1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
5 * Copyright (C) 2008 Atmel Corporation
6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9 * The only Atmel DMA Controller that is not covered by this driver is the one
10 * found on AT91SAM9263.
13 #include <dt-bindings/dma/at91.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
22 #include <linux/overflow.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
28 #include "dmaengine.h"
35 * at_hdmac : Name of the ATmel AHB DMA Controller
36 * at_dma_ / atdma : ATmel DMA controller entity related
37 * atc_ / atchan : ATmel DMA Channel entity related
40 #define AT_DMA_MAX_NR_CHANNELS 8
42 /* Global Configuration Register */
43 #define AT_DMA_GCFG 0x00
44 #define AT_DMA_IF_BIGEND(i) BIT((i)) /* AHB-Lite Interface i in Big-endian mode */
45 #define AT_DMA_ARB_CFG BIT(4) /* Arbiter mode. */
47 /* Controller Enable Register */
48 #define AT_DMA_EN 0x04
49 #define AT_DMA_ENABLE BIT(0)
51 /* Software Single Request Register */
52 #define AT_DMA_SREQ 0x08
53 #define AT_DMA_SSREQ(x) BIT((x) << 1) /* Request a source single transfer on channel x */
54 #define AT_DMA_DSREQ(x) BIT(1 + ((x) << 1)) /* Request a destination single transfer on channel x */
56 /* Software Chunk Transfer Request Register */
57 #define AT_DMA_CREQ 0x0c
58 #define AT_DMA_SCREQ(x) BIT((x) << 1) /* Request a source chunk transfer on channel x */
59 #define AT_DMA_DCREQ(x) BIT(1 + ((x) << 1)) /* Request a destination chunk transfer on channel x */
61 /* Software Last Transfer Flag Register */
62 #define AT_DMA_LAST 0x10
63 #define AT_DMA_SLAST(x) BIT((x) << 1) /* This src rq is last tx of buffer on channel x */
64 #define AT_DMA_DLAST(x) BIT(1 + ((x) << 1)) /* This dst rq is last tx of buffer on channel x */
66 /* Request Synchronization Register */
67 #define AT_DMA_SYNC 0x14
68 #define AT_DMA_SYR(h) BIT((h)) /* Synchronize handshake line h */
70 /* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71 #define AT_DMA_EBCIER 0x18 /* Enable register */
72 #define AT_DMA_EBCIDR 0x1c /* Disable register */
73 #define AT_DMA_EBCIMR 0x20 /* Mask Register */
74 #define AT_DMA_EBCISR 0x24 /* Status Register */
75 #define AT_DMA_CBTC_OFFSET 8
76 #define AT_DMA_ERR_OFFSET 16
77 #define AT_DMA_BTC(x) BIT((x))
78 #define AT_DMA_CBTC(x) BIT(AT_DMA_CBTC_OFFSET + (x))
79 #define AT_DMA_ERR(x) BIT(AT_DMA_ERR_OFFSET + (x))
81 /* Channel Handler Enable Register */
82 #define AT_DMA_CHER 0x28
83 #define AT_DMA_ENA(x) BIT((x))
84 #define AT_DMA_SUSP(x) BIT(8 + (x))
85 #define AT_DMA_KEEP(x) BIT(24 + (x))
87 /* Channel Handler Disable Register */
88 #define AT_DMA_CHDR 0x2c
89 #define AT_DMA_DIS(x) BIT(x)
90 #define AT_DMA_RES(x) BIT(8 + (x))
92 /* Channel Handler Status Register */
93 #define AT_DMA_CHSR 0x30
94 #define AT_DMA_EMPT(x) BIT(16 + (x))
95 #define AT_DMA_STAL(x) BIT(24 + (x))
97 /* Channel registers base address */
98 #define AT_DMA_CH_REGS_BASE 0x3c
99 #define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
101 /* Hardware register offset for each channel */
102 #define ATC_SADDR_OFFSET 0x00 /* Source Address Register */
103 #define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */
104 #define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */
105 #define ATC_CTRLA_OFFSET 0x0c /* Control A Register */
106 #define ATC_CTRLB_OFFSET 0x10 /* Control B Register */
107 #define ATC_CFG_OFFSET 0x14 /* Configuration Register */
108 #define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */
109 #define ATC_DPIP_OFFSET 0x1c /* Dst PIP Configuration Register */
112 /* Bitfield definitions */
114 /* Bitfields in DSCR */
115 #define ATC_DSCR_IF GENMASK(1, 0) /* Dsc feched via AHB-Lite Interface */
117 /* Bitfields in CTRLA */
118 #define ATC_BTSIZE_MAX GENMASK(15, 0) /* Maximum Buffer Transfer Size */
119 #define ATC_BTSIZE GENMASK(15, 0) /* Buffer Transfer Size */
120 #define ATC_SCSIZE GENMASK(18, 16) /* Source Chunk Transfer Size */
121 #define ATC_DCSIZE GENMASK(22, 20) /* Destination Chunk Transfer Size */
122 #define ATC_SRC_WIDTH GENMASK(25, 24) /* Source Single Transfer Size */
123 #define ATC_DST_WIDTH GENMASK(29, 28) /* Destination Single Transfer Size */
124 #define ATC_DONE BIT(31) /* Tx Done (only written back in descriptor) */
126 /* Bitfields in CTRLB */
127 #define ATC_SIF GENMASK(1, 0) /* Src tx done via AHB-Lite Interface i */
128 #define ATC_DIF GENMASK(5, 4) /* Dst tx done via AHB-Lite Interface i */
129 #define AT_DMA_MEM_IF 0x0 /* interface 0 as memory interface */
130 #define AT_DMA_PER_IF 0x1 /* interface 1 as peripheral interface */
131 #define ATC_SRC_PIP BIT(8) /* Source Picture-in-Picture enabled */
132 #define ATC_DST_PIP BIT(12) /* Destination Picture-in-Picture enabled */
133 #define ATC_SRC_DSCR_DIS BIT(16) /* Src Descriptor fetch disable */
134 #define ATC_DST_DSCR_DIS BIT(20) /* Dst Descriptor fetch disable */
135 #define ATC_FC GENMASK(22, 21) /* Choose Flow Controller */
136 #define ATC_FC_MEM2MEM 0x0 /* Mem-to-Mem (DMA) */
137 #define ATC_FC_MEM2PER 0x1 /* Mem-to-Periph (DMA) */
138 #define ATC_FC_PER2MEM 0x2 /* Periph-to-Mem (DMA) */
139 #define ATC_FC_PER2PER 0x3 /* Periph-to-Periph (DMA) */
