_CTRL_DELETING_NOIO);
2082 nvme_start_ctrl(ctrl);
2086 if (ctrl->queue_count > 1) {
2087 nvme_quiesce_io_queues(ctrl);
2088 nvme_sync_io_queues(ctrl);
2089 nvme_tcp_stop_io_queues(ctrl);
2090 nvme_cancel_tagset(ctrl);
2091 nvme_tcp_destroy_io_queues(ctrl, new);
2094 nvme_quiesce_admin_queue(ctrl);
2095 blk_sync_queue(ctrl->admin_q);
2096 nvme_tcp_stop_queue(ctrl, 0);
2097 nvme_cancel_admin_tagset(ctrl);
2098 nvme_tcp_destroy_admin_queue(ctrl, new);
2102 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2104 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2105 struct nvme_tcp_ctrl, connect_work);
2106 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2108 ++ctrl->nr_reconnects;
2110 if (nvme_tcp_setup_ctrl(ctrl, false))
2113 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2114 ctrl->nr_reconnects);
2116 ctrl->nr_reconnects = 0;
2121 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2122 ctrl->nr_reconnects);
2123 nvme_tcp_reconnect_or_remove(ctrl);
2126 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2128 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2129 struct nvme_tcp_ctrl, err_work);
2130 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2132 nvme_stop_keep_alive(ctrl);
2133 flush_work(&ctrl->async_event_work);
2134 nvme_tcp_teardown_io_queues(ctrl, false);
2135 /* unquiesce to fail fast pending requests */
2136 nvme_unquiesce_io_queues(ctrl);
2137 nvme_tcp_teardown_admin_queue(ctrl, false);
2138 nvme_unquiesce_admin_queue(ctrl);
2139 nvme_auth_stop(ctrl);
2141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2142 /* state change failure is ok if we started ctrl delete */
2143 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2144 ctrl->state != NVME_CTRL_DELETING_NOIO);
2148 nvme_tcp_reconnect_or_remove(ctrl);
2151 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2153 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2154 nvme_quiesce_admin_queue(ctrl);
2155 nvme_disable_ctrl(ctrl, shutdown);
2156 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2159 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2161 nvme_tcp_teardown_ctrl(ctrl, true);
2164 static void nvme_reset_ctrl_work(struct work_struct *work)
2166 struct nvme_ctrl *ctrl =
2167 container_of(work, struct nvme_ctrl, reset_work);
2169 nvme_stop_ctrl(ctrl);
2170 nvme_tcp_teardown_ctrl(ctrl, false);
2172 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2173 /* state change failure is ok if we started ctrl delete */
2174 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2175 ctrl->state != NVME_CTRL_DELETING_NOIO);
2179 if (nvme_tcp_setup_ctrl(ctrl, false))
2185 ++ctrl->nr_reconnects;
2186 nvme_tcp_reconnect_or_remove(ctrl);
2189 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2191 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2192 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2195 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2197 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2199 if (list_empty(&ctrl->list))
2202 mutex_lock(&nvme_tcp_ctrl_mutex);
2203 list_del(&ctrl->list);
2204 mutex_unlock(&nvme_tcp_ctrl_mutex);
2206 nvmf_free_options(nctrl->opts);
2208 kfree(ctrl->queues);
2212 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2214 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2218 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2219 NVME_SGL_FMT_TRANSPORT_A;
2222 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2223 struct nvme_command *c, u32 data_len)
2225 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2227 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2228 sg->length = cpu_to_le32(data_len);
2229 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2232 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2235 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2238 sg->length = cpu_to_le32(data_len);
2239 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2240 NVME_SGL_FMT_TRANSPORT_A;
2243 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2245 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2246 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2247 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2248 struct nvme_command *cmd = &pdu->cmd;
2249 u8 hdgst = nvme_tcp_hdgst_len(queue);
2251 memset(pdu, 0, sizeof(*pdu));
2252 pdu->hdr.type = nvme_tcp_cmd;
2253 if (queue->hdr_digest)
2254 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2255 pdu->hdr.hlen = sizeof(*pdu);
2256 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2258 cmd->common.opcode = nvme_admin_async_event;
2259 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2260 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2261 nvme_tcp_set_sg_null(cmd);
2263 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2264 ctrl->async_req.offset = 0;
2265 ctrl->async_req.curr_bio = NULL;
2266 ctrl->async_req.data_len = 0;
2268 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2271 static void nvme_tcp_complete_timed_out(struct request *rq)
2273 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2274 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2276 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2277 nvmf_complete_timed_out_request(rq);
2280 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2282 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2283 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2284 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2286 dev_warn(ctrl->device,
2287 "queue %d: timeout request %#x type %d\n",
2288 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2290 if (ctrl->state != NVME_CTRL_LIVE) {
2292 * If we are resetting, connecting or deleting we should
2293 * complete immediately because we may block controller
2294 * teardown or setup sequence
2295 * - ctrl disable/shutdown fabrics requests
2296 * - connect requests
2297 * - initialization admin requests
2298 * - I/O requests that entered after unquiescing and
2299 * the controller stopped responding
2301 * All other requests should be cancelled by the error
2302 * recovery work, so it's fine that we fail it here.
