1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/kstrtox.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include "input-compat.h"
28 #include "input-core-private.h"
29 #include "input-poller.h"
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
35 #define INPUT_MAX_CHAR_DEVICES 1024
36 #define INPUT_FIRST_DYNAMIC_DEV 256
37 static DEFINE_IDA(input_ida);
39 static LIST_HEAD(input_dev_list);
40 static LIST_HEAD(input_handler_list);
43 * input_mutex protects access to both input_dev_list and input_handler_list.
44 * This also causes input_[un]register_device and input_[un]register_handler
45 * be mutually exclusive which simplifies locking in drivers implementing
48 static DEFINE_MUTEX(input_mutex);
50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 static const unsigned int input_max_code[EV_CNT] = {
63 static inline int is_event_supported(unsigned int code,
64 unsigned long *bm, unsigned int max)
66 return code <= max && test_bit(code, bm);
69 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 if (value > old_val - fuzz && value < old_val + fuzz)
76 return (old_val * 3 + value) / 4;
78 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
79 return (old_val + value) / 2;
85 static void input_start_autorepeat(struct input_dev *dev, int code)
87 if (test_bit(EV_REP, dev->evbit) &&
88 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
89 dev->timer.function) {
90 dev->repeat_key = code;
91 mod_timer(&dev->timer,
92 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
96 static void input_stop_autorepeat(struct input_dev *dev)
98 del_timer(&dev->timer);
102 * Pass event first through all filters and then, if event has not been
103 * filtered out, through all open handles. This function is called with
104 * dev->event_lock held and interrupts disabled.
106 static unsigned int input_to_handler(struct input_handle *handle,
107 struct input_value *vals, unsigned int count)
109 struct input_handler *handler = handle->handler;
110 struct input_value *end = vals;
111 struct input_value *v;
113 if (handler->filter) {
114 for (v = vals; v != vals + count; v++) {
115 if (handler->filter(handle, v->type, v->code, v->value))
128 handler->events(handle, vals, count);
129 else if (handler->event)
130 for (v = vals; v != vals + count; v++)
131 handler->event(handle, v->type, v->code, v->value);
137 * Pass values first through all filters and then, if event has not been
138 * filtered out, through all open handles. This function is called with
139 * dev->event_lock held and interrupts disabled.
141 static void input_pass_values(struct input_dev *dev,
142 struct input_value *vals, unsigned int count)
144 struct input_handle *handle;
145 struct input_value *v;
147 lockdep_assert_held(&dev->event_lock);
154 handle = rcu_dereference(dev->grab);
156 count = input_to_handler(handle, vals, count);
158 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
160 count = input_to_handler(handle, vals, count);
168 /* trigger auto repeat for key events */
169 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
170 for (v = vals; v != vals + count; v++) {
171 if (v->type == EV_KEY && v->value != 2) {
173 input_start_autorepeat(dev, v->code);
175 input_stop_autorepeat(dev);
181 #define INPUT_IGNORE_EVENT 0
182 #define INPUT_PASS_TO_HANDLERS 1
183 #define INPUT_PASS_TO_DEVICE 2
185 #define INPUT_FLUSH 8
186 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
188 static int input_handle_abs_event(struct input_dev *dev,
189 unsigned int code, int *pval)
191 struct input_mt *mt = dev->mt;
195 if (code == ABS_MT_SLOT) {
197 * "Stage" the event; we'll flush it later, when we
198 * get actual touch data.
200 if (mt && *pval >= 0 && *pval < mt->num_slots)
203 return INPUT_IGNORE_EVENT;
206 is_mt_event = input_is_mt_value(code);
209 pold = &dev->absinfo[code].value;
211 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
214 * Bypass filtering for multi-touch events when
215 * not employing slots.
221 *pval = input_defuzz_abs_event(*pval, *pold,
222 dev->absinfo[code].fuzz);
224 return INPUT_IGNORE_EVENT;
229 /* Flush pending "slot" event */
230 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
231 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
232 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
235 return INPUT_PASS_TO_HANDLERS;
238 static int input_get_disposition(struct input_dev *dev,
239 unsigned int type, unsigned int code, int *pval)
241 int disposition = INPUT_IGNORE_EVENT;
244 /* filter-out events from inhibited devices */
246 return INPUT_IGNORE_EVENT;
253 disposition = INPUT_PASS_TO_ALL;
257 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
260 disposition = INPUT_PASS_TO_HANDLERS;
266 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
268 /* auto-repeat bypasses state updates */
270 disposition = INPUT_PASS_TO_HANDLERS;
274 if (!!test_bit(code, dev->key) != !!value) {
276 __change_bit(code, dev->key);
277 disposition = INPUT_PASS_TO_HANDLERS;
283 if (is_event_supported(code, dev->swbit, SW_MAX) &&
284 !!test_bit(code, dev->sw) != !!value) {
286 __change_bit(code, dev->sw);
287 disposition = INPUT_PASS_TO_HANDLERS;
292 if (is_event_supported(code, dev->absbit, ABS_MAX))
293 disposition = input_handle_abs_event(dev, code, &value);
298 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
299 disposition = INPUT_PASS_TO_HANDLERS;
304 if (is_event_supported(code, dev->mscbit, MSC_MAX))
305 disposition = INPUT_PASS_TO_ALL;
310 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
311 !!test_bit(code, dev->led) != !!value) {
313 __change_bit(code, dev->led);
314 disposition = INPUT_PASS_TO_ALL;
319 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
321 if (!!test_bit(code, dev->snd) != !!value)
322 __change_bit(code, dev->snd);
323 disposition = INPUT_PASS_TO_ALL;
328 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
329 dev->rep[code] = value;
330 disposition = INPUT_PASS_TO_ALL;
336 disposition = INPUT_PASS_TO_ALL;
340 disposition = INPUT_PASS_TO_ALL;
348 static void input_event_dispose(struct input_dev *dev, int disposition,
349 unsigned int type, unsigned int code, int value)
351 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
352 dev->event(dev, type, code, value);
357 if (disposition & INPUT_PASS_TO_HANDLERS) {
358 struct input_value *v;
360 if (disposition & INPUT_SLOT) {
361 v = &dev->vals[dev->num_vals++];
363 v->code = ABS_MT_SLOT;
364 v->value = dev->mt->slot;
367 v = &dev->vals[dev->num_vals++];
373 if (disposition & INPUT_FLUSH) {
374 if (dev->num_vals >= 2)
375 input_pass_values(dev, dev->vals, dev->num_vals);
378 * Reset the timestamp on flush so we won't end up
379 * with a stale one. Note we only need to reset the
380 * monolithic one as we use its presence when deciding
381 * whether to generate a synthetic timestamp.
383 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
384 } else if (dev->num_vals >= dev->max_vals - 2) {
385 dev->vals[dev->num_vals++] = input_value_sync;
386 input_pass_values(dev, dev->vals, dev->num_vals);
391 void input_handle_event(struct input_dev *dev,
392 unsigned int type, unsigned int code, int value)
396 lockdep_assert_held(&dev->event_lock);
398 disposition = input_get_disposition(dev, type, code, &value);
399 if (disposition != INPUT_IGNORE_EVENT) {
401 add_input_randomness(type, code, value);
403 input_event_dispose(dev, disposition, type, code, value);
408 * input_event() - report new input event
409 * @dev: device that generated the event
410 * @type: type of the event
412 * @value: value of the event
414 * This function should be used by drivers implementing various input
415 * devices to report input events. See also input_inject_event().