140 #define ATC_FC_PER2MEM_PER 0x4 /* Periph-to-Mem (Peripheral) */
141 #define ATC_FC_MEM2PER_PER 0x5 /* Mem-to-Periph (Peripheral) */
142 #define ATC_FC_PER2PER_SRCPER 0x6 /* Periph-to-Periph (Src Peripheral) */
143 #define ATC_FC_PER2PER_DSTPER 0x7 /* Periph-to-Periph (Dst Peripheral) */
144 #define ATC_SRC_ADDR_MODE GENMASK(25, 24)
145 #define ATC_SRC_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
146 #define ATC_SRC_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
147 #define ATC_SRC_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
148 #define ATC_DST_ADDR_MODE GENMASK(29, 28)
149 #define ATC_DST_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
150 #define ATC_DST_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
151 #define ATC_DST_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
152 #define ATC_IEN BIT(30) /* BTC interrupt enable (active low) */
153 #define ATC_AUTO BIT(31) /* Auto multiple buffer tx enable */
155 /* Bitfields in CFG */
156 #define ATC_PER_MSB(h) ((0x30U & (h)) >> 4) /* Extract most significant bits of a handshaking identifier */
158 #define ATC_SRC_PER GENMASK(3, 0) /* Channel src rq associated with periph handshaking ifc h */
159 #define ATC_DST_PER GENMASK(7, 4) /* Channel dst rq associated with periph handshaking ifc h */
160 #define ATC_SRC_REP BIT(8) /* Source Replay Mod */
161 #define ATC_SRC_H2SEL BIT(9) /* Source Handshaking Mod */
162 #define ATC_SRC_PER_MSB GENMASK(11, 10) /* Channel src rq (most significant bits) */
163 #define ATC_DST_REP BIT(12) /* Destination Replay Mod */
164 #define ATC_DST_H2SEL BIT(13) /* Destination Handshaking Mod */
165 #define ATC_DST_PER_MSB GENMASK(15, 14) /* Channel dst rq (most significant bits) */
166 #define ATC_SOD BIT(16) /* Stop On Done */
167 #define ATC_LOCK_IF BIT(20) /* Interface Lock */
168 #define ATC_LOCK_B BIT(21) /* AHB Bus Lock */
169 #define ATC_LOCK_IF_L BIT(22) /* Master Interface Arbiter Lock */
170 #define ATC_AHB_PROT GENMASK(26, 24) /* AHB Protection */
171 #define ATC_FIFOCFG GENMASK(29, 28) /* FIFO Request Configuration */
172 #define ATC_FIFOCFG_LARGESTBURST 0x0
173 #define ATC_FIFOCFG_HALFFIFO 0x1
174 #define ATC_FIFOCFG_ENOUGHSPACE 0x2
176 /* Bitfields in SPIP */
177 #define ATC_SPIP_HOLE GENMASK(15, 0)
178 #define ATC_SPIP_BOUNDARY GENMASK(25, 16)
180 /* Bitfields in DPIP */
181 #define ATC_DPIP_HOLE GENMASK(15, 0)
182 #define ATC_DPIP_BOUNDARY GENMASK(25, 16)
184 #define ATC_SRC_PER_ID(id) (FIELD_PREP(ATC_SRC_PER_MSB, (id)) | \
185 FIELD_PREP(ATC_SRC_PER, (id)))
186 #define ATC_DST_PER_ID(id) (FIELD_PREP(ATC_DST_PER_MSB, (id)) | \
187 FIELD_PREP(ATC_DST_PER, (id)))
191 /*-- descriptors -----------------------------------------------------*/
193 /* LLI == Linked List Item; aka DMA buffer descriptor */
195 /* values that are not changed by hardware */
198 /* value that may get written back: */
200 /* more values that are not changed by hardware */
202 u32 dscr; /* chain to next lli */
206 * struct atdma_sg - atdma scatter gather entry
207 * @len: length of the current Linked List Item.
208 * @lli: linked list item that is passed to the DMA controller
209 * @lli_phys: physical address of the LLI.
218 * struct at_desc - software descriptor
219 * @vd: pointer to the virtual dma descriptor.
220 * @atchan: pointer to the atmel dma channel.
221 * @total_len: total transaction byte count
222 * @sg_len: number of sg entries.
226 struct virt_dma_desc vd;
227 struct at_dma_chan *atchan;
230 /* Interleaved data */
235 /* Memset temporary buffer */
237 dma_addr_t memset_paddr;
239 struct atdma_sg sg[];
242 /*-- Channels --------------------------------------------------------*/
245 * atc_status - information bits stored in channel status flag
247 * Manipulated with atomic operations.
255 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
256 * @vc: virtual dma channel entry.
257 * @atdma: pointer to the driver data.
258 * @ch_regs: memory mapped register base
259 * @mask: channel index in a mask
260 * @per_if: peripheral interface
261 * @mem_if: memory interface
262 * @status: transmit status information from irq/prep* functions
263 * to tasklet (use atomic operations)
264 * @save_cfg: configuration register that is saved on suspend/resume cycle
265 * @save_dscr: for cyclic operations, preserve next descriptor address in
266 * the cyclic list on suspend/resume cycle
267 * @dma_sconfig: configuration for slave transfers, passed via
269 * @desc: pointer to the atmel dma descriptor.
272 struct virt_dma_chan vc;
273 struct at_dma *atdma;
274 void __iomem *ch_regs;
278 unsigned long status;
281 struct dma_slave_config dma_sconfig;
283 struct at_desc *desc;
286 #define channel_readl(atchan, name) \
287 __raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
289 #define channel_writel(atchan, name, val) \
290 __raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
293 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
294 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
296 * This can be done by finding most significant bit set.
298 static inline void convert_burst(u32 *maxburst)
301 *maxburst = fls(*maxburst) - 2;
307 * Fix sconfig's bus width according to at_hdmac.