2304 nvme_tcp_complete_timed_out(rq);
2309 * LIVE state should trigger the normal error recovery which will
2310 * handle completing this request.
2312 nvme_tcp_error_recovery(ctrl);
2313 return BLK_EH_RESET_TIMER;
2316 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2319 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2320 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2321 struct nvme_command *c = &pdu->cmd;
2323 c->common.flags |= NVME_CMD_SGL_METABUF;
2325 if (!blk_rq_nr_phys_segments(rq))
2326 nvme_tcp_set_sg_null(c);
2327 else if (rq_data_dir(rq) == WRITE &&
2328 req->data_len <= nvme_tcp_inline_data_size(req))
2329 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2331 nvme_tcp_set_sg_host_data(c, req->data_len);
2336 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2339 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2340 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2341 struct nvme_tcp_queue *queue = req->queue;
2342 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2345 ret = nvme_setup_cmd(ns, rq);
2349 req->state = NVME_TCP_SEND_CMD_PDU;
2350 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2355 req->h2cdata_left = 0;
2356 req->data_len = blk_rq_nr_phys_segments(rq) ?
2357 blk_rq_payload_bytes(rq) : 0;
2358 req->curr_bio = rq->bio;
2359 if (req->curr_bio && req->data_len)
2360 nvme_tcp_init_iter(req, rq_data_dir(rq));
2362 if (rq_data_dir(rq) == WRITE &&
2363 req->data_len <= nvme_tcp_inline_data_size(req))
2364 req->pdu_len = req->data_len;
2366 pdu->hdr.type = nvme_tcp_cmd;
2368 if (queue->hdr_digest)
2369 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2370 if (queue->data_digest && req->pdu_len) {
2371 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2372 ddgst = nvme_tcp_ddgst_len(queue);
2374 pdu->hdr.hlen = sizeof(*pdu);
2375 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2377 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2379 ret = nvme_tcp_map_data(queue, rq);
2380 if (unlikely(ret)) {
2381 nvme_cleanup_cmd(rq);
2382 dev_err(queue->ctrl->ctrl.device,
2383 "Failed to map data (%d)\n", ret);
2390 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2392 struct nvme_tcp_queue *queue = hctx->driver_data;
2394 if (!llist_empty(&queue->req_list))
2395 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2398 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2399 const struct blk_mq_queue_data *bd)
2401 struct nvme_ns *ns = hctx->queue->queuedata;
2402 struct nvme_tcp_queue *queue = hctx->driver_data;
2403 struct request *rq = bd->rq;
2404 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2405 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2408 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2409 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2411 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2415 nvme_start_request(rq);
2417 nvme_tcp_queue_request(req, true, bd->last);
2422 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2424 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2425 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2427 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2428 /* separate read/write queues */
2429 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2430 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2431 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2432 set->map[HCTX_TYPE_READ].nr_queues =
2433 ctrl->io_queues[HCTX_TYPE_READ];
2434 set->map[HCTX_TYPE_READ].queue_offset =
2435 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2437 /* shared read/write queues */
2438 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2439 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2440 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2441 set->map[HCTX_TYPE_READ].nr_queues =
2442 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2443 set->map[HCTX_TYPE_READ].queue_offset = 0;
2445 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2446 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2448 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2449 /* map dedicated poll queues only if we have queues left */
2450 set->map[HCTX_TYPE_POLL].nr_queues =
2451 ctrl->io_queues[HCTX_TYPE_POLL];
2452 set->map[HCTX_TYPE_POLL].queue_offset =
2453 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2454 ctrl->io_queues[HCTX_TYPE_READ];
2455 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2458 dev_info(ctrl->ctrl.device,
2459 "mapped %d/%d/%d default/read/poll queues.\n",
2460 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2461 ctrl->io_queues[HCTX_TYPE_READ],
2462 ctrl->io_queues[HCTX_TYPE_POLL]);
2465 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2467 struct nvme_tcp_queue *queue = hctx->driver_data;
2468 struct sock *sk = queue->sock->sk;
2470 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2473 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2474 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2475 sk_busy_loop(sk, true);
2476 nvme_tcp_try_recv(queue);
2477 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2478 return queue->nr_cqe;