417 * NOTE: input_event() may be safely used right after input device was
418 * allocated with input_allocate_device(), even before it is registered
419 * with input_register_device(), but the event will not reach any of the
420 * input handlers. Such early invocation of input_event() may be used
421 * to 'seed' initial state of a switch or initial position of absolute
424 void input_event(struct input_dev *dev,
425 unsigned int type, unsigned int code, int value)
429 if (is_event_supported(type, dev->evbit, EV_MAX)) {
431 spin_lock_irqsave(&dev->event_lock, flags);
432 input_handle_event(dev, type, code, value);
433 spin_unlock_irqrestore(&dev->event_lock, flags);
436 EXPORT_SYMBOL(input_event);
439 * input_inject_event() - send input event from input handler
440 * @handle: input handle to send event through
441 * @type: type of the event
443 * @value: value of the event
445 * Similar to input_event() but will ignore event if device is
446 * "grabbed" and handle injecting event is not the one that owns
449 void input_inject_event(struct input_handle *handle,
450 unsigned int type, unsigned int code, int value)
452 struct input_dev *dev = handle->dev;
453 struct input_handle *grab;
456 if (is_event_supported(type, dev->evbit, EV_MAX)) {
457 spin_lock_irqsave(&dev->event_lock, flags);
460 grab = rcu_dereference(dev->grab);
461 if (!grab || grab == handle)
462 input_handle_event(dev, type, code, value);
465 spin_unlock_irqrestore(&dev->event_lock, flags);
468 EXPORT_SYMBOL(input_inject_event);
471 * input_alloc_absinfo - allocates array of input_absinfo structs
472 * @dev: the input device emitting absolute events
474 * If the absinfo struct the caller asked for is already allocated, this
475 * functions will not do anything.
477 void input_alloc_absinfo(struct input_dev *dev)
482 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
484 dev_err(dev->dev.parent ?: &dev->dev,
485 "%s: unable to allocate memory\n", __func__);
487 * We will handle this allocation failure in
488 * input_register_device() when we refuse to register input
489 * device with ABS bits but without absinfo.
493 EXPORT_SYMBOL(input_alloc_absinfo);
495 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
496 int min, int max, int fuzz, int flat)
498 struct input_absinfo *absinfo;
500 __set_bit(EV_ABS, dev->evbit);
501 __set_bit(axis, dev->absbit);
503 input_alloc_absinfo(dev);
507 absinfo = &dev->absinfo[axis];
508 absinfo->minimum = min;
509 absinfo->maximum = max;
510 absinfo->fuzz = fuzz;
511 absinfo->flat = flat;
513 EXPORT_SYMBOL(input_set_abs_params);
516 * input_copy_abs - Copy absinfo from one input_dev to another
517 * @dst: Destination input device to copy the abs settings to
518 * @dst_axis: ABS_* value selecting the destination axis
519 * @src: Source input device to copy the abs settings from
520 * @src_axis: ABS_* value selecting the source axis
522 * Set absinfo for the selected destination axis by copying it from
523 * the specified source input device's source axis.
524 * This is useful to e.g. setup a pen/stylus input-device for combined
525 * touchscreen/pen hardware where the pen uses the same coordinates as
528 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
529 const struct input_dev *src, unsigned int src_axis)
531 /* src must have EV_ABS and src_axis set */
532 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
533 test_bit(src_axis, src->absbit))))
537 * input_alloc_absinfo() may have failed for the source. Our caller is
538 * expected to catch this when registering the input devices, which may
539 * happen after the input_copy_abs() call.
544 input_set_capability(dst, EV_ABS, dst_axis);
548 dst->absinfo[dst_axis] = src->absinfo[src_axis];
550 EXPORT_SYMBOL(input_copy_abs);
553 * input_grab_device - grabs device for exclusive use
554 * @handle: input handle that wants to own the device
556 * When a device is grabbed by an input handle all events generated by
557 * the device are delivered only to this handle. Also events injected
558 * by other input handles are ignored while device is grabbed.
560 int input_grab_device(struct input_handle *handle)
562 struct input_dev *dev = handle->dev;
565 retval = mutex_lock_interruptible(&dev->mutex);
574 rcu_assign_pointer(dev->grab, handle);
577 mutex_unlock(&dev->mutex);
580 EXPORT_SYMBOL(input_grab_device);
582 static void __input_release_device(struct input_handle *handle)
584 struct input_dev *dev = handle->dev;
585 struct input_handle *grabber;
587 grabber = rcu_dereference_protected(dev->grab,
588 lockdep_is_held(&dev->mutex));
589 if (grabber == handle) {
590 rcu_assign_pointer(dev->grab, NULL);
591 /* Make sure input_pass_values() notices that grab is gone */
594 list_for_each_entry(handle, &dev->h_list, d_node)
595 if (handle->open && handle->handler->start)
596 handle->handler->start(handle);
601 * input_release_device - release previously grabbed device
602 * @handle: input handle that owns the device
604 * Releases previously grabbed device so that other input handles can
605 * start receiving input events. Upon release all handlers attached
606 * to the device have their start() method called so they have a change
607 * to synchronize device state with the rest of the system.
609 void input_release_device(struct input_handle *handle)
611 struct input_dev *dev = handle->dev;
613 mutex_lock(&dev->mutex);
614 __input_release_device(handle);
615 mutex_unlock(&dev->mutex);
617 EXPORT_SYMBOL(input_release_device);
620 * input_open_device - open input device
621 * @handle: handle through which device is being accessed
623 * This function should be called by input handlers when they
624 * want to start receive events from given input device.
626 int input_open_device(struct input_handle *handle)
628 struct input_dev *dev = handle->dev;
631 retval = mutex_lock_interruptible(&dev->mutex);
635 if (dev->going_away) {
642 if (dev->users++ || dev->inhibited) {
644 * Device is already opened and/or inhibited,
645 * so we can exit immediately and report success.
651 retval = dev->open(dev);
656 * Make sure we are not delivering any more events
657 * through this handle
665 input_dev_poller_start(dev->poller);
668 mutex_unlock(&dev->mutex);
671 EXPORT_SYMBOL(input_open_device);
673 int input_flush_device(struct input_handle *handle, struct file *file)
675 struct input_dev *dev = handle->dev;
678 retval = mutex_lock_interruptible(&dev->mutex);
683 retval = dev->flush(dev, file);
685 mutex_unlock(&dev->mutex);
688 EXPORT_SYMBOL(input_flush_device);
691 * input_close_device - close input device
692 * @handle: handle through which device is being accessed
694 * This function should be called by input handlers when they
695 * want to stop receive events from given input device.
697 void input_close_device(struct input_handle *handle)
699 struct input_dev *dev = handle->dev;
701 mutex_lock(&dev->mutex);
703 __input_release_device(handle);
705 if (!dev->inhibited && !--dev->users) {
707 input_dev_poller_stop(dev->poller);
712 if (!--handle->open) {
714 * synchronize_rcu() makes sure that input_pass_values()
715 * completed and that no more input events are delivered
716 * through this handle
721 mutex_unlock(&dev->mutex);
723 EXPORT_SYMBOL(input_close_device);
726 * Simulate keyup events for all keys that are marked as pressed.
727 * The function must be called with dev->event_lock held.
729 static bool input_dev_release_keys(struct input_dev *dev)
731 bool need_sync = false;
734 lockdep_assert_held(&dev->event_lock);
736 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
737 for_each_set_bit(code, dev->key, KEY_CNT) {
738 input_handle_event(dev, EV_KEY, code, 0);
747 * Prepare device for unregistering
749 static void input_disconnect_device(struct input_dev *dev)
751 struct input_handle *handle;
754 * Mark device as going away. Note that we take dev->mutex here
755 * not to protect access to dev->going_away but rather to ensure
756 * that there are no threads in the middle of input_open_device()
758 mutex_lock(&dev->mutex);
759 dev->going_away = true;
760 mutex_unlock(&dev->mutex);
762 spin_lock_irq(&dev->event_lock);
765 * Simulate keyup events for all pressed keys so that handlers
766 * are not left with "stuck" keys. The driver may continue
767 * generate events even after we done here but they will not
768 * reach any handlers.
770 if (input_dev_release_keys(dev))
771 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
773 list_for_each_entry(handle, &dev->h_list, d_node)
776 spin_unlock_irq(&dev->event_lock);
780 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
781 * @ke: keymap entry containing scancode to be converted.
782 * @scancode: pointer to the location where converted scancode should
785 * This function is used to convert scancode stored in &struct keymap_entry
786 * into scalar form understood by legacy keymap handling methods. These
787 * methods expect scancodes to be represented as 'unsigned int'.
789 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
790 unsigned int *scancode)
794 *scancode = *((u8 *)ke->scancode);
798 *scancode = *((u16 *)ke->scancode);
802 *scancode = *((u32 *)ke->scancode);
811 EXPORT_SYMBOL(input_scancode_to_scalar);
814 * Those routines handle the default case where no [gs]etkeycode() is
815 * defined. In this case, an array indexed by the scancode is used.
818 static unsigned int input_fetch_keycode(struct input_dev *dev,
821 switch (dev->keycodesize) {
823 return ((u8 *)dev->keycode)[index];
826 return ((u16 *)dev->keycode)[index];
829 return ((u32 *)dev->keycode)[index];
833 static int input_default_getkeycode(struct input_dev *dev,
834 struct input_keymap_entry *ke)
839 if (!dev->keycodesize)
842 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
845 error = input_scancode_to_scalar(ke, &index);
850 if (index >= dev->keycodemax)
853 ke->keycode = input_fetch_keycode(dev, index);
855 ke->len = sizeof(index);
856 memcpy(ke->scancode, &index, sizeof(index));
861 static int input_default_setkeycode(struct input_dev *dev,
862 const struct input_keymap_entry *ke,
863 unsigned int *old_keycode)
869 if (!dev->keycodesize)
872 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
875 error = input_scancode_to_scalar(ke, &index);
880 if (index >= dev->keycodemax)
883 if (dev->keycodesize < sizeof(ke->keycode) &&
884 (ke->keycode >> (dev->keycodesize * 8)))
887 switch (dev->keycodesize) {
889 u8 *k = (u8 *)dev->keycode;
890 *old_keycode = k[index];
891 k[index] = ke->keycode;
895 u16 *k = (u16 *)dev->keycode;
896 *old_keycode = k[index];
897 k[index] = ke->keycode;
901 u32 *k = (u32 *)dev->keycode;
902 *old_keycode = k[index];
903 k[index] = ke->keycode;
908 if (*old_keycode <= KEY_MAX) {
909 __clear_bit(*old_keycode, dev->keybit);
910 for (i = 0; i < dev->keycodemax; i++) {
911 if (input_fetch_keycode(dev, i) == *old_keycode) {
912 __set_bit(*old_keycode, dev->keybit);
913 /* Setting the bit twice is useless, so break */
919 __set_bit(ke->keycode, dev->keybit);
924 * input_get_keycode - retrieve keycode currently mapped to a given scancode
925 * @dev: input device which keymap is being queried
928 * This function should be called by anyone interested in retrieving current
929 * keymap. Presently evdev handlers use it.
931 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
936 spin_lock_irqsave(&dev->event_lock, flags);
937 retval = dev->getkeycode(dev, ke);
938 spin_unlock_irqrestore(&dev->event_lock, flags);
942 EXPORT_SYMBOL(input_get_keycode);
945 * input_set_keycode - attribute a keycode to a given scancode
946 * @dev: input device which keymap is being updated
947 * @ke: new keymap entry
949 * This function should be called by anyone needing to update current
950 * keymap. Presently keyboard and evdev handlers use it.
952 int input_set_keycode(struct input_dev *dev,
953 const struct input_keymap_entry *ke)
956 unsigned int old_keycode;
959 if (ke->keycode > KEY_MAX)
962 spin_lock_irqsave(&dev->event_lock, flags);
964 retval = dev->setkeycode(dev, ke, &old_keycode);
968 /* Make sure KEY_RESERVED did not get enabled. */
969 __clear_bit(KEY_RESERVED, dev->keybit);
972 * Simulate keyup event if keycode is not present
973 * in the keymap anymore
975 if (old_keycode > KEY_MAX) {
976 dev_warn(dev->dev.parent ?: &dev->dev,
977 "%s: got too big old keycode %#x\n",
978 __func__, old_keycode);
979 } else if (test_bit(EV_KEY, dev->evbit) &&
980 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
981 __test_and_clear_bit(old_keycode, dev->key)) {
983 * We have to use input_event_dispose() here directly instead
984 * of input_handle_event() because the key we want to release
985 * here is considered no longer supported by the device and
986 * input_handle_event() will ignore it.
988 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
989 EV_KEY, old_keycode, 0);
990 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
991 EV_SYN, SYN_REPORT, 1);
995 spin_unlock_irqrestore(&dev->event_lock, flags);
999 EXPORT_SYMBOL(input_set_keycode);
1001 bool input_match_device_id(const struct input_dev *dev,
1002 const struct input_device_id *id)
1004 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1005 if (id->bustype != dev->id.bustype)
1008 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1009 if (id->vendor != dev->id.vendor)
1012 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1013 if (id->product != dev->id.product)
1016 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1017 if (id->version != dev->id.version)
1020 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1021 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1022 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1023 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1024 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1025 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1026 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1027 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1028 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1029 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1035 EXPORT_SYMBOL(input_match_device_id);
1037 static const struct input_device_id *input_match_device(struct input_handler *handler,
1038 struct input_dev *dev)
1040 const struct input_device_id *id;
1042 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1043 if (input_match_device_id(dev, id) &&
1044 (!handler->match || handler->match(handler, dev))) {
1052 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1054 const struct input_device_id *id;
1057 id = input_match_device(handler, dev);
1061 error = handler->connect(handler, dev, id);
1062 if (error && error != -ENODEV)
1063 pr_err("failed to attach handler %s to device %s, error: %d\n",
1064 handler->name, kobject_name(&dev->dev.kobj), error);
1069 #ifdef CONFIG_COMPAT
1071 static int input_bits_to_string(char *buf, int buf_size,
1072 unsigned long bits, bool skip_empty)
1076 if (in_compat_syscall()) {
1077 u32 dword = bits >> 32;
1078 if (dword || !skip_empty)
1079 len += snprintf(buf, buf_size, "%x ", dword);
1081 dword = bits & 0xffffffffUL;
1082 if (dword || !skip_empty || len)
1083 len += snprintf(buf + len, max(buf_size - len, 0),
1086 if (bits || !skip_empty)
1087 len += snprintf(buf, buf_size, "%lx", bits);
1093 #else /* !CONFIG_COMPAT */
1095 static int input_bits_to_string(char *buf, int buf_size,
1096 unsigned long bits, bool skip_empty)
1098 return bits || !skip_empty ?
1099 snprintf(buf, buf_size, "%lx", bits) : 0;
1104 #ifdef CONFIG_PROC_FS
1106 static struct proc_dir_entry *proc_bus_input_dir;
1107 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1108 static int input_devices_state;
1110 static inline void input_wakeup_procfs_readers(void)
1112 input_devices_state++;
1113 wake_up(&input_devices_poll_wait);
1116 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1118 poll_wait(file, &input_devices_poll_wait, wait);
1119 if (file->f_version != input_devices_state) {
1120 file->f_version = input_devices_state;
1121 return EPOLLIN | EPOLLRDNORM;
1127 union input_seq_state {
1130 bool mutex_acquired;
1135 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1137 union input_seq_state *state = (union input_seq_state *)&seq->private;
1140 /* We need to fit into seq->private pointer */
1141 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1143 error = mutex_lock_interruptible(&input_mutex);
1145 state->mutex_acquired = false;
1146 return ERR_PTR(error);
1149 state->mutex_acquired = true;
1151 return seq_list_start(&input_dev_list, *pos);
1154 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1156 return seq_list_next(v, &input_dev_list, pos);
1159 static void input_seq_stop(struct seq_file *seq, void *v)
1161 union input_seq_state *state = (union input_seq_state *)&seq->private;
1163 if (state->mutex_acquired)
1164 mutex_unlock(&input_mutex);
1167 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1168 unsigned long *bitmap, int max)
1171 bool skip_empty = true;
1174 seq_printf(seq, "B: %s=", name);
1176 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1177 if (input_bits_to_string(buf, sizeof(buf),
1178 bitmap[i], skip_empty)) {
1180 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1185 * If no output was produced print a single 0.
1190 seq_putc(seq, '\n');
1193 static int input_devices_seq_show(struct seq_file *seq, void *v)
1195 struct input_dev *dev = container_of(v, struct input_dev, node);
1196 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1197 struct input_handle *handle;
1199 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1200 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1202 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1203 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1204 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1205 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1206 seq_puts(seq, "H: Handlers=");
1208 list_for_each_entry(handle, &dev->h_list, d_node)
1209 seq_printf(seq, "%s ", handle->name);
1210 seq_putc(seq, '\n');
1212 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1214 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1215 if (test_bit(EV_KEY, dev->evbit))
1216 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1217 if (test_bit(EV_REL, dev->evbit))
1218 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1219 if (test_bit(EV_ABS, dev->evbit))
1220 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1221 if (test_bit(EV_MSC, dev->evbit))
1222 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1223 if (test_bit(EV_LED, dev->evbit))
1224 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1225 if (test_bit(EV_SND, dev->evbit))
1226 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1227 if (test_bit(EV_FF, dev->evbit))
1228 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1229 if (test_bit(EV_SW, dev->evbit))
1230 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1232 seq_putc(seq, '\n');
1238 static const struct seq_operations input_devices_seq_ops = {
1239 .start = input_devices_seq_start,
1240 .next = input_devices_seq_next,
1241 .stop = input_seq_stop,
1242 .show = input_devices_seq_show,
1245 static int input_proc_devices_open(struct inode *inode, struct file *file)
1247 return seq_open(file, &input_devices_seq_ops);
1250 static const struct proc_ops input_devices_proc_ops = {
1251 .proc_open = input_proc_devices_open,
1252 .proc_poll = input_proc_devices_poll,
1253 .proc_read = seq_read,
1254 .proc_lseek = seq_lseek,
1255 .proc_release = seq_release,
1258 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1260 union input_seq_state *state = (union input_seq_state *)&seq->private;
1263 /* We need to fit into seq->private pointer */
1264 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1266 error = mutex_lock_interruptible(&input_mutex);
1268 state->mutex_acquired = false;
1269 return ERR_PTR(error);
1272 state->mutex_acquired = true;
1275 return seq_list_start(&input_handler_list, *pos);
1278 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1280 union input_seq_state *state = (union input_seq_state *)&seq->private;
1282 state->pos = *pos + 1;
1283 return seq_list_next(v, &input_handler_list, pos);
1286 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1288 struct input_handler *handler = container_of(v, struct input_handler, node);
1289 union input_seq_state *state = (union input_seq_state *)&seq->private;
1291 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1292 if (handler->filter)
1293 seq_puts(seq, " (filter)");
1294 if (handler->legacy_minors)
1295 seq_printf(seq, " Minor=%d", handler->minor);
1296 seq_putc(seq, '\n');
1301 static const struct seq_operations input_handlers_seq_ops = {
1302 .start = input_handlers_seq_start,
1303 .next = input_handlers_seq_next,
1304 .stop = input_seq_stop,
1305 .show = input_handlers_seq_show,
1308 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1310 return seq_open(file, &input_handlers_seq_ops);
1313 static const struct proc_ops input_handlers_proc_ops = {
1314 .proc_open = input_proc_handlers_open,
1315 .proc_read = seq_read,
1316 .proc_lseek = seq_lseek,
1317 .proc_release = seq_release,
1320 static int __init input_proc_init(void)
1322 struct proc_dir_entry *entry;
1324 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1325 if (!proc_bus_input_dir)
1328 entry = proc_create("devices", 0, proc_bus_input_dir,
1329 &input_devices_proc_ops);
1333 entry = proc_create("handlers", 0, proc_bus_input_dir,
1334 &input_handlers_proc_ops);
1340 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1341 fail1: remove_proc_entry("bus/input", NULL);
1345 static void input_proc_exit(void)
1347 remove_proc_entry("devices", proc_bus_input_dir);
1348 remove_proc_entry("handlers", proc_bus_input_dir);
1349 remove_proc_entry("bus/input", NULL);
1352 #else /* !CONFIG_PROC_FS */
1353 static inline void input_wakeup_procfs_readers(void) { }
1354 static inline int input_proc_init(void) { return 0; }
1355 static inline void input_proc_exit(void) { }
1358 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1359 static ssize_t input_dev_show_##name(struct device *dev, \
1360 struct device_attribute *attr, \
1363 struct input_dev *input_dev = to_input_dev(dev); \
1365 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1366 input_dev->name ? input_dev->name : ""); \
1368 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1370 INPUT_DEV_STRING_ATTR_SHOW(name);
1371 INPUT_DEV_STRING_ATTR_SHOW(phys);
1372 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1374 static int input_print_modalias_bits(char *buf, int size,
1375 char name, unsigned long *bm,
1376 unsigned int min_bit, unsigned int max_bit)
1380 len += snprintf(buf, max(size, 0), "%c", name);
1381 for (i = min_bit; i < max_bit; i++)
1382 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1383 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1387 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1392 len = snprintf(buf, max(size, 0),
1393 "input:b%04Xv%04Xp%04Xe%04X-",
1394 id->id.bustype, id->id.vendor,
1395 id->id.product, id->id.version);
1397 len += input_print_modalias_bits(buf + len, size - len,
1398 'e', id->evbit, 0, EV_MAX);
1399 len += input_print_modalias_bits(buf + len, size - len,
1400 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1401 len += input_print_modalias_bits(buf + len, size - len,
1402 'r', id->relbit, 0, REL_MAX);
1403 len += input_print_modalias_bits(buf + len, size - len,
1404 'a', id->absbit, 0, ABS_MAX);
1405 len += input_print_modalias_bits(buf + len, size - len,
1406 'm', id->mscbit, 0, MSC_MAX);
1407 len += input_print_modalias_bits(buf + len, size - len,
1408 'l', id->ledbit, 0, LED_MAX);
1409 len += input_print_modalias_bits(buf + len, size - len,
1410 's', id->sndbit, 0, SND_MAX);
1411 len += input_print_modalias_bits(buf + len, size - len,
1412 'f', id->ffbit, 0, FF_MAX);
1413 len += input_print_modalias_bits(buf + len, size - len,
1414 'w', id->swbit, 0, SW_MAX);
1417 len += snprintf(buf + len, max(size - len, 0), "\n");
1422 static ssize_t input_dev_show_modalias(struct device *dev,
1423 struct device_attribute *attr,
1426 struct input_dev *id = to_input_dev(dev);
1429 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1431 return min_t(int, len, PAGE_SIZE);
1433 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1435 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1436 int max, int add_cr);
1438 static ssize_t input_dev_show_properties(struct device *dev,
1439 struct device_attribute *attr,
1442 struct input_dev *input_dev = to_input_dev(dev);
1443 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1444 INPUT_PROP_MAX, true);
1445 return min_t(int, len, PAGE_SIZE);
1447 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1449 static int input_inhibit_device(struct input_dev *dev);
1450 static int input_uninhibit_device(struct input_dev *dev);
1452 static ssize_t inhibited_show(struct device *dev,
1453 struct device_attribute *attr,
1456 struct input_dev *input_dev = to_input_dev(dev);
1458 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1461 static ssize_t inhibited_store(struct device *dev,
1462 struct device_attribute *attr, const char *buf,
1465 struct input_dev *input_dev = to_input_dev(dev);
1469 if (kstrtobool(buf, &inhibited))
1473 rv = input_inhibit_device(input_dev);
1475 rv = input_uninhibit_device(input_dev);
1483 static DEVICE_ATTR_RW(inhibited);
1485 static struct attribute *input_dev_attrs[] = {
1486 &dev_attr_name.attr,
1487 &dev_attr_phys.attr,
1488 &dev_attr_uniq.attr,
1489 &dev_attr_modalias.attr,
1490 &dev_attr_properties.attr,
1491 &dev_attr_inhibited.attr,
1495 static const struct attribute_group input_dev_attr_group = {
1496 .attrs = input_dev_attrs,
1499 #define INPUT_DEV_ID_ATTR(name) \
1500 static ssize_t input_dev_show_id_##name(struct device *dev, \
1501 struct device_attribute *attr, \
1504 struct input_dev *input_dev = to_input_dev(dev); \
1505 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1507 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1509 INPUT_DEV_ID_ATTR(bustype);
1510 INPUT_DEV_ID_ATTR(vendor);
1511 INPUT_DEV_ID_ATTR(product);
1512 INPUT_DEV_ID_ATTR(version);
1514 static struct attribute *input_dev_id_attrs[] = {
1515 &dev_attr_bustype.attr,
1516 &dev_attr_vendor.attr,
1517 &dev_attr_product.attr,
1518 &dev_attr_version.attr,
1522 static const struct attribute_group input_dev_id_attr_group = {
1524 .attrs = input_dev_id_attrs,
1527 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1528 int max, int add_cr)
1532 bool skip_empty = true;
1534 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1535 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1536 bitmap[i], skip_empty);
1540 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1545 * If no output was produced print a single 0.
1548 len = snprintf(buf, buf_size, "%d", 0);
1551 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1556 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1557 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1558 struct device_attribute *attr, \
1561 struct input_dev *input_dev = to_input_dev(dev); \
1562 int len = input_print_bitmap(buf, PAGE_SIZE, \
1563 input_dev->bm##bit, ev##_MAX, \
1565 return min_t(int, len, PAGE_SIZE); \
1567 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1569 INPUT_DEV_CAP_ATTR(EV, ev);
1570 INPUT_DEV_CAP_ATTR(KEY, key);
1571 INPUT_DEV_CAP_ATTR(REL, rel);
1572 INPUT_DEV_CAP_ATTR(ABS, abs);
1573 INPUT_DEV_CAP_ATTR(MSC, msc);
1574 INPUT_DEV_CAP_ATTR(LED, led);
1575 INPUT_DEV_CAP_ATTR(SND, snd);
1576 INPUT_DEV_CAP_ATTR(FF, ff);
1577 INPUT_DEV_CAP_ATTR(SW, sw);
1579 static struct attribute *input_dev_caps_attrs[] = {
1592 static const struct attribute_group input_dev_caps_attr_group = {
1593 .name = "capabilities",
1594 .attrs = input_dev_caps_attrs,
1597 static const struct attribute_group *input_dev_attr_groups[] = {
1598 &input_dev_attr_group,
1599 &input_dev_id_attr_group,
1600 &input_dev_caps_attr_group,
1601 &input_poller_attribute_group,
1605 static void input_dev_release(struct device *device)
1607 struct input_dev *dev = to_input_dev(device);
1609 input_ff_destroy(dev);
1610 input_mt_destroy_slots(dev);
1612 kfree(dev->absinfo);
1616 module_put(THIS_MODULE);
1620 * Input uevent interface - loading event handlers based on
1623 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1624 const char *name, unsigned long *bitmap, int max)
1628 if (add_uevent_var(env, "%s", name))
1631 len = input_print_bitmap(&env->buf[env->buflen - 1],
1632 sizeof(env->buf) - env->buflen,
1633 bitmap, max, false);
1634 if (len >= (sizeof(env->buf) - env->buflen))
1641 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1642 struct input_dev *dev)
1646 if (add_uevent_var(env, "MODALIAS="))
1649 len = input_print_modalias(&env->buf[env->buflen - 1],
1650 sizeof(env->buf) - env->buflen,
1652 if (len >= (sizeof(env->buf) - env->buflen))
1659 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1661 int err = add_uevent_var(env, fmt, val); \
1666 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1668 int err = input_add_uevent_bm_var(env, name, bm, max); \
1673 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1675 int err = input_add_uevent_modalias_var(env, dev); \
1680 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1682 struct input_dev *dev = to_input_dev(device);
1684 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1685 dev->id.bustype, dev->id.vendor,
1686 dev->id.product, dev->id.version);
1688 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1690 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1692 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1694 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1696 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1697 if (test_bit(EV_KEY, dev->evbit))
1698 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1699 if (test_bit(EV_REL, dev->evbit))
1700 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1701 if (test_bit(EV_ABS, dev->evbit))
1702 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1703 if (test_bit(EV_MSC, dev->evbit))
1704 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1705 if (test_bit(EV_LED, dev->evbit))
1706 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1707 if (test_bit(EV_SND, dev->evbit))
1708 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1709 if (test_bit(EV_FF, dev->evbit))
1710 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1711 if (test_bit(EV_SW, dev->evbit))
1712 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1714 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1719 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1724 if (!test_bit(EV_##type, dev->evbit)) \
1727 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1728 active = test_bit(i, dev->bits); \
1729 if (!active && !on) \
1732 dev->event(dev, EV_##type, i, on ? active : 0); \
1736 static void input_dev_toggle(struct input_dev *dev, bool activate)
1741 INPUT_DO_TOGGLE(dev, LED, led, activate);
1742 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1744 if (activate && test_bit(EV_REP, dev->evbit)) {
1745 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1746 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1751 * input_reset_device() - reset/restore the state of input device
1752 * @dev: input device whose state needs to be reset
1754 * This function tries to reset the state of an opened input device and
1755 * bring internal state and state if the hardware in sync with each other.
1756 * We mark all keys as released, restore LED state, repeat rate, etc.
1758 void input_reset_device(struct input_dev *dev)
1760 unsigned long flags;
1762 mutex_lock(&dev->mutex);
1763 spin_lock_irqsave(&dev->event_lock, flags);
1765 input_dev_toggle(dev, true);
1766 if (input_dev_release_keys(dev))
1767 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1769 spin_unlock_irqrestore(&dev->event_lock, flags);
1770 mutex_unlock(&dev->mutex);
1772 EXPORT_SYMBOL(input_reset_device);
1774 static int input_inhibit_device(struct input_dev *dev)
1776 mutex_lock(&dev->mutex);
1785 input_dev_poller_stop(dev->poller);
1788 spin_lock_irq(&dev->event_lock);
1789 input_mt_release_slots(dev);
1790 input_dev_release_keys(dev);
1791 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1792 input_dev_toggle(dev, false);
1793 spin_unlock_irq(&dev->event_lock);
1795 dev->inhibited = true;
1798 mutex_unlock(&dev->mutex);
1802 static int input_uninhibit_device(struct input_dev *dev)
1806 mutex_lock(&dev->mutex);
1808 if (!dev->inhibited)
1813 ret = dev->open(dev);
1818 input_dev_poller_start(dev->poller);
1821 dev->inhibited = false;
1822 spin_lock_irq(&dev->event_lock);
1823 input_dev_toggle(dev, true);
1824 spin_unlock_irq(&dev->event_lock);
1827 mutex_unlock(&dev->mutex);
1831 #ifdef CONFIG_PM_SLEEP
1832 static int input_dev_suspend(struct device *dev)
1834 struct input_dev *input_dev = to_input_dev(dev);
1836 spin_lock_irq(&input_dev->event_lock);
1839 * Keys that are pressed now are unlikely to be
1840 * still pressed when we resume.
1842 if (input_dev_release_keys(input_dev))
1843 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1845 /* Turn off LEDs and sounds, if any are active. */
1846 input_dev_toggle(input_dev, false);
1848 spin_unlock_irq(&input_dev->event_lock);
1853 static int input_dev_resume(struct device *dev)
1855 struct input_dev *input_dev = to_input_dev(dev);
1857 spin_lock_irq(&input_dev->event_lock);
1859 /* Restore state of LEDs and sounds, if any were active. */
1860 input_dev_toggle(input_dev, true);
1862 spin_unlock_irq(&input_dev->event_lock);
1867 static int input_dev_freeze(struct device *dev)
1869 struct input_dev *input_dev = to_input_dev(dev);
1871 spin_lock_irq(&input_dev->event_lock);
1874 * Keys that are pressed now are unlikely to be
1875 * still pressed when we resume.
1877 if (input_dev_release_keys(input_dev))
1878 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1880 spin_unlock_irq(&input_dev->event_lock);
1885 static int input_dev_poweroff(struct device *dev)
1887 struct input_dev *input_dev = to_input_dev(dev);
1889 spin_lock_irq(&input_dev->event_lock);
1891 /* Turn off LEDs and sounds, if any are active. */
1892 input_dev_toggle(input_dev, false);
1894 spin_unlock_irq(&input_dev->event_lock);
1899 static const struct dev_pm_ops input_dev_pm_ops = {
1900 .suspend = input_dev_suspend,
1901 .resume = input_dev_resume,
1902 .freeze = input_dev_freeze,
1903 .poweroff = input_dev_poweroff,
1904 .restore = input_dev_resume,
1906 #endif /* CONFIG_PM */
1908 static const struct device_type input_dev_type = {
1909 .groups = input_dev_attr_groups,
1910 .release = input_dev_release,
1911 .uevent = input_dev_uevent,
1912 #ifdef CONFIG_PM_SLEEP
1913 .pm = &input_dev_pm_ops,
1917 static char *input_devnode(const struct device *dev, umode_t *mode)
1919 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1922 struct class input_class = {
1924 .devnode = input_devnode,
1926 EXPORT_SYMBOL_GPL(input_class);
1929 * input_allocate_device - allocate memory for new input device
1931 * Returns prepared struct input_dev or %NULL.
1933 * NOTE: Use input_free_device() to free devices that have not been
1934 * registered; input_unregister_device() should be used for already
1935 * registered devices.
1937 struct input_dev *input_allocate_device(void)
1939 static atomic_t input_no = ATOMIC_INIT(-1);
1940 struct input_dev *dev;
1942 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1944 dev->dev.type = &input_dev_type;
1945 dev->dev.class = &input_class;
1946 device_initialize(&dev->dev);
1947 mutex_init(&dev->mutex);
1948 spin_lock_init(&dev->event_lock);
1949 timer_setup(&dev->timer, NULL, 0);
1950 INIT_LIST_HEAD(&dev->h_list);
1951 INIT_LIST_HEAD(&dev->node);
1953 dev_set_name(&dev->dev, "input%lu",
1954 (unsigned long)atomic_inc_return(&input_no));
1956 __module_get(THIS_MODULE);
1961 EXPORT_SYMBOL(input_allocate_device);
1963 struct input_devres {
1964 struct input_dev *input;
1967 static int devm_input_device_match(struct device *dev, void *res, void *data)
1969 struct input_devres *devres = res;
1971 return devres->input == data;
1974 static void devm_input_device_release(struct device *dev, void *res)
1976 struct input_devres *devres = res;
1977 struct input_dev *input = devres->input;
1979 dev_dbg(dev, "%s: dropping reference to %s\n",
1980 __func__, dev_name(&input->dev));
1981 input_put_device(input);
1985 * devm_input_allocate_device - allocate managed input device
1986 * @dev: device owning the input device being created
1988 * Returns prepared struct input_dev or %NULL.
1990 * Managed input devices do not need to be explicitly unregistered or
1991 * freed as it will be done automatically when owner device unbinds from
1992 * its driver (or binding fails). Once managed input device is allocated,
1993 * it is ready to be set up and registered in the same fashion as regular
1994 * input device. There are no special devm_input_device_[un]register()
1995 * variants, regular ones work with both managed and unmanaged devices,
1996 * should you need them. In most cases however, managed input device need
1997 * not be explicitly unregistered or freed.
1999 * NOTE: the owner device is set up as parent of input device and users
2000 * should not override it.
2002 struct input_dev *devm_input_allocate_device(struct device *dev)
2004 struct input_dev *input;
2005 struct input_devres *devres;
2007 devres = devres_alloc(devm_input_device_release,
2008 sizeof(*devres), GFP_KERNEL);
2012 input = input_allocate_device();
2014 devres_free(devres);
2018 input->dev.parent = dev;
2019 input->devres_managed = true;
2021 devres->input = input;
2022 devres_add(dev, devres);
2026 EXPORT_SYMBOL(devm_input_allocate_device);
2029 * input_free_device - free memory occupied by input_dev structure
2030 * @dev: input device to free
2032 * This function should only be used if input_register_device()
2033 * was not called yet or if it failed. Once device was registered
2034 * use input_unregister_device() and memory will be freed once last
2035 * reference to the device is dropped.
2037 * Device should be allocated by input_allocate_device().
2039 * NOTE: If there are references to the input device then memory
2040 * will not be freed until last reference is dropped.
2042 void input_free_device(struct input_dev *dev)
2045 if (dev->devres_managed)
2046 WARN_ON(devres_destroy(dev->dev.parent,
2047 devm_input_device_release,
2048 devm_input_device_match,
2050 input_put_device(dev);
2053 EXPORT_SYMBOL(input_free_device);
2056 * input_set_timestamp - set timestamp for input events
2057 * @dev: input device to set timestamp for
2058 * @timestamp: the time at which the event has occurred
2059 * in CLOCK_MONOTONIC
2061 * This function is intended to provide to the input system a more
2062 * accurate time of when an event actually occurred. The driver should
2063 * call this function as soon as a timestamp is acquired ensuring
2064 * clock conversions in input_set_timestamp are done correctly.
2066 * The system entering suspend state between timestamp acquisition and
2067 * calling input_set_timestamp can result in inaccurate conversions.
2069 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2071 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2072 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2073 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2076 EXPORT_SYMBOL(input_set_timestamp);
2079 * input_get_timestamp - get timestamp for input events
2080 * @dev: input device to get timestamp from
2082 * A valid timestamp is a timestamp of non-zero value.
2084 ktime_t *input_get_timestamp(struct input_dev *dev)
2086 const ktime_t invalid_timestamp = ktime_set(0, 0);
2088 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2089 input_set_timestamp(dev, ktime_get());
2091 return dev->timestamp;
2093 EXPORT_SYMBOL(input_get_timestamp);
2096 * input_set_capability - mark device as capable of a certain event
2097 * @dev: device that is capable of emitting or accepting event
2098 * @type: type of the event (EV_KEY, EV_REL, etc...)
2101 * In addition to setting up corresponding bit in appropriate capability
2102 * bitmap the function also adjusts dev->evbit.
2104 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2106 if (type < EV_CNT && input_max_code[type] &&
2107 code > input_max_code[type]) {
2108 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2116 __set_bit(code, dev->keybit);
2120 __set_bit(code, dev->relbit);
2124 input_alloc_absinfo(dev);
2125 __set_bit(code, dev->absbit);
2129 __set_bit(code, dev->mscbit);
2133 __set_bit(code, dev->swbit);
2137 __set_bit(code, dev->ledbit);
2141 __set_bit(code, dev->sndbit);
2145 __set_bit(code, dev->ffbit);
2153 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2158 __set_bit(type, dev->evbit);
2160 EXPORT_SYMBOL(input_set_capability);
2162 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2166 unsigned int events;
2169 mt_slots = dev->mt->num_slots;
2170 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2171 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2172 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2173 mt_slots = clamp(mt_slots, 2, 32);
2174 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2180 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2182 if (test_bit(EV_ABS, dev->evbit))
2183 for_each_set_bit(i, dev->absbit, ABS_CNT)
2184 events += input_is_mt_axis(i) ? mt_slots : 1;
2186 if (test_bit(EV_REL, dev->evbit))
2187 events += bitmap_weight(dev->relbit, REL_CNT);
2189 /* Make room for KEY and MSC events */
2195 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2197 if (!test_bit(EV_##type, dev->evbit)) \
2198 memset(dev->bits##bit, 0, \
2199 sizeof(dev->bits##bit)); \
2202 static void input_cleanse_bitmasks(struct input_dev *dev)
2204 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2205 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2206 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2207 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2208 INPUT_CLEANSE_BITMASK(dev, LED, led);
2209 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2210 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2211 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2214 static void __input_unregister_device(struct input_dev *dev)
2216 struct input_handle *handle, *next;
2218 input_disconnect_device(dev);
2220 mutex_lock(&input_mutex);
2222 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2223 handle->handler->disconnect(handle);
2224 WARN_ON(!list_empty(&dev->h_list));
2226 del_timer_sync(&dev->timer);
2227 list_del_init(&dev->node);
2229 input_wakeup_procfs_readers();
2231 mutex_unlock(&input_mutex);
2233 device_del(&dev->dev);
2236 static void devm_input_device_unregister(struct device *dev, void *res)
2238 struct input_devres *devres = res;
2239 struct input_dev *input = devres->input;
2241 dev_dbg(dev, "%s: unregistering device %s\n",
2242 __func__, dev_name(&input->dev));
2243 __input_unregister_device(input);
2247 * Generate software autorepeat event. Note that we take
2248 * dev->event_lock here to avoid racing with input_event
2249 * which may cause keys get "stuck".
2251 static void input_repeat_key(struct timer_list *t)
2253 struct input_dev *dev = from_timer(dev, t, timer);
2254 unsigned long flags;
2256 spin_lock_irqsave(&dev->event_lock, flags);
2258 if (!dev->inhibited &&
2259 test_bit(dev->repeat_key, dev->key) &&
2260 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2262 input_set_timestamp(dev, ktime_get());
2263 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2264 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2266 if (dev->rep[REP_PERIOD])
2267 mod_timer(&dev->timer, jiffies +
2268 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2271 spin_unlock_irqrestore(&dev->event_lock, flags);
2275 * input_enable_softrepeat - enable software autorepeat
2276 * @dev: input device
2277 * @delay: repeat delay
2278 * @period: repeat period
2280 * Enable software autorepeat on the input device.
2282 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2284 dev->timer.function = input_repeat_key;
2285 dev->rep[REP_DELAY] = delay;
2286 dev->rep[REP_PERIOD] = period;
2288 EXPORT_SYMBOL(input_enable_softrepeat);
2290 bool input_device_enabled(struct input_dev *dev)
2292 lockdep_assert_held(&dev->mutex);
2294 return !dev->inhibited && dev->users > 0;
2296 EXPORT_SYMBOL_GPL(input_device_enabled);
2299 * input_register_device - register device with input core
2300 * @dev: device to be registered
2302 * This function registers device with input core. The device must be
2303 * allocated with input_allocate_device() and all it's capabilities
2304 * set up before registering.
2305 * If function fails the device must be freed with input_free_device().
2306 * Once device has been successfully registered it can be unregistered
2307 * with input_unregister_device(); input_free_device() should not be
2308 * called in this case.
2310 * Note that this function is also used to register managed input devices
2311 * (ones allocated with devm_input_allocate_device()). Such managed input
2312 * devices need not be explicitly unregistered or freed, their tear down
2313 * is controlled by the devres infrastructure. It is also worth noting
2314 * that tear down of managed input devices is internally a 2-step process:
2315 * registered managed input device is first unregistered, but stays in
2316 * memory and can still handle input_event() calls (although events will
2317 * not be delivered anywhere). The freeing of managed input device will
2318 * happen later, when devres stack is unwound to the point where device
2319 * allocation was made.
2321 int input_register_device(struct input_dev *dev)
2323 struct input_devres *devres = NULL;
2324 struct input_handler *handler;
2325 unsigned int packet_size;
2329 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2331 "Absolute device without dev->absinfo, refusing to register\n");
2335 if (dev->devres_managed) {
2336 devres = devres_alloc(devm_input_device_unregister,
2337 sizeof(*devres), GFP_KERNEL);
2341 devres->input = dev;
2344 /* Every input device generates EV_SYN/SYN_REPORT events. */
2345 __set_bit(EV_SYN, dev->evbit);
2347 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2348 __clear_bit(KEY_RESERVED, dev->keybit);
2350 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2351 input_cleanse_bitmasks(dev);
2353 packet_size = input_estimate_events_per_packet(dev);
2354 if (dev->hint_events_per_packet < packet_size)
2355 dev->hint_events_per_packet = packet_size;
2357 dev->max_vals = dev->hint_events_per_packet + 2;
2358 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2361 goto err_devres_free;
2365 * If delay and period are pre-set by the driver, then autorepeating
2366 * is handled by the driver itself and we don't do it in input.c.
2368 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2369 input_enable_softrepeat(dev, 250, 33);
2371 if (!dev->getkeycode)
2372 dev->getkeycode = input_default_getkeycode;
2374 if (!dev->setkeycode)
2375 dev->setkeycode = input_default_setkeycode;
2378 input_dev_poller_finalize(dev->poller);
2380 error = device_add(&dev->dev);
2384 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2385 pr_info("%s as %s\n",
2386 dev->name ? dev->name : "Unspecified device",
2387 path ? path : "N/A");
2390 error = mutex_lock_interruptible(&input_mutex);
2392 goto err_device_del;
2394 list_add_tail(&dev->node, &input_dev_list);
2396 list_for_each_entry(handler, &input_handler_list, node)
2397 input_attach_handler(dev, handler);
2399 input_wakeup_procfs_readers();
2401 mutex_unlock(&input_mutex);
2403 if (dev->devres_managed) {
2404 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2405 __func__, dev_name(&dev->dev));
2406 devres_add(dev->dev.parent, devres);
2411 device_del(&dev->dev);
2416 devres_free(devres);
2419 EXPORT_SYMBOL(input_register_device);
2422 * input_unregister_device - unregister previously registered device
2423 * @dev: device to be unregistered
2425 * This function unregisters an input device. Once device is unregistered
2426 * the caller should not try to access it as it may get freed at any moment.
2428 void input_unregister_device(struct input_dev *dev)
2430 if (dev->devres_managed) {
2431 WARN_ON(devres_destroy(dev->dev.parent,
2432 devm_input_device_unregister,
2433 devm_input_device_match,
2435 __input_unregister_device(dev);
2437 * We do not do input_put_device() here because it will be done
2438 * when 2nd devres fires up.
2441 __input_unregister_device(dev);
2442 input_put_device(dev);
2445 EXPORT_SYMBOL(input_unregister_device);
2448 * input_register_handler - register a new input handler
2449 * @handler: handler to be registered
2451 * This function registers a new input handler (interface) for input
2452 * devices in the system and attaches it to all input devices that
2453 * are compatible with the handler.
2455 int input_register_handler(struct input_handler *handler)
2457 struct input_dev *dev;
2460 error = mutex_lock_interruptible(&input_mutex);
2464 INIT_LIST_HEAD(&handler->h_list);
2466 list_add_tail(&handler->node, &input_handler_list);
2468 list_for_each_entry(dev, &input_dev_list, node)
2469 input_attach_handler(dev, handler);
2471 input_wakeup_procfs_readers();
2473 mutex_unlock(&input_mutex);
2476 EXPORT_SYMBOL(input_register_handler);
2479 * input_unregister_handler - unregisters an input handler
2480 * @handler: handler to be unregistered
2482 * This function disconnects a handler from its input devices and
2483 * removes it from lists of known handlers.
2485 void input_unregister_handler(struct input_handler *handler)
2487 struct input_handle *handle, *next;
2489 mutex_lock(&input_mutex);
2491 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2492 handler->disconnect(handle);
2493 WARN_ON(!list_empty(&handler->h_list));
2495 list_del_init(&handler->node);
2497 input_wakeup_procfs_readers();
2499 mutex_unlock(&input_mutex);
2501 EXPORT_SYMBOL(input_unregister_handler);
2504 * input_handler_for_each_handle - handle iterator
2505 * @handler: input handler to iterate
2506 * @data: data for the callback
2507 * @fn: function to be called for each handle
2509 * Iterate over @bus's list of devices, and call @fn for each, passing
2510 * it @data and stop when @fn returns a non-zero value. The function is
2511 * using RCU to traverse the list and therefore may be using in atomic
2512 * contexts. The @fn callback is invoked from RCU critical section and
2513 * thus must not sleep.
2515 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2516 int (*fn)(struct input_handle *, void *))
2518 struct input_handle *handle;
2523 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2524 retval = fn(handle, data);
2533 EXPORT_SYMBOL(input_handler_for_each_handle);
2536 * input_register_handle - register a new input handle
2537 * @handle: handle to register
2539 * This function puts a new input handle onto device's
2540 * and handler's lists so that events can flow through
2541 * it once it is opened using input_open_device().
2543 * This function is supposed to be called from handler's
2546 int input_register_handle(struct input_handle *handle)
2548 struct input_handler *handler = handle->handler;
2549 struct input_dev *dev = handle->dev;
2553 * We take dev->mutex here to prevent race with
2554 * input_release_device().
2556 error = mutex_lock_interruptible(&dev->mutex);
2561 * Filters go to the head of the list, normal handlers
2564 if (handler->filter)
2565 list_add_rcu(&handle->d_node, &dev->h_list);
2567 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2569 mutex_unlock(&dev->mutex);
2572 * Since we are supposed to be called from ->connect()
2573 * which is mutually exclusive with ->disconnect()
2574 * we can't be racing with input_unregister_handle()
2575 * and so separate lock is not needed here.
2577 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2580 handler->start(handle);
2584 EXPORT_SYMBOL(input_register_handle);
2587 * input_unregister_handle - unregister an input handle
2588 * @handle: handle to unregister
2590 * This function removes input handle from device's
2591 * and handler's lists.
2593 * This function is supposed to be called from handler's
2594 * disconnect() method.
2596 void input_unregister_handle(struct input_handle *handle)
2598 struct input_dev *dev = handle->dev;
2600 list_del_rcu(&handle->h_node);
2603 * Take dev->mutex to prevent race with input_release_device().
2605 mutex_lock(&dev->mutex);
2606 list_del_rcu(&handle->d_node);
2607 mutex_unlock(&dev->mutex);
2611 EXPORT_SYMBOL(input_unregister_handle);
2614 * input_get_new_minor - allocates a new input minor number
2615 * @legacy_base: beginning or the legacy range to be searched
2616 * @legacy_num: size of legacy range
2617 * @allow_dynamic: whether we can also take ID from the dynamic range
2619 * This function allocates a new device minor for from input major namespace.
2620 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2621 * parameters and whether ID can be allocated from dynamic range if there are
2622 * no free IDs in legacy range.
2624 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2628 * This function should be called from input handler's ->connect()
2629 * methods, which are serialized with input_mutex, so no additional
2630 * locking is needed here.
2632 if (legacy_base >= 0) {
2633 int minor = ida_simple_get(&input_ida,
2635 legacy_base + legacy_num,
2637 if (minor >= 0 || !allow_dynamic)
2641 return ida_simple_get(&input_ida,
2642 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2645 EXPORT_SYMBOL(input_get_new_minor);
2648 * input_free_minor - release previously allocated minor
2649 * @minor: minor to be released
2651 * This function releases previously allocated input minor so that it can be
2654 void input_free_minor(unsigned int minor)
2656 ida_simple_remove(&input_ida, minor);
2658 EXPORT_SYMBOL(input_free_minor);
2660 static int __init input_init(void)
2664 err = class_register(&input_class);
2666 pr_err("unable to register input_dev class\n");
2670 err = input_proc_init();
2674 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2675 INPUT_MAX_CHAR_DEVICES, "input");
2677 pr_err("unable to register char major %d", INPUT_MAJOR);
2683 fail2: input_proc_exit();
2684 fail1: class_unregister(&input_class);
2688 static void __exit input_exit(void)
2691 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2692 INPUT_MAX_CHAR_DEVICES);
2693 class_unregister(&input_class);
2696 subsys_initcall(input_init);
2697 module_exit(input_exit);