308 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
310 static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
312 switch (addr_width) {
313 case DMA_SLAVE_BUSWIDTH_2_BYTES:
315 case DMA_SLAVE_BUSWIDTH_4_BYTES:
318 /* For 1 byte width or fallback */
323 /*-- Controller ------------------------------------------------------*/
326 * struct at_dma - internal representation of an Atmel HDMA Controller
327 * @dma_device: dmaengine dma_device object members
328 * @atdma_devtype: identifier of DMA controller compatibility
329 * @ch_regs: memory mapped register base
330 * @clk: dma controller clock
331 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
332 * @all_chan_mask: all channels availlable in a mask
333 * @lli_pool: hw lli table
334 * @chan: channels table to store at_dma_chan structures
337 struct dma_device dma_device;
344 struct dma_pool *lli_pool;
345 struct dma_pool *memset_pool;
346 /* AT THE END channels table */
347 struct at_dma_chan chan[];
350 #define dma_readl(atdma, name) \
351 __raw_readl((atdma)->regs + AT_DMA_##name)
352 #define dma_writel(atdma, name, val) \
353 __raw_writel((val), (atdma)->regs + AT_DMA_##name)
355 static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
357 return container_of(t, struct at_desc, vd.tx);
360 static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
362 return container_of(chan, struct at_dma_chan, vc.chan);
365 static inline struct at_dma *to_at_dma(struct dma_device *ddev)
367 return container_of(ddev, struct at_dma, dma_device);
371 /*-- Helper functions ------------------------------------------------*/
373 static struct device *chan2dev(struct dma_chan *chan)
375 return &chan->dev->device;
378 #if defined(VERBOSE_DEBUG)
379 static void vdbg_dump_regs(struct at_dma_chan *atchan)
381 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
383 dev_err(chan2dev(&atchan->vc.chan),
384 " channel %d : imr = 0x%x, chsr = 0x%x\n",
385 atchan->vc.chan.chan_id,
386 dma_readl(atdma, EBCIMR),
387 dma_readl(atdma, CHSR));
389 dev_err(chan2dev(&atchan->vc.chan),
390 " channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
391 channel_readl(atchan, SADDR),
392 channel_readl(atchan, DADDR),
393 channel_readl(atchan, CTRLA),
394 channel_readl(atchan, CTRLB),
395 channel_readl(atchan, CFG),
396 channel_readl(atchan, DSCR));
399 static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
402 static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
404 dev_crit(chan2dev(&atchan->vc.chan),
405 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
406 &lli->saddr, &lli->daddr,
407 lli->ctrla, lli->ctrlb, &lli->dscr);
411 static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
415 /* enable interrupts on buffer transfer completion & error */
416 ebci = AT_DMA_BTC(chan_id)
417 | AT_DMA_ERR(chan_id);
419 dma_writel(atdma, EBCIER, ebci);
421 dma_writel(atdma, EBCIDR, ebci);
424 static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
426 atc_setup_irq(atdma, chan_id, 1);
429 static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
431 atc_setup_irq(atdma, chan_id, 0);
436 * atc_chan_is_enabled - test if given channel is enabled
437 * @atchan: channel we want to test status
439 static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
441 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
443 return !!(dma_readl(atdma, CHSR) & atchan->mask);
447 * atc_chan_is_paused - test channel pause/resume status
448 * @atchan: channel we want to test status
450 static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
452 return test_bit(ATC_IS_PAUSED, &atchan->status);
456 * atc_chan_is_cyclic - test if given channel has cyclic property set
457 * @atchan: channel we want to test status
459 static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
461 return test_bit(ATC_IS_CYCLIC, &atchan->status);
465 * set_lli_eol - set end-of-link to descriptor so it will end transfer
466 * @desc: descriptor, signle or at the end of a chain, to end chain on
467 * @i: index of the atmel scatter gather entry that is at the end of the chain.
469 static void set_lli_eol(struct at_desc *desc, unsigned int i)
471 u32 ctrlb = desc->sg[i].lli->ctrlb;
474 ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
476 desc->sg[i].lli->ctrlb = ctrlb;
477 desc->sg[i].lli->dscr = 0;
480 #define ATC_DEFAULT_CFG FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
481 #define ATC_DEFAULT_CTRLB (FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
482 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
483 #define ATC_DMA_BUSWIDTHS\
484 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
485 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
486 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
487 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
489 #define ATC_MAX_DSCR_TRIALS 10
492 * Initial number of descriptors to allocate for each channel. This could
493 * be increased during dma usage.
495 static unsigned int init_nr_desc_per_channel = 64;
496 module_param(init_nr_desc_per_channel, uint, 0644);
497 MODULE_PARM_DESC(init_nr_desc_per_channel,
498 "initial descriptors per channel (default: 64)");
501 * struct at_dma_platform_data - Controller configuration parameters
502 * @nr_channels: Number of channels supported by hardware (max 8)
503 * @cap_mask: dma_capability flags supported by the platform
505 struct at_dma_platform_data {
506 unsigned int nr_channels;
507 dma_cap_mask_t cap_mask;
511 * struct at_dma_slave - Controller-specific information about a slave
512 * @dma_dev: required DMA master device
513 * @cfg: Platform-specific initializer for the CFG register
515 struct at_dma_slave {
516 struct device *dma_dev;
520 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
525 if (!((src | dst | len) & 3))
527 else if (!((src | dst | len) & 1))
535 static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
537 struct atdma_sg *atdma_sg = &desc->sg[i];
540 desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
544 * atc_dostart - starts the DMA engine for real
545 * @atchan: the channel we want to start
547 static void atc_dostart(struct at_dma_chan *atchan)
549 struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
550 struct at_desc *desc;
557 vdbg_dump_regs(atchan);
560 atchan->desc = desc = to_atdma_desc(&vd->tx);
562 channel_writel(atchan, SADDR, 0);
563 channel_writel(atchan, DADDR, 0);
564 channel_writel(atchan, CTRLA, 0);
565 channel_writel(atchan, CTRLB, 0);
566 channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
567 channel_writel(atchan, SPIP,
568 FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
569 FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
570 channel_writel(atchan, DPIP,
571 FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
572 FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
574 /* Don't allow CPU to reorder channel enable. */
576 dma_writel(atchan->atdma, CHER, atchan->mask);
578 vdbg_dump_regs(atchan);
581 static void atdma_desc_free(struct virt_dma_desc *vd)
583 struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
584 struct at_desc *desc = to_atdma_desc(&vd->tx);
587 for (i = 0; i < desc->sglen; i++) {
589 dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
590 desc->sg[i].lli_phys);
593 /* If the transfer was a memset, free our temporary buffer */
594 if (desc->memset_buffer) {
595 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
597 desc->memset_buffer = false;
604 * atc_calc_bytes_left - calculates the number of bytes left according to the
605 * value read from CTRLA.
607 * @current_len: the number of bytes left before reading CTRLA
608 * @ctrla: the value of CTRLA
610 static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
612 u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
613 u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
616 * According to the datasheet, when reading the Control A Register
617 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
618 * number of transfers completed on the Source Interface.
619 * So btsize is always a number of source width transfers.
621 return current_len - (btsize << src_width);
625 * atc_get_llis_residue - Get residue for a hardware linked list transfer
627 * Calculate the residue by removing the length of the Linked List Item (LLI)
628 * already transferred from the total length. To get the current LLI we can use
629 * the value of the channel's DSCR register and compare it against the DSCR
632 * The CTRLA register provides us with the amount of data already read from the
633 * source for the LLI. So we can compute a more accurate residue by also
634 * removing the number of bytes corresponding to this amount of data.
636 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
637 * race condition may occur: the first read register may refer to one LLI
638 * whereas the second read may refer to a later LLI in the list because of the
639 * DMA transfer progression inbetween the two reads.
641 * One solution could have been to pause the DMA transfer, read the DSCR and
642 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
644 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
645 * to occur depending on the system latency. Taking the USART driver as an
646 * example, it uses a cyclic DMA transfer to read data from the Receive
647 * Holding Register (RHR) to avoid RX overruns since the RHR is not protected
648 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
649 * residue would break the USART driver design.
650 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
651 * for system latency purpose.
653 * Then we'd rather use another solution: the DSCR is read a first time, the
654 * CTRLA is read in turn, next the DSCR is read a second time. If the two
655 * consecutive read values of the DSCR are the same then we assume both refers
656 * to the very same LLI as well as the CTRLA value read inbetween does. For
657 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
658 * two DSCR values are different, we read again the CTRLA then the DSCR till two
659 * consecutive read values from DSCR are equal or till the maximum trials is
660 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
661 * @atchan: pointer to an atmel hdmac channel.
662 * @desc: pointer to the descriptor for which the residue is calculated.
663 * @residue: residue to be set to dma_tx_state.
664 * Returns 0 on success, -errno otherwise.
666 static int atc_get_llis_residue(struct at_dma_chan *atchan,
667 struct at_desc *desc, u32 *residue)
669 u32 len, ctrla, dscr;
672 len = desc->total_len;
673 dscr = channel_readl(atchan, DSCR);
674 rmb(); /* ensure DSCR is read before CTRLA */
675 ctrla = channel_readl(atchan, CTRLA);
676 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
679 rmb(); /* ensure DSCR is read after CTRLA */
680 new_dscr = channel_readl(atchan, DSCR);
683 * If the DSCR register value has not changed inside the DMA
684 * controller since the previous read, we assume that both the
685 * dscr and ctrla values refers to the very same descriptor.
687 if (likely(new_dscr == dscr))
691 * DSCR has changed inside the DMA controller, so the previouly
692 * read value of CTRLA may refer to an already processed
693 * descriptor hence could be outdated. We need to update ctrla
694 * to match the current descriptor.
697 rmb(); /* ensure DSCR is read before CTRLA */
698 ctrla = channel_readl(atchan, CTRLA);
700 if (unlikely(i == ATC_MAX_DSCR_TRIALS))
703 /* For the first descriptor we can be more accurate. */
704 if (desc->sg[0].lli->dscr == dscr) {
705 *residue = atc_calc_bytes_left(len, ctrla);
708 len -= desc->sg[0].len;
710 for (i = 1; i < desc->sglen; i++) {
711 if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
713 len -= desc->sg[i].len;
717 * For the current LLI in the chain we can calculate the remaining bytes
718 * using the channel's CTRLA register.
720 *residue = atc_calc_bytes_left(len, ctrla);
726 * atc_get_residue - get the number of bytes residue for a cookie.
727 * The residue is passed by address and updated on success.
729 * @cookie: transaction identifier to check status of
730 * @residue: residue to be updated.
731 * Return 0 on success, -errono otherwise.
733 static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
736 struct at_dma_chan *atchan = to_at_dma_chan(chan);
737 struct virt_dma_desc *vd;
738 struct at_desc *desc = NULL;
741 vd = vchan_find_desc(&atchan->vc, cookie);
743 desc = to_atdma_desc(&vd->tx);
744 else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
750 if (desc->sg[0].lli->dscr)
751 /* hardware linked list transfer */
752 return atc_get_llis_residue(atchan, desc, residue);
754 /* single transfer */
755 len = desc->total_len;
756 ctrla = channel_readl(atchan, CTRLA);
757 *residue = atc_calc_bytes_left(len, ctrla);
762 * atc_handle_error - handle errors reported by DMA controller
763 * @atchan: channel where error occurs.
766 static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
768 struct at_desc *desc = atchan->desc;
770 /* Disable channel on AHB error */
771 dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
774 * KERN_CRITICAL may seem harsh, but since this only happens
775 * when someone submits a bad physical address in a
776 * descriptor, we should consider ourselves lucky that the
777 * controller flagged an error instead of scribbling over
778 * random memory locations.
780 dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
781 dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
783 for (i = 0; i < desc->sglen; i++)
784 atc_dump_lli(atchan, desc->sg[i].lli);
787 static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
790 struct at_desc *desc;
792 spin_lock(&atchan->vc.lock);
796 if (pending & AT_DMA_ERR(i)) {
797 atc_handle_error(atchan, i);
798 /* Pretend the descriptor completed successfully */
801 if (atc_chan_is_cyclic(atchan)) {
802 vchan_cyclic_callback(&desc->vd);
804 vchan_cookie_complete(&desc->vd);
806 if (!(atc_chan_is_enabled(atchan)))
810 spin_unlock(&atchan->vc.lock);
813 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
815 struct at_dma *atdma = dev_id;
816 struct at_dma_chan *atchan;
818 u32 status, pending, imr;
822 imr = dma_readl(atdma, EBCIMR);
823 status = dma_readl(atdma, EBCISR);
824 pending = status & imr;
829 dev_vdbg(atdma->dma_device.dev,
830 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
831 status, imr, pending);
833 for (i = 0; i < atdma->dma_device.chancnt; i++) {
834 atchan = &atdma->chan[i];
835 if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
837 atdma_handle_chan_done(atchan, pending, i);
846 /*-- DMA Engine API --------------------------------------------------*/
848 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
849 * @chan: the channel to prepare operation on
850 * @xt: Interleaved transfer template
851 * @flags: tx descriptor status flags
853 static struct dma_async_tx_descriptor *
854 atc_prep_dma_interleaved(struct dma_chan *chan,
855 struct dma_interleaved_template *xt,
858 struct at_dma *atdma = to_at_dma(chan->device);
859 struct at_dma_chan *atchan = to_at_dma_chan(chan);
860 struct data_chunk *first;
861 struct atdma_sg *atdma_sg;
862 struct at_desc *desc;
871 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
876 dev_info(chan2dev(chan),
877 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
878 __func__, &xt->src_start, &xt->dst_start, xt->numf,
879 xt->frame_size, flags);
882 * The controller can only "skip" X bytes every Y bytes, so we
883 * need to make sure we are given a template that fit that
884 * description, ie a template with chunks that always have the
885 * same size, with the same ICGs.
887 for (i = 0; i < xt->frame_size; i++) {
888 struct data_chunk *chunk = xt->sgl + i;
890 if ((chunk->size != xt->sgl->size) ||
891 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
892 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
893 dev_err(chan2dev(chan),
894 "%s: the controller can transfer only identical chunks\n",
902 dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
904 xfer_count = len >> dwidth;
905 if (xfer_count > ATC_BTSIZE_MAX) {
906 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
910 ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
911 FIELD_PREP(ATC_DST_WIDTH, dwidth);
913 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
914 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
915 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
916 ATC_SRC_PIP | ATC_DST_PIP |
917 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
919 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
925 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
926 &atdma_sg->lli_phys);
927 if (!atdma_sg->lli) {
933 lli->saddr = xt->src_start;
934 lli->daddr = xt->dst_start;
935 lli->ctrla = ctrla | xfer_count;
938 desc->boundary = first->size >> dwidth;
939 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
940 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
943 desc->total_len = len;
945 set_lli_eol(desc, 0);
946 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
950 * atc_prep_dma_memcpy - prepare a memcpy operation
951 * @chan: the channel to prepare operation on
952 * @dest: operation virtual destination address
953 * @src: operation virtual source address
954 * @len: operation length
955 * @flags: tx descriptor status flags
957 static struct dma_async_tx_descriptor *
958 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
959 size_t len, unsigned long flags)
961 struct at_dma *atdma = to_at_dma(chan->device);
962 struct at_dma_chan *atchan = to_at_dma_chan(chan);
963 struct at_desc *desc = NULL;
967 unsigned int src_width;
968 unsigned int dst_width;
973 dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
974 &dest, &src, len, flags);
976 if (unlikely(!len)) {
977 dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
981 sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
982 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
985 desc->sglen = sg_len;
987 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
988 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
989 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
990 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
993 * We can be a lot more clever here, but this should take care
994 * of the most common optimization.
996 src_width = dst_width = atc_get_xfer_width(src, dest, len);
998 ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
999 FIELD_PREP(ATC_DST_WIDTH, dst_width);
1001 for (offset = 0, i = 0; offset < len;
1002 offset += xfer_count << src_width, i++) {
1003 struct atdma_sg *atdma_sg = &desc->sg[i];
1006 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1007 &atdma_sg->lli_phys);
1010 lli = atdma_sg->lli;
1012 xfer_count = min_t(size_t, (len - offset) >> src_width,
1015 lli->saddr = src + offset;
1016 lli->daddr = dest + offset;
1017 lli->ctrla = ctrla | xfer_count;
1020 desc->sg[i].len = xfer_count << src_width;
1022 atdma_lli_chain(desc, i);
1025 desc->total_len = len;
1027 /* set end-of-link to the last link descriptor of list*/
1028 set_lli_eol(desc, i - 1);
1030 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1033 atdma_desc_free(&desc->vd);
1037 static int atdma_create_memset_lli(struct dma_chan *chan,
1038 struct atdma_sg *atdma_sg,
1039 dma_addr_t psrc, dma_addr_t pdst, size_t len)
1041 struct at_dma *atdma = to_at_dma(chan->device);
1044 u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1045 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1046 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1047 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1048 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1050 xfer_count = len >> 2;
1051 if (xfer_count > ATC_BTSIZE_MAX) {
1052 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1056 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1057 &atdma_sg->lli_phys);
1060 lli = atdma_sg->lli;
1064 lli->ctrla = ctrla | xfer_count;
1067 atdma_sg->len = len;
1073 * atc_prep_dma_memset - prepare a memcpy operation
1074 * @chan: the channel to prepare operation on
1075 * @dest: operation virtual destination address
1076 * @value: value to set memory buffer to
1077 * @len: operation length
1078 * @flags: tx descriptor status flags
1080 static struct dma_async_tx_descriptor *
1081 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1082 size_t len, unsigned long flags)
1084 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1085 struct at_dma *atdma = to_at_dma(chan->device);
1086 struct at_desc *desc;
1087 void __iomem *vaddr;
1092 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1093 &dest, value, len, flags);
1095 if (unlikely(!len)) {
1096 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1100 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1101 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1106 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1108 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1113 /* Only the first byte of value is to be used according to dmaengine */
1114 fill_pattern = (char)value;
1116 *(u32*)vaddr = (fill_pattern << 24) |
1117 (fill_pattern << 16) |
1118 (fill_pattern << 8) |
1121 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1123 goto err_free_buffer;
1126 ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1130 desc->memset_paddr = paddr;
1131 desc->memset_vaddr = vaddr;
1132 desc->memset_buffer = true;
1134 desc->total_len = len;
1136 /* set end-of-link on the descriptor */
1137 set_lli_eol(desc, 0);
1139 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1144 dma_pool_free(atdma->memset_pool, vaddr, paddr);
1148 static struct dma_async_tx_descriptor *
1149 atc_prep_dma_memset_sg(struct dma_chan *chan,
1150 struct scatterlist *sgl,
1151 unsigned int sg_len, int value,
1152 unsigned long flags)
1154 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1155 struct at_dma *atdma = to_at_dma(chan->device);
1156 struct at_desc *desc;
1157 struct scatterlist *sg;
1158 void __iomem *vaddr;
1160 size_t total_len = 0;
1164 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1165 value, sg_len, flags);
1167 if (unlikely(!sgl || !sg_len)) {
1168 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1173 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1175 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1179 *(u32*)vaddr = value;
1181 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1183 goto err_free_dma_buf;
1184 desc->sglen = sg_len;
1186 for_each_sg(sgl, sg, sg_len, i) {
1187 dma_addr_t dest = sg_dma_address(sg);
1188 size_t len = sg_dma_len(sg);
1190 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1191 __func__, &dest, len);
1193 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1194 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1199 ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1204 atdma_lli_chain(desc, i);
1208 desc->memset_paddr = paddr;
1209 desc->memset_vaddr = vaddr;
1210 desc->memset_buffer = true;
1212 desc->total_len = total_len;
1214 /* set end-of-link on the descriptor */
1215 set_lli_eol(desc, i - 1);
1217 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1220 atdma_desc_free(&desc->vd);
1222 dma_pool_free(atdma->memset_pool, vaddr, paddr);
1227 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1228 * @chan: DMA channel
1229 * @sgl: scatterlist to transfer to/from
1230 * @sg_len: number of entries in @scatterlist
1231 * @direction: DMA direction
1232 * @flags: tx descriptor status flags
1233 * @context: transaction context (ignored)
1235 static struct dma_async_tx_descriptor *
1236 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1237 unsigned int sg_len, enum dma_transfer_direction direction,
1238 unsigned long flags, void *context)
1240 struct at_dma *atdma = to_at_dma(chan->device);
1241 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1242 struct at_dma_slave *atslave = chan->private;
1243 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1244 struct at_desc *desc;
1248 unsigned int reg_width;
1249 unsigned int mem_width;
1251 struct scatterlist *sg;
1252 size_t total_len = 0;
1254 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1256 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1259 if (unlikely(!atslave || !sg_len)) {
1260 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1264 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1267 desc->sglen = sg_len;
1269 ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1270 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1273 switch (direction) {
1274 case DMA_MEM_TO_DEV:
1275 reg_width = convert_buswidth(sconfig->dst_addr_width);
1276 ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1277 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1278 ATC_DST_ADDR_MODE_FIXED) |
1279 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1280 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1281 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1282 FIELD_PREP(ATC_DIF, atchan->per_if);
1283 reg = sconfig->dst_addr;
1284 for_each_sg(sgl, sg, sg_len, i) {
1285 struct atdma_sg *atdma_sg = &desc->sg[i];
1290 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1292 &atdma_sg->lli_phys);
1295 lli = atdma_sg->lli;
1297 mem = sg_dma_address(sg);
1298 len = sg_dma_len(sg);
1299 if (unlikely(!len)) {
1300 dev_dbg(chan2dev(chan),
1301 "prep_slave_sg: sg(%d) data length is zero\n", i);
1305 if (unlikely(mem & 3 || len & 3))
1310 lli->ctrla = ctrla |
1311 FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1315 atdma_sg->len = len;
1318 desc->sg[i].len = len;
1319 atdma_lli_chain(desc, i);
1322 case DMA_DEV_TO_MEM:
1323 reg_width = convert_buswidth(sconfig->src_addr_width);
1324 ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1325 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1326 FIELD_PREP(ATC_SRC_ADDR_MODE,
1327 ATC_SRC_ADDR_MODE_FIXED) |
1328 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1329 FIELD_PREP(ATC_SIF, atchan->per_if) |
1330 FIELD_PREP(ATC_DIF, atchan->mem_if);
1332 reg = sconfig->src_addr;
1333 for_each_sg(sgl, sg, sg_len, i) {
1334 struct atdma_sg *atdma_sg = &desc->sg[i];
1339 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1341 &atdma_sg->lli_phys);
1344 lli = atdma_sg->lli;
1346 mem = sg_dma_address(sg);
1347 len = sg_dma_len(sg);
1348 if (unlikely(!len)) {
1349 dev_dbg(chan2dev(chan),
1350 "prep_slave_sg: sg(%d) data length is zero\n", i);
1354 if (unlikely(mem & 3 || len & 3))
1359 lli->ctrla = ctrla |
1360 FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1364 desc->sg[i].len = len;
1367 atdma_lli_chain(desc, i);
1374 /* set end-of-link to the last link descriptor of list*/
1375 set_lli_eol(desc, i - 1);
1377 desc->total_len = total_len;
1379 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1382 dev_err(chan2dev(chan), "not enough descriptors available\n");
1384 atdma_desc_free(&desc->vd);
1389 * atc_dma_cyclic_check_values
1390 * Check for too big/unaligned periods and unaligned DMA buffer
1393 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1396 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1398 if (unlikely(period_len & ((1 << reg_width) - 1)))
1400 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1410 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1413 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1414 unsigned int i, dma_addr_t buf_addr,
1415 unsigned int reg_width, size_t period_len,
1416 enum dma_transfer_direction direction)
1418 struct at_dma *atdma = to_at_dma(chan->device);
1419 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1420 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1421 struct atdma_sg *atdma_sg = &desc->sg[i];
1424 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1425 &atdma_sg->lli_phys);
1428 lli = atdma_sg->lli;
1430 switch (direction) {
1431 case DMA_MEM_TO_DEV:
1432 lli->saddr = buf_addr + (period_len * i);
1433 lli->daddr = sconfig->dst_addr;
1434 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1435 ATC_DST_ADDR_MODE_FIXED) |
1436 FIELD_PREP(ATC_SRC_ADDR_MODE,
1437 ATC_SRC_ADDR_MODE_INCR) |
1438 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1439 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1440 FIELD_PREP(ATC_DIF, atchan->per_if);
1444 case DMA_DEV_TO_MEM:
1445 lli->saddr = sconfig->src_addr;
1446 lli->daddr = buf_addr + (period_len * i);
1447 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448 ATC_DST_ADDR_MODE_INCR) |
1449 FIELD_PREP(ATC_SRC_ADDR_MODE,
1450 ATC_SRC_ADDR_MODE_FIXED) |
1451 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1452 FIELD_PREP(ATC_SIF, atchan->per_if) |
1453 FIELD_PREP(ATC_DIF, atchan->mem_if);
1460 lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1461 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1462 FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1463 FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1464 period_len >> reg_width;
1465 desc->sg[i].len = period_len;
1471 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1472 * @chan: the DMA channel to prepare
1473 * @buf_addr: physical DMA address where the buffer starts
1474 * @buf_len: total number of bytes for the entire buffer
1475 * @period_len: number of bytes for each period
1476 * @direction: transfer direction, to or from device
1477 * @flags: tx descriptor status flags
1479 static struct dma_async_tx_descriptor *
1480 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1481 size_t period_len, enum dma_transfer_direction direction,
1482 unsigned long flags)
1484 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1485 struct at_dma_slave *atslave = chan->private;
1486 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1487 struct at_desc *desc;
1488 unsigned long was_cyclic;
1489 unsigned int reg_width;
1490 unsigned int periods = buf_len / period_len;
1493 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1494 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1496 periods, buf_len, period_len);
1498 if (unlikely(!atslave || !buf_len || !period_len)) {
1499 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1503 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1505 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1509 if (unlikely(!is_slave_direction(direction)))
1512 if (direction == DMA_MEM_TO_DEV)
1513 reg_width = convert_buswidth(sconfig->dst_addr_width);
1515 reg_width = convert_buswidth(sconfig->src_addr_width);
1517 /* Check for too big/unaligned periods and unaligned DMA buffer */
1518 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1521 desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1524 desc->sglen = periods;
1526 /* build cyclic linked list */
1527 for (i = 0; i < periods; i++) {
1528 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1529 reg_width, period_len, direction))
1531 atdma_lli_chain(desc, i);
1533 desc->total_len = buf_len;
1534 /* lets make a cyclic list */
1535 desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1537 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1540 atdma_desc_free(&desc->vd);
1542 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1546 static int atc_config(struct dma_chan *chan,
1547 struct dma_slave_config *sconfig)
1549 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1551 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1553 /* Check if it is chan is configured for slave transfers */
1557 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1559 convert_burst(&atchan->dma_sconfig.src_maxburst);
1560 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1565 static int atc_pause(struct dma_chan *chan)
1567 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1568 struct at_dma *atdma = to_at_dma(chan->device);
1569 int chan_id = atchan->vc.chan.chan_id;
1570 unsigned long flags;
1572 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1574 spin_lock_irqsave(&atchan->vc.lock, flags);
1576 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1577 set_bit(ATC_IS_PAUSED, &atchan->status);
1579 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1584 static int atc_resume(struct dma_chan *chan)
1586 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1587 struct at_dma *atdma = to_at_dma(chan->device);
1588 int chan_id = atchan->vc.chan.chan_id;
1589 unsigned long flags;
1591 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1593 if (!atc_chan_is_paused(atchan))
1596 spin_lock_irqsave(&atchan->vc.lock, flags);
1598 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1599 clear_bit(ATC_IS_PAUSED, &atchan->status);
1601 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1606 static int atc_terminate_all(struct dma_chan *chan)
1608 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1609 struct at_dma *atdma = to_at_dma(chan->device);
1610 int chan_id = atchan->vc.chan.chan_id;
1611 unsigned long flags;
1615 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1618 * This is only called when something went wrong elsewhere, so
1619 * we don't really care about the data. Just disable the
1620 * channel. We still have to poll the channel enable bit due
1621 * to AHB/HSB limitations.
1623 spin_lock_irqsave(&atchan->vc.lock, flags);
1625 /* disabling channel: must also remove suspend state */
1626 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1628 /* confirm that this channel is disabled */
1629 while (dma_readl(atdma, CHSR) & atchan->mask)
1633 vchan_terminate_vdesc(&atchan->desc->vd);
1634 atchan->desc = NULL;
1637 vchan_get_all_descriptors(&atchan->vc, &list);
1639 clear_bit(ATC_IS_PAUSED, &atchan->status);
1640 /* if channel dedicated to cyclic operations, free it */
1641 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1643 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1645 vchan_dma_desc_free_list(&atchan->vc, &list);
1651 * atc_tx_status - poll for transaction completion
1652 * @chan: DMA channel
1653 * @cookie: transaction identifier to check status of
1654 * @txstate: if not %NULL updated with transaction state
1656 * If @txstate is passed in, upon return it reflect the driver
1657 * internal state and can be used with dma_async_is_complete() to check
1658 * the status of multiple cookies without re-checking hardware state.
1660 static enum dma_status
1661 atc_tx_status(struct dma_chan *chan,
1662 dma_cookie_t cookie,
1663 struct dma_tx_state *txstate)
1665 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1666 unsigned long flags;
1667 enum dma_status dma_status;
1671 dma_status = dma_cookie_status(chan, cookie, txstate);
1672 if (dma_status == DMA_COMPLETE || !txstate)
1675 spin_lock_irqsave(&atchan->vc.lock, flags);
1676 /* Get number of bytes left in the active transactions */
1677 ret = atc_get_residue(chan, cookie, &residue);
1678 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1680 if (unlikely(ret < 0)) {
1681 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1684 dma_set_residue(txstate, residue);
1687 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1688 dma_status, cookie, residue);
1693 static void atc_issue_pending(struct dma_chan *chan)
1695 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1696 unsigned long flags;
1698 spin_lock_irqsave(&atchan->vc.lock, flags);
1699 if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1700 if (!(atc_chan_is_enabled(atchan)))
1701 atc_dostart(atchan);
1703 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1707 * atc_alloc_chan_resources - allocate resources for DMA channel
1708 * @chan: allocate descriptor resources for this channel
1710 * return - the number of allocated descriptors
1712 static int atc_alloc_chan_resources(struct dma_chan *chan)
1714 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1715 struct at_dma *atdma = to_at_dma(chan->device);
1716 struct at_dma_slave *atslave;
1719 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1721 /* ASSERT: channel is idle */
1722 if (atc_chan_is_enabled(atchan)) {
1723 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1727 cfg = ATC_DEFAULT_CFG;
1729 atslave = chan->private;
1732 * We need controller-specific data to set up slave
1735 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1737 /* if cfg configuration specified take it instead of default */
1742 /* channel parameters */
1743 channel_writel(atchan, CFG, cfg);
1749 * atc_free_chan_resources - free all channel resources
1750 * @chan: DMA channel
1752 static void atc_free_chan_resources(struct dma_chan *chan)
1754 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1756 BUG_ON(atc_chan_is_enabled(atchan));
1758 vchan_free_chan_resources(to_virt_chan(chan));
1762 * Free atslave allocated in at_dma_xlate()
1764 kfree(chan->private);
1765 chan->private = NULL;
1767 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1771 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1773 struct at_dma_slave *atslave = slave;
1775 if (atslave->dma_dev == chan->device->dev) {
1776 chan->private = atslave;
1783 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1784 struct of_dma *of_dma)
1786 struct dma_chan *chan;
1787 struct at_dma_chan *atchan;
1788 struct at_dma_slave *atslave;
1789 dma_cap_mask_t mask;
1790 unsigned int per_id;
1791 struct platform_device *dmac_pdev;
1793 if (dma_spec->args_count != 2)
1796 dmac_pdev = of_find_device_by_node(dma_spec->np);
1801 dma_cap_set(DMA_SLAVE, mask);
1803 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1805 put_device(&dmac_pdev->dev);
1809 atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1811 * We can fill both SRC_PER and DST_PER, one of these fields will be
1812 * ignored depending on DMA transfer direction.
1814 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1815 atslave->cfg |= ATC_DST_PER_ID(per_id) | ATC_SRC_PER_ID(per_id);
1817 * We have to translate the value we get from the device tree since
1818 * the half FIFO configuration value had to be 0 to keep backward
1821 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1822 case AT91_DMA_CFG_FIFOCFG_ALAP:
1823 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1824 ATC_FIFOCFG_LARGESTBURST);
1826 case AT91_DMA_CFG_FIFOCFG_ASAP:
1827 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1828 ATC_FIFOCFG_ENOUGHSPACE);
1830 case AT91_DMA_CFG_FIFOCFG_HALF:
1832 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1834 atslave->dma_dev = &dmac_pdev->dev;
1836 chan = dma_request_channel(mask, at_dma_filter, atslave);
1838 put_device(&dmac_pdev->dev);
1843 atchan = to_at_dma_chan(chan);
1844 atchan->per_if = dma_spec->args[0] & 0xff;
1845 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1851 struct of_dma *of_dma)
1857 /*-- Module Management -----------------------------------------------*/
1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1860 static struct at_dma_platform_data at91sam9rl_config = {
1863 static struct at_dma_platform_data at91sam9g45_config = {
1867 #if defined(CONFIG_OF)
1868 static const struct of_device_id atmel_dma_dt_ids[] = {
1870 .compatible = "atmel,at91sam9rl-dma",
1871 .data = &at91sam9rl_config,
1873 .compatible = "atmel,at91sam9g45-dma",
1874 .data = &at91sam9g45_config,
1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1883 static const struct platform_device_id atdma_devtypes[] = {
1885 .name = "at91sam9rl_dma",
1886 .driver_data = (unsigned long) &at91sam9rl_config,
1888 .name = "at91sam9g45_dma",
1889 .driver_data = (unsigned long) &at91sam9g45_config,
1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1896 struct platform_device *pdev)
1898 if (pdev->dev.of_node) {
1899 const struct of_device_id *match;
1900 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1905 return (struct at_dma_platform_data *)
1906 platform_get_device_id(pdev)->driver_data;
1910 * at_dma_off - disable DMA controller
1911 * @atdma: the Atmel HDAMC device
1913 static void at_dma_off(struct at_dma *atdma)
1915 dma_writel(atdma, EN, 0);
1917 /* disable all interrupts */
1918 dma_writel(atdma, EBCIDR, -1L);
1920 /* confirm that all channels are disabled */
1921 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1925 static int __init at_dma_probe(struct platform_device *pdev)
1927 struct at_dma *atdma;
1931 const struct at_dma_platform_data *plat_dat;
1933 /* setup platform data for each SoC */
1934 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1935 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1936 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1937 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1938 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1939 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1940 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1942 /* get DMA parameters from controller type */
1943 plat_dat = at_dma_get_driver_data(pdev);
1947 atdma = devm_kzalloc(&pdev->dev,
1948 struct_size(atdma, chan, plat_dat->nr_channels),
1953 atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1954 if (IS_ERR(atdma->regs))
1955 return PTR_ERR(atdma->regs);
1957 irq = platform_get_irq(pdev, 0);
1961 /* discover transaction capabilities */
1962 atdma->dma_device.cap_mask = plat_dat->cap_mask;
1963 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1965 atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1966 if (IS_ERR(atdma->clk))
1967 return PTR_ERR(atdma->clk);
1969 err = clk_prepare_enable(atdma->clk);
1973 /* force dma off, just in case */
1976 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1980 platform_set_drvdata(pdev, atdma);
1982 /* create a pool of consistent memory blocks for hardware descriptors */
1983 atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1984 &pdev->dev, sizeof(struct at_lli),
1985 4 /* word alignment */, 0);
1986 if (!atdma->lli_pool) {
1987 dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
1989 goto err_desc_pool_create;
1992 /* create a pool of consistent memory blocks for memset blocks */
1993 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1994 &pdev->dev, sizeof(int), 4, 0);
1995 if (!atdma->memset_pool) {
1996 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1998 goto err_memset_pool_create;
2001 /* clear any pending interrupt */
2002 while (dma_readl(atdma, EBCISR))
2005 /* initialize channels related values */
2006 INIT_LIST_HEAD(&atdma->dma_device.channels);
2007 for (i = 0; i < plat_dat->nr_channels; i++) {
2008 struct at_dma_chan *atchan = &atdma->chan[i];
2010 atchan->mem_if = AT_DMA_MEM_IF;
2011 atchan->per_if = AT_DMA_PER_IF;
2013 atchan->ch_regs = atdma->regs + ch_regs(i);
2014 atchan->mask = 1 << i;
2016 atchan->atdma = atdma;
2017 atchan->vc.desc_free = atdma_desc_free;
2018 vchan_init(&atchan->vc, &atdma->dma_device);
2019 atc_enable_chan_irq(atdma, i);
2022 /* set base routines */
2023 atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2024 atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2025 atdma->dma_device.device_tx_status = atc_tx_status;
2026 atdma->dma_device.device_issue_pending = atc_issue_pending;
2027 atdma->dma_device.dev = &pdev->dev;
2029 /* set prep routines based on capability */
2030 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2031 atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2033 if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2034 atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2036 if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2037 atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2038 atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2039 atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2042 if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2043 atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2044 /* controller can do slave DMA: can trigger cyclic transfers */
2045 dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2046 atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2047 atdma->dma_device.device_config = atc_config;
2048 atdma->dma_device.device_pause = atc_pause;
2049 atdma->dma_device.device_resume = atc_resume;
2050 atdma->dma_device.device_terminate_all = atc_terminate_all;
2051 atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2052 atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2053 atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2054 atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2057 dma_writel(atdma, EN, AT_DMA_ENABLE);
2059 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2060 dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2061 dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2062 dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask) ? "slave " : "",
2063 plat_dat->nr_channels);
2065 err = dma_async_device_register(&atdma->dma_device);
2067 dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2068 goto err_dma_async_device_register;
2072 * Do not return an error if the dmac node is not present in order to
2073 * not break the existing way of requesting channel with
2074 * dma_request_channel().
2076 if (pdev->dev.of_node) {
2077 err = of_dma_controller_register(pdev->dev.of_node,
2078 at_dma_xlate, atdma);
2080 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2081 goto err_of_dma_controller_register;
2087 err_of_dma_controller_register:
2088 dma_async_device_unregister(&atdma->dma_device);
2089 err_dma_async_device_register:
2090 dma_pool_destroy(atdma->memset_pool);
2091 err_memset_pool_create:
2092 dma_pool_destroy(atdma->lli_pool);
2093 err_desc_pool_create:
2094 free_irq(platform_get_irq(pdev, 0), atdma);
2096 clk_disable_unprepare(atdma->clk);
2100 static int at_dma_remove(struct platform_device *pdev)
2102 struct at_dma *atdma = platform_get_drvdata(pdev);
2103 struct dma_chan *chan, *_chan;
2106 if (pdev->dev.of_node)
2107 of_dma_controller_free(pdev->dev.of_node);
2108 dma_async_device_unregister(&atdma->dma_device);
2110 dma_pool_destroy(atdma->memset_pool);
2111 dma_pool_destroy(atdma->lli_pool);
2112 free_irq(platform_get_irq(pdev, 0), atdma);
2114 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2116 /* Disable interrupts */
2117 atc_disable_chan_irq(atdma, chan->chan_id);
2118 list_del(&chan->device_node);
2121 clk_disable_unprepare(atdma->clk);
2126 static void at_dma_shutdown(struct platform_device *pdev)
2128 struct at_dma *atdma = platform_get_drvdata(pdev);
2130 at_dma_off(platform_get_drvdata(pdev));
2131 clk_disable_unprepare(atdma->clk);
2134 static int at_dma_prepare(struct device *dev)
2136 struct at_dma *atdma = dev_get_drvdata(dev);
2137 struct dma_chan *chan, *_chan;
2139 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2141 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2142 /* wait for transaction completion (except in cyclic case) */
2143 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2149 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2151 struct dma_chan *chan = &atchan->vc.chan;
2153 /* Channel should be paused by user
2154 * do it anyway even if it is not done already */
2155 if (!atc_chan_is_paused(atchan)) {
2156 dev_warn(chan2dev(chan),
2157 "cyclic channel not paused, should be done by channel user\n");
2161 /* now preserve additional data for cyclic operations */
2162 /* next descriptor address in the cyclic list */
2163 atchan->save_dscr = channel_readl(atchan, DSCR);
2165 vdbg_dump_regs(atchan);
2168 static int at_dma_suspend_noirq(struct device *dev)
2170 struct at_dma *atdma = dev_get_drvdata(dev);
2171 struct dma_chan *chan, *_chan;
2174 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2176 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2178 if (atc_chan_is_cyclic(atchan))
2179 atc_suspend_cyclic(atchan);
2180 atchan->save_cfg = channel_readl(atchan, CFG);
2182 atdma->save_imr = dma_readl(atdma, EBCIMR);
2184 /* disable DMA controller */
2186 clk_disable_unprepare(atdma->clk);
2190 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2192 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
2194 /* restore channel status for cyclic descriptors list:
2195 * next descriptor in the cyclic list at the time of suspend */
2196 channel_writel(atchan, SADDR, 0);
2197 channel_writel(atchan, DADDR, 0);
2198 channel_writel(atchan, CTRLA, 0);
2199 channel_writel(atchan, CTRLB, 0);
2200 channel_writel(atchan, DSCR, atchan->save_dscr);
2201 dma_writel(atdma, CHER, atchan->mask);
2203 /* channel pause status should be removed by channel user
2204 * We cannot take the initiative to do it here */
2206 vdbg_dump_regs(atchan);
2209 static int at_dma_resume_noirq(struct device *dev)
2211 struct at_dma *atdma = dev_get_drvdata(dev);
2212 struct dma_chan *chan, *_chan;
2214 /* bring back DMA controller */
2215 clk_prepare_enable(atdma->clk);
2216 dma_writel(atdma, EN, AT_DMA_ENABLE);
2218 /* clear any pending interrupt */
2219 while (dma_readl(atdma, EBCISR))
2222 /* restore saved data */
2223 dma_writel(atdma, EBCIER, atdma->save_imr);
2224 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2226 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2228 channel_writel(atchan, CFG, atchan->save_cfg);
2229 if (atc_chan_is_cyclic(atchan))
2230 atc_resume_cyclic(atchan);
2235 static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2236 .prepare = at_dma_prepare,
2237 .suspend_noirq = at_dma_suspend_noirq,
2238 .resume_noirq = at_dma_resume_noirq,
2241 static struct platform_driver at_dma_driver = {
2242 .remove = at_dma_remove,
2243 .shutdown = at_dma_shutdown,
2244 .id_table = atdma_devtypes,
2247 .pm = pm_ptr(&at_dma_dev_pm_ops),
2248 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2252 static int __init at_dma_init(void)
2254 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2256 subsys_initcall(at_dma_init);
2258 static void __exit at_dma_exit(void)
2260 platform_driver_unregister(&at_dma_driver);
2262 module_exit(at_dma_exit);
2264 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2267 MODULE_LICENSE("GPL");
2268 MODULE_ALIAS("platform:at_hdmac");