2481 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2483 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2484 struct sockaddr_storage src_addr;
2487 len = nvmf_get_address(ctrl, buf, size);
2489 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2492 len--; /* strip trailing newline */
2493 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2494 (len) ? "," : "", &src_addr);
2500 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2501 .queue_rq = nvme_tcp_queue_rq,
2502 .commit_rqs = nvme_tcp_commit_rqs,
2503 .complete = nvme_complete_rq,
2504 .init_request = nvme_tcp_init_request,
2505 .exit_request = nvme_tcp_exit_request,
2506 .init_hctx = nvme_tcp_init_hctx,
2507 .timeout = nvme_tcp_timeout,
2508 .map_queues = nvme_tcp_map_queues,
2509 .poll = nvme_tcp_poll,
2512 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2513 .queue_rq = nvme_tcp_queue_rq,
2514 .complete = nvme_complete_rq,
2515 .init_request = nvme_tcp_init_request,
2516 .exit_request = nvme_tcp_exit_request,
2517 .init_hctx = nvme_tcp_init_admin_hctx,
2518 .timeout = nvme_tcp_timeout,
2521 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2523 .module = THIS_MODULE,
2524 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2525 .reg_read32 = nvmf_reg_read32,
2526 .reg_read64 = nvmf_reg_read64,
2527 .reg_write32 = nvmf_reg_write32,
2528 .free_ctrl = nvme_tcp_free_ctrl,
2529 .submit_async_event = nvme_tcp_submit_async_event,
2530 .delete_ctrl = nvme_tcp_delete_ctrl,
2531 .get_address = nvme_tcp_get_address,
2532 .stop_ctrl = nvme_tcp_stop_ctrl,
2536 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2538 struct nvme_tcp_ctrl *ctrl;
2541 mutex_lock(&nvme_tcp_ctrl_mutex);
2542 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2543 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2547 mutex_unlock(&nvme_tcp_ctrl_mutex);
2552 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2553 struct nvmf_ctrl_options *opts)
2555 struct nvme_tcp_ctrl *ctrl;
2558 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2560 return ERR_PTR(-ENOMEM);
2562 INIT_LIST_HEAD(&ctrl->list);
2563 ctrl->ctrl.opts = opts;
2564 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2565 opts->nr_poll_queues + 1;
2566 ctrl->ctrl.sqsize = opts->queue_size - 1;
2567 ctrl->ctrl.kato = opts->kato;
2569 INIT_DELAYED_WORK(&ctrl->connect_work,
2570 nvme_tcp_reconnect_ctrl_work);
2571 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2572 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2574 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2576 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2577 if (!opts->trsvcid) {
2581 opts->mask |= NVMF_OPT_TRSVCID;
2584 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2585 opts->traddr, opts->trsvcid, &ctrl->addr);
2587 pr_err("malformed address passed: %s:%s\n",
2588 opts->traddr, opts->trsvcid);
2592 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2593 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2594 opts->host_traddr, NULL, &ctrl->src_addr);
2596 pr_err("malformed src address passed: %s\n",
2602 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2603 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2604 pr_err("invalid interface passed: %s\n",
2611 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2616 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2618 if (!ctrl->queues) {
2623 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2625 goto out_kfree_queues;
2627 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2630 goto out_uninit_ctrl;
2633 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2635 goto out_uninit_ctrl;
2637 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2638 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2640 mutex_lock(&nvme_tcp_ctrl_mutex);
2641 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2642 mutex_unlock(&nvme_tcp_ctrl_mutex);
2647 nvme_uninit_ctrl(&ctrl->ctrl);
2648 nvme_put_ctrl(&ctrl->ctrl);
2651 return ERR_PTR(ret);
2653 kfree(ctrl->queues);
2656 return ERR_PTR(ret);
2659 static struct nvmf_transport_ops nvme_tcp_transport = {
2661 .module = THIS_MODULE,
2662 .required_opts = NVMF_OPT_TRADDR,
2663 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2664 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2665 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2666 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2667 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2668 .create_ctrl = nvme_tcp_create_ctrl,
2671 static int __init nvme_tcp_init_module(void)
2673 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2674 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2678 nvmf_register_transport(&nvme_tcp_transport);
2682 static void __exit nvme_tcp_cleanup_module(void)
2684 struct nvme_tcp_ctrl *ctrl;
2686 nvmf_unregister_transport(&nvme_tcp_transport);
2688 mutex_lock(&nvme_tcp_ctrl_mutex);
2689 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2690 nvme_delete_ctrl(&ctrl->ctrl);
2691 mutex_unlock(&nvme_tcp_ctrl_mutex);
2692 flush_workqueue(nvme_delete_wq);
2694 destroy_workqueue(nvme_tcp_wq);
2697 module_init(nvme_tcp_init_module);
2698 module_exit(nvme_tcp_cleanup_module);
2700 MODULE_LICENSE("GPL v